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Abstract We discuss and develop methods to estimate and refine measurements of the Taylor
microscale from discrete data sets. To study how well a method works, we construct a time series of discrete
data with a known power spectrum and Taylor scale, but with various truncations of the resolution that
eliminate higher frequencies in a controlled fashion. We compute the second-order structure function and
correlation function, assuming that the unresolved dissipation range spectrum has various values of spectral
index. A series of Taylor scale estimates are obtained from parabolic fits to subsets of the correlation function
data, and these are extrapolated to the limit of zero separation. The error in this procedure, for finite time
resolution sampling, depends on the spectral index in the dissipation range. When the spectral form is
known, we can compute a correction factor that improves the estimate of the Taylor microscale value
determined from the extrapolation method and band-limited data. Application of this technique to
spacecraft observations of solar wind fluctuations is illustrated.

1. Introduction

The motivation of this study comes from recent efforts to measure the Taylor microscale in solar wind turbu-
lence calculated using multispacecraft techniques [Matthaeus et al., 2005; Weygand et al., 2007, 2009, 2010,
2011; Gurgiolo et al., 2013]. The Taylor scale is related to the second derivatives of the data [Batchelor, 1970]
(also see below); therefore, it is inherently sensitive to the high-frequency spectral content of the signal. Of
course, for idealized time-continuous infinite precision data, the Taylor scale may be computed. Likewise,
when very high cadence measurements are available [e.g., Alexandrova et al., 2009; Sahraoui et al., 2009],
and the spectrum is steep enough (see below), it may be possible to unambiguously determine the Taylor
scale. However, for available data sets with finite time cadence, the values of the Taylor scale obtained by a
straightforward evaluation may be sensitive to the data resolution, as the correct value may depend on the
physical signal above the sampling Nyquist frequency.

The objective of this study is to understand the accuracy of the Taylor scale estimates using finite resolu-
tion data sets, in which the high-frequency spectra may or may not be well known. We develop a method to
improve these estimates based on the spectrum of the unresolved data, which can be used when estimates
of the high-frequency spectrum of the signal are available in some way, whether it be observations, the-
ory, or an informed guess. Although the main purpose here is to discuss measurement issues, the physical
significance of the Taylor scale will be reviewed briefly in section 2.

In a system such as the solar wind, the Taylor microscale can be estimated from single spacecraft analyses.
Within the context of the Taylor [1938] frozen-in flow approximation, time t separation is converted to spa-
tial x separation using the relation x = Vsw × t. In the latter case, instead of working in the spatial domain,
the curvature of the two time correlation near the origin can be estimated. Frozen-in flow is a standard
approximation in solar wind observational analysis and in wind tunnels. Dasso et al. [2008] demonstrates the
validity of this approximation in the solar wind by comparing values determined from single spacecraft and
multispacecraft analysis. With this background in mind, one can define the Taylor microscale (𝜆T ) by

1
𝜆T

=

√√√√√⟨( 𝜕F
𝜕x

)2⟩
⟨F2⟩ →

1
Vsw𝜏TS

= 1
Vsw

√√√√√⟨( 𝜕F
𝜕t

)2⟩
⟨F2⟩ , (1)
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where F is the function of interest such as the velocity or magnetic field fluctuations. For generality and
simplicity, here we will discuss methods for arriving at improved estimates of the Taylor scale under the
assumption that the problem of interest is in the time domain or that frozen-in flow is valid. Therefore, the
discussion will center on the procedure to extract 𝜏TS from a time series F(t). We will employ a model spec-
trum in which the inertial range terminates by steepening at a “dissipation scale” (Kolmogorov scale) or its
equivalent in the time domain 𝜏d , which is the equivalent sweeping time of the dissipation length scale past
the detector. Thus, in the present paper the term dissipation scale implies only the scale at which the power
law cascade range terminates, generally leading to a steeper spectrum. This familiar terminology is used in a
purely kinematic sense, without regard for whether this steepening is due to dissipation, dispersion, or some
other effect.

Focusing on the time domain, the Taylor microscale can be also viewed as the radius of curvature at the
origin of the autocorrelation function

R(𝜏) = ⟨F(t)F(t + 𝜏)⟩. (2)

From a small 𝜏 expansion, and using R(𝜏) = R(−𝜏), a requirement of time stationarity, the autocorrelation
function near the origin, can be determined by

R(𝜏) ≈ 1 − 𝜏2

2𝜏2
TS

+… . (3)

Therefore, one way to obtain the Taylor microscale from measurements is to fit R(𝜏) at the origin. How-
ever, sometimes the observation data do not have sufficient time resolution near the origin to perform an
adequate parabolic fit. This is due to the fact that for many reasonable spectra, the quadratic behavior sug-
gested in equation (3) is not apparent until the correlation function is sampled at scales 𝜏 < 𝜏d . We will study
the expected effects on Taylor scale determination using a designed function F(t) that is intentionally under-
sampled but which is extracted from a signal that has better time resolution and a known spectral index in
the dissipation range. This is a useful approach to develop a procedure that reliably determines the Taylor
microscale. To develop this technique we construct the time data series based on a specified spectrum. With
varying resolution synthetic data, we obtain empirical values of the Taylor microscale and compare with the
known “exact” values. We find that it is possible to define a multiplicative correction factor that allows us
in some circumstances to adjust and improve the measured Taylor scale based on assumptions about the
spectrum of the unresolved high-cadence data.

Before turning to the main content of the paper, we digress briefly concerning the physical significance of
the Taylor scale, both in hydrodynamics [Batchelor, 1970] and in the case of collisionless plasma such as the
solar wind. In isotropic hydrodynamic turbulence, the Taylor scale may be defined as the radius of curvature
at the origin of the two-point velocity (𝐯) correlation R(r) = ⟨𝐯(0) ⋅ 𝐯(𝐫)⟩; that is, 𝜆2

T = R(0)∕R′′(0) or equally

well as the length associated with the mean square curl of the velocity (the vorticity), 𝜆2
T = ⟨|𝐯|2⟩

⟨|∇ × 𝐯|2⟩ . For vis-
cous (𝜈) dissipation in an incompressible medium, the Taylor scale is also related to dissipation, in that (for
suitable boundary conditions), d⟨|𝐯|2⟩

dt
= −𝜈𝜆−2

T ⟨|𝐯|2⟩. In this sense the Taylor scale is the “equivalent dissipa-
tion scale,” in that, any instant of time, the dissipation rate is the same as if all the energy were at the Taylor
scale. In older turbulence texts [Hinze, 1975] the Taylor scale is sometimes designated simply as “the dissi-
pation scale.” However, in more current terminology the latter is usually reserved for the Kolmogorov scale 𝜂

which signifies the scale (or wave number 1∕𝜂) at which the power law inertial range terminates and beyond
which lies the dissipation range. For high Reynolds number R and correlation scale L, in hydrodynamics, the
Taylor scale is 𝜆T = L∕

√
R, while 𝜂 = L∕R3∕4. Therefore, 𝜆T∕𝜂 = R1∕4, and the two become well separated at

very large R. For plasmas the dynamical status of both the Taylor scale and the Kolmogorov scale becomes
ambiguous [see, e.g., Matthaeus et al., 2008]. The mechanism of dissipation is not well understood for colli-
sionless plasma and may vary in different parameter regimes. Thus, 𝜆T cannot be interpreted as connected
with the length scale or rate of energy dissipation. Likewise, the termination of the inertial range may not
be associated with dissipation, as the onset of kinetic dispersive waves may also be influential. Nevertheless,
it is convenient to maintain the kinematic definitions of Taylor scale and “dissipation scale,” related respec-
tively to the second derivative of the correlation function at the origin and the termination of the inertial
range. In the remainder of the paper we adopt the kinematic meaning of 𝜆T and the dissipation scale, as well
as their time domain counterparts, to be defined below.
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2. Generating Discrete Data With a Known Taylor Scale

To develop our method, we use synthetic data generated using a known spectrum and then employ a typi-
cal methodology to evaluate the Taylor microscale. The spectrum is constructed with inertial and dissipation
ranges that have been independently controlled and have generally different power law indices. To be spe-
cific, we let the inertial range have a spectral index of −5∕3, while the dissipation range has an adjustable
spectral index q. The particular functional form of the spectrum is

P(f ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

C

[1+(f𝜏0)2]5∕6 , where fmin < f ≤ fd

C

[1+(fd𝜏0)2]5∕6

(
fd

f

)q
, where fd < f ≤ fe

0, where fe < f ≤ fmax,

(4)

where q < 0. The reasons for these choices are as follows: First, the flat spectral region at very low frequen-
cies f𝜏0 << 1 is designed to make the signal time stationary. This is unrealistic for the solar wind, which
has very low frequency components due to, e.g., solar rotation and solar cycle [see, e.g., Matthaeus and
Goldstein, 1982]. However, we are not concerned with very low frequency effects here. Second, the inertial
range with Kolmogorov spectral index of ∼ 5∕3 is found for higher frequencies, at f𝜏0 > 1. Third, there is a
discontinuous jump at the top of the inertial range at frequency fd , the slope steepening from −5∕3 to −|q|,
in qualitative accord with observations [Leamon et al., 1998; Hamilton et al., 2008; Alexandrova et al., 2009;
Sahraoui et al., 2009]. Finally, at high frequencies f > fe we set the spectrum to zero, for numerical rather
than physical reasons, to provide a very smooth trigonometric interpolation of the signal at the grid scale.

Adopting illustrative values that are representative of the solar wind at 1 AU, we assume that the spectrum
starts from fmin = 1.22 × 10−5 Hz and is flat until f0 = 1∕𝜏0 = 3.906 × 10−4 Hz, a “bendover” frequency
often associated with the correlation scale or coherence time. Thereafter, the spectrum has an inertial range
with a 5/3 power law index, until a second breakpoint is encountered at fd = 1∕𝜏d = 0.4 Hz. For histori-
cal reasons, this breakpoint, which terminates the power law MHD-scale inertial range, is often referred to
as the dissipation scale [Leamon et al., 1998], although it is also possible that it characterizes dispersion in
addition to dissipation [Gary and Borovsky, 2004]. In the hydrodynamic case the eddy turnover time and
viscous dissipation time scales become equal at the dissipation scale. However, for the solar wind or other
low-collisionality astrophysical plasmas, it is unclear whether the fluctuations become critically damped at
the breakpoint/dissipation scale. For example, the inertial range is typically found to terminate near the pro-
ton gyroscales, and while some dissipation may occur at such scales, further kinetic plasma dynamics may
transfer energy to higher frequencies until much smaller electron scales are encountered [Alexandrova et
al., 2009; Sahraoui et al., 2009]. It has been argued that a substantial fraction of actual dissipation may occur
due to electrons. In any case the scale fd corresponds to the onset of kinetic processes and the end of the
Kolmogorov-like inertial range. It is, however, the kinematic properties of the spectrum that come into play
in the current study, rather than the dynamical origin of the spectral forms.

In our model beyond the breakpoint fd , we extend the dissipation range with power law index q until fe =
16.0 Hz. This may be considered in the solar wind application to be associated with the electron dissipation
scale. The spectrum cuts off completely at fmax = 25.6 Hz. To decide upon these numerical values, here
we assume that the dissipation scale and electron dissipation scale correspond to the proton and electron
inertial scales, respectively. Thus, we set fe∕fd = 40 to be consistent with the ratio of electron and proton
inertial scales in MHD, which is about

√
mp∕me = 42.9 [see, e.g., Sahraoui et al., 2009].

Once we have specified the spectrum, we generate realizations of the signal in the frequency domain,
F(f ), as

F(f ) =
√

P(f ) exp [i𝜙] (5)

where 𝜙 is a random phase. Then a fast Fourier transform is used to convert the function F(f ) into the
real-time domain. In the simulations reported here, we employ this approach to obtain 222 data points for
the time series.
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Table 1. Showing Index q Which We
Vary for Each Case and Their Taylor
Scales When We Fix the Dissipation
Scale (𝜏d) = 2.5 s

case 𝜏
expect
TS

[s] 𝜏
expect
TS

[𝜏d]

q = −∞ 6.569 2.63
q = −5 5.097 2.04
q = −4 4.368 1.75
q = −3 2.869 1.15
q = −7∕3 1.607 0.64
q = −2 1.095 0.44
q = −1 0.095 0.028

We next compute the Taylor microscale from the data set we
generated by employing the definition equation (1). In Table 1,
we give the Taylor microscale values for a range of dissipation
scale indices q corresponding to the generic power spectrum
shown in Figure 1. (Note that the spectra are given here as Fourier
amplitudes squared, which can easily be converted to power spec-
tral density.) We will treat these expected values of the Taylor
microscale as the true or exact Taylor microscale values for the
synthetic time series data. To examine and test our extrapolation
method, we use only one eighth of the original data. The purpose
of defining this subset is that any consistent method will provide
good (and even convergent) values of 𝜏TS when the time resolution
Δt of the estimates is very fine, i.e., the spectral cutoff is resolved

and Δtfmax < 1∕2. However, our motivation is to obtain reasonably accurate values of 𝜏TS when the effective
resolution of the data sampling is adjusted so that we are not in this asymptotic regime—a circumstance
that is more likely to be realized in practice when analyzing spacecraft data.

With the subset of our discrete time series, we compute the second-order structure function. This can be
used to obtain an estimate of the correlation function. We then determine the radius of curvature from cor-
relation function and an estimate of the Taylor microscale. In the following section, we will demonstrate an
extrapolation technique [Weygand et al., 2007, 2009, 2010, 2011] to estimate Taylor microscale from a series
of parabolic fits of the correlation function near the origin. The details of the method we use are given in the
following subsections.

2.1. Correlation Function and Structure Function
In estimating the correlation function from many samples of data, it is useful to employ the normalized
correlation function

R̂ = R⟨[F(t)]2⟩ . (6)

This reduces errors associated with variability of the variance, i.e., the fluctuation energy. Almost the same
information is contained in the second-order structure function S2, given by

S2(𝜏) = ⟨[F(t + 𝜏) − F(t)]2⟩. (7)

In fact,

R̂(𝜏) = 1 −
S2(𝜏)

2⟨F(t)2⟩ . (8)

Figure 1. The power spectrum for a number of values of q in the
dissipation range.

Figure 2 shows the structure func-
tions for various dissipation range
indices q that we generated as
described in section 2. Note that
values of dissipation range spectral
index in the range −5∕3 < q < −1 are
pathological in that the implied “dis-
sipation range” has either the same
or shallower spectral power law than
that found in the inertial range. These
values are included only for illustra-
tion. As q is varied, several regimes
are seen:

1. For 𝜏 ≫ 𝜏d , which is associated with
the inertial range (f−5∕3) in Fourier
space, one expects to find S2 ∝ 𝜏2∕3.

2. For 𝜏 ≪ 𝜏d and with q = −5 and −4,
one finds (see Figure 2) that S2 ∝ 𝜏2.
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Figure 2. The structure function computed from the time series data
for a number of values of q. The bottom curve is associated with a q
value of −5, and the higher curves are determined with q = −4, −3, −2,
and −1, respectively.

This is the regime, in accordance with
equation (8), in which parabolic
curvature of the correlation function is
seen near 𝜏 = 0.

3. For 𝜏 ≪ 𝜏d , but q values of −3 or
shallower, the required parabolic
behavior is not seen near 𝜏d , but rather
this asymptotic behavior is deferred
until 𝜏 < 1∕fe. This is due to the
fact that the spectrum for this range
of q is not steep enough to cause
convergence of the Taylor scale
estimate. This convergence is now
delayed until scales are sampled
that are finer than the electron
dissipation scale.

This change in behavior of Taylor scale
estimates as the dissipation range spec-
tral index is varied and is actually very

relevant to solar wind observations. For scales smaller than ion inertial length, the solar wind spectral slope
is found to be quite variable. For example, Smith et al. [2006b] estimate that dissipation range magnetic
spectral indices are broadly distributed with average values |q| = 2.61 ± 0.96 for intervals lacking magnetic
clouds, and |q| = 2.01 ± 0.84 for cloud intervals.

A lesson can be learned from the above simple exercise: the asymptotic form of the correlation function
embodied in equations (3) and (8) is not obtained until the sampled spectrum is k−4 or steeper. Between
spectral indices −4 and −3, the transition to the asymptotic parabolic form migrates toward finer scales,
until at k−3, the transition is delayed until separations within the assumed inner cutoff scale are sampled.

From equation (8), we can compute the correlation function from the structure function. Figure 3 displays
the correlation function for various q. From these plots, we can see that the correlation function has a
parabolic shape at the origin. At this fixed resolution, the characteristic parabolic shape becomes better
defined as the values of |q| are increased.

Suppose now we select a known q and we compute the radius of curvature of the correlation func-
tion from data over a range of small separations near the origin 0 < 𝜏 ≤ 𝜏fit. While this value is
intended to be small, to attempt to capture the parabolic regime (if present), the specific value 𝜏fit has

Figure 3. The correlation function near the origin. The top curve is
determined from q = −5 and the next curves are calculated using
q = −4, −3, −2, and −1, respectively.

no physical significance—it is just a
maximum lag to be used in a fitting pro-
cedure. This choice of a range of data
provides an estimate of 𝜏TS; let us call it
𝜏est

TS (𝜏fit). At this point we have obtained
an approximate fit, or representation, of
the data in this range of 𝜏 , given by

R̂(𝜏) = 1 − 𝜏2

2
[
𝜏est

TS (𝜏fit)
]2
. (9)

This fit is inexact even if the mea-
surements are perfect, because we
expect that the Taylor scale is 𝜏TS =
lim𝜏fit→0 𝜏

est
TS (𝜏fit). It is not practical to

compute this limit because the data has
finite time resolution Δt and because
there may be limited data available at
the shortest time lags. In another section
below we will systematically examine the
influence of Δt, the data sampling time.
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Figure 4. Taylor microscale from parabolic fit of the correlation function near the origin for each 𝜏fit for a number values
of q. Axes are in units of 𝜏d . Dashed line indicates the exact Taylor microscale.

What can be done, however, is to compute 𝜏est
TS (𝜏fit) for a range of 𝜏fit and to examine the trend of the corre-

sponding values of 𝜏est
TS as the maximum lag used in the fit becomes smaller. Figure 4 illustrates sequences

of such fits 𝜏est
TS (𝜏fit) versus 𝜏fit. Each of these curves approaches the exact value of Taylor scale in the limit of

zero 𝜏fit, as expected. This is for an idealized model times series that can be evaluated at any time separa-
tion we wish. Consequently, when a range of 𝜏est

TS is available, but only for a set of values of 𝜏fit that excludes
the origin, one can try to recover a more precise value of 𝜏TS by an extrapolation technique that provides a
refined estimate of the radius of curvature at the origin.

2.2. Extrapolation Method
To obtain a stable value for the Taylor microscale at 𝜏 = 0, we apply a method based on the Richardson
extrapolation technique [see Dahlquist and Bjorck, 2003] in analogy with similar procedures employed
in numerical analysis. In the first step we compute a series of parabolic fits to data near the origin, and
for varying values of 𝜏fit, up to a largest values of 𝜏fit, say, 𝜏max. Using the available estimated values of
Taylor microscale 𝜏est

TS (𝜏max) for this range of 𝜏max, we can compute a straight line extrapolation of the
Taylor scale back to the origin (𝜏fit = 0). This extrapolation gives a single estimate of a refined value of the
Taylor microscale.

Still, it remains unclear which value of 𝜏max we should use. On the one hand, a larger 𝜏max permits the use of
more data in the fit process, but a smaller 𝜏max moves us closer to the asymptotic range in which the formula
equation (9) for approximating the radius of curvature at the origin becomes more exact. Therefore, we will
look for a stable range of values, as follows.

Figure 5 illustrates the variation of the extrapolated values of Taylor microscale as the value of 𝜏max is varied.
In the next step of the method we examine whether for some range of 𝜏max we find a stable value of esti-
mated 𝜏est

TS . When working with real data with time cadence Δt, this process is constrained by the temporal
resolution, i.e., 𝜏fit > Δt. The distribution of number of available estimates at each lag 𝜏 can also become an
issue. In addition, the quality of the refinement of the Taylor microscale value will depend on the steepness
of the spectrum (i.e., q) at the high frequencies.
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Figure 5. Values of 𝜏TS determined by linear extrapolation from the data in Figure 4 at the origin (i.e., the intercept).
Plotted are the extrapolated Taylor microscale values determined from a range of 𝜏max.

In the next section we will discuss more details regarding the effects of data resolution and q. For now, (see
Figure 5) we can make some general statements regarding quality of estimation when a range of estimates
is available for time lags near the dissipation (spectral steepening) scale. For large values of |q|, where the
correlation function has a large radius of curvature at the origin (compared to 𝜏d), we find a stable value of
the Taylor microscale as 𝜏max approaches zero. In contrast, for small values of |q|, we do not obtain a stable
value of 𝜏TS after the extrapolation.

One can also see by examining Figure 5 how lower time resolution data can have an adverse effect. Larger
Δt means that the data close to the origin become unavailable for the extrapolation near 𝜏fit = 0. The best
we might be able to do in such cases is to choose a stable value in the range of 𝜏max to 𝜏d . By trying this out
with the graphs, we see that this approach yields an underestimate of the Taylor microscale value when|q| is approximately greater than 4 and an overestimate when |q| is approximately less than 4. Our results
suggest that a good estimate of 𝜏TS is obtained by a linear extrapolation to zero lag using the slope of the
curves 𝜏est(𝜏fit) evaluated near 𝜏max = 𝜏d (see Figure 4). In the next subsection we will discuss how we can
further improve this estimate with a correction ratio that takes into account known information about the
spectra at higher frequencies.

2.3. Correction Ratio
The resolution of the observational data is limited by the instrumentation, the spacecraft data downlink,
and spacecraft data storage. The lower resolution of the data is the less accurate the Taylor microscale value
will be, since the measurements become less sensitive to the radius of curvature of the correlation func-
tion at the origin. In this section, we examine the effect of the temporal resolution of the data by artificially
reducing the resolution of the synthetic time series and again estimating the Taylor microscale with the
same method. The new values for each resolution of the data can be compared with the expected Taylor
microscale value to assess the impact of the temporal resolution. In particular, the ratio 𝜏

expect
TS ∕𝜏est

TS is of inter-
est. We call this ratio a “correction factor” as it can be employed to estimate the actual Taylor scale given the
value computed from finite time resolution data. However, this correction must assume knowledge of the
spectrum at unresolved frequencies. Here that amounts to knowledge of the value of q.
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Figure 6. Correction ratio versus 1∕q for number of different Δt values.

Figure 6 demonstrates the variation
of the correction factor when we vary
the temporal resolution Δt and the
spectral index |q|. We can see that the
correction ratio strongly depends on|q|. There are three regimes of behav-
ior apparent in the figure, which we
approximate as a piecewise linear
function. The model suggests a cor-
rection for the Taylor scale estimates
obtained from finite time resolu-
tion data. Accordingly, the empirical
correction factor r(|q|) can be
written as

r(|q|) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−0.64
(

1
|q|
)
+ 0.72, when |q| < 2

−2.61
(

1
|q|
)
+ 1.70, when 2 ≤ |q| < 4.5

−0.16
(

1
|q|
)
+ 1.16, when |q| ≥ 4.5.

(10)

With this model for a given data set and a known value of q, it is possible to compute a corrected value of
the Taylor microscale using

𝜏TS ≈ r(|q|)𝜏extra
TS (11)

where 𝜏extra
TS is an estimate obtained by the extrapolation method described in section 2.2 above. This proce-

dure presupposes that sufficient data are available to approximately determine the asymptotic tendencies
of the correlations. From a practical perspective this appears to require that information about the functions
near the dissipation scale 𝜏d be included in the analysis. Based on the present numerical experiments, we
recommend therefore that the resolution of the data be at least as good as Δt < 0.4𝜏d .

3. Applying the Technique to Spacecraft Data

From an analysis of the magnetic field data from the ACE spacecraft [Smith et al., 2006a], the Taylor
microscales in the left column of Figure 7 are determined by employing the extrapolation method described
above but without applying the correction ratio. We use the same data set of ACE observations as was
employed by Smith et al. [2006a, 2006b] and Hamilton et al. [2008]. The time resolution of the ACE data used
here is 𝛿t = 0.333 s or three vectors per second. The analysis of the ACE proceeds in the following way: The
second-order structure function matrix is computed for each interval in the set of intervals studied. The
Taylor scale is then estimated using a series of maximum lag approximations from a maximum lag of four
data points to a maximum lag of 25. A line is fit to these estimated values of the Taylor scale as a function
of maximum lag, and the lag = 0 intercept is computed. This gives the final estimated values shown in
the figure. The dissipation scale is computed from the power spectrum as the intercept between two fit
lines, one describing the ion inertial range frequencies and the other describing the ion dissipation range
frequencies. The dissipation range spectral index q is determined from the short wavelength fit.

The black color shows the data from regions characterized as open magnetic field line regions, and the
red color shows the data from magnetic clouds (closed field regions). The Taylor scales have already been
converted to spatial scales by using the frozen-in approximation.

The values obtained for dissipation range spectral index lie between −5 and −1, and the ratio of Taylor scale
(𝜆T ) to the dissipation scale (𝜆d) ranges between 0.1 and 10. The individual plots show that the red and black
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Figure 7. The left column shows the plots before applying the correction ratio to the Taylor microscale 𝜆T , and the right
column shows the Taylor microscale (𝜆′T ) after applying correction ratio.

points appear to be equally scattered. The right column of Figure 7 shows the values of 𝜆′T , after the appli-
cation of the correction ratio. After the corrections, we can see that the majority of the black points have
𝜆′T > 𝜆d for q < −3, and the red points have 𝜆′T < 𝜆d for q > −3. This indicates a hydrodynamics type of
plasma for open magnetic field case and nonhydrodynamics in the magnetic cloud cases. Further discussion
of this analysis is found in Matthaeus et al. [2008], where it is argued that the difference in the behavior of
these cases points to a difference in relative importance of dissipative processes at ion and electron scales.

4. Conclusions

We have demonstrated a refined technique of calculating the Taylor microscale from a discrete times series
by computing correlation functions from structure functions. The method that we employed is based on the
definition of the Taylor microscale. To verify this technique we analyze a synthetic time series derived from a
defined power density spectrum. We are able to reproduce the Taylor scale values with our technique after
applying a correction term, which improves our estimate of the Taylor microscale, estimated from a Richard-
son extrapolation technique [see Weygand et al., 2009]. In addition, we studied the effects of the dissipation
range spectral index and the time resolution of the simulated data. Moreover, we show an example of the
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application of the technique to solar wind magnetic field data [Matthaeus et al., 2005, 2008]. This technique
is expected to be useful for extracting refined estimates of the Taylor microscale from experimental and
observational turbulence data in solar wind and other astrophysical contexts.
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