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Abstract
We analyse the effect of the long-range potential of the ionic core on the photoelectron
emission in atomic ionization by a linearly polarized subcycle sculpted laser pulse of
two-colour components, where one frequency doubles the other. The total ionization yield
consists mostly of direct electrons, which can be characterized by both intracycle and
intercycle interferences. Using a semiclassical model based on the Simple Man’s Model, we
can derive an analytical expression for the intracycle interference due to the coherent
superposition of different electron trajectories released in the same sculpted optical cycle. In
turn, the intercycle interference is the consequence of the superposition of multiple trajectories
released at different cycles and is accounted for by the energy conservation in the photon
absorption process. We show that a semiclassical description in terms of a diffraction process
at a time grating for two-colour laser pulses remains qualitatively unchanged beyond the strong
field approximation. In particular, the Coulomb potential shifts the intracycle interference
modulations towards the threshold, whereas the intercycle interference pattern remains
invariant. The present study completes a recent work by Xie et al (2013 New J. Phys. 15
043050), where the influence of the Coulomb field on atomic ionization by sculpted two-colour
laser fields is probed but in which path interferences are not considered. Furthermore, this
article gives theoretical support to recent experiments with He and Ar where the sub-cycle
interference structures originating from trajectories launched within a time interval of less than
one femtosecond were observed (Xie X et al 2012 Phys. Rev. Lett. 108 193004).

Keywords: Coulomb potential, subcycle interference, two-colour laser, intracycle diffraction

(Some figures may appear in colour only in the online journal)

1. Introduction

In above-threshold atomic ionization by intense laser pulses,
electrons are emitted via tunnelling through the potential
barrier conformed by the combination of the atomic
potential and the external strong field. Photoionization is a
highly nonlinear quantum–mechanical phenomenon in which
tunnelling occurs predominantly around the maxima of the
absolute value of the electric field within each optical

cycle. After detachment from the atom, electrons interact
with both the laser field and the residual core potential.
Photoelectrons can be classified into direct and rescattered
electrons according to the three-step model [3]. Many advances
in theory have been attained by neglecting the potential of the
ionic core, which results in the strong field approximation
(SFA). However, accurate results should involve the
effect of the atomic potential on the emitted electron
yield.
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It has been previously shown that classical trajectories of
direct electrons are crucial in the formation of interference
patterns in photoelectron spectra for one-colour lasers when
the phase of these classical trajectories are considered [4].
In few-cycle pulses, temporal double-slit interference patterns
were experimentally measured [5, 6] and theoretically studied
[7]. The observation of diffraction fringes in photoionization of
He atoms [6] and photodetachment of F− ions by femtosecond
pulses for fixed frequency [8] was theoretically analysed
under the SFA [9]. The interference pattern in multi-cycle
photoelectron spectra can be identified as a diffraction pattern
at a time grating composed of intracycle and intercycle
interferences [4, 9–11]. While the latter gives rise to the well-
known above-threshold ionization (ATI) peaks, the former
leads to a modulation of the ATI spectrum offering information
on sub-cycle ionization dynamics. This analysis was based on
a semiclassical model closely following the ‘Simple Man’s
Model’ (SMM) for one-colour laser fields [4] and extended to
two-colour lasers in [12].

Two-colour pulses with commensurate frequencies,
usually consisting of a fundamental component and one of
its low harmonics, were used in previous investigations of
ATI [13–15], control ionization [16], dichroism [17, 18] and
orientation of molecules [19]. Two-colour fields have also been
used to sculpt the laser field shape and to control interference
fringes in electron momentum emission [2, 12]. Coherent
phase control consists of investigating the physical processes
involved in atomic ionization as a function of the relative phase
ϕ of the two frequency components of the field [13].

The goal of this paper is to elucidate the action of the
atomic core potential on the ionization yield. We analyse
the validity of the factorization of the electron emission
distribution in terms of a time grating in the presence
of long-range Coulomb forces. In the present paper, we
generalize this result to atomic ionization by two-colour lasers
emphasizing the role of ϕ in the visibility of intracycle
interference pattern. In order to do that, we inspect how
the Coulomb potential affects both the intra- and intercycle
interference stemming from the superposition of wavepackets
released at different emission times. Direct photoelectrons
dominate the total ionization yield, therefore, we have omitted
rescattering processes in our analysis. We demonstrate that
the semiclassical analysis based on the SMM performed for
two-colour fields in terms of a time grating [12] remains
valid when the Coulomb potential of the atomic core is
considered. Furthermore, we present a systematic study of
how the intracycle and intercycle interferences depend on the
strength of the Coulomb potential. We test the effect of the
Coulomb potential by comparing the SMM and the time-
dependent distorted wave SFA—both disregard it—with the
Coulomb–Volkov approximation (CVA) and the numerical
solution of the time dependent Schrödinger equation (TDSE)
without approximations—both consider it.

The present article is organized as follows. In section 2,
we summarize the calculation methods used: (i) the time-
dependent SFA, (ii) a variant of (i) which considers the
action of the atomic potential in the final channel called
distorted-wave CVA and, at last, (iii) the semiclassical

approximation based on the SMM [12]. In section 3, we
show and discuss the results of the photoelectron spectra,
doubly differential momentum distributions and longitudinal
momentum distributions. We conclude in section 4. Atomic
units are used along the paper.

2. Review of calculation methods

We consider an atom in the single-active electron
approximation subject to a linearly polarized strong laser
pulse. The theory is presented quite generally and will be
applied later for the special case of a two-colour laser pulse.

The evolution of the electronic quantum state |ψ(t)〉 is
governed by the time-dependent Schrödinger equation

i
d|ψ(t)〉

dt
= H|ψ(t)〉 (1)

for the Hamiltonian H = �p 2/2+V (r)+ z F (t), written in the
length gauge, where V (r) is the central atomic core potential,
�p is the momentum of the electron, and �r the position of the
electron. As a result of the interaction, one electron initially
bound to the target core in the initial state |φi〉 with energy −Ip,
where Ip is the ionization potential, is emitted after conclusion
of the pulse into the final unperturbed state |φ f 〉 with final
momentum �k and energy E = k2/2, where k = |�k|.

Electron momentum distributions can be calculated from
the transition matrix as

dP

d�k
=|Ti f |2, (2)

where Ti f is the T-matrix element corresponding to the
transition φi → φ f . Because the atomic potential is central,
the process possesses cylindrical symmetry around the
polarization axis and the azimuthal angle is cyclic.

In the rest of the section, we outline the main points
of the calculation methods used to determine the electron
dynamics in a photoionization process. Ti f will be computed (i)
exactly by solving numerically the TDSE, (ii) within the time-
dependent distorted-wave CVA, (iii) its strong field variant
(SFA), and (iv) a semiclassical simplification of the latter based
on the SMM.

2.1. Time-dependent strong-field approximation (SFA)

The SFA has been developed long time ago to assess
atomic photoionization. The well-known Keldysh–Faisal–
Reiss (KFR) theory of intense-field processes was developed
based on the SFA [20–22] despite further modifications taking
account of the important residual Coulomb interaction in the
presence of the field [23]. Alternatively, SFA can be derived
within the time-dependent distorted wave theory [24], where
the transition amplitude in the post form is expressed as

Ti f = −i
∫ +∞

−∞
dt 〈χ−

f (t)|z F (t)|φi(t)〉, (3)

and χ−
f (t) is the final distorted-wave function. In the present

case, the initial state fulfills the Schrödinger equation with
the unperturbed atomic Hamiltonian H0 = �p 2

2 + V (r), with
eigenenergy −Ip.
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Different distorted-wave approximations result from
different choices of the distortion potential to be included in
|χ−

f 〉 [25]. One of the most renowned choices of |χ−
f 〉 is the

solution of the Hamiltonian Hf = �p2

2 + z F (t), corresponding
to a free electron in the time-dependent electric field (exit-
channel distorted Hamiltonian), with eigenenergy k2/2. The
mentioned solutions are the Volkov states [26]

χ
(V )−
�k

(�r, t) = exp [i(�k + �A) · �r]

(2π)3/2

× exp

[
−i

∫ +∞

t
dt ′

(�k + �A(t ′))2

2

]
, (4)

where the exponent in equation (4) is the Volkov action and
�A(t) = − ∫ t

−∞ dt ′ �F(t ′) is the vector potential of the field
multiplied by the speed of light. The inclusion of equation (4)
into equation (3) leads to the well-known plane-wave SFA.
Accordingly, the influence of the atomic core potential on the
continuum state is neglected and, therefore, the momentum
distribution is a constant of motion after conclusion of the
laser pulse.

For a symmetric electric field, i.e., F(t) = F(τ − t), it is
easy to derive that the final momentum distribution is an even
function in the longitudinal momentum [25],

dP(kz)

d�k
= dP(−kz)

d�k
, (5)

where we have assumed that the initial state has even parity,
i.e., φi(�r) = φi(−�r). It is well known that the SFA fails
to describe ionization for moderately weak fields as well as
the slow electron yield even for strong fields [25, 27]. For
this reason, a theory which involves the effect of the atomic
potential on the receding electron is considered next.

2.2. Time-dependent distorted-wave Coulomb–Volkov
approximation (CVA)

An improved approximation is achieved by combining the
atomic eigenstate of the continuum φ−

�k
with the final-channel

wave function of equation (4). For a hydrogenic atom, i.e.,
V (r) = −ZT /r with ZT as the nucleus charge, it results
in the Coulomb–Volkov final state firstly proposed by Jain
and Tzoar [28] and later extensively used for ionization by
monochromatic low-intensity lasers [21, 22, 29, 30, 31, 32]

χ
(CV )−
�k

(�r, t) = χ
(V )−
�k

(�r, t) DC(ZT ,�k,�r), (6)

where

DC(ZT ,�k,�r ) = N−
T (k) 1F1(−iZT /k, 1,−ik r − i�k · �r).

The Coulomb normalization factor N−
T (k) =

exp(πZT /2k)�(1 + iZT /k) coincides with the value of
the Coulomb wave function at the origin, and 1F1 denotes
the confluent hypergeometric function. Inserting equation (6)
into equation (3) leads to the CVA, which can be evaluated
in closed form [33, 34]. In the CVA, the simultaneous
interactions of the released electron with the residual ionic
core and the external field are considered non-perturbatively,
although only approximately. The forward–backward
symmetry of equation (5) is inherent to the SFA (and
SMM) but is broken in the CVA because of the inclusion

of the Coulomb distortion in the exit channel [1, 25]. From
equation (6), the SFA can be derived as the limit of weak
Coulomb potential, i.e., χ

(CV )−
�k

→ χ
(V )−
�k

as ZT → 0.

2.3. Semiclassical model

The semiclassical theory closely follows the SMM [3, 35–37]
to deal with interference signatures within the SFA. The
general outline of the SMM previously introduced for
monochromatic electric fields [4, 10, 11] can be applied to
the particular case of the two-colour field [12]. The SMM
is based on the saddle-point approximation of the continuum
distorted wave SFA (equation (3)), which leads to a transition
amplitude to the continuum state of the form [36]

Ti f (�k) = −
M∑

i=1

G(t (i)
r ,�k) eiS(t (i)

r ). (7)

Here, M is the number of electron trajectories born at ionization
times t (i)

r which reach a given final momentum�k, and G(t (i)
r ,�k)

is the ionization amplitude,

G(t (i)
r ,�k) =

[
2π iF(t (i)

r )

|�k + �A(t (i)
r )|

]1/2

d∗(�k + �A(t (i)
r )

)
, (8)

where d∗(�v) is the dipole element of the bound-continuum
transition. In equation (7), S is given by the Volkov action of
equation (4) [26], where the time dependence of the initial
state, i.e., exp(−iIpt) is included.

The release time t (i)
r of trajectory i is determined by the

saddle-point equation [38],

∂S(t)

∂t

∣∣∣∣
t=t (i)

r

=
[
�k + �A(t (i)

r )
]2

2
+ Ip = 0. (9)

Release times t (i)
r are complex not only because Ip > 0, but

also because of the presence of a component of the momentum
in the transversal direction. For the sake of simplicity, we
approximate the ionization times by real values by setting
Ip = 0 and kρ = 0 within the SMM, arriving at

kz + A(t (i)
r ) = 0. (10)

Classical trajectories originating at different release times
t (i)
r (i = 1, 2, ...) can give rise to semiclassical interferences

provided they satisfy the condition given by equation (10) for
reaching the same final momentum �k.

From this point, we apply the SMM of equation (7)
together with equation (10) to the interaction of a target
atom with a two-colour laser pulse, where one frequency
doubles the other (ω − 2ω). The pulse is described through
the time-dependent electric field �F(t) along the ẑ direction,
which reads

�F(t) = f (t)[cos(ωt) + cos(2ωt + ϕ)] ẑ, (11)

where ω is the fundamental laser frequency, ϕ the relative
phase between the two frequency components and f (t) is
the envelope function of the sculpted laser pulse. By varying
the relative phase ϕ, the ionizing field (figure 1), emission
times and the motion of the interfering wave packets can be
controlled on an attosecond time scale. In figure 1(a), for laser
fields with relative phase ϕ = 0, two solutions per optical
cycles are observed: the early and late release times marked

3



J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 204008 D G Arbó

(a)

(b)

Figure 1. Electric field in dashed line and vector potential (solid
line) of a sculpted ω − 2ω laser pulse as a function of time for
relative two-colour relative phases ϕ = 0 (a) and ϕ = π/2 (b).
Circles represent early ionization times and triangles late ionization
times within the SMM. The amplitude field is F0 = 0.0533
(corresponding to I = 1014 W cm−2 for a one-colour pulse). The
frequency is ω = 0.057 (800 nm). The pulse duration is eight
optical cycles (τ = 21 fs) with a two-cycle ramp on, two-cycle ramp
off and four-cycle flat top central region (see equations (11) and (17)
in text). The vector potential is multiplied by the frequency ω for a
better visualization.

with circles and triangles, respectively. Within the SMM, we
consider a flat top pulse, i.e., f (t) = F0 in the main region
of the pulse consisting of N optical cycles, and neglect the
ionization probability during the adiabatic switch on and off.

For an electric field of equation (11) with relative phase
ϕ = 0, the momentum distribution along the polarization
axis is symmetric (equation (5)) within the SMM and SFA.
According to figure 1(a), the classical range is −kz|max <

kz < kz|max = (3
√

3/2)F0/ω. The maximum classical kinetic
energy can be directly derived from Ecl = (kz|max)

2/2 =
2.7Up = 2.7(5/4)F2

0 /4ω2. The forward–backward symmetry
of equation (5) is broken within the SFA for relative phases
different from zero (or multiples of π ), for which �F(t) 	=
�F(τ − t). From figure 1(b) for the case of ϕ = π/2,

the final electron longitudinal momentum covers a range
kmin < kz < kmax, where kmin = −(3/2)F0/ω doubles
(in absolute value) kmax = (3/4)F0/ω. This results in a
very asymmetric distribution with maximum kinetic energy
k2

min/2 = (9/8)F2
0 /ω2 in the backward direction, which is

four times the maximum energy k2
max/2 = (9/32)F2

0 /ω2 in
the forward direction. Therefore, the maximum drift energy

results to be (9/2)(F2
0 /4ω2) = (18/5)Up, which means that

we have gained 80% with respect to the well-known one-colour
maximum classical kinetic energy 2Up.

For the sake of simplicity, in the rest of this section, we
neglect the contribution of more than only two interfering
trajectories per optical cycle considering the total number of
interfering trajectories M = 2N, with N being the number of
cycles involved in equation (7) [12]. Therefore, the sum over
interfering trajectories (equation (7)) can now be decomposed
into those associated with two release times within the same
cycle and those associated with release times at different cycles
[4]. In this sense, the transition probability from the initial state
to a final state with momentum�k (equation (2)) can be written
as

dP

d�k
= 4�(�k)F(�k)B(k), (12)

where

�(�k) =
[

G(t (1)
r ,�k) + G(t (2)

r ,�k)

2

]2

, (13)

F(�k) = cos2

(
�S

2

)

+
(

G(t (1)
r ,�k) − G(t (2)

r ,�k)

G(t (1)
r ,�k) + G(t (2)

r ,�k)

)2

sin2

(
�S

2

)
, (14)

and

B(k) =
[

sin(NS̃/2)

sin(S̃/2)

]2

. (15)

In the calculation of equation (12), we have considered the
ionization amplitude G(t (α)

r ,�k) to be real. We have regarded
that the contribution of the multiple optical cycles in equation
(15) is a geometrical sum following the calculations for the
one-colour field [4, 10, 11]. For the case of an infinite pulse,
i.e., N → ∞, the factor B(k) → ∑

n δ(E − εn), with
εn = n�ω − Ip − Up, is in agreement with the conservation
of energy for the absorption of n photons. In turn, for a
finite number of optical cycles N, the energy peaks have
a width (energy difference between the minima besides a
principal maxima) �E = ω/N, which fulfills the Heisenberg
uncertainty principle �ε τ ∼ �, where τ is the total duration
of the pulse (τ = N2π/ω) [4, 10, 11].

Equation (12) indicates that the interference pattern can be
factorized in two contributions: (i) the interference stemming
from a pair of trajectories within the same optical cycle
(intracycle interference), governed by the factor F(�k), and
(ii) the interference stemming from trajectories released at
different optical cycles (intercycle interference) resulting in
the well-known ATI peaks of the photoelectron spectrum given
by B(k) (see [23]). For the case of a laser pulse with a relative
phase ϕ = ( j + 1/2)π, the vector potential is symmetric with
respect to its maximum (see figure 1(b)), and thus, the electric
field is antisymmetric. Therefore, G(t (1)

r ,�k) = G(t (2)
r ,�k) and,

consequently, the intracycle interference factor takes the form

F(�k) = cos2

(
�S

2

)
, (16)

4
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in coincidence with the one-colour case [4, 10, 11], where
also �(�k) = |G(t (1)

r ,�k)|2 = |G(t (2)
r ,�k)|2. For electric fields

with a relative phase different from ϕ = ( j + 1/2)π, with
integer j, the factor F(�k) is never zero in the classical domain
(see equation (14)), making the contrast between maxima and
minima poorer than the case for ϕ = ( j + 1/2)π. In other
words, the maximum contrast is found for ϕ = ( j + 1/2)π,

where F(�k) = 0 at every time that �S = (2l + 1)π,

with integer l. B(k) in equation (12) may be viewed as a
diffraction grating in the time domain consisting of N slits
and F(�k) as the diffraction factor for each slit consisting of
two interfering paths. The intracycle interference arises from
the superposition of pairs of classical trajectories separated by
a time slit �t = t ( j,1)

r − t ( j,2)
r of the order of less than half

a period of the laser pulse, i.e., �t < π/ω. It is important
to mention that while for a one-colour pulse, the maximum
ionization takes place near threshold (zero final momentum)
[4, 10, 11], this is not the general case for two-colour pulses
as can be observed in figure 1(b) for ϕ = π/2. In this case,
the maxima of the electric field do not match the zeroes of the
vector potential, contrarily to the one-colour case.

3. Results

We have confined our study to ionization of a hydrogen
atom initially in its ground state interacting with the two-
colour laser field of equation (11), cf figure 1. Calculations
within the semiclassical SMM will be compared to the time-
dependent continuum distorted wave SFA to determine the
level of accuracy of the semiclassical model. More importantly,
results within the SFA will be directly compared to results of
the CVA in order to determine the effect of the atomic potential
of the remaining core on the dynamics of the ejected electron
and the ensuing electron distribution. The final verification of
the mentioned approximations (SMM, SFA and CVA) will be
performed through their comparison with the ab initio results
by solving numerically the TDSE of equation (1) with no
approximations [39].

In the calculation of the electron yield within the SMM,
we have used equation (7) and the semiclassical expression for
the ionization amplitude G(t,�k) = π

2
√

Ĩp|F(t)|
exp

[ − (2Ĩp)
3/2

3|F(t)|
]
,

where only the flat top region of the pulse was considered,
neglecting the adiabatic switch on and switch off. A similar
expression for G(t,�k) has been derived from the semiclassical
ADK theory [40, 41] and variations of it have been extensively
used in the literature (for example, in [35]).

In order to calculate the electron yield within the SFA,
CVA and TDSE, we must consider a finite pulse that includes
an envelope function f (t) with an appropriate ramp on and
off. For the pulse of equation (11), we use an N-cycle flat-top
pulse with m-cycle ramp-on and -off,

f (t) = F0

⎧⎨
⎩

sin2 (
ω

4mt
)

if 0 � t < 2mπ
ω

1 if 2mπ
ω

� t < τ − 2mπ
ω

sin2 (
ω

4m (τ − t)
)

if τ − 2mπ
ω

� t � τ,

(17)

where we have chosen m = 2 in our calculations and the total
pulse duration is equal to a multiple of the laser period, i.e.,

τ = n2π/ω, with n = 8 (see figure 1). In this case, the vector
potential in the flat top region of the pulse is given by

�A(t) = −F0

ω

[
sin(ωt) + 1

2
sin(2ωt + ϕ)

]
ẑ, (18)

and consequently, the ionization times in this region
(calculated from either equation (10) or equation (9)) will
be the same as for the pulse with adiabatic switch on and off.
The envelope function introduced in equation (17) assures not
only a smooth switch-on and -off, but also the independence
of the intracycle interferences pattern from the pulse duration.

The forward–backward asymmetry of the electron yield
can be quantified by the asymmetry coefficient defined as

A = Pion(+) − Pion(−)

Pion(+) + Pion(−)
, (19)

where Pion(±) is the total electron ejection probabilities in
the forward (kz > 0) / backward (kz < 0) direction. When
considering a two-colour pulse with ϕ = 0 within the SMM
or SFA, the asymmetry coefficient ASMM = ASFA = 0, in
agreement with equation (5). We will see that the effect of the
Coulomb potential breaks this forward-backward symmetry.

3.1. Photoelectron spectrum

Within the SMM and making use of equations (2) and
(7) we have calculated the photoelectron spectrum dP

dE =
2π

∫ cos θmin

cos θmax
d(cos θ )

√
2E

∣∣Ti f

∣∣2
, into a cone of 10◦ along the

polarization axis in both forward (θmin = 0 and θmax = 10◦)
and backward (θmin = 170◦ and θmax = 180◦) directions.
The two-colour laser pulse of equation (11) has duration
of four optical cycles for a flat top field with parameters
F0 = 0.0533 and fundamental frequency ω = 0.057. In
figure 2(a), we show the photoelectron distribution for relative
phase ϕ = 0 together with the intracycle interference pattern
using equation (12) setting the intercycle factor B(k) to unity.
We observe that the photoelectron spectrum consists in a series
of multiphoton peaks that are modulated by the intracycle
interference pattern corresponding to the contribution of only
one optical cycle. From the comparison of the complete
photoelectron spectrum and the intracycle envelope, we can
directly observe that the intercycle pattern B(k) is responsible
for the multiphoton peaks, as equation (15) predicts. The SMM
photoelectron spectrum is restricted to the classical region
E < Ecl = 2.7Up � 0.74.

We have also calculated the photoelectron spectrum
within the SFA, which is observed in figure 2(b). We can
see that the energy distributions spread beyond the classical
boundary Ecl highlighting its quantum nature. It is worth
mentioning that the SFA photoelectron spectrum of figure 2(b)
exhibits modulations similar to the SMM result of figure 1(a),
but the position of maxima and minima are not the same.
This is a consequence of approximating the ionization times
with real values in SMM (equation (10)), instead of complex
ionization times as equation (9) indicates. Nonetheless, this
lack of accuracy does not undermine the concept of splitting
of the intra- and intercycle interference shown in equation
(12). Both SMM and SFA photoelectron spectra are forward–
backward symmetric for ϕ = 0 since the effect of the Coulomb

5
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(c) (d)

(e) (f)

(b)(a)

Figure 2. Photoelectron distribution in a cone of 10◦ along the
polarization axis for the two-colour pulse with amplitude
F0 = 0.0533, frequency ω = 0.057 and relative phase ϕ = 0.
(a) SMM intracycle envelope and four-cycle forward or backward
contribution. (b) SFA forward or backward distribution. (c) CVA
forward. (d) CVA backward. (e) TDSE forward and (f) TDSE
backward. In (a), the spectrum was multiplied by 15 and the
intracycle distribution by 240 for a direct comparison with (b). In
(b)–(f), the pulse duration is eight optical cycles with a two-cycle
ramp on, two-cycle ramp off and four-cycle flat top central region
(see figure 1).

potential of the remaining core after ionization on the ejected
electron is disregarded in these approaches.

In order to investigate the effect of the Coulomb potential,
we calculate the CVA photoelectron spectrum into a cone of
10◦ in both forward and backward directions. By comparing
figures 2(c) and (d), we observe that the Coulomb potential
breaks the forward–backward symmetry. The emission is
higher in the forward direction than in the backward direction,
resulting in an asymmetry factor ACVA = 0.3, which is
only caused by the effect of the Coulomb potential on
direct electrons. On the contrary, the multiphoton (intercycle)
peaks are unaffected by the core potential since they are
exclusively determined by factor B(k) through the energy
conservation, i.e., εn = n�ω − Ip − Up. The intracycle
envelope can be observed in both directions. If we compare
the CVA photoelectron spectrum of figure 2(c) with the SFA of
figure 2(b), we observe that the intracycle envelope has shifted
towards the threshold. TDSE results show characteristics
similar to the CVA outcome with a higher preponderance of

(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

Figure 3. Photoelectron distribution in a cone of 10◦ along the
polarization axis for the two-colour pulse with amplitude
F0 = 0.0533, frequency ω = 0.057, and relative phase ϕ = π/2.
(a) forward and (b) backward SMM intracycle envelopes and
four-cycle contributions. (c) SFA forward and (d) backward
distributions. (e) CVA forward and (f) backward distributions.
(g) TDSE forward and (h) backward distributions. In (a) and (b), the
SMM calculations comprise the four-cycle flat-top region of the
pulse. In (b)–(f), the pulse duration is eight optical cycles with a
two-cycle ramp on, two-cycle ramp off and four-cycle flat top
central region (see figure 1).

emission in the forward direction, which is evidenced by the
asymmetry factor ATDSE = 0.51. Positions of maxima and
minima of the envelope do not coincide with the CVA since
TDSE calculations account for some other physical processes
not considered in CVA, like depletion of the ground state and
electron rescattering by the atomic core, which also blurs the
visibility of the intracycle pattern.

In figure 3, we show the photoelectron spectra in a cone
of 10◦ along the polarization axis in the forward (left column)
and backward (right column) directions for the same electric
field of figure 2 but with ϕ = π/2. We can observe that
the electron is mainly ejected in the backward direction.
In the first row, we show the SMM predictions together
with the intracycle interference pattern. According to the
SMM, the energy distribution in the forward direction is
restricted to values E < k2

max/2 = (9/32)F2
0 /ω2 � 0.25

in figure 3(a) (almost not visible), whereas it is restricted
to E < k2

min/2 = (9/8)F2
0 /ω2 � 0.98 in the backward

direction in figure 3(b). We observe that the forward–backward
asymmetry is so important that the emission in the forward
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direction (figure 3(a)) is almost negligible compared to the
one in the backward direction (figure 3(b)). In this sense,
the asymmetry coefficient is ASFA = −0.97. All different
spectra in the right column corresponding to the backward
direction calculated within the different methods clearly show
multiphoton peaks modulated by the intracycle interference
pattern. The intracycle envelope shows a sharp contrast, which
means, that the intracycle envelope minima are practically
zero, in opposition to the case of relative phase ϕ = 0 of
figure 2, where the interference modulations are less visible
since their intracycle minima are considerably different from
zero. As discussed for the case of zero relative phase, the SFA
intracycle envelope spectra shows a shift with respect to the
SMM one because the SMM approximation of equation (10)
for the ionization times is not accurate enough. CVA spectrum
in the backward direction in figure 3(f) shows a shift of the
intracycle interference pattern towards the threshold due to
the effect of the Coulomb potential of the residual core. The
drop of the asymmetry coefficient to ACVA = −0.66 within the
CVA, with respect to ASFA = −0.80, indicates that the effect
of the Coulomb potential diminishes the forward–backward
asymmetry for ϕ = π/2. In figure 3(h), we can see that the
TDSE spectrum displays an intracycle interference pattern
with almost perfect contrast. The position of the maxima
and minima of the intracycle interference pattern is similar
to the approximations considered (SMM, SFA and CVA) but
does not coincide exactly due to depletion of the ground state
and rescattering processes, which are considered in TDSE
calculations but not in CVA. They are also responsible for the
lower forward–backward asymmetry ATDSE � −0.58. In order
to have an idea about the importance of the depletion, the total
ionization probability for ϕ = π/2 calculated from figure 3 is
about 66%, which evidences a high depletion.

By comparing the SFA and CVA, we can probe directly
the effect of the Coulomb phase shift on the interference
pattern. When the nuclear charge ZT is varied in the final-
state Coulomb distortion factor of equation (6), the Coulomb
phase can be arbitrarily varied between zero and its full value
affecting neither the initial-state wave function nor the binding
energy. We calculate the photoelectron spectrum into a cone
of 10◦ in the backward direction for a laser field of the same
parameters used in previous figures for ϕ = π/2. In figure 4,
we observe a monotonic shift of the intracycle envelope F(k)

as the strength of the Coulomb potential parametrized by the
nuclear charge increases from ZT = 0 (SFA) in figure 4(a) at
the top, to ZT = 1 (CVA) in figure 4(e) at the bottom, clearly
illustrating the effect of the Coulomb tail on the form factor
F(k). In particular, the SFA envelope maxima at E � 0.95
and 0.45 move to the CVA maximum at E � 0.75 and 0.3,

respectively. On the other hand, no significant changes of
the multiphoton positions described by B(k) are observed.
The monotonic shift caused by the effect of the long-range
behaviour of the Coulomb potential has also been observed
for one-colour fields [4].

3.2. Doubly differential momentum distribution

In order to provide a complete picture of the emitted
electron distribution, we need a two-dimensional description

(a)

(b)

(c)

(d)

(e)

Figure 4. CVA photoelectron spectra in a cone of 10◦ in the
backward direction for different values of the nuclear charge
ZT = 0, 0.25, 0.5, 0.75 and 1, from the top to the bottom calculated
for the eight-cycle pulse described in figure 1. The carrier frequency
is ω = 0.057, the field amplitude is F0 = 0.0533 and the relative
phase is ϕ = π/2.

of the electron dynamics since the three-dimensional
photoionization problem has cylindrical symmetry around the
polarization axis. For that reason, we calculate the doubly
differential momentum distributions d2P

dkzdk⊥
= 2π

∣∣Ti f

∣∣2
,

as a function of the longitudinal momentum kz and the
transversal momentum k⊥—the momentum in any direction
perpendicular to the polarization axis ẑ, i.e., k⊥ = kx or ky.
Figure 5 shows distributions for two-colour electric fields with
the same parameters of previous figures with ϕ = 0 and
ϕ = π/2 on the left and right columns, respectively. The
lower halves of figures 5(a) and (b) show the SMM results for
the two-dimensional momentum distribution corresponding to
a four-cycle pulse calculated through equation (3). The upper
halves exhibit the intracycle pattern by setting the intercycle
factor B(k) = 1 in equation (12). The intracycle pattern in
upper half of figure 5(b) for ϕ = π/2 clearly modulates the
intercycle rings shown in the lower panel of figure 5(b). The
SMM longitudinal momentum is symmetrically constrained to
|kz| < (3

√
3/2)F0/ω � 1.21 for ϕ = 0. Besides, figure 5(b)
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(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

Figure 5. Doubly differential momentum distribution. First column (a), (c), (e) and (g) for ϕ = 0 and second column (b), (d), (f) and (h) for
ϕ = π/2. First row (a) and (b) shows the SMM intracycle pattern in the upper halves, whereas the lower halves correspond to the SMM
four-cycle contributions. Second row (c) and (d) shows the SFA distributions. Third row (e) and (f) show the CVA distributions. Fourth row
(g) and (h) shows the TDSE distributions. The laser parameters are F0 = 0.0533 and ω = 0.057. In (a) and (b), the SMM calculations
comprise the four-cycle flat-top region of the pulse. In (c)–(h), the pulse duration is eight-optical cycles with a two-cycle ramp on, two-cycle
ramp off and four-cycle flat top central region (see figure 1).

shows the asymmetric SMM longitudinal momentum, which
is constrained to kmin < kz < kmax, where kmin = −(3/2)F0/ω

� −1.4 and kmax = (3/4)F0/ω � 0.7. We observe that for
the case of ϕ = 0 in figures 5(a) and (c), the distributions are
symmetric with respect to the line kz = 0 in agreement with
equation (5), i.e., ASMM = ASFA = 0. This is not the case for
ϕ = π/2 in figures 4(b) and (d), where the ‘centre of mass’ of
the distribution is shifted backwards as recently observed in
experiments in helium ionization [1]. Intracycle interference
fringes with poor contrast are observed for ϕ = 0 in figure 5(a).
Quantum calculations (SFA, CVA and TDSE) results in longer
distributions beyond the classical boundaries of longitudinal
momenta. CVA distributions in figures 4(e) and (f) are slightly
narrower (in transversal k⊥ direction) than SFA distributions
in figures 4(c) and (d) due to Coulomb focusing. The effect of
the Coulomb potential on direct electrons is the reason for the
asymmetry of the CVA distribution for ϕ = 0 in figure 5(e).
This asymmetry is more marked in the TDSE yield in figure
5(g), where radial stripes are observed in the forward direction,
probably a signature of rescattering processes [42–44]. When

we compare CVA and SFA distributions for ϕ = π/2, we
observe that the CVA intracycle fringes in figure 5(f) are
a little shifted towards the origin with respect to the SFA
ones in figure 5(d), the same effect exhibited in figure 4
for the photoelectron spectrum in the backward direction for
ϕ = π/2. TDSE distribution in figure 5(h) displays similar
interference patterns to CVA, SFA and SMM, something that
ensures the approximating methods employed. Furthermore,
TDSE results for hydrogen in figure 5(h) are very similar to
figure 2(f) in [1]. Despite the authors of [1] do not analyse the
intracycle interference pattern, this can be clearly observed in
their simulations and experiments (see figure 2(d) of [1] and
also [2]).

3.3. Longitudinal momentum distribution

We have also calculated the longitudinal momentum
distribution dP/dkz integrating the doubly differential
momentum distributions of figure 5 over the transversal

8
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(a)

(c)

(e)

(g) (h)

(f)

(d)

(b)

Figure 6. Longitudinal momentum distribution integrated over the transversal momentum. First column (a), (c), (e) and (g) for ϕ = 0 and
second column (b), (d), (f), and (h) for ϕ = π/2. First row (a) and (b) shows the SMM intracycle pattern together the four-cycle
contribution. Second row (c) and (d) shows the SFA distributions. Third row (e) and (f) show the CVA distributions. Fourth row (g) and (h)
shows the TDSE distributions. In (a) and (b), the SMM calculations comprise the four-cycle flat-top region of the pulse. The laser
parameters are F0 = 0.0533 and ω = 0.057. In (c)–(h) the pulse duration is eight optical cycles with a two-cycle ramp on, two-cycle ramp
off and four-cycle flat top central region (see figure 1).

momentum, i.e., dP
dkz

=2π
∫ ∞

0 dkρ kρ

∣∣Ti f

∣∣2
. We show the

results in figure 6: the left column exhibits results for ϕ = 0
and the right column does it for ϕ = π/2. We observe that
in figures 6(a) and (c), the SMM and SFA distribution for
ϕ = 0 are symmetric as expected from equation (5). The
corresponding distributions for ϕ = π/2 are displaced towards
the negative values of kz. From figure 6(e), we see that for
ϕ = 0 the Coulomb potential tilts a little the momentum
distribution towards the positive values of kz with respect to
the SFA distribution in figure 6(c). These results corroborate
recent studies using the strong-field classical trajectory model,
which corresponds to the quasiclassical limit of the SMM [1],
in which path interferences are neglected. By considering path
interferences, we can see, on one hand, the intracycle envelope
for high longitudinal momenta where the intercycle peak
separation is small compared to the intracycle oscillations. On
the other hand, since near the threshold, the intercycle peak
separation competes with the intracycle oscillations, we cannot

distinguish the intracycle pattern from the whole momentum
distribution. TDSE results in figures 5(g) and (h) reproduce
quite well the CVA results, however, it fades out at slightly
higher values of longitudinal momentum (in absolute values)
compared to the CVA distributions. Electron rescattering by
the residual core may probably be the reason of this. We want
to stress that in figure 6(h) for ϕ = π/2, the TDSE intracycle
interference pattern can be clearly observed as two envelope
maxima at kz � −1.1 and −0.7. Corresponding intracycle
oscillations for ϕ = 0 in figure 6(g) situated at kz � −1
and −0.6 are also observed, even though not as clearly as for
ϕ = π/2.

4. Conclusions

In this article, we have presented a study about interference
effects resulting from the interaction of an isolated atom with
intense two-colour laser pulses, where the second frequency
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doubles the fundamental. We have put special emphasis on the
action of the Coulomb potential of the ionic core on the electron
yield. We followed a simple semiclassical model based on the
SMM [12] which identifies the interplay between the intra- and
intercycle interferences of electron trajectories in multicycle
two-colour laser photoionization. However, the SMM is not
accurate enough when it comes to quantifying the intracycle
pattern that extends beyond the classical domain. Therefore,
time-dependent distorted-wave approximations SFA and CVA
were presented. We have explored the effect of the Coulomb
potential on the electron yield, especially on the interference
pattern by comparing the CVA and SFA result. We show that
the Coulomb potential affects the interference pattern in the
whole domain by shifting the intracycle modulations towards
the threshold in the photoelectron spectrum. On the contrary,
the intercycle interference pattern recognized as multiphtoton
peaks in the photoelectron spectrum is invariant to the presence
of the Coulomb potential since it is only consequence of energy
conservation in the photon absorption process. This result,
already known for the case of atomic ionization by one-colour
laser fields [10], has been extended to the case of sculpted laser
fields with two commensurate frequencies (ω − 2ω) stressing
the coherent control provided by the relative phase ϕ, which
works as a knob to manipulate the intracycle interference.

Approximating methods SFA and CVA were tested
against the solutions of the TDSE, which show clear evidence
of intracycle interferences. Coherent superposition of electron
wave packets released within the same sculpted optical
cycle are clearly observed in TDSE calculations involving
laser pulses with relative phase between the two colours
ϕ = π/2. The theory explains attosecond strong-field
electron wavepacket interferometry experiments with sub-ten-
attosecond precision [2]. The dependence of the intracycle
modulations on the long-range atomic Coulomb potential
might open the possibility of imaging the core potential in
the experimentally easy to obtain direct electron yield. In
view of TDSE doubly differential momentum distributions,
novel structures appear which are worth studying in future
investigations.
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Gazibegović-Busuladžić A and Becker W 2008 J. Mod.
Opt. 55 2653
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