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Abstract
The effects of exposure to the herbicide Dicamba (DIC) on tadpoles of two amphibian species, Scinax nasicus and
Elachistocleis bicolor, were assessed. Mortality and biochemical sublethal effects were evaluated using acetylcholin-
esterase (AChE), glutathione S-transferase (GST), glutathione reductase (GR), aspartate aminotransferase (AST), and
alanine aminotransferase (ALT) activities and thyroid hormone (T4) levels. The LC50 value at 48h was 0.859 mg L−1

for S. nasicus and 0.221 mg L−1 for E. bicolor tadpoles. After exposure to sublethal DIC concentrations for 48 h, GST
activity increased in S. nasicus but significantly decreased in E. bicolor with respect to controls. GR activity decreased
only in S. nasicus at all the tested DIC concentrations. AChE activity was significantly inhibited in both S. nasicus
and E. bicolor tadpoles at 48 h. DIC also caused significant changes in transamination, as evidenced by an increase in
AST and ALT activities in both amphibian species. T4 levels were higher in DIC-treated tadpoles of both species than
in controls. The DIC-induced biochemical alterations in glutathione system enzymes and transaminases indicate lesions
in liver tissues and cellular function. Moreover, the observed AChE inhibition could lead to the accumulation of
acetylcholine, excessively stimulating postsynaptic receptors, and the increase in T4 levels in both species may
indicate an overactive thyroid. The commercial DIC formulation showed a high biotoxicity in the two amphibian
native species after short-term exposure, controversially differing from the toxicity level indicated in the official fact
sheet data. This fact highlights the need for an urgent re-categorization and reevaluation of DIC toxicity in native
species.
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Introduction

Pesticides damage the ecosystem and the health of or-
ganisms via the accumulation of risky substances
(Geiger et al. 2011; Rasheed et al. 2019). Dicamba
(DIC), a post-emergence broad-leaf benzoic acid (3,6-
dichloro-2-methoxybenzoicacid) herbicide globally used,
is the third most widely applied in Argentina (CASAFE
2019). This herbicide was developed because weeds ac-
quired resistance to glyphosate and is widely used on
lawns, grasslands, and several crops (maize, rice, cotton).
DIC-resistant soybean and cotton seeds have been recent-
ly launched to the market. The commercialization of
DIC-tolerant soybean seeds has been recently allowed
by the Secretariat of Food and Bio-economy of the
Ministry of Agro-industry (Resolution N° 30/2018) in
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Argentina. However, the toxic effects of DIC on wildlife
have been scarcely explored (Ruiz de Arcaute et al.
2020).

Pesticides are among the several causes that contribute to
the decrease in amphibian populations worldwide (Suarez
et al. 2016). In addition, the biological traits of amphibians
make them sensitive to low levels of pesticide pollution in
water; therefore, they are among the vertebrates most threat-
ened by anthropogenic activities (Chanson et al. 2008; Bishop
et al. 2012). Since the application of pesticides to field crops
usually coincides with the aquatic larval stage in spring and
summer, pesticides cause deleterious effects on amphibian
survival and metamorphosis (Peltzer et al. 2008). For this
reason, several researchers have performed toxicological stud-
ies using amphibian as indicator vertebrates (Sánchez-Bayo
and Goka 2012). Studies focusing on native freshwater organ-
isms can be helpful to identify potential risks to sympatric
species and may provide ecological knowledge about the eco-
system health (Ossana et al. 2013; Attademo et al. 2014). The
biotransformation of non-polar xenobiotic agrochemicals in
freshwater organisms generally involves phase-I and phase-
II enzymatic reactions, which make compounds more water
soluble for excretion (Brodeur et al. 2011; Colin et al. 2016).
Phase-II reactions involve the addition of endogenous polar
compounds (e.g., glucuronyl sugars or glutathione) to the
original xenobiotic or its metabolites generated in phase-I re-
actions; thus, specific enzymes such as glutathione-S-transfer-
ase (GST, EC 2.5.1.18) are fundamental. The biotransforma-
tion of xenobiotics may also contribute to the generation of
reactive oxygen species (ROS), i.e., molecules able to trigger
oxidative stress. Many herbicides have also been shown to
produce oxidative cellular damage by inducing redox cycling
(Lajmanovich et al. 2012; Nikoloff et al. 2014; Pérez-Iglesias
et al. 2017). Oxidative stress is caused by an imbalance be-
tween ROS production and the ability of an organism to de-
toxify them. This process may cause the formation of free
radicals and the consequent DNA damage (Costa et al. 2008).

In organisms exposed to environmental contaminants, like
amphibians, the antioxidant system, composed of low-
molecular-weight enzymes and compounds such as glutathi-
one reductase (GR, EC 1.8.1.7) (Livingstone 2001), is signif-
icantly altered. Therefore, these enzymes are commonly used
as biomarkers, providing evidence of biotoxicity due to con-
taminant exposure in aquatic vertebrates (Van der Oost et al.
2003; Freitas et al. 2017; Gupta 2018).

The toxicity of xenobiotic compounds, such as herbicides,
to amphibian tadpoles can also be studied by evaluating the
activities of B-esterases (Lajmanovich et al. 2013, 2014), par-
ticularly acetylcholinesterase (AChE, Sánchez-Hernández
2007) which is considered a common biomarker to assess
neurotoxic effects. AChE plays a key role in the neuromuscu-
lar system, preventing continuous nerve firings by hydrolyza-
tion of acetylcholine at nerve endings (Jebali et al. 2013). In

addition, the enzymes aspartate aminotransferase (AST) and
alanine aminotransferase (ALT) are involved in the metabo-
lism of amino acids and, therefore, allow the strategic link of
both protein and carbohydrate metabolisms; their activities are
considered sensitive indicators of oxidative stress, since their
increased levels may indicate tissue damage under toxic stress
(Prashanth and Neelagund 2008). AST is a bilocular (cyto-
plasmic and mitochondrial) enzyme, whereas ALT is a uni-
locular (cytoplasmic) enzyme; the highest activity of both en-
zymes occurs in the hepatic tissue. Thus, their alteration under
several physiological and pathological conditions (Li et al.
2012) indicates tissue damage in organs like the liver and
kidney (Loteste et al. 2013).

Finally, it has been shown that thyroid hormones (THs),
which are fundamental for metamorphosis in amphibians
(Denver 2009), can be altered by a wide variety of chemicals
(Miyata and Ose 2012). However, data on the chemical dis-
ruption of thyroid signaling in neotropical amphibians are
scarce (Lajmanovich et al. 2019a). In tadpoles, alterations in
the TH balance can lead to functional and structural changes
in larval morphology, like heart defects and notochord
malformations (Miyata and Ose 2012).

The response of enzymatic activities to DIC exposure in am-
phibian species is unknown; hence, the main objective of this
study was to evaluate the acute and sublethal effects of DIC
exposure on tadpoles of two anuran species, Scinax nasicus
(Hylidae) and Elachistocleis bicolor (Leptodactylidae), com-
monly occurring in agricultural ponds of Argentina (Peltzer
et al. 2006). To this end, the activities of AChE, GST, GR,
AST, and ALT and the T4 levels were evaluated. This informa-
tion may improve our knowledge about liver injuries and oxida-
tive stress induced by a herbicide.

Materials and methods

Test organisms

S. nasicus and E. bicolor tadpoles were selected for this study
because they are extensively distributed in forests, wetlands,
agricultural lands, and riparian and urban areas of several neo-
tropical countries, including Argentina, Brazil, Bolivia,
Paraguay, and Uruguay. In the Red List of amphibians of
Argentina, these species are listed as “not threatened” (Vaira
et al. 2012). In agricultural lands, these anurans are likely
exposed to contamination by pesticides during the breeding
season and early developmental stages (Peltzer et al. 2006).
Regarding their ecological habits, S. nasicus is nektonic and
E. bicolor is benthonic-nektonic (Peltzer and Lajmanovich
2007).

We collected pro-metamorphic larvae (Gosner stages -GS-
30-34; Gosner 1960) of both species from a non-agricultural
site, located in a natural area of the city of Santa Fe (Santa Fe
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Province, Argentina), with collection permission of the
Ministry of Environment of Santa Fe (File N° 02101-
0018518-1). Larvae were then transferred to aquaria of the
Laboratory of Ecotoxicology of the School of Biochemistry
and Biological Sciences of the Universidad Nacional del
Litoral, Santa Fe, Argentina (FBCB-UNL), where they were
acclimated to the following laboratory conditions: 12-h light/
dark cycle with dechlorinated tap water, pH 7.4 ± 0.05, con-
ductivity 162 ± 10.5 μmhos cm−1, dissolved oxygen concen-
tration 6.5 ± 1.5 mg L−1, hardness 47.5 mg L−1 of CaCO3, and
temperature of 24 ± 2°C. The organisms used in the assays
were treated in agreement with the standardized experimental
laboratory protocols of the ASIH-American Society of
Ichthyologists and Herpetologists (2004) and ASTM (2007),
with minimal adjustments for local species, as previously de-
scribed (Attademo et al. 2014). Specimens were euthanized
according to the Animal Euthanasia Guide proposed by the
Bioethics Committee and Institutional Animal Care and Use
Committee of the FBCB-UNL (Res. CD N: 388/06) using a
solution of 0.1% tricaine methanesulfonate (MS-222) buff-
ered to pH 7.8 with NaHCO3.

Dicamba determination

The commercial formulation used was the herbicide DIC
Cowboy Elite SURCOS® (CAS 1918-00-9, 20% active in-
gredient). The safety criterion of DIC was class II (WHO
(World Health Organization) 2019). In experimental assays,
pesticides are usually assayed with the active ingredient; how-
ever, in the field, this herbicide is generally applied as a for-
mulation, with active ingredients being usually combined with
additives (Relyea 2009). These additives can increase the tox-
icity of the herbicide or improve its solubility (Eddleston et al.
2012). DIC is a post-emergent selective herbicide, with a rec-
ommended application field rate of 100–200 cm3/ha. To con-
firm the concentration of the DIC commercial formulation and
the nominal concentrations used in each treatment, we used an
ultra-performance liquid chromatography (ACQUITY
UPLC™, Waters, Milford, MA, USA) coupled to a triple
quadrupole mass spectrometer (Micromass TQ Detector from
Waters, Manchester, UK). We also evaluated features related
to the chromatographic methodology, including the mobile
phase composition, the ionization conditions, and the operat-
ing variable detection in multiple-reaction monitoring mode
of the mass spectrometer. Separation was achieved in a rapid
resolution column (C18, 2.1 × 100mm, 1.7μm) bymeans of a
gradient elution, with a mix mobile phase of acetonitrile and
water, both with 0.1% (v/v) formic acid. For mass detection,
in addition to the retention time, two transitions from the DIC
pseudomolecular ion ([M-H]-) for identification and the most
abundant transition for quantification were used. The stability
of the DIC test solutions was assessed at the start and end of
the assay (Table 1 supplementary data). The resulting

correlation coefficient (r) was 0.9934. The percentage of error
between the DIC commercial formulation and the standard
reference did not exceed 5%.

Experimental design

Tadpoles were exposed to DIC to calculate the median lethal
concentration (LC50), the no-observed-effect concentration
(NOEC), and the lowest-observed-effect concentration
(LOEC). Toxicity was tested using the following nominal
concentrations: 0.01875, 0.0375, 0.075, 0.156, 0.312, 0.625,
1.25, 2.5, 5, 10, and 20 mg L−1. A negative control with
dechlorinated tap water was also used. Both the control and
test concentrations were evaluated in triplicate, with 10 tad-
poles per 1-L glass aquarium (n = 330 per species). Mortality
of tadpoles and cumulative mortality after 48 h of exposure
were recorded in each treatment. To prevent the aquarium
water from being contaminated during the experiment, dead
tadpoles were removed.

Biochemical biomarkers

The biochemical markers chosen, i.e., AChE, GST, GR, AST,
and ALT activities and T4 levels, were determined in both
control and DIC-treated tadpoles (n = 7–10, respectively) at
the end of the experiments (survival rate > 85% at 48 h)
(Lajmanovich et al. 2016). Relevant DIC concentrations re-
corded in the environment (ERC) were considered to deter-
mine the treatments concentrations (Zhu et al. 2014). When a
chemical is found at these ERC, it may not necessarily lead to
higher mortality but may significantly cause the disturbance of
some biological functions (e.g., Saaristo et al. 2018); there-
fore, in the present study, the following concentrations,
0.01875, 0.0375, 0.075, 0.156, 0.312, and 0.625 mg L−1, were
considered to identify the sublethal effects of DIC on the lar-
vae of the two anuran species studied. To determine AChE,
GST, GR, AST, and ALT activities and T4 levels, samples of
tadpoles at 48 h of treatments were weighed (g) and homog-
enized (1:10, w/v) in ice-cold 25 mM sucrose, 20 mM Tris-
HCl buffer (pH = 7.4) with 1 mM EDTA, by using a polytron
tissue grinder. The homogenates were then centrifuged at
10,000 rpm at 4 ± 1 °C for 15 min and stored at −80 °C until
the analysis of biomarkers.

Acetylcholinesterase activity

AChE activity was determined colorimetrically following the
procedure of Ellman et al. (1961). The reaction mixture (final
volume = 930 μL) consisted of 25 mM Tris-HCl with1 mM
CaCl2 (pH = 7.6), 10μL 20mM acetylthiocholine iodide, and
50 μL DTNB (3×10−4 M, final concentration). The variation
in optical density was recorded at 410 nm at 25°C for 1 min by
means of a JENWAY6405UV-VIS spectrophotometer. Total

Environ Sci Pollut Res

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



protein concentration was determined using the Biuret method
(Kingsley 1942), and AChE activity was expressed as nmol
min−1 mg−1 protein using a molar extinction coefficient of
13.6×103 M−1 cm−1.

Glutathione S-transferase activity

GST activity was determined by spectrophotometry at 340 nm
in 100 mM Na-phosphate buffer (pH = 6.5), 20 μM 1-chloro-
2,4-dinitrobenzene, and 50 μM reduced glutathione (GSH),
following the method described by Habig et al. (1974) and
adapted for mammal serum GST activity by Habdous et al.
(2002). The assays were performed at 25 °C, and whole GST
activity was expressed as nmol min−1 mg−1 protein using a
molar extinction coefficient of 9.6 × 103 M−1 cm−1.

Glutathione reductase

GR activity was assessed following the method of Ramos-
Martinez et al. (1983), which measures the oxidation of
NADPH at 340 nm in the presence of oxidized glutathione
and 0.1 M Na-phosphate buffer (pH 7.0). GR activity was
calculated by means of a millimolar extinction coefficient
for the NADPH oxidation of 6.22 mM−1 cm−1. Enzyme activ-
ity was expressed as nmol min−1 mg−1 protein. All kinetics
assays were performed at 20–22°C, and non-enzymatic reac-
tion was periodically confirmed in blanks (reaction mixture
without the sample) so as to correct enzyme activity.

AST and ALT activities

The activities of both transaminases were determined using
commercially available kits (Wiener Lab®), according to the
manufacturer’s instructions. The oxaloacetate and pyruvate
formed were measured in their derivative form, 2,4-
dinitrophenylhydrazone, at 505 nm at pH 7.5. All samples
were analyzed in triplicate, at 37 °C, using a spectrophotom-
eter. The enzymatic activity of the homogenates was
expressed as units mg−1 protein.

T4 levels

The small size of the two tadpole species made it difficult to
collect a sufficient amount of blood; therefore, the whole-
body hormone content was measured (Lajmanovich et al.
2019a). The use of homogenates has been previously applied
in different studies (e.g., Li et al. 2016). Total T4 levels were
determined using enzyme-linked electrochemical luminescent
immunoassay (ECLIA) kits (COBAS®, Roche Diagnostics,
IN, USA), according to the manufacturer’s instructions. The
detection limit for T4 was 0.42 ng g−1.

Statistical analysis

The mean lethal concentration (LC50) values and their respec-
tive 95% confidence limits (95% CL) were calculated via the
Trimmed Spearman-Karber method (Hamilton et al. 1977).
Significant differences (P ≤ 0.05) between LC50 values were
determined by the criterion of non-overlapping 95% confi-
dence intervals (APHA 1989). The data of biochemical pa-
rameters (enzymatic activity and hormone levels) were
expressed as means ± standard error (SEM). The enzymatic
activity of control and exposed animals was compared using
Kruskal-Wallis and Dunn post hoc tests (Zar 1999).
Kolmogorov-Smirnov test and the Levene test were used to
confirm normality and homogeneity of variances, respective-
ly. The results were statistically analyzed using GraphPad
InStad®. Values were significant at P ˂ 0.05.

Results

Acute assay (48 h)

The DIC LC50 values at 48 h were 0.221 mg L−1 (95 % CL
0.161–0.300) for E. bicolor and 0.859 mg L−1 (95 % CL
1.189–0.568) for S. nasicus tadpoles. No mortality was ob-
served in controls. Stabilization of LC50 values was achieved
after 24 h of exposure. The NOEC and LOEC values were
0.156 mg L−1 and 0.312 mg L−1, respectively, for E. bicolor
and 1.25 mg L−1 and 0.625 mg L−1, respectively, for
S. nasicus.

Acetylcholinesterase and stress oxidative response

E bicolor

In E. bicolor tadpoles, the DIC concentration of 0.155 mg L−1

significantly affected AChE activity (KW = 12.48; P < 0.05)
with respect to the control (Dunn post hoc test P>0.05), whose
mean value was 6.46 ± 0.47 nmol min−1 mg−1protein at 48 h
(Fig. 1a).

DIC concentrations of 0.0187, 0.0375, and 0.155 mg L−1

also significantly affected GST activity (KW = 12.48, P<
0.05), with respect to the control, whose mean value was
60.63 ± 7.71 nmol min−1 mg−1 protein at 48 h (Fig. 2a).

The DIC concentrations tested did not affect GR activity
significantly (KW = 5.96; P ˃ 0.05), with respect to the con-
trol, whose mean value was 0.04 ± 0.01 nmol min−1mg−1

protein at 48 h (Fig 3a).

S. nasicus

In S. nasicus tadpoles, DIC concentrations of 0.0187, 0.312,
and 0.625 mg L−1 significantly affected AChE activity (KW =
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12.66; P < 0.05) with respect to control, whose mean value
was 8.50 ± 0.52 nmol min−1 mg−1protein at 48 h (Fig. 1b).

All DIC concentrations tested (except for 0.0187 mg L−1)
also significantly affected GST activity (KW = 6.24, P< 0.05),
with respect to the control, whose mean value was 36.32 ±
1.95 nmol min−1 mg−1 protein at 48 h (Fig. 2b).

DIC also significantly affected GR activity (KW= 18.64, P
< 0.05) with respect to the control, whose mean value was
0.06 ± 3.9−3 nmol min−1 mg−1 protein at 48 h (Fig. 3b).

AST and ALT activities

E. bicolor

In E. bicolor tadpoles, the DIC concentration of 0.075, 0.155,
and 0.625 mg L−1 significantly inhibited AST activity (KW =

11.92;P ˃ 0.05) with respect to the control, whose mean value
was 7.87 ± 0.52 U mg−1 protein at 48 h (Fig. 4a).

The DIC concentration of 0.625 mg L−1 also significantly
inhibited ALT activity (KW = 16.45, P< 0.05), with respect to
the control, whose mean value was 7.23 ± 0.31 U mg−1 pro-
tein at 48 h (Fig. 5a).

S. nasicus

In S. nasicus tadpoles, all DIC concentrations (except at
0.0187 mg L−1) significantly induced AST activity (KW =
12.76; P< 0.05) with respect to the control, whose mean value
was 5.89 ± 0.15 U min−1 mg−1protein at 48 h (Fig. 4b).

The DIC concentration of 0.625 mg L−1 also significantly
induced ALT activity (KW = 11.49, P < 0.05), with respect to

Fig. 1 Acetylcholinesterase (AChE) activity in E. bicolor (a) and S. nasicus (b) tadpoles exposed to the herbicide Dicamba for 48 h. Data are expressed
as mean ± SEM, n = 7–10. Treatments are significantly different from control (C) at *P < 0.05; Dunnett’s test

Fig. 2 Glutathione S-transferase (GST) activity in E. bicolor (a) and S. nasicus (b) tadpoles exposed to Dicamba for 48 h. Data are expressed as mean ±
SEM, n = 7–10. Treatments are significantly different from control (C) at *P < 0.05; Dunnett’s test
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the control, whose mean value was 7.08 ± 0.22 U mg−1 pro-
tein at 48 h (Fig. 5b)

T4

DIC significantly affected T4 levels in both species (KW = 9.38,
P < 0.05 forE. bicolor andKW=11.69,P < 0.05 for S. nasicus),
increasing them from the control at 0.156 mg L−1 DIC for
E. bicolor (Fig. 6a) and 0.625 mg L−1 for S. nasicus (Fig. 6b).
Mean T4 activity value in control tadpoles was 6.76 ± 0.28 ng
g−1 for E. bicolor and 8.90 ± 0.64 ng g−1 for S. nasicus at 48 h.

Discussion

Themassive pesticide use in modern agriculture has generated
global concern due to the threat they pose to ecosystems and

wildlife (Egea-Serrano et al. 2012). Knowledge about the tox-
icity and sublethal effects of herbicides is necessary to assess
their environmental risks to wildlife and regulate their use
(David and Kartheek 2016). In the present study, DIC LC50

values at 48h for S. nasicus and E. bicolor tadpoles were
0.859 mg L−1 and 0.221 mg L−1, respectively, which reveal
their sensitivity to this herbicide. Other studies have shown
varied LC50 values for different non-target aquatic organisms
exposed to DIC. For example, inRhinella arenarum late-stage
larvae, Soloneski et al. (2016) reported an LC50 for DIC (sol-
uble formulation; Syngenta Agro S.A.) of 358.44mg L−1 at 96
h. In rainbow trout and bluegill, Meister (1992) found that
DIC LC50values at 48 h were 35 mg L−1 and 40 mg L−1,
respectively. However, based on the acute toxicity here ob-
served for DIC in the two evaluated species, the studied emul-
sifiable formulation seems to be more toxic than the soluble
formulation, which reinforces the assumption that

Fig. 3 Glutathione reductase (GR) activity in E. bicolor (a) and S. nasicus (b) tadpoles exposed to Dicamba for 48 h. Data are expressed asmean ± SEM,
n = 7–10. Treatments are significantly different from control (C) at *P < 0.05; Dunnett’s test

Fig. 4 Aspartate aminotransferase (AST) activity inE. bicolor (a) and S. nasicus (b) tadpoles exposed to Dicamba for 48 h. Data are expressed asmean ±
SEM, n = 7–10. Treatments are significantly different from control (C) at *P < 0.05; Dunnett’s test
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coformulants increase the toxicity of pesticide emulsifiable
concentrates (Eddleston et al. 2012). The comparison of the
effects of an organophosphosphate active ingredient
(dimethoate) alone and in emulsifiable concentrate on
Gottingen minipig suggested that solvents may play a
crucial role in pesticide toxicity. Martinuzzi et al. (2019) ob-
served similar results when studying the effects of a dimetho-
ate emulsionable pesticide on R. arenarum tadpoles.
Commercial formulations including not only the active ingre-
dient but also coformulants should be included in environ-
mental risk assessments to estimate the toxicity of the com-
pounds introduced into different environments.

The herbicide DIC poses a potential threat to aquatic life
due to its relatively high water solubility and its frequent pres-
ence in freshwater environments (Zhu et al. 2014). In 15
drinking water reservoirs of North America, DICwas detected
at a maximum concentration of 1040 ng L−1 (Donald et al.

2007). Furthermore, in three sites of California (USA) consid-
ered free of agricultural inputs from 2008 to 2011, DIC was
found to be one of the most frequent herbicides both in water
and sediment samples (Ensminger et al. 2013). In Argentina,
no data on DIC concentrations have been recorded to date.
Furthermore, according to the data shown in Table 1, the
evaluated DIC emulsifiable formulation (LC50: 0.221–
0.859 mg L−1) would be one of the most toxic systemic her-
bicide described for tadpoles known to date, since values for
other herbicides such as glyphosate range between 30 and
40 mg L−1 (Lajmanovich et al. 2015) and values for the her-
bicide 2,4 D LC 50 are about 1040 mg L−1 (Curi et al. 2019).
To the best of our knowledge, this study provides the first
experimental evidence of the acute sublethal effects of DIC
on tadpoles of S. nasicus or E. bicolor, two neotropical anuran
species native to Argentina. The species most sensitive to DIC
exposure under laboratory conditions was E. bicolor. This

Fig. 5 Alanine aminotransferase (ALT) activity in E. bicolor (a) and S. nasicus (b) tadpoles exposed to Dicamba for 48 h. Data are expressed as mean ±
SEM, n = 7–10. Treatments are significantly different from control (C) at *P < 0.05; Dunnett’s test

Fig. 6 Level of thyroid hormones (thyroxine; T4) inE. bicolor (a) and S. nasicus (b) tadpoles exposed to Dicamba for 48 h. Data are expressed asmean ±
SEM, n = 7–10. Treatments are significantly different from control (C) at *P < 0.05; Dunnett’s test
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species has benthonic habits and rest in the bottom of ponds to
forage and escape from predators (Peltzer and Lajmanovich
2007). These ecological traits might increase the potential up-
take of contaminants and, therefore, be associated with the
interspecific variation to pollutants sensitivity. In this sense,
toxicity studies involving multiple species of amphibians are
important because species within a community may differ

markedly in their sensitivity (Relyea 2009). The herbicide
significantly inhibited AChE activity in S. nasicus and
E. bicolor tadpoles after 48 h of exposure. Thus, AChE is a
common biomarker used to assess neurotoxic effects. In pre-
vious studies, we found that disruption of AChE activity in
tadpoles increases mortality, reduces activity, and increases
the vulnerability to predators (e.g. Attademo et al. 2015,

Table 1 Comparison of LC50 (48 and 96 h) values for commonly used
herbicides (commercial formulations) reported in different anuran species
and the stage of development at which the determination was made (GS

for most studies, except in *: NF refers to Nieuwkoop and Faber (1956)
stages of development)

Herbicide (commercial formulation) Species (stage of development) LC 50 (mg L−1) References

48 h 96 h

2,4-Dichlorophenoxyacetic acid
Amina Zamba® Physalaemus albonotatus (25–26) 1040.2 350 Curi et al. (2019)
Dicamba
Banvel® R. arenarum (35–37) 525.05 358.44 Soloneski et al. (2016)
Cowboy Elite Scinax nasicus (30–34) 0.859 This study
SURCOS® E. bicolor (30–34) 0.221
Metsulfuron-Methyl3
Metsulfuron 60® R. arenarum (29–30) 105.56 Lajmanovich et al. (2013)
Glyphosate
Credit® R. arenarum (35–37) 85.96 78.18 Soloneski et al. (2016)
Roundup Ultra-Max® R. marina (25) 3.7 3.5 Sookoo et al. (2017)

R. arenarum (29–30) 13.20 Lajmanovich et al. (2013)
R. arenarum (36-38) 2.4 Lajmanovich et al. (2011)

Atrazine
Siptran 500sc® R. schneideri (30) 31.1 22.2 Pérez-Iglesias et al. (2018)

P. gracilis (25) 47.9 Flores Sturza (2017)
Paraquat
Gramoxone Supert® R. marina (25) 172 56 Sookoo et al. (2017)

Engystomops pustulosus (25) 2.9 0.2
S. nasicus (25–26) 29.97 21.99 Lajmanovich et al. (1998)

Glufosinate ammonium
Liberty® Hypsiboas pulchellus (26–30) 21.47 Peltzer et al. (2013)
Propanil
Propanil Trust® H. crepitan (25) 16.54 Triana Velasquez et al. (2016)

R. humboldti (25) 5.09
Butachlor
Not specified P. megacephalus (25–26) 2.62 1.52 Geng et al. (2005)

M. ornata (25–26) 0.85 0.53
Diuron
Karmex ® R. marina (25) 3 Sookoo et al. (2017)

E. pustulosus(25) 1.1
Flurochloridone
Twin Pack Golds® R. arenarum (33) 2.96 Nikoloff et al. (2014)
Rainbows ® R. arenarum (33) 2.85
Trifluralin
Treflan 4D Leptodactylus clamitans (25) 2.81 Weir et al. (2012)
Pendimethalin
Prowl 400EC L. clamitans (25) 2.47 Weir et al. (2012)
Imazethapyr
Pivot H® Hypsiboas pulchellus (36) 1.55 Pérez-Iglesias et al. (2015)
Cycloxydim
Focus® Ultra Xenopus laevis (NF stage 48) 0.9 Wagner et al. (2015)
Bispyribac-Sodium
Ectran® R. arenarum (29–30) 0.20 Lajmanovich et al. (2013)
Picloram
Tordon 24-K® R. arenarum (29–30) 0.025 Lajmanovich et al. (2013)
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2016). Similarly, Ruiz de Arcaute et al. (2019) also found
inhibition of AChE activity in the freshwater fish
Cnesterodon decemmaculatus treated with sublethal DIC con-
centrations in chronic tests. Therefore, further research is re-
quired to elucidate the mechanisms of DIC neurotoxicity in
amphibians.

Our results suggest that DIC exposure increases the re-
sponse of glutathione to counteract the formation of oxidative
stress. In E. bicolor tadpoles exposed to DIC for 48 h, GST
levels showed a rapid and significant decrease compared to
controls, whereas in S. nasicus tadpoles, GST showed a sig-
nificant increase. The variation in the GST response can be
due to the target tissue or organ, species, or diet considered for
evaluation (Rudneva et al. 2010). Studies analyzing GST in
several aquatic species exposed to different herbicides have
shown enzymatic induction or inhibition (e.g., Samanta et al.
2014). These results are in agreement with findings of Ruiz de
Arcaute et al. (2019), who demonstrated that DIC significantly
induced GST in the fish C. decemmaculatus.

In the present study, GR decreased in S. nasicus at 48 h of
exposure at all DIC concentrations tested. Results of GST and
GR indicate that DIC affected the enzyme performance related
to antioxidant response; therefore, these enzymes seem to be
suitable biomarkers to evaluate chemical exposure in contam-
inated aquatic ecosystems.

Here, DIC also caused statistically significant changes in
transamination, as evidenced by the increase or decrease in
AST and ALT activities. Interestingly, these changes occurred
at very low DIC concentrations, indicating the high toxicity of
this chemical in S. nasicus and E. bicolor tadpoles. Increased
ALT and AST activities are usually indicative of liver disease
because of their biological location. The increase in both AST
and ALT may also be a sign of inflammatory disease or liver
injury (Ayalogu et al. 2001). In their experiment, Gabriel et al.
(2011) observed that by exposing the fish Heterobranchus
bidorsalis to graded concentrations of the insecticide
cypermethrin, the animal needed more energy for the detoxi-
fication, biotransformation, and excretion of the toxicant to
minimize its effects. This fish species was able to do this by
using carbohydrates, i.e., the main source of energy used un-
der chronic stress. In fish, the reduction of the protein fraction
can be due to carbohydrate degradation. Thus, the interaction
here observed between carbohydrate and protein synthesis
(transamination) may be due to the degradation and probable
use of carbohydrates and proteins for metabolic processes.

DIC-exposed tadpoles showed both an increase and a de-
crease in transaminase activities. An increment in AST and
ALT activities depicts the effective use of amino acids for me-
tabolism (Tiwari and Singh 2004), whereas a decrease protects
the structural membrane integrity of the hepatic cell (Pari and
Amali 2005). Similar findings were reported byGüngördü et al.
(2016), who evaluated the toxic effects of a glyphosate-based
herbicide and a methidathion-based insecticide, both

individually and in combination, on pre-metamorphic tadpoles
of three anuran species (Denver et al. 2002).

Finally, our results also showed higher T4 levels in DIC-
treated tadpoles of both amphibian species than in controls.
Since thyroid hormones play a key role in development, DIC
might disrupt the normal development of the exposed tad-
poles; further studies are necessary to test this hypothesis. In
previous studies, we also found an increase in T3 and T4 in
R. arenarum tadpoles exposed to a glyphosate-based herbi-
cide (Lajmanovich et al. 2019b). Similarly, Cao et al. (2016)
found increased T4 levels in zebrafish larvae after exposure to
a herbicide applied to control weeds in rice fields (Chang et al.
2013). Accordingly, more studies are necessary to better un-
derstand the potential molecular mechanisms associated with
changes in T4 levels (Lajmanovich et al. 2019b). DIC was
classified as category 4 in the ecotoxicology profile (LC50

for aquatic vertebrates > 180 mg L−1, Bunch et al. 2012) due
to its low acute toxicity (practically non-toxic). According to
our results, the ecotoxicological classification of DIC for
emulsifiable formulations needs urgent revision because it is
highly toxic to amphibians.

Conclusions

In the last years, an increasing number of reports have shown
that substances present in the environment are endocrine
disruptors in amphibian species (Bókony et al. 2018). Indeed,
these substances are underestimated as potential toxic pollutants
in water bodies and have thus become a potential risk to aquatic
organisms. The results of the present study showed that a DIC
commercial formulation has high biotoxicity in S. nasicus and
E. bicolor tadpoles, evidenced in terms of biochemical impair-
ments such as inhibition of AChE activities and variation in
oxidative stress enzymes (GST and GR), transaminase (AST
and ALT) activities, and hormone (T4) levels. These results
highlight the need for an urgent revision of the environmental
regulations of these commercial herbicide formulations.
Finally, these results provide evidences that can be used to
prevent risks using the precautionary approach.
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