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Abstract: Digital addressing of the electrical signal in spatial light 

modulators, as it is the case in present liquid crystal on silicon (LCoS) 

displays, may lead to temporal phase fluctuations in the optical beam. In 

diffractive optics applications a reduction in the modulation diffraction 

efficiency may be expected. Experimental work is done characterizing the 

fluctuations amplitude and phase depth for three different digital addressing 

sequences. We propose a diffractive model to evaluate the modulation 

diffraction efficiency of phase diffractive optical elements (DOEs) in the 

presence of phase fluctuations. Best results are obtained for the most stable 

electrical sequence even though its phase depth is as small as 280°. The 

results show good agreement with the numerical calculation given by the 

model. 
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1. Introduction 

Liquid crystal (LC) microdisplays have found a widespread range of applications in different 

areas such as diffractive optics [1], optical storage [2], or optical metrology [3]. In particular, 

liquid crystal on silicon (LCoS) displays have become the most attractive microdisplays for 

these applications due to their very high spatial resolution and very high light efficiency [4]. 

The digital addressing scheme (pulse width modulation) used in LCoS may lead to flicker in 

the optical beam [5,6]. The reason for the flicker is the limited viscosity of the LC molecules 

what allows them to follow each single pulse at a fraction. This means that the LC flickers 

around an average value what leads to a time dependent amplitude transmission. This may 

introduce temporal phase fluctuations [7,8] and/or a certain amount of depolarization [9–12] 

on the beam of light reflected by the LCoS. In fact, the digital addressing sequence, which is 

based in a pulse width modulation scheme, can be programmed. Shorter sequences offer the 

possibility of a higher repetition rate in a frame period, which has the effect of reducing the 
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flicker amplitude [5,6]. The number of addressable phase levels also reduces for shorter 

sequences, which should also be taken into account for some applications. 

For the above mentioned applications and in particular for diffractive optics, it is very 

desirable to achieve a phase-only modulation regime, where a linear phase modulation up to 

2π is produced versus the addressed gray level without coupled amplitude modulation. Many 

papers have demonstrated the usefulness of liquid crystal displays [13–16] and LCoS devices 

[17,18] to act as phase-only spatial light modulators. In general, all these papers consider the 

phase element addressed as a stable mask, without any source of phase fluctuation. To our 

knowledge, the effect on phase holograms of such phase fluctuations has not been analysed. 

This analysis is especially necessary in the case of present LCoS devices, since the digital 

addressing scheme used may lead to temporal fluctuations with a consequent degradation of 

their performance, as it will be the case in diffractive optics. 

In addition to the temporal phase fluctuations, which will be analysed in detail in the 

present paper, there are a number of other defects which may deteriorate the performance of 

phase elements addressed onto a spatial light modulator [19]: 1) an amplitude modulation may 

be coupled to the phase modulation, 2) the phase modulation may not be linear with applied 

voltage, 3) the phase modulation depth may be less than 2π, and 4) the available phases may 

be limited to some quantized values. In diffractive optics these defects lead to a reduction of 

the modulation diffraction efficiency of the phase diffractive element. To solve these 

limitations it was found, in the context of filter design for pattern recognition, that the optimal 

solution is the Euclidean projection of each complex value to the closest available complex 

point in the modulation domain [20,21]. Later, several papers showed the application of this 

approach to the implementation of diffractive phase elements onto liquid crystal displays 

[19,22,23]. In all the cases the display was considered to show an electrical signal stable in 

time. It is now interesting to analyze the validity of the Euclidean projection approach taking 

phase fluctuations into consideration, and its usefulness to improve the modulation diffraction 

efficiency, defined as the intrinsic efficiency of the phase element disregarding other effects 

such pixelation or finite transparency of the display [22]. In particular, we need a calculation 

method in order to select the optimum digital electrical sequence with respect to the 

modulation diffraction efficiency. 

The outline of the paper is as follows. In Section 2 we provide, for three different digital 

addressing sequences with different characteristics, experimental values for the temporal 

phase fluctuations and phase depth. In Section 3 we introduce the theoretical model and 

expressions that we propose to evaluate the performance of phase holograms and in particular 

of phase-only diffractive optical elements (DOEs) displayed onto spatial light modulators 

(SLMs) presenting temporal phase instabilities. In Section 4 we apply the theoretical model to 

calculate which electrical sequence provides more efficient phase elements. Both numerical 

and experimental values are given for the case of blazed gratings, showing that the saturated 

phase encoding technique derived from the minimum Euclidean principle provides the best 

efficiency for our device. 

2. Temporal phase fluctuations: experimental characterization 

In this paper we analyze a phase-only LCoS. It corresponds to an electrically controlled 

birefringence (ECB) LCoS display distributed by the company HOLOEYE. It is an active 

matrix reflective mode device with 1920x1080 pixels and 0.7” diagonal named the PLUTO 

Spatial Light Modulator (SLM). The pixel pitch is of 8.0 µm and the display has a fill factor 

of 87%. The signal is addressed via a standard DVI (Digital Visual Interface) signal. By 

means of the RS-232 interface and its corresponding provided software, we can perform 

gamma control to configure the modulator for different applications and wavelengths. 

Besides, different pulse width modulation (PWM) addressing schemes (digital addressing 

sequences) can be generated by the driver electronics [5], which can be programmed using the 

software included with the device. This will be applied in the present paper to characterize a 
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series of digital addressing sequences in terms of the phase values and temporal fluctuations 

they introduce in the beam of light. 

In particular we will evaluate three digital addressing sequences whose configuration files 

are provided with the software and which can be loaded using this device driver software. 

They correspond to the configurations labelled as “18-6 default”, “5-5 (1064)” and “5-5 

(543)”. The first number indicates the quantity of “equally weighted” bit-planes, and the 

second number the quantity of “binary” bit-planes [5]. This means that the sequence 18-6 is 

longer than the one corresponding for the sequence 5-5. In principle the shorter the sequence 

the smaller the flicker [5]. However, a larger sequence provides a larger number of possible 

phase levels: (18 + 1) x 2
6
 = 1216 for the sequence “18-6” and (5 + 1) x 2

5
 = 192 for the 

sequence “5-5”. In principle, the sequences “5-5 (1064)” and “5-5 (543)” have been 

respectively optimized for the wavelengths 1064 nm and 543 nm. The voltage depth and 

gamma for the sequence 18-6 are also designed for the infrared. This means that for these 

wavelengths each of these two sequences should provide a phase depth of 2π radians, and 

quite a linear relation between phase value and gray level. Using these three different 

sequences we can evaluate different levels of flicker, of phase levels, and also of phase depth. 

In order to be used as a phase-only device the incident light beam must be linearly 

polarized light along the director axis of the LCoS, which in the PLUTO device is along the 

horizontal axis of the laboratory reference system. Typically, two different types of techniques 

are used to measure the experimental phase modulation provided by liquid crystal devices: 

interferometric methods [24,25] or diffractive methods [26,27]. In Ref. [7] we demonstrated 

that interferometric methods are very adequate to obtain the average phase value, whereas 

diffractive methods are useful to obtain the instantaneous value for the phase. Another 

procedure to obtain the phase values is by means of the polar decomposition of the calibrated 

Mueller matrix for the LCoS [8,18,28]: from the retarder matrix in the polar decomposition 

the retardance values can be retrieved, which in the case of an ECB display and for linearly 

light along the director axis, correspond to the phase shift introduced in the light beam. 

Average or instantaneous phase values can be obtained depending whether the average or the 

instantaneous Mueller matrices are used. Next we show the results obtained for the average 

phase value and for the instantaneous phase value using the PLUTO LCoS display, for an 

incident wavelength of 633 nm from a He-Ne laser and for an angle of incidence of 2° 

(quasiperpendicular incidence). These measurements have been repeated for the three 

different digital sequences above specified. 

The wavelength we use, 633 nm, does not correspond to any of the ones for which these 

sequences have been designed. In fact, this is not a problem. Sequences “18-6 default”, “5-5 

(1064)”, designed for a longer wavelength, will provide a phase depth larger than 2π radians, 

which can be linearized and limited to 2π radians simply applying an appropriate look-up 

table. In the case of sequence “5-5 (543)” the phase depth will be shorter than 2π radians, 

what is also useful to evaluate the possibilities offered by the minimum Euclidean approach in 

case of limited phase depth. We also note that in multiwavelength applications [29–32] the 

spatial light modulator will provide 2π radians only for one wavelength of the set, while the 

rest will present different phase depth. In the rest of the paper we will refer to these sequences 

as #1 for “18-6 default”, #2 for “5-5 (1064)”, and #3 for “5-5 (543)”. 

In Fig. 1(a) we show the results obtained for the average phase value, using the retarder 

matrix obtained through the polar decomposition, and for the three sequences. We see that 

two of the sequences produce a phase modulation range larger than 360°: 520° and 480° 

respectively for the sequences #1 and #2 respectively. However, the phase depth for the 

sequence #3 is clearly smaller (about 280°). This could be expected since sequences the first 

two sequences are prepared for the infrared and the third one for the 543 nm wavelength. 
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Fig. 1. Phase modulation values corresponding to the ECB LCoS display working as a phase-

only device for 633 nm, and for the three electrical signal sequences. (a) Average phase. (b-d) 

Instantaneous phase for the sequences: (b) #1, (c) #2, and (d) #3. 

We want to estimate the peak-to-peak phase fluctuation amplitude associated with each of 

the three addressing sequences. We choose to address phase values around 100°, 200° and 

300° to sample the phase domain. In the case of the sequence #3 the maximum phase value 

we can address is 280°. From Fig. 1(a) we obtain to which gray levels these relative phase 

values correspond. We note that the zero phase reference value is taken at zero gray level 

where no temporal fluctuations exist in the reflected optical signal. In Figs. 1(b), 1(c) and 1(d) 

we show the instantaneous phase values, measured using the diffractive method [7], 

respectively for the sequences #1, #2 and #3. In the diffractive method a binary grating is 

addressed where one level correspond to the zero gray level and the other level correspond to 

the gray level associated with the phase value we want to reproduce. In each of the three 

graphs the blue, red and green curves represent the three phase values whose instantaneous 

magnitudes we want to measure. In the legend we have written the gray level addressed for 

the non-zero level in the binary grating, extracted from Fig. 1(a). It is evident that the 

fluctuations for the sequence #1, Fig. 1(b), are very large. They become much smaller for the 

sequences #2, #3, Fig. 1(c) and 1(d), corresponding to the shorter digital sequence (“5-5”). 

This is agreement with the general fact stated in literature [5,6] and commented in the 

Introduction Section: shorter sequences reduce the flicker amplitude. We note that the 

fluctuations repeat periodically. Among the two “5-5” configurations, configuration #3 shows 

a smaller fluctuation magnitude. In this case, we do not get full wave phase depth and we 

could think that it is a less efficient configuration. In Section 3, we will show a method which 

allows to increase the efficiency for phase DOEs displayed in a limited phase domain. 

In Table 1 we show quantitative data for the magnitude of the phase fluctuations given in 

Figs. 1(b)-1(d). For each of the three sequences we show in each of the columns of the table 

the gray levels applied to the binary gratings, the average of the instantaneous phase value 

measured with this diffractive-based method, the peak-to-peak value for the temporal 

fluctuation of the phase, and the ratio (in percentage) between the peak-to-peak and the 

average phase value, which is what we will call fluctuation amplitude in the rest of the paper 
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unless otherwise stated. We see that the average phase value in each case is very close to the 

values extracted from Fig. 1(a) that we actually want to reproduce. With respect to the 

fluctuation amplitude we see that this value becomes even close to 120% for the first 

sequence, it is about 50% for the second sequence, and it is about 30% for the third. In each 

sequence this fluctuation amplitude changes with the average phase value in an interval about 

20-30%. However there is not a monotonously increasing or decreasing tendency: as a first 

approximation we may consider a constant value for this magnitude, which is what we will 

apply in Eq. (2) in the theoretical development in Section 3. 

Table 1. Values for the parameters characterizing the instantaneous phase signals shown 
in Figs. 1(b-d), measured with the diffractive-based method and for the three electrical 

sequences. 

Sequence #1 
Gray levels Average phase (°) Peak-to-peak value (°) Fluct. amplitude (%) 

0-30 95 107 113 

0-70 206 249 121 

0-120 290 260 90 

Sequence #2 

Gray levels Average phase (°) Peak-to-peak value (°) Fluct. amplitude (%) 

0-50 112 62 56 

0-103 216 46 21 

0-156 309 118 38 

Sequence #3 

Gray levels Average phase (°) Peak-to-peak value (°) Fluct. amplitude (%) 

0-89 101 30 29 

0-182 209 30 14 

0-255 277 92 33 

3. Theoretical development 

In Ref. [19] the effects were analyzed when an ideal phase-only diffractive element is 

displayed onto a display showing the typical constraints exhibited by liquid crystal SLMs: 

coupled amplitude modulation, non-linear phase modulation and phase dynamic range shorter 

than 2π radians. Using this model we can evaluate the amount of energy actually directed to 

the desired signal. This model also allows designing codification strategies which enhance this 

desired signal. At present, there are a series of strategies enabling for phase–only modulation 

with liquid crystal SLMs [13–18], and the residual non-linear phase modulation can be 

accounted for by using a proper look-up table. Thus, we can say that in general the first two 

constraints can be solved. However, in many situations the phase dynamic range available 

with liquid crystal devices is still shorter than 2π radians. 

In Ref. [19] it was shown that, depending on the mapping scheme to implement the phase 

function onto the restricted phase-only domain, the modulation diffraction efficiency can be 

greatly enhanced. Figure 2 shows two possibilities for the implementation of the ideal phase-

only function h = exp(iφ). The phase values available in the display are in the range [0,ε], 

where ε is the phase depth. The diagonal line represents the correct matching between the 

designed phase φ and the displayed phase p. Model (1) in Fig. 2 represents a linear phase 

mismatching. A more efficient encoding is presented as the model (2) in Fig. 2, that we call a 

saturated mismatching encoding. This solution represents the perfect phase matching up to the 

maximum modulation depth φ = ε, while there is saturation for values φ>ε. Following the 

minimum Euclidean distance principle [20,21], we approximate each phase φ>ε by the closest 

available phase. In general we concluded in Ref [19] that a continuous phase diffractive 

element with the saturated encoding (model 2 in Fig. 2) is more efficient that the 

implementation using the linear mismatch (model 1 in Fig. 2). We have used this saturated 

encoding to improve the efficiency of diffractive lenses [22], and to correct an anamorphic 

phase modulation effect caused by the electrical LCD addressing [23]. In this paper we extend 
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this model to the case when there are temporal phase fluctuations present on the phase-only 

element. 

Addressed phase ( )ϕ

Im
p
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m
en
te
d
 p
h
as
e

(
)

p

ε

Model 2

0 π 2π0

π

2π

Model 1
π+ε/2

ε

 

Fig. 2. Mapping scheme for the implementation of the linear mismatching encoding (Model 1) 

and the saturation mismatching encoding (Model 2). 

Let h(x,y) = exp[iφ(x,y)] be the phase-only function to be displayed by the device. When 

this function is addressed to the phase-only display, in general the displayed phase values p 

will be different from the values addressed φ. The phase function implemented m(x,y) = 

exp[ip(φ(x,y))] is a periodic function of φ with periodicity 2π, therefore it can be expanded in 

Fourier series as given in Ref. [19]. 

 ( ) ( ) ( ) ( )exp ' expM A i G iαϕ ϕ ϕ αϕ
α

= =∑   (1) 

The interesting parameter is the hermitic product 
2

Gα  for the coefficients in the expansion, 

which expresses the energy for each term. The desired phase function is exhibited by the first 

term of the Fourier expansion (α = 1). The value for the coefficients associated with the other 

terms may become significant when there are defects in the phase reproduction. We note that 

the terms in the Fourier expansion can be spatially separated if a linear phase or a quadratic 

phase is added to the phase element [19]. 

Let us consider now which results may be expected when the values in the phase element 

exhibit a periodic temporal fluctuation, as it could be seen in Figs. 1(c)-1(d). The period of the 

pattern is much smaller than the typical integration time of the system (CCD camera) used in 

applications to acquire the optical signal reflected by the LCoS device. To ease the theoretical 

development we consider the following simplified model for the periodic evolution of the 

phase displayed p(t) as a function of time t. First, we consider that the phase fluctuation can be 

modeled as a sawtooth profile in time with a period T. Second we consider that the amplitude 

of the fluctuation is proportional to the average value of the displayed p , which may work as 

a first approximation as commented in the last paragraph in Section 2. Putting all this together 

we may describe the evolution of the displayed phase value along a period, between 

0 t T≤ ≤ , as follows, 

 ( ) 1
,

2

t
p t p K p

T

− = + + 
 

  (2) 

where K is a positive-valued constant which expresses the magnitude of the fluctuation. This 

is actually the fluctuation amplitude defined in Section 2 as the ratio between the peak-to-peak 

phase fluctuation and the average phase value. We note that in Eq. (2) it is not expressed in 

percentage. For K = 0 we would have no fluctuations and we would be in the situation 

described in Ref. [19,22]. When K = 1 we would have a peak-to-peak phase fluctuation equal 

to the average phase value p . 
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Considering the fluctuation model in Eq. (2) and for the particular phase implementation 

schemes presented in Fig. 2 we can obtain the temporal evolution of the different coefficients 

( )G tα  in the Fourier series decomposition in Eq. (1). In the case when the linear mismatch is 

applied the important parameter to be introduced is the phase depth which is now fluctuating 

according to Eq. (2), thus, 

 ( ) 1
,

2

t
t K

T
ε ε ε

− = + + 
 

  (3) 

where ε  is the average value for the phase depth. Then the linear mismatching encoding is 

expressed as, 

 ( ) ( )
, exp ,

2

t
m t i

ε
φ φ

π

 
=  

 
  (4) 

and we obtain that the coefficient for each Fourier term is given by, 

 ( ) 1
, ,

2 2 2

t
G K t Exp i K

Tα

ε ε
ε α π

π π
  −  = − + +   

   
 

 
1

sinc ,
2 2 2

t
K

T

ε ε
α

π π
  −  × − + +   

   
  (5) 

where sinc(x) = sin(πx)/(πx). Actually, the parameter related with the optical experiments is 

the time average of the energy for each Fourier term, 

 ( ) ( ) 2

0

1
, , , ,

T

K G K t dt
Tα αη ε ε= ∫   (6) 

In the case of Eqs. (5) and (6), when there are no fluctuations, i.e. K = 0, we recover the result 

given in Ref. [19] when no fluctuations where considered, 

 ( ) 2
sinc

2
α

ε
η ε α

π
 = − 
 

  (7) 

We now consider the case when the saturated codification is used. We apply as the saturation 

value the average value for the phase depth ε . Then, we have the following situation for the 

phase values p implemented as a function of the desired phase values φ, 

 ( )
( )
( ) ( )

( )

0

, 2 2

0 2 2 2

t

p t t

φ φ ε
φ ε ε φ π ε

π ε φ π

< ≤


= < ≤ +
 + < ≤

  (8) 

where ( )tφ  corresponds to, 

 ( ) 1
.

2

t
t K

T
φ φ φ

− = + + 
 

  (9) 

When using Eq. (8) we obtain that the coefficient for each Fourier term in the saturated 

encoding is given by, 
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In the case when no fluctuations are considered, K = 0, this expression converts into, 
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and the energy for the first term, α = 1, which corresponds to the desired phase element is, 

 ( ) ( )
2

1

sin 2

2

εε
η ε

π π

  
= + 
  

  (12) 

which corresponds to one of the results obtained in Ref. [22]. 

Next we show some simulations which exemplify what kind of results can be now 

obtained when applying this extended model including the effects of the temporal phase 

fluctuations. In Fig. 3(a) we plot the value for the energy of the first term in the Fourier 

expansion, which corresponds to the energy for the desired signal, as a function of the 

available depth for the phase modulation domain. This simulation has been plotted for 6 

different situations given in the legend of the figure, where “Lin” and “Sat” stand respectively 

for linear and saturation mismatching encoding. The values in the legend correspond to the 

fluctuation full amplitude parameter K previously reported expressed as a percentage of the 

average phase value, i.e. K = 1 corresponds to a percentage of 100%. The curves are 

monotonously increasing with the phase depth, and the maximum value is achieved when the 

phase depth is 360°. It can also be seen that the energy for the first term diminishes with the 

increase in the fluctuation amplitude, thus degrading the performance of the phase-only 

element. We see that when no fluctuations exist the saturation encoding provides clearly a 

more energetic first term in comparison with the linear mismatching encoding. This is still 

true for a fluctuation amplitude of 50%, but in the case of 100% we see that the linear 

mistmatching provides a slightly larger energy than the saturation mismatching for a phase 

depth larger than 300°. This means than when the fluctuations are very large both encodings 
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may provide similar values and no advantage would be expected from applying the minimum 

Euclidean projection approach. 

 

Fig. 3. Simulation for the energy for the first term α = 1 and for the two mismatching encoding 

strategies: in (a) as a function of the phase depth and in (b) as a function of the fluctuation 

amplitude. 

An alternative plot is given in Fig. 3(b) where the energy for the first term is represented 

as a function of the fluctuation amplitude. We show as a reference the energy obtained in the 

case when the available phase depth is 360°. The other curves correspond to the results 

obtained when the phase depth is restricted to 300° and 240°. We see that, for each value of 

fluctuation amplitude, the saturation encoding is in general more efficient than the linear 

mismatching, except for large values: we see that for a phase depth of 300°, when the 

fluctuation amplitude is larger than 90% the linear mismatching is providing slightly better 

results. We also see that even for such a reduced phase depth as 240° the energy provided by 

the saturated encoding is close to 90%, rather close to the curve obtained for the linear 

encoding for a phase depth of 300°. The saturated encoding for a phase depth of 300° 

provides the same efficiency as the linear encoding for a phase depth of 360°. Therefore, an 

important result extracted from this representation, which will emphasized in this paper, is 

that when using phase-only liquid crystal devices it may become more important to minimize 

the amplitude of the fluctuation than to maximize the phase depth. In general, a trade-off 

should be found, and the theory developed in this Section allows quantifying the goodness of 

this trade-off. 

4. Numerical and experimental results 

4.1 Numerical simulations: optimal sequence 

A couple of conclusions could be drawn from the simulations presented in Fig. 3 in Section 3, 

in order to maximize the diffraction efficiency for the α = 1 term (which is the desired term) in 

the Fourier expansion. We commented that when using phase-only devices not only the phase 

depth is important but also the fluctuation amplitude has a strong impact. Furthermore we 

demonstrated that using the saturation mismatching encoding we may maximize the 

diffraction efficiency to values close to the ideal even when the phase depth becomes 

significantly smaller that 360°. According to these ideas, and using the values expressed in 

Table 1, we want to calculate which of the three digital electrical sequences provides a more 

intense first order term. Two of the sequences provide the ideal phase depth of 360°, however 

their fluctuation amplitudes are about 120% (sequence #1) and 50% (sequence #2). The 

sequence #3 provides the smaller fluctuation amplitude, i.e. about 30%, but the phase depth is 

280°, clearly smaller than 360°. 

In Fig. 4 we show the numerical results obtained for the energy for the first term in the 

Fourier expansion. The vertical dashed lines indicate the fluctuation amplitudes of 50% and 

120% associated respectively with the sequences #1 and #2. A series of curves have been 
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plotted, expressed in the legend. As a reference we show the curve corresponding to a phase 

depth of 360° (continuous red curve) which is plotted as a function of the fluctuation 

amplitude given in the X-axis in the plot. Together with this curve we show two horizontal 

lines corresponding to the energy value provided for a constant fluctuation amplitude of 30% 

and for a phase depth of 280°, which corresponds to the sequence #3. The two horizontal lines 

correspond respectively to the result obtained when applying the linear (long dash brown line) 

and the saturation mismatching encoding (short dash green line). We see that the energy value 

for the first term respectively for the sequences #1 and #2 is 0.69 and 0.93. For the sequence 

#3 the values are 0.84 and 0.94 respectively for the linear and for the saturation encoding. 

Therefore we obtain that the best option is to use the sequence #3 with saturated encoding, 

which provides an energy slightly larger than the one provided by the sequence #2. We 

remark this result: even though the phase depth is clearly smaller than 360°, a good value for 

the energy for the first term is obtained due to the lower fluctuation amplitude and to the use 

of the saturated encoding. 

 

Fig. 4. Energy for the first term α = 1 calculated for the values of the phase parameters 

corresponding to the three digital electrical sequences. We plot the energy values 

corresponding to a phase depth of 360° (continuous red curve) as a function of the fluctuation 

amplitude. In this curve the points with fluctuation amplitude values of 50% and 120%, 

indicated by the vertical lines, correspond to sequences #1 and #2. The two horizontal lines 

correspond respectively to the energy values obtained when applying the linear (long-short 

dash) and the saturated (short dash) encodings for the sequence #3, having a phase depth of 

280° and a fluctuation amplitude of 30%. 

4.2 Experimental results for a blazed grating 

In this Section we want to verify experimentally the validity of the extended model proposed 

in Section 3. To this goal we address to the ECB LCoS a blazed grating and we measure the 

intensity diffracted to the zero and to the first diffracted orders. We note that these diffracted 

orders correspond to the terms α = 0 and α = 1 respectively in the Fourier expansion (Eq. (1)). 

We apply the three electrical sequences. In the case of the sequences #1 and #2 we limit the 

phase range between 0 and 360° and apply a look-up-table to produce a linear increment for 

the average phase value. For the sequence #3 the phase depth is already smaller than 360° and 

we apply both the linear and the saturation mismatching encoding. For the other two 

sequences, the linear phase is limited to the gray level providing an average phase of 360°, 

and the corresponding look-up table is applied to provide a linear phase. Thus the linear 

encoding is directly obtained. In all cases, the period for the grating is 16 pixels. This is a 

large enough number of pixels so that there is no need to consider the effect of the 

quantification of the phase levels. In this way we can apply the theory developed in Section 3, 

which is valid when the phase domain is continuous. 

In Fig. 5 we show the measurements obtained for the intensity diffracted to the zero and 

first diffracted orders. Two radiometers are connected to the two channels of a digital 

oscilloscope in order to obtain instantaneous values. The intensity is normalized to the total 
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intensity reflected by the LCoS, which is measured in the zero order when a uniform screen is 

addressed. We show the results obtained when applying the sequences #1 in Fig. 5(a), #2 in 

Fig. 5(b), #3 with linear mismatching in Fig. 5(c), and #3 with saturation mismatching 

encoding in Fig. 5(d). We see that very large fluctuations are present for the sequence #1. On 

the contrary the diffraction efficiency for the first order is the highest and the signal the most 

stable for the sequence #3 with saturated encoding. 

 

Fig. 5. Normalized intensity for the zero and first orders obtained when addressing a blazed 

grating and the following sequences and phase encoding schemes. (a) sequence #1, (b) 

sequence #2, (c) sequence #3 with linear mismatch, and (d) sequence #3 with saturated 

mismatch. The ECB LCoS is in the phase-only regime and it is illuminated with the 

wavelength 633 nm. 

In Table 2 we show quantitative data obtained from the experiment in Fig. 5. We have also 

calculated the corresponding numerical values so that we can verify the prediction capability 

of the extended theory developed in Section 3. For the numerical simulation we consider the 

phase depths and the fluctuation full amplitudes already commented in the first paragraph in 

Section 4.1. 

Table 2. Values for the parameters characterizing the instantaneous normalized 
intensities for the zero and the first diffracted orders produced by the blazed grating. 

Both experimental and numerical values are given. 

  Experimental Theoretical 

Sequence 
Normalized 

intensity 
Order 0 Order 1 Order 0 Order 1 

#1 
Average 0.18 0.57 0.11 0.69 

Std. deviation 0.10 0.14 0.15 0.24 

#2 
Average 0.05 0.75 0.02 0.92 

Std. deviation 0.02 0.04 0.02 0.06 

#3 Linear encoding 
Average 0.14 0.69 0.08 0.83 

Std. deviation 0.05 0.06 0.05 0.08 

#3 Saturated encoding 
Average 0.05 0.80 0.01 0.94 

Std. deviation 0.02 0.02 0.01 0.04 

Let us analyze the average intensity values for the first order (columns 4 and 6). We see 

that both the experimental and the theoretical values agree with the tendency: the more 
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efficient results are obtained for the sequence #3 with saturated encoding, followed by #2, #3 

with linear encoding, and #1. Actually we see that if an offset about 0.12-0.17 is substracted 

from the theoretical values, then the agreement between experiment and theory would be very 

good. We may think of various factors leading to this offset which diminishes the theoretical 

values. First, in the model we consider that the fluctuation amplitude is proportional to the 

average phase value but this is only a rough approximation as discussed in Table 1. Second, 

we consider that the ramp for the blazed grating is fluctuating in a synchronized manner, i.e. 

at any time there is a blazed grating and it is its phase depth what fluctuates. It is actually 

more likely that the different pixels composing the grating are fluctuating in a non-

synchronized way: thus, at any time there are deviations from the ramp profile, leading to a 

smaller diffraction efficiency. This second possibility alone could probably explain this offset. 

In the case for the average value for the zero order (columns 3 and 5), we also verify that 

the experimental and theoretical tendencies coincide. In this case the experimental values 

increase with respect to the theoretical ones. Let us now analyze the standard deviations 

associated with the temporal intensity fluctuations. We may see that the experimental and 

numerical values show a good agreement both for the zero and for the first diffracted order. 

5. Conclusions 

We have provided experimental measurements for the degree of the temporal phase 

fluctuations in the reflected optical beam given by LCoS displays. We have seen that 

depending on the format for the digital video signal these fluctuations may be reduced. 

According to literature shorter sequences should produce smaller fluctuations. We have used 

in the paper three different digital electrical sequences with different fluctuation amplitudes 

and one of them with a phase depth smaller than 2π radians. We have proposed a diffractive 

model to evaluate the efficiency of phase diffractive optical elements (DOEs) presenting 

phase fluctuations and reduced phase depth. Two phase encoding schemes are considered: 

linear and saturation mismatching. We demonstrate that saturation mismatching encoding, 

resulting from the minimum Euclidean projection onto the available values in the phase 

domain, provides more efficient phase elements unless the fluctuation amplitude becomes 

very large. The experimental and numerical results show a good agreement and validate the 

usefulness of the model. Using the model and applying the saturation mismatching encoding, 

we calculate which of the available electrical signal sequences provides more efficient blazed 

gratings. We find that for our specific LCoS unit the best results are obtained for the most 

stable electrical sequence even though its phase depth is as small as 280°. The presented 

approach is therefore a useful guide to operate LCoS devices for phase diffractive applications 

with improved diffraction efficiency, in spite of the losses caused by the phase fluctuation. 
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