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Spermatogenesis is characterized by unique epigenetic programs that enable chromatin
remodeling and transcriptional regulation for proper meiotic divisions and germ cells
maturation. Paternal lifestyle stressors such as diet, drug abuse, or psychological trauma
can directly impact the germ cell epigenome and transmit phenotypes to the next
generation, pointing to the importance of epigenetic regulation during spermatogenesis.
It is established that environmental perturbations can affect the development and behavior
of the offspring through epigenetic inheritance, including changes in small non-coding
RNAs, DNA methylation, and histones post-translational modifications. But how male
germ cells react to lifestyle stressors and encode them in the paternal epigenome is still a
research gap. Most lifestyle stressors activate catecholamine circuits leading to both
acute and long-term changes in neural functions, and epigenetic mechanisms show
strong links to both long-term and rapid, dynamic gene expression regulation during
stress. Importantly, the testis shares a molecular and transcriptional signature with the
brain tissue, including a rich expression of catecholaminergic elements in germ cells that
seem to respond to stressors with similar epigenetic and transcriptional profiles. In this
minireview, we put on stage the action of catecholamines as possible mediators between
paternal stress responses and epigenetic marks alterations during spermatogenesis.
Understanding the epigenetic regulation in spermatogenesis will contribute to unravel the
coding mechanisms in the transmission of the biological impacts of stress
between generations.

Keywords: male germ cells, epigenetics, catecholamines, dopamine receptor, adrenergic receptor
INTRODUCTION

Stress is a phenomenon fundamental to survival, in which complex and timely physiological and
behavioral responses, allow the individual to adapt to the dynamic challenges of the environment
and restore body homeostasis (1). The stress response is activated by the sympathoneural and
sympathoadrenomedullary systems that secrete catecholamines, which in turn activates the
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hypothalamus-pituitary-adrenal (HPA) axis to secrete
glucocorticoids. The interplay between these circuits systemically
promotes metabolic and behavioral changes that are transient and
adaptive; however, the prolonged sympathetic stimulation and
increased glucocorticoid levels during chronic stress has been
associated with long-lasting maladaptive responses (2). In the last
years, the discovery of epigenetic mechanisms that could alter the
sperm information and transmit stress-related phenotypes to the
offspring was a huge breakthrough for the male reproduction field
(3). It is now clear that pathophysiological effects of stress are not
confined to the individual, but stress can affect the first generation
offspring and even extend across multiple generations through the
epigenetic reprogramming of male germ cells (4–6).

Epigenetic information in male germ cells involves changes in
small non-coding RNAs, paternal DNA methylation and
histones post-translational modifications (PTMs) patterns that
modulate gene expression in response to basal transcriptional
programs and environmental stressors (7). Spermatogenesis is
characterized by a unique epigenetic program that enables
chromatin remodeling to protect paternal DNA, and a fine
transcriptional regulation required for proper meiotic divisions
and sperm maturation (Figure 1A). Within male germ cells,
changes in epigenetic states are critical for the silencing of
transposable elements, paternal genes imprinting, several aspects
of meiosis, post-meiotic gene silencing and DNA compaction (9).
Once meiosis is completed, the hyperacetylation of histones H3/
H4 initiates the essential histone-to-protamine replacement that
enables chromatin remodeling and compaction during
spermiogenesis (10–13). It was recently found that protamines
also carry several PTMs (14), suggesting the existence of a
“protamine code” that could be involved in the epigenetic
mechanisms that control the incorporation of maternal histones
to paternal DNA after fertilization (15). Interestingly, a small
percentage of histones, 10–15% in humans and 1–8% in mice, are
retained in sperm chromatin (16–18) being their location
associated with promoters of functional genes during
spermatogenesis and at early embryonic development (7, 10, 11,
19). Active transcription in male germ cells takes place in the
stages of spermatogonia, spermatocytes, and round spermatids,
where epigenetic patterns are established (3, 7). Therefore, these
spermatogenic stages are considered windows of vulnerability
where the paternal epigenome could be reprogrammed by
environmental stressors (20).

The catecholamine and glucocorticoid systems elicit dynamic
molecular adaptations of the central nervous system (CNS) during
stress, contributing to long-term consequences on physiological
and behavioral traits that can be transmitted to the offspring (21–
23). So far, a clear link has been demonstrated between
glucocorticoid receptor (GR) activation by corticosterone
Abbreviations: H, histone; PTMs, post-translational modifications; DA,
dopamine; NE, nor-epinephine; TH, tyrosine hydroxylase; AADC or DDC,
aromatic-L-aminoacid-decarboxylase; DBH, dopamine-beta-hydroxylase;
PNMT, phenylethanolamine-N-methyltransferase (PNMT); DRD, DA receptor;
ADR, adrenergic receptor; COMT, catabolic catechol-O-methyltransferase; MAO,
monoamine oxidase; HPA, hypothalamic–pituitary–adrenal; CNS, central
nervous system; BDNF, brain-derived neurotrophic factor.
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administration and increased levels of microRNAs and DNA
methylation in sperm (24, 25). However, the catecholamines
specific impact on the paternal epigenome is still a research gap.
Here, the question arises: can germ cells react to catecholamines
signaling and encode it in different epigenetic marks in the paternal
genome? To tackle this question, we discuss how the testis shares
a molecular and transcriptional signature with the brain tissue,
including a rich expression of catecholaminergic elements in
germ cells that seem to respond to stressors with similar
epigenetic and transcriptional profiles. In this minireview, we
put on stage the action of catecholamines as potential regulators
of the stress epigenetic memory encoding in germ cells.

Epigenetic Mechanisms Related to
Catecholamines Signaling
Most lifestyle stressors activate catecholamine circuits leading to
both acute and long-term changes in neural functions, and
epigenetic mechanisms are strongly suspected in both long-
term and rapid, dynamic gene expression regulation during
stress (26). Environmental stressors rapidly activate the
sympathetic system and induce changes in the production and
secretion of neurotransmitters and stress hormones including
the catecholamines dopamine (DA) and nor-epinephrine (NE)/
epinephrine (E), which orchestrate central and peripheral
downstream effects that enable the behavioral and systemic
response to stress. Dopaminergic tissues express the
rate-limiting tyrosine hydroxylase (TH) and the aromatic-
L-aminoacid-decarboxylase (AADC or DDC), that convert
L-tyrosine to DA. Adrenergic tissues also express dopamine-
beta-hydroxylase (DBH) that further converts DA to NE, and
the phenylethanolamine-N-methyltransferase (PNMT) converts
NE to E in the adrenal medulla (27, 28). The stress response
rapidly release catecholamines that activate the HPA axis, which in
turn induces both neuronal and non-neuronal expression of TH,
DDC and DBH, increasing central and peripheral catecholamine
production (27, 28). Catecholamines bind to G protein-coupled
receptors (GPCRs) that signal though cAMP and Ca2+ second
messengers. DA effects are mediated by two types of DA receptors
(DRDs): D1-like (D1, D5), that are coupled to Gas/Gaolf and rise
cAMP levels, and D2-like (D2, D3, D4) DRDs, that are coupled to
Gai and blunt cAMP levels (29). NE/E effects are mediated by
activation of three types and nine subtypes of adrenergic receptors
(ADRs): alpha1- (a1a/c, a1b, a1d), coupled to Gaq to increase
cytoplasmic Ca2+ levels, alpha2- (a2a, a2b, a2c), coupled to Gai,
and beta- (b1, b2, b3) ADRs, coupled to Gas (30). Upon
production and release, catecholamines are rapidly deactivated
by the catabolic catechol-O-methyltransferase (COMT) and
monoamine oxidase (MAO) enzymes (27, 28).

The regulation of DA and NE synthesis, release and signaling
is extremely sensitive to environmental perturbations, affecting
gene expression through epigenetic mechanisms in the brain
(31–33). Catecholamine receptors downstream effects are related
to the modulation of cAMP and Ca2+ levels, that control
signaling effectors like protein kinases PKA and PKC, and
calmodulin kinases such as CaMKII (29, 34, 35). Stress-
induced overstimulation of Gas-coupled D1-DRDs and b-
ADRs was linked to increased oxidative stress and PKA
February 2021 | Volume 11 | Article 630948
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FIGURE 1 | Epigenetic programming during spermatogenesis and expression of the catecholaminergic system components in different germ cell stages of the
mouse and human spermatogenesis. (A) Curated stages of spermatogenesis available at the Gene Expression Omnibus (GEO) database. Yellow bars show the
epigenetic mechanisms that contribute to key functional events (gray) characteristic of each cell stage during mitosis, meiosis and spermiogenesis, where
environmental stressors are most able to reprogram epigenetic marks. (B) Gene expression profile in mouse spermatogenic cells, obtained from cell-stage specific
RNA-seq and single-cell RNA-seq datasets GEO database. The colored bars depict at which cell stage all datasets reported positive transcript detection for the
catecholamine receptors and enzymes genes [mean RNA-seq RPKM/FPKM > 0.05 and single-cell RNA-seq log(sum normalized expression in the cluster + 1) > 1.2].
The picture shows: dopamine receptors from the D1 family Drd1, Drd5, and D2 family Drd2, Drd4; adrenergic receptors from the a1-subtype Adra1b, Adra1d, a2-
subtype Adra2a, Adra2b, and b-subtype Adrb1, Adrb2; dopamine synthesizing enzymes tyrosine hydroxylase (Th) and aromatic-L-aminoacid-decarboxylase (Ddc);
nor-epinephrine converting enzyme dopamine-beta-hydroxylase (Dbh); catecholamine eliminating enzymes catechol-O-methyl-transferase Comt, Comtd1, and
monoamine oxydase Maoa, Maob. Genes within the same family that showed coincident expression pattern are depicted together. We found no consistent
expression of Drd3, Adra1a, Adra2c, and Adrb3 between datasets for any cell stage. (C) Gene expression visualization for selected genes in the Human Testis
integrated dataset, available at the UCSC cell browser (https://testis.cells.ucsc.edu/), that combines the currently available human testis single-cell RNA-seq datasets
(8). We selected Uniform Manifold Approximation and Projection (UMAP) for dimension reduction to plot the quantitative gene expression pattern in increasing blue-
to-red gradient color code. Left plot shows the cells clusters distribution: SSC, spermatogonial stem cells; SG-1, spermatogonia cluster 1, SG-2, spermatogonia
cluster 2 committed to meiosis; SC, spermatocytes; E-ST, early spermatids; L-ST, late spermatids. Arrows indicate specific high red detection for ADRA1A in late
spermatids, and ADRA2A in spermatocytes, in the Human Testis integrated dataset that was not detected in the mouse datasets.
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recruitment of mitogen-activated protein kinases (MAPKs) (36–
38), which translocate into the nucleus to phosphorylate and
activate several transcription factors including the cAMP
response element-binding protein (CREB), activator protein 1
(AP-1), transcription activator Elk-1, nuclear factor kB (NFkB)
and H3 histones, to control target gene expression (34, 36, 37). So
far, the best characterized stress-induced epigenetic effects
involve increased H3 phosphoacetylation (26, 33) and changes
in DNA and H3K9/K27 methylation patterns in target genes,
affecting components of the stress system like corticotropin
releasing hormone (CRH), GR and MAO-A, trophic factors
like brain-derived neurotrophic factors (BDNF), as well as
inflammation-, oxidative-, mitochondrial-, and endoplasmic
reticulum stress-related genes (26, 36, 37, 39). Importantly,
many stress-induced epigenetic effects depend on GR
activation, a nuclear receptor that elicits both genomic and
non-genomic changes in gene expression by direct binding to
DNA, and by forming complexes with MAPKs (40, 41), and
epigenetic effectors like chromatin modifying enzymes and
microRNAs (42). Moreover, GR binds to TH, DBH, and PNMT
promoters to increase gene expression and catecholamine
production (27), and it was also show to control catecholamines
receptors expression such as a1- and b-ADRs (43, 44). But if these
stress mechanisms can also impact the testis and establish an
epigenetic memory in germ cells has not been fully elucidated.

Daddy Has Two Brains
The testis shares a close transcriptional and proteomic signature
with the brain, as it was shown in tissue microarray and
proteomic studies in human and mice (45–47). It is clear that
the interstitial compartment behaves as a diffuse neuroendocrine
(paraneuron) system, where most cell types share properties with
neurons, including production of amine and peptide hormones/
transmitters, and specific markers of neural determination (48,
49). Pioneer studies in the human and primate testis showed that
the interstitial compartment, together with an extrinsic sympathetic
innervation provided by the spermatic nerves (50, 51), has an
intrinsic catecholaminergic input provided by neuron-like APUD
(amine precursor uptake and decarboxylation) cells, that cooperate
with the autonomous brain system to regulate tissue homeostasis
(52–54).

The close relationship between brain and reproductive tissues
can be traced even to the mature sperm. Recent work by
Ramı ́rez-Reveco et al. (55), postulated the original and
controversial idea that sperm acrosome reaction includes
several steps that recall the process of presynaptic secretion.
The authors also proposed that the common embryonic origin
between the testis and nervous system could explain the presence
of “neural elements” in the sperm, including DA and NE
transporters and receptors (56–58). Interestingly, recent
evidences showed that the sex determining region on the Y
chromosome (SRY) transcription factor, responsible for the
differentiation of the bipotent gonadal ridge into the testis,
behaves as a catecholaminergic program inductor that controls
voluntary movement in adult brain dopaminergic areas (59, 60).
SRY was found to potentiate DA synthesis and metabolism by
binding to TH enhancer, and to increase DDC, DRD2, and
Frontiers in Endocrinology | www.frontiersin.org 4
MAO-A levels in dopaminergic neurons (59). Moreover,
testosterone through androgen receptor activation was found
to participate in the regulation of cortical DA neurotransmission,
modulating TH levels, DA metabolism, and cognition in male
rodents (61).

So far, the best characterized actions of catecholamines in the
testis are related to their targets in the interstitial compartment
and the control of steroidogenesis (52, 53, 62), whereas their
possible direct effects in the seminiferous tubule have been
sidelined. Despite research on specific catecholamine actions
during spermatogenesis was neglected, there are well-
documented examples of sympathomimetic drugs, e.g., cocaine,
that affect the male germ cell epigenome (63–66). In the last
years, evidence has emerged pointing to modifications in sperm
DNA methylome in paternal stress models involving cocaine
intake (64, 65). We and others have reported the effects of
cocaine on specific H3/H4 PTMs related to altered epigenetic
marking of BDNF in sperm (63), and to the silencing of gene
transcription and the histone-to-protamine replacement through
a DRD1-dependent mechanism in maturing sperm cells (66).
Moreover, we showed for the first time that cocaine increases the
testicular expression of TH (67) and induces a down-regulation
of DRDs in mouse germ cells (66), similarly to the cocaine
mechanism described in the brain. Interestingly, we found
similar changes on germ cells H3/H4 PTMs after either DRD1-
inhibitor or cocaine treatment, an effect known in the brain as the
“inverted U-shaped DA response,” where stimulation above and
below the optimal level will equally decrease function and have
similar detrimental effects (68). To our knowledge, this was the first
report that proposed a catecholaminergic pathway as a mechanism
of epigenetic marks encoding in male germ cells. Despite all these
data, it has not been investigated the cellular stage at which male
germ cells may acquire catecholaminergic components and their
potential role in paternal epigenome reprogramming.

An Open Window for Catecholamine-
Induced Epigenetic Reprogramming
It is actually established that environmental stressors may
influence the male germline differently depending on timing
(20). Each spermatogenic stage has a characteristic epigenetic
landscape that enables the complex transcriptional programs
that drive mitosis, meiosis and spermiogenesis, being susceptible
to environmental interactions with their active epigenetic
machinery (3) (Figure 1A). This provides evidence of the
broad timing of plasticity during spermatogenesis. However,
there are still research gaps concerning by which mechanisms
and when in the germ cell maturation stage epigenetic marks can
be programmed.

Research on catecholaminergic components expression
during specific stages of spermatogenesis is scarce and
sometimes inconclusive. To overcome the gaps in the literature
and bring a complete scenario, we conducted a query at the Gene
Expression Omnibus Database (GEO) for publicly available
high-throughput RNA sequencing (bulk and single-cell RNA-
seq) datasets in purified male germ cells populations. Table 1
shows the details of the curated datasets. We analyzed the
normalized expression reported for gene transcripts of interest
February 2021 | Volume 11 | Article 630948
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in each study, and selected those genes that showed positive
expression for each specific cell stage in all datasets (Figure 1B).
We also analyzed the human cell-specific single-cell RNA-seq
data in the Human Testis integrated dataset (8), available at
UCSC cell browser portal (https://testis.cells.ucsc.edu/), that
combines the currently available single-cell RNA-seq human
testis datasets (Figure 1C). Overall, we detected expression for
catecholaminergic receptors and metabolic enzymes throughout
the mouse and human spermatogenesis, which suggest that male
germ cells are both a source and a target of catecholamines.

In the adult testis, undifferentiated spermatogonia stem cells
(SSCs) must achieve a stable balance between self-renewal and
differentiated spermatogonia, which commit to meiosis and give
rise to primary spermatocytes. As it is shown in Figure 1B,
differentiated spermatogonia are the spermatogenic stages that
show most expression of cathecolaminergic receptors mRNAs,
including DRDs Drd1/5, Drd2/4, a1-ADRs Adra1b/d, a2-ADRs
Adra2a/b, and b−ADRs Adrb1/2. Catecholaminergic receptors
mRNAs expression declines at meiotic stages, but once meiosis is
complete, round and elongated spermatids seem to reactivate the
expression of Drd2/5, Adra1b, and Adrb2 (Figure 1B). In
addition, we reported DRD1 expression in spermatogonia (67),
whereas others found DRD2 in pre- and post-meiotic germ cells
with predominant staining in spermatogonia (57). The a1-ADR
immunodetection was observed from spermatogonia to
elongated spermatids (75, 76), and specific Adra1b was
reported in early spermatocytes and linked to subfertility (77).
The expression data visualization available for the Human Testis
dataset (Figure 1C) followed similar profiles to the mouse data,
showing DRD2 expression in undifferentiated spermatogonia
(SSC and SG-1) and late spermatid stages (L-ST), and scattered
high DRD4 expression throughout all spermatogenic stages.
Interestingly, the human data also showed specific profiles of
a-ADRs transcripts, where a1-type ADRA1A and a2-type
ADRA2A appear highly expressed in late spermatids and
spermatocytes, respectively (Figure 1C).

The spermatogonia stages seem to be vulnerable for stress-
induced epigenetic reprogramming since they reside outside
the blood-testis barrier, being potentially exposed to all sources
of catecholamines available in the testis, either plasmatic, or
locally produced. The epigenetic status of spermatogonia
shifts dramatically to either enter mitosis to self-renew or
Frontiers in Endocrinology | www.frontiersin.org 5
differentiate to type B and commit to meiosis. Undifferentiated
spermatogonia have no expression of the repressive mark
H3K9me2 nor the DNA methyltransferases Dnmt3a2/3b,
whereas differentiated spermatogonia have increased H3K9me2
and upregulated Dnmt3a2/3b (78) which are maintained until
round spermatid stage to make new DNA methylation patterns
(7, 79). In line with this, we found that cocaine treatment altered
Dnmt3a/b and Tet1, and increased 5-meC levels in mouse germ
cells (65). Also, recent studies have shown that both DA via
DRD1 and NE via b−ADRs induce alterations in DNA
methylation patterns in the CNS (33, 80). Moreover, we have
recently reported a U-shaped DRD1-dependent key testicular
mechanism mediating cocaine-triggered increase in silent
chromatin mark H3K27me3, decrease in active promoter mark
H3K4me3, and increase in H4K16ac mark involved in histone to
protamine replacement (66). Interestingly, activating H3K4me3
and reppresive H3K27me3 are bivalent marks simultaneously
present at key promoters of embryonic developmental genes in
both the spermatogonia and the retained nucleosomes in the
mature sperm, carrying instructions for future embryo
development (16, 17, 69).

The mouse mRNA profile shows that catecholamine
inactivating enzymes Comt/d1 and Maoa/b are detected
throughout the entire spermatogenic process, suggesting that
all germ cell types actively detoxify catecholamines. Also,
spermatogonia and spermatids show Th and Ddc expression,
indicative of dopaminergic identity. Moreover, spermatids seem
to reactivate Th together with Dbh expression. This synthesizing
enzymes profile suggest that male germ cells could be producing
NE in the adluminal compartment, whereas DA could be the
main catecholamine synthesized at the basal compartment by the
undifferentiated SSCs. Recent groundbreaking work by Lepack
et al. (81) showed that DA can associate directly with H3K4me3
to initiate an epigenetic marking of the chromatin called
dopaminylation. They also demonstrated that histone
dopaminylation in dopaminergic brain areas is involved in
gene transcriptional programs that respond to cocaine
consumption and craving (81). This work shows that DA
synthesis could exert an epigenetic autocrine effect on its own,
regardless of receptor activation, which sets a new paradigm
from which to consider the possible consequences in germ cells
H3K4me3 encoding.
TABLE 1 | Datasets selected from the Gene Expression Omnibus Database (GEO).

Species Method Cell type Dataset Reference

Mouse RNA-seq Undifferentiated spermatogonia (Thy1+) GSE49622 Hammoud et al. (69)
Differentiated spermatogonia (Kit+)
Primary spermatocyte
Round spermatid

Mouse RNA-seq Primary spermatocyte GSE43717 Soumillon et al. (70)
Round spermatid

Mouse RNA-seq Differentiated spermatogonia (cKit+) GSE89502 Maezawa et al. (71)
Mouse RNA-seq Undifferentiated spermatogonia (PLZF+ cKIT−) GSE107124 La et al. (72)
Mouse scRNA-seq Undifferentiated spermatogonia (Gfra1+) GSE112393 Green et al. (73)

Primary spermatocyte
Round spermatid
Elongated spermatid

Mouse scRNA-seq Undifferentiated spermatogonia (ID4-EGFP+) GSE108974 Hermann et al. (74)
February 2021 | Volume
 11 | Article 630948

https://testis.cells.ucsc.edu/
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
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In summary, we have put the spotlight on catecholamines as
possible mediators between the stress response and epigenetic
marks alterations during spermatogenesis. The expression of
catecholaminergic components during germ cell maturation
may point to these stress hormones as novel epigenetic
regulators during spermatogonial and spermiogenic phases.
Also, the expression of catecholaminergic components during
spermiogenesis, when massive epigenetic events drive chromatin
remodeling and nuclear compaction to produce mature
spermatozoa, points to post-meiotic germ cells as a vulnerable
window for stress-induced epigenetic reprogramming that
Frontiers in Endocrinology | www.frontiersin.org 6
should be further explored. Understanding the epigenetic
regulation in paternal germ cells will pave the way to unravel
the coding mechanisms in the transmission of the biological
impacts of stress between generations.
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