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ABSTRACT
Wepresent an updatedmodel for the evolution of the orbits of "orphan galaxies" to be used in the
SAG semi-analytical model of galaxy formation and evolution. In cosmological simulations,
orphan galaxies are those satellite galaxies for which, due to limited mass resolution, halo
finders lose track of their dark matter subhalos and can no longer be distinguished as self-
bound overdensities within the larger host system. Since the evolution of orphans depends
strongly on the orbit they describe within their host halo, a proper treatment of their evolution
is crucial in predicting the distribution of subhalos and satellite galaxies. The model proposed
takes into account the dynamical friction drag, mass loss by tidal stripping and a proximity
merger criterion, also it is simple enough to be inexpensive from a computational point of
view. To calibrate this model, we apply it onto a dark matter only simulation and compare the
results with a high resolution simulation, considering the halo mass function and the two-point
correlation function as constraints. We show that while the halo mass function fails to put tight
constraints on the dynamical friction, the addition of clustering information helps to better
define the parameters of the model related to the spatial distribution of subhalos. Using the
model with the best fit parameters allows us to reproduce the halo mass function to a precision
better than 5 per cent, and the two point correlation function at a precision better than 10 per
cent.
Key words: galaxies:formation – galaxies:evolution – galaxies: haloes – methods: numerical

1 INTRODUCTION

The observed Universe is successfully described by the ΛCDM
model. According to this concordance model, at early times, the
Universe underwent a period of exponential expansion, called Infla-
tion, in which the primordial perturbations in the metric were set-
tled. These metric fluctuations produced perturbations in the matter
density field that are characterised by the matter power spectrum.
The large scale structure (LSS) we see today is the result of the
gravitational growth of these tiny matter perturbations. It is cur-
rently accepted that structure formation proceeds in a hierarchical
way, with small structures being the first ones to collapse and reach a
state close to virial equilibrium. Larger structures, like massive dark
matter (DM) haloes, form later by mergers of pre-existing virialised
haloes, and by accretion of diffuse dark matter (Frenk & White
2012). Within the dark matter haloes, the first galaxies are born and
evolve (White & Rees 1978).

Galaxies are highly non-linear objects that are the result of a
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complex formation mechanism, which involves several astrophysi-
cal processes and spans a wide range of spatial scales (for a review
of the theory of galaxy formation and evolution see, e.g. Benson
2010; Silk & Mamon 2012; Wechsler & Tinker 2018). Due to the
non-linear nature of these processes, it is not feasible to treat them
using analytic methods and hence the use of N-body simulations
is required. The most common approaches to generate simulated
galaxy populations are Hydrodynamic Simulations, Halo Occupa-
tion Distributions and Semi-Analytic Models, each of them having
advantages and disadvantages (see e.g. Vogelsberger et al. 2020).

On large scales, hydrodynamic simulations can take into ac-
count the effects of both dark matter content and baryons. However,
for scales below the resolution limit of the grid, the astrophysi-
cal processes are simulated using semi-analytic recipes. Since the
number of physical processes to be solved is very large, these sim-
ulations are usually extremely demanding on computing power. At
present, the state-of-the-art of this class of simulations corresponds
to the Virgo Consortium’s EAGLE project (Schaye et al. 2015;
Crain et al. 2015) and The Next Generation Illustris project (Illus-
trisTNG, Springel et al. 2018; Nelson et al. 2018; Pillepich et al.
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2018; Naiman et al. 2018; Marinacci et al. 2018). Although these
simulations have very high resolution, the main disadvantage is
that their volumes are small compared to actual real galaxy surveys
such as eBOSS (Dawson et al. 2015, 2016; eBOSS Collaboration
et al. 2020), LSST (LSST Science Collaboration et al. 2009; LSST
Dark Energy Science Collaboration 2012; The LSST Dark Energy
Science Collaboration et al. 2018), DESI (Levi et al. 2013; DESI
Collaboration et al. 2016) or Euclid (Laureĳs et al. 2011; Amendola
et al. 2013; Euclid Collaboration et al. 2019).

On the other hand, there are methods that aim at populating
dark matter haloes obtained in N-body simulations with galaxies.
For example, the Halo Occupation Distribution (HOD, e.g Peacock
& Smith 2000; Berlind & Weinberg 2002; Berlind et al. 2003)
method describes the abundance of galaxies inside a given halo
as a parametric function of the host halo mass. Another popular
statistical method is the Sub-Halo Abundance Matching (SHAM,
e.g. Kravtsov et al. 2004; Vale & Ostriker 2004; Conroy et al. 2006;
Behroozi et al. 2010;Moster et al. 2010; Trujillo-Gomez et al. 2011;
Reddick et al. 2013), where the most massive/luminous galaxies are
assigned to the most massive subhaloes. These methods are rela-
tively easy to implement and with them, we are able to obtain large-
volume galaxy catalogues at a low computational cost. However, it
remains difficult to move from this statistical characterisation of the
connection between dark matter haloes and galaxies to a physical
understanding of the galaxy formation process.

Semi-analytic models (SAMs, e.g. Springel et al. 2001b; Cro-
ton et al. 2006; Cora 2006; Benson 2012; Henriques et al. 2013;
Gonzalez-Perez et al. 2014) are a good alternative to overcome the
disadvantages of the previous methods. These models populate dark
matter haloes with simulated galaxies, where the physical processes
related to their formation and evolution are treated using semi-
analytic approximations. Due to their flexibility, large dynamical
range in mass and spatial resolution, and relatively low computa-
tional costs, semi-analytic models represent an ideal tool to build
simulated galaxy populations in cosmological volumes. In addition,
they enable to test the physical processes that determine the evolu-
tion of galaxies. For a review of semi-analytic methods see Baugh
(2006).

As said before, structure formation in the Universe is a hierar-
chical process, in which the first galaxies are formed in the potential
wells generated by darkmatter haloes. Then, as theUniverse evolves,
accretions between halos that host galaxies may occur. In that case,
the most massive galaxy occupies the centre of the new halo while
the least massive ones become satellite galaxies. A satellite halo
orbiting within its main system loses mass by tidal stripping and
experiences dynamical friction, a drag force that gradually shrinks
its orbit until it eventually merges with the central galaxy. On the
other hand, in dark matter simulations, it may occur that the halo
finder algorithm loses track of a subhalo when it can no longer be
distinguished as a self-bound overdensity within the host system.
Satellite galaxies that have lost their dark matter subhalo, either by
a merger with a larger structure or by artificial disruptions, and still
persist in the simulation are called “orphan galaxies”.

The evolution of satellite galaxies depends strongly on the orbit
they describewithin their host halo (see e.g. Vollmer et al. 2001). For
example, a satellite halo orbiting within its host is subjected to tidal
forces that cause the satellite galaxy to lose mass via tidal stripping
(TS) mechanism. TS depends strongly on the circularization of the
orbit, wheremost of themass (DMof the satellite halo, and gasmass
and stellar mass of the satellite galaxy) is lost when the halo passes
through the pericentre. Also, tidal shocks at the pericentres of the
orbit increase the kinetic energy and the satellite halo expands (tidal

heating), making it more susceptible to tidal stripping (Zentner &
Bullock 2003; Gan et al. 2010; Pullen et al. 2014). Ram pressure
stripping (RPS, Gunn & Gott 1972) is another mechanism that
produces material loss, affecting only the gas content of the satellite
galaxy that moves within a high density environment. Indeed, a
galaxy that moves in an eccentric orbit experiences periods of strong
RPS as it approaches the pericentre combined with periods of low
RPS as it passes through the apocentre. On the other hand, a slowly
decaying galaxy will experience a continuous increase in RPS as
it falls into denser regions (Brüggen & De Lucia 2007). All these
processes depend on the position and velocities of satellite galaxies,
so a proper treatment of orphan satellite orbits is crucial.

In this work, we present an updated treatment for the orbits
of orphan satellite galaxies used in the semi-analytic model SAG
(Semi-Analytic Galaxies, Cora 2006; Lagos et al. 2008; Tecce et al.
2010; Orsi et al. 2014; Muñoz Arancibia et al. 2015; Gargiulo et al.
2015; Cora et al. 2018). In the previous version of SAG, when
a subhalo is no longer identified due to a merger with a larger
structure, its corresponding galaxy becomes an orphan. Assuming
a circular orbit, the orphan is initially located at a distance of its host
given by the virial radius andwith a velocity determined by the virial
velocity of the host. The evolution of the radial distance is estimated
using dynamical friction, with randomly generated positions and
velocities. Finally, the orphan merges with the central galaxy in a
time according to the dynamical friction time-scale (Pujol et al.
2017). Here we present an improved model for the evolution of
orphan galaxies which includes analytic prescriptions for the tidal
stripping (TS) and dynamical friction (DF) mechanisms.

Using different SAM and HOD models, Pujol et al. (2017)
studied the impact that different orphan satellite treatments have
on the clustering signal. In general, it is found that models that do
not include orphans present a lower clustering at low scales. This
result is consistent with the work of Kitzbichler & White (2008).
These authors use a SAM model to show that, without the addition
of orphan satellites, the clustering at low scales is much lower than
that observed in actual galaxy surveys. In addition, Guo & White
(2014) show that the inclusion of orphan satellites improves the
abundance of subhaloes at low masses and removes the resolution
dependence observed between SHAM catalogues built from simu-
lations of different resolutions. Based on these results, we propose to
apply the orphan evolution model to a dark matter only simulation,
and compare the results to a higher resolution simulation with the
same settings, considering the halo mass function and the two-point
correlation function as constraining relations. In the higher reso-
lution simulation, there are subhaloes that would not be identified
by the halo finder algorithm in the lower resolution simulation. We
assume that the difference in those constraining relations will be
given by the orphan galaxies, and use these quantities to tune the
parameters of the orbit model.

Finally, it is important to remark that, in this study, we only con-
sider DM subhalos and in no case do we apply the semi-analytical
model. Therefore, when we refer to “orphan galaxies”, “orphan
satellites” or simply “orphans”, we always refer to the subhalos
corresponding to orphan galaxies and not to the orphan galaxies
themselves.

This paper is organised as follows: in Section 2, we introduce
the orbit model for the orphan galaxies and its many ingredients.
Section 3 describes the statistical tools used to analyse galaxy clus-
tering and gives details about the simulations used in this work,
mdpl2 and smdpl. In Section 4, we describe the method used to
calibrate the free parameters of the model and discuss our results in
Section 5. We present our conclusions in Section 6.
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Orphan galaxies in SAMs 3

2 EVOLUTION MODEL FOR ORPHAN GALAXIES

As many other SAMs, the SAG model of galaxy formation and
evolution takes as input the properties of dark matter haloes and
their merger trees extracted from cosmological N-body simulations
(see e.g. Roukema et al. 1997; Springel et al. 2001b; Croton et al.
2006). Based on this information, the model assigns a central galaxy
to each new halo that appears in the simulation and then simulates its
evolution. The central galaxies of main halos are referred to as type
0 galaxies, while the central galaxies of satellite halos are labelled
as type 1. Finally, orphan galaxies (i. e. galaxies that have lost their
host halo) are referred to as type 2 galaxies. For type 0 and type
1 galaxies, where the halo finder is still able to identify their dark
matter haloes, effects such as dynamical friction or tidal stripping are
given in a self-consistent way by the base N-body simulation. On the
other hand, for type 2 (orphans) galaxies, since they lose their DM
halo, we cannot follow their evolution. To avoid this problem, when
a subhalo is no longer detected by the halo finder algorithm, the
model continues integrating its orbit numerically, taking as initial
conditions the position, velocity, mass and radius of the halo at the
instant of last identification, as given by the N-body simulation.

The simplest model of a subhalo moving within its host halo
can be approximated by a point mass without internal structure or-
biting in a static potential. This model does not take into account im-
portant aspects of the composition and evolution of satellite haloes
such as the internal structure of the subhalo or the interactions with
the material that forms the host halo. For example, the interaction
between the subhalo and the matter of its host gives rise to a dynam-
ical friction force that causes the evolution of the orbits to deviate
from that of the simplest model. In addition, during their evolu-
tion, satellite haloes may experience mass loss due to tidal stripping
mechanism or gravitational shocks. Therefore, to describe the sub-
halo evolution accurately, it is necessary to take into account all the
processes mentioned above.

Within our semi-analytic model SAG,we consider each orphan
galaxy as a particle whose properties may change over time. The or-
bits of this type of satellite galaxies are estimated in a pre-processing
step, that is, before applying SAG to the underlying cosmological
DM simulation. To determine the orbit of an orphan galaxy, we
consider each subhalo as a particle of the same mass moving in
a smooth spherical potential generated by its host halo. In order
to take into account the effect of the host halo over the satellite,
at each instant, we compute the effect of dynamical friction using
Chandrasekhar’s formula and we also take into account the loss of
material by considering a tidal stripping model. If the mass of a sub-
halo falls below a certain resolution limit we consider it disrupted;
if, at any instant, the satellite-host distance is less than a fraction
of the viral radius of the host we consider the satellite galaxy to be
merged with its host. Below, we describe these processes in more
detail.

2.1 Dynamical friction (DF)

When a subhalo of total mass 𝑀sat moves through a large col-
lisionless system composed of particles of mass 𝑚 << 𝑀sat, it
perturbs the particle field creating an over-dense region behind it.
This “wake” pulls the subhalo in the opposite direction causing a
drag force called dynamical friction. Therefore, we can separate the
force experienced by an orphan galaxy orbiting within a massive
halo into two contributions: one due to the potential of the central
halo, and a higher-order correction due to the background particles
(the dynamical friction term). The first part is given by the simple

expression 𝑓𝑖 = −𝜕Φ/𝜕𝑥𝑖 , that relates the force acting on a particle
at a given position with the potential of themain systemΦ at that po-
sition. The dynamical friction force is given by the Chandrasekhar
formula (Chandrasekhar 1943; Binney & Tremaine 2008), i. e.

Fdf (𝑟) = −
4𝜋𝐺2𝑀2sat𝜌host (𝑟) lnΛ

𝑉2

[
erf (𝑋) − 2𝑋√

𝜋
exp(−𝑋2)

]
V
𝑉

,

(1)

where 𝑟 is the position of the satellite relative to its host halo, V is
the subhalo velocity, 𝑉 = |V|, 𝑋 = 𝑉/(

√
2𝜎) with 𝜎 the velocity

dispersion of dark matter particles, 𝜌host represents the density
distribution of the host halo, lnΛ is the Coulomb logarithm and erf
is the Gauss error function.

Assuming a NFW profile (Navarro et al. 1997) for the density
distribution 𝜌host and an isotropic velocity distribution, the velocity
dispersion 𝜎 is given by Łokas & Mamon (2001)

𝜎2 (𝑠)
𝑉2vir

= 𝑔(𝑐)𝑠(1 + 𝑐𝑠)2
∫ ∞

𝑠

[
1

𝑔(𝑐𝑠)𝑠3 (1 + 𝑐𝑠)2

]
𝑑𝑠 , (2)

where 𝑐 is the concentration parameter, 1/𝑔(𝑥) = log(1+𝑥)−𝑥/(1+
𝑥), and 𝑠 is the distance normalised by the virial radius. Further
details on the NFW density profile can be found in Appendix A and
in Łokas & Mamon (2001). For simplicity, in this work we use the
following approximation for 𝜎, which is accurate to 1 per cent for
𝑥 in the range 0.01 − 100 (Zentner & Bullock 2003)

𝜎(𝑥) ' 𝑉max
1.4393 𝑥−0.354

1 + 1.1756 𝑥−0.725
, (3)

where 𝑥 = 𝑐𝑠, and 𝑉max is the maximum circular velocity related to
the virial velocity via 𝑉max ' 𝑉vir

√︁
0.216 𝑐 𝑔(𝑐).

The argument of the Coulomb logarithm can be expressed
as Λ = 𝑏max/𝑏min where 𝑏max and 𝑏min are the maximum and
the minimum impact parameters for gravitational encounters be-
tween the satellite and the background objects (Binney & Tremaine
2008). Typically, 𝑏min corresponds to a close encounter, then
𝑏min ' 𝐺𝑀sat/𝑉2 where 𝑉 is a velocity typical of the encounter,
such as the rms velocity of the background particles. The choice
of the value for 𝑏max is more ambiguous, and for a finite system is
taken to be the characteristic scale of the system.

It should be noted that the derivation of Chandrasekhar’s for-
mula assumes amassive particle moving in a homogeneousmedium
composed by an infinite number of low-mass particles with a
Maxwellian velocity distribution. However, in the literature, sev-
eral works show that this equation is applicable to more general
contexts, where these hypotheses are not satisfied, if the Coulomb
logarithm is chosen appropriately (Weinberg 1986; Cora et al. 1997;
Velazquez & White 1999).

There has been much debate in the literature about the appro-
priate choice of Coulomb logarithm. For example, Springel et al.
(2001b) uses an approach given by lnΛ ' ln(1+𝑀cen/𝑀sat) where
𝑀cen and 𝑀sat are the masses of the central halo and the satellite
subhalo, respectively. On the other hand, some authors use other
definitions that allow them to reproduce results from N-body simu-
lations (Hashimoto et al. 2003; Zentner & Bullock 2003; Petts et al.
2015, 2016; Ogiya & Burkert 2016). In particular, Hashimoto et al.
(2003), hereafter H03, propose a variable Coulomb logarithm. This
choice avoids the strong circularization effect that is observed when
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comparing these models with the results obtained from N-body
simulations. Following this, we use the expression

lnΛ =

{
ln(𝑟/𝑏𝑅sat) 𝑟 > 𝑏𝑅sat
0 𝑟 ≤ 𝑏𝑅sat

, (4)

where 𝑟 is the distance from the satellite subhalo to the centre of
the host halo, 𝑅sat is the virial radius of the satellite and 𝑏 is a
free parameter. Note that in H03, the Coulomb logarithm is given
by lnΛ = ln(𝑟/1.4𝜖sat) for 𝑟 > 1.4𝜖sat, where 𝜖sat is the softening
length corresponding to a Plummer sphere. Here we assume a NFW
profile for the satellite, thus we introduce the virial radius of the
subhalo and leave 𝑏 as a free parameter to be adjusted.

2.2 Tidal stripping (TS)

As mentioned above, a subhalo orbiting within its host system is
subjected to tidal forces. When tidal forces are greater than the
gravitational force of the satellite itself, the material becomes un-
bound and the satellite loses mass. The dynamical friction force is
proportional to 𝑀2sat (see equation 1), and hence the magnitude of
the deceleration experienced by a satellite halo is proportional to
𝑀sat. As a result, mass loss can have a major impact on the orbital
evolution of the satellite halo. For this reason, it is necessary to
estimate the amount of mass lost by tidal stripping.

We estimate the tidal radius as the distance at which the self-
gravity force and the tidal forces cancel out; material outside this
distance become unbound and could be stripped out from the satel-
lite. The tidal radius is given by

𝑟t =

(
𝐺𝑀sat

𝜔2 − 𝑑2Φ/𝑑𝑟2

)1/3
, (5)

where 𝑀sat is the mass of the satellite, 𝜔 is its angular velocity
and Φ characterise the potential of the host system (King 1962;
Taylor & Babul 2001; Zentner & Bullock 2003). This equation is
derived under the assumption that the satellite moves in a circular
orbit and the potential of the main system is spherically symmetric.
But, even under these restricted assumptions, the tidal limit cannot
be represented as a spherical surface, because some particles of the
satellite within 𝑟t are unbound while other particles outside 𝑟t may
remain bound to the suhalo (Binney & Tremaine 2008).

In general, satellites do not move in circular orbits and the
potential of the host system is not spherically symmetric. As an
approximation, we can still apply equation 5 to eccentric orbits, in
which case we estimate an instantaneous tidal radius by using the
corresponding instantaneous values, i.e. 𝜔 = |V × r|/𝑟2, where V
and r are the instantaneous position and velocity of the subhalo.
Another aspect that remains unclear is the rate at which the ma-
terial located outside the instantaneous tidal radius 𝑟t is going to
be removed. Following Zentner et al. (2005), we absorb all these
complicated details in a free parameter to be adjusted by external
constraints. Then, the rate of mass loss of the satellite subhalo by
TS is given by

𝑑𝑀sat
𝑑𝑡

= −𝛼𝑀sat (> 𝑟t)
𝑇orb

. (6)

Here 𝑇orb = 2𝜋/𝜔, with 𝜔 the instantaneous angular velocity of
the satellite, and 𝛼 is treated as a free parameter. The value of
the parameter 𝛼 differs from author to author. For example, Taylor
& Babul (2001) and Zentner & Bullock (2003) choose a value

𝛼 = 1; on the other hand, Peñarrubia & Benson (2005) assume an
instantaneous stripping , which effectively implies 𝛼 → ∞. Finally,
some authors (e.g. Zentner et al. 2005, Pullen et al. 2014) vary
the value of 𝛼 in order to reproduce the halo mass function of
simulations. In this paper, we will follow the latter approach.

2.3 Merger criterion

According to hierarchical structure formation models, mergers play
a critical role in the formation and evolution of galaxies. Thus, a
criterion to determine whether an orphan satellite is merged with
its host is another important aspect to take into account. In the case
of type 2 galaxies, since the halo finder cannot follow its evolution,
if we want to estimate the time that orphan satellites remain in the
simulation before merging we need to rely on alternative methods.

One possibility, is to use an analytical expression to estimate
this using a dynamical friction timescale 𝑡df (Binney & Tremaine
2008). Then, an orphan satellite galaxy remains in the simulation as
long as the time it has orbited around its central galaxy is less than
𝑡df . Instead of using an analytical estimate, in this paper, following
(Boylan-Kolchin et al. 2008), we assume that a subhalo that is not
longer detected (and its corresponding galaxy) merges with its host
halo when it loses 99 percent of its initial angular momentum.
When that condition is satisfied, the subhalo is considered merged.
In addition to this condition on angular momentum, we will also
define a proximity criterion for mergers: we consider a subhalo to
be merged when the subhalo-host distance is smaller than a fraction
𝑓 of the virial radius of the main system; i.e. if

𝑟sat < 𝑓 𝑅host , (7)

where we treat 𝑓 as a free parameter of the model. Therefore, we
consider a subhalo to be merged with its host halo when any of the
above criteria is met; either the subhalo loses 99 percent of its initial
angular momentum, or it gets very close to the centre of the host
halo, as determined by equation 7.

2.4 Implementation of the model

Once the subhalo of a galaxy is no longer detected by the halo finder
algorithm, we cannot follow its position evolution and we flag it
as a type 2 galaxy (orphan). From that moment on, we integrate
its orbit numerically taking as initial conditions the last known
values of position, velocity, mass and radius. The subhalo orbit
between two snapshots is divided into time intervals of length 𝛿𝑡.
Here, the time spacing between snapshots is given by the base DM
simulation. At each time interval, we compute the forces that act
over the subhalo according to equations 1, 3 and 4, and perform the
evolution of positions and velocities using a kick-drift-kick (KDK)
leapfrog scheme.

Between snapshots, we took outputs of the orbit evolution of
the subhalo at time intervals given by Δ𝑡 (Δ𝑡 > 𝛿𝑡). For each output
we compute the tidal radius 𝑟t (equation 5). If 𝑟t is smaller than the
current radius of the subhalo, we assume that a certain amount of
material that is outside 𝑟t is unbound and can be removed by tidal
stripping. At this stage, we remove an amount of material equivalent
to Δ𝑡/𝑇strip = 𝛼Δ𝑡/𝑇orb from the unbound mass, that is

Δ𝑀sat = 𝛼𝑀sat (𝑟 > 𝑟t)
Δ𝑡

𝑇orb
(8)

where 𝑀sat (𝑟 > 𝑟t) is the mass of the satellite outside a radius 𝑟t

MNRAS 000, 1–14 (2020)
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and 𝑇orb is the same as in equation 6. Then, we update the mass
and radius to the new values. In this procedure, we assume that the
original density profile is not altered by the stripping process. No
stripping takes place if 𝑟t is greater than the original radius of the
satellite halo.We continue evolving the subhalo of an orphan galaxy
until a merger with its host eventually occurs, following the criteria
explained in the previous subsection (see equation 7). If the subhalo
mass is reduced below a threshold limit, the satellite is considered
disrupted.

3 METHODOLOGY

In the previous section, we introduced a model for the evolution of
the orbits of orphan galaxies in SAG. This model depends on free
parameters that have to be determined by external constraints. In
this work, we propose to use the halo mass function (HMF) and
the two-point correlation function (2PCF) as constraints for the free
parameters of the orbit model, (𝑏, 𝑓 , 𝛼), introduced in equations 4,
6 and 7, respectively.

We apply our model to two dark matter only N-body simu-
lations, with the same cosmological parameters but different mass
and force resolutions. It is worth noting that in the higher resolu-
tion simulation, the majority of halos that disappear in the lower
resolution simulation, leaving an orphan galaxy, will be detected
by the halo finder. The results of the orbit model applied to the
low resolution simulation can be compared with those obtained
from the high resolution one, which is considered as the reference
simulation. Then, we vary the free parameters of the model, un-
til we find a combination for which the low resolution simulation
converges to the high resolution one, both for the halo mass func-
tion (𝜙 = 𝑑𝑛/𝑑 log𝑀 , with 𝑛 the numerical density) and for the
two-point correlation function (b).

Below, we describe the set of dark matter only simulations
used in this work and the computation of the 2PCF. In order to find
optimal parameter values, we need to run the model several times.
Since running the code over the full boxes is a numerically expensive
task, we make a parameter exploration over a set of calibration
boxes, which are selected subvolumes of the full simulations with
2PCF and HMF similar to those of the full boxes. The details of this
procedure is covered in the rest of this section.

3.1 mdpl2 and smdpl simulations

In this subsection, we describe the two N-body simulations with
different mass and force resolutions that we use for our study of
the evolution of the orbits of orphan satellites. smdpl and mdpl2
are dark matter only N-body simulations that are part of the Multi-
Dark cosmological simulation suite1. These simulations follow the
evolution of 38403 particles within a box, and are characterised
by Planck cosmological parameters: Ωm = 0.307, ΩΛ = 0.693,
Ωb = 0.048, 𝑛s = 0.96 and 𝐻0 = 100 ℎ km s−1Mpc−1, where
ℎ = 0.678 (Planck Collaboration et al. 2016). Both simulations
have been carried out with l-gadget-2 code, a version of the pub-
licly available code gadget-2 (Springel et al. 2001a; Springel 2005)
whose performance has been optimised for simulating large num-
bers of particles. smdpl simulation has a box size of 400 ℎ−1Mpc
which implies a particle mass of 9.6 × 107 ℎ−1M� , while mdpl2
simulation has a box size of 1 ℎ−1 Gpc which implies dark matter

1 https://www.cosmosim.org/

particles of 1.5 × 109 ℎ−1M� . Table 1 shows the numerical and
cosmological parameters for the simulations. For more details about
this set of cosmological simulations see Klypin et al. (2016).

These simulationswere analysedwith therockstar halo finder
(Behroozi et al. 2013a), and merger trees were constructed using
consistent-trees (Behroozi et al. 2013b). The virial mass of these
structures is defined as the mass enclosed by a sphere of radius
𝑅vir, so that the mean density is equal to Δ = 200 times the critical
density of the universe 𝜌c, i.e. 𝑀vir = 4/3𝜋𝑅3virΔ𝜌c. Dark matter
haloes can exist over the background density or lie within another
dark matter halo. To differentiate them, the former are referred to as
main host haloes, whereas the latter are called subhaloes or satellite
haloes.

Figure 1 shows the HMF of the full sample of haloes for
the smdpl (𝜙SM in solid line) and mdpl2 (𝜙MD in dashed line)
simulations at redshift 𝑧 = 0. The halo mass function for the mdpl2
simulation presents a break at a mass of ∼ 1010.4 ℎ−1M� , which
establishes the minimum mass from which we can guarantee that
we have completeness in the number of haloes for both simulations
(vertical dashed line in Figure 1). In the lower panel, the fractional
difference between the HMF of the mdpl2 simulation with respect
to the one of the smdpl simulation is shown. In the mass range
1010.4 − 1011.0 ℎ−1M� , the fractional difference is of the order
of 0.2, hence there are 20 percent more low mass haloes in smdpl
as compared to mdpl2. On the other hand, for halo masses greater
than 1011.4 ℎ−1M� , the fractional difference is always below 0.05
(horizontal dashed line). This shows that concerning halo mass
functions, the difference between smdpl and mdpl2 is within the
calibration specification (5 per cent) obtained by Tinker et al. (2008)
(see also Behroozi et al. 2013a).

The rockstar halo finder considers groups formed by at least
ten dark matter particles, although halo properties are not robust
when approaching this minimum. According to Behroozi et al.
(2013a), halo detection is reliable for structures composed of at
least twenty dark matter particles. For a minimum of ten particles,
a simple calculation tells us that the minimum detected halo mass
for mdpl2 is ∼ 1010.2 ℎ−1M� , while this calculation for smdpl
gives a minimum halo mass of ∼ 109 ℎ−1M� . Since completeness
is important when comparing the two point correlation functions
of different simulations, in this paper we will consider only haloes
with masses greater than 1010.4 ℎ−1M� for both simulations (see
vertical dashed line in Figure 1).

3.2 The two-point correlation function

Given a set of points, the probability of finding an object in an
infinitesimal volume 𝑑𝑉 is, 𝑑𝑃 = 𝑛𝑑𝑉 , where 𝑛 is the mean number
density and 𝑁 = 𝑛𝑉 is the number of objects in a finite volume
𝑉 . Then, the 2PCF is defined as the excess probability of finding
one of them inside a small volume 𝑑𝑉1 and the other in a small
volume 𝑑𝑉2, separated by a distance 𝑟 (Peebles 1980; Martínez &
Saar 2001)

𝑑𝑃 = 𝑛2 (1 + b (𝑟))𝑑𝑉1𝑑𝑉2. (9)

In practice, for a catalogue of𝑁 particles and volume𝑉 with periodic
boundary conditions, the 2PCF can be estimated by counting the
number of pairs of objects, 𝑁s (𝑟), in a shell of volume, 𝑉s (𝑟), at
distance 𝑟 from each other using

b (𝑟) = 1
𝑛2𝑉

𝑁s (𝑟)
𝑉s (𝑟)

− 1. (10)
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simulation box 𝑁p 𝑚p 𝜖 Ωm Ωb ΩΛ 𝜎8 𝑛s 𝐻0
ℎ−1 Gpc ℎ−1M� ℎ−1 kpc km s−1Mpc−1

MDPL2 1.0 38303 1.5 × 109 5.0 0.307 0.048 0.693 0.829 0.96 67.8
SMDPL 0.4 38303 9.6 × 107 1.5 0.307 0.048 0.693 0.829 0.96 67.8

Table 1. Numerical and cosmological parameters for the N-body simulations.
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Figure 1. Upper panel: Halo mass function of mdpl2 (red dashed line) and
smdpl (black solid line) simulations for redshift 𝑧 = 0. The vertical line
denotes halo masses of 1010.4 ℎ−1 M� . Note that for masses below this
limit, mdpl2 simulation presents a break which establishes the minimum
mass fromwhich we can guarantee that we have completeness in the number
of haloes for both simulations. Lower panel: Fractional difference between
mdpl2 and smdpl halo mass functions. The dashed horizontal line indicates
a fractional difference of 0.05. Note that for masses below than 1011 ℎ−1M�
we have approximately 20 percent more haloes in smdpl than in mdpl2.

However, if the boundaries are not periodic, this equation cannot be
applied. This is the case for a real survey, or when we restrict the
analysis to a small regionwithin a large periodic simulation. In these
cases, the common method consists in comparing the observed data
(D), with catalogues composed of random points (R) that reproduce
the samegeometry and artefacts of the original catalogue. In general,
random catalogues contain at least 10 times more objects than the
data catalogue, in order to reduce the noise level. In such cases, the
2PCF can be computed using the Landy-Szalay estimator (Landy
& Szalay 1993)

b (𝑟) = 𝐷𝐷 (𝑟) − 2𝐷𝑅(𝑟) + 𝑅𝑅(𝑟)
𝑅𝑅(𝑟) ; (11)

here 𝐷𝐷 (𝑟), 𝐷𝑅(𝑟) and 𝑅𝑅(𝑟) are the normalized data-data, data-
random and random-random pairs, respectively. If 𝑁d and 𝑁r are
the number of objects in D and R then

𝐷𝐷 (𝑟) = 𝑑𝑑 (𝑟)
𝑁d (𝑁d − 1)/2

, (12)

𝑅𝑅(𝑟) = 𝑟𝑟 (𝑟)
𝑁r (𝑁r − 1)/2

, (13)

𝐷𝑅(𝑟) = 𝑑𝑟 (𝑟)
𝑁d𝑁r

, (14)

where 𝑑𝑑 (𝑟) is the number of objects pairs separated by a distance
𝑟 in D, 𝑟𝑟 (𝑟) is the number of pairs separated by a distance 𝑟 in
R and 𝐷𝑅(𝑟) is the cross-correlation statistic, the number of pairs
separated by a distance 𝑟 with one point taken from D and the
other from R (for more details see e.g. Vargas-Magaña et al. 2013).
To compute correlation functions, throughout this work we use the
publicly available python package corrfunc (Sinha & Garrison
2020).

Figure 2 shows the 2PCF for halo masses greater than
1010.4 ℎ−1M� for the smdpl (solid line) and mdpl2 (dashed line)
simulations at redshift 𝑧 = 0. From this figure, we see that the clus-
tering of smdpl is greater than that ofmdpl2 for all scales, this effect
ismore significant at lower scales (between 0.01−0.1 ℎ−1Mpc). The
suppression observed in the amplitude of the correlation function
of mdpl2 could be due to a low force resolution. In cosmological
simulations, the resolution of the gravitational force is defined by
the value of the softening length 𝜖 . However, there are studies (see
e.g. Jenkins et al. 1998) that show that the softening length intro-
duces considerable suppression on the clustering signal only for
separations lower than 2𝜖 . In our case, mdpl2 is characterised by
𝜖 = 0.005 ℎ−1Mpc, then for scales greater than 0.01 ℎ−1Mpc the
effect of the softening length should be very small. Thus, the soften-
ing length can not account for the large clustering suppression seen
in mdpl2 simulation for separations between 10−2−10−1 ℎ−1Mpc.

According to the halomodel, the two-point correlation function
can be decomposed into two contributions: a 1-halo term and a 2-
halo term. The 1-halo term involves correlations between haloes be-
longing to the same system, i.e. correlations between central haloes
and their corresponding satellites and correlations between all satel-
lites that belong to a system. On the other hand, the 2-halo term
involves correlations between haloes belonging to different systems
(Cooray & Sheth 2002). When the contributions from these two
terms are added together, the resulting correlation function should
roughly follow a power law (see eg. Coil 2013). In general, the 2-
halo term dominates at large scales (greater than 1 ℎ−1Mpc), while
the 1-halo term dominates at scales lower than 1 ℎ−1Mpc. Note
that the characteristic scale ∼ 1 ℎ−1Mpc, which is of the order of
the size of the main systems, indicates the transition between the
two regimes. In van den Bosch et al. (2013), it is shown that in-
creasing the number of satellites increases mainly the 1-halo term,
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Figure 2. Upper panel: Two-point correlation function for the smdpl (black
solid line) and mdpl2 (red dashed line) simulations at redshift 𝑧 = 0. Lower
panel: The fractional difference betweenmdpl2 and smdpl two-point corre-
lation functions. For separations greater than 0.1 ℎ−1Mpc, both simulations
present a similar clustering. However, for smaller scales, the clustering func-
tions differ considerably (fractional difference is greater than 0.5 for scales
close to 0.01). The lower satellite fraction in mdpl2 compared to the one in
smdpl, implies a lower number of pairs at low scales (where the 1-halo term
dominates), and therefore a lower clustering at those scales.

because subhaloes are located within host systems of typical sizes
. 1 ℎ1Mpc. Therefore, the addition of orphan galaxies, which are
satellites, will enhance the clustering at small scales (Kitzbichler &
White 2008).

The fraction of satellite haloes with respect to total (satellites
+ centrals) for the smdpl simulation is 0.152, while for mdpl2 this
fraction is 0.122. This indicates that we have roughly 25 percent
more satellite haloes with masses between 1010.4 −1012 ℎ−1M� in
smdpl than in mdpl2. Therefore, we conclude that the discrepancy
observed between the two-point correlation functions of these sim-
ulations at small scales (see Figure 2) is due to the greater fraction
of satellite haloes in smdpl compared to mdpl2. To compensate for
this lack of low-mass subhaloes we introduce the orphan galaxies,
integrating their orbits until they merge with their host halo (see
Section 2).

These additional satellite galaxies will modify both the HMF
and the 2PCF at small scales. Comparing these functions in smdpl
and mdpl2 simulations, and assuming that their differences could
be solved by following in a semi-analytic way the dynamics of those
subhaloes that will host orphan galaxies, we find a way to constrain
the parameters of the orbit model for such satellites.

3.3 Calibration volumes

The goal is to make a fast exploration of the parameters of the
orbit model, to find regions of the parameter space where there is
convergence between the simulations (i.e., similar HMF and 2PCF)
after applying the orbit model. Since running the model over the
full simulations is computationally very expensive, we are inter-
ested in finding a set of boxes that are relatively small in volume but
representative of the characteristics of the full simulations. We con-
sider sub-volumes with the following box sizes: smdpl 50 ℎ−1Mpc,
mdpl2 50 ℎ−1Mpc and mdpl2 100 ℎ−1Mpc. In addition, when se-
lecting these sub-volumes we need to estimate their “goodness” (in
the sense that they reproduce the characteristics of the full simu-
lations). Here, we exemplify how to obtain the best box for mdpl2
50 ℎ−1Mpc; the other cases are analogous.

We begin partitioning mdpl2 into 8000 (203) disjoint subsam-
ples with a box size of 50 ℎ−1Mpc. For each of these boxes, we
calculate both 𝜙 and b. In the case of the correlation function b,
we consider only haloes with masses greater than 1010.4 ℎ−1M� ,
i.e. where the mdpl2 simulations is complete. Using these results,
we compute the mean values of the HMFs and the 2PCFs, 𝜙 and
b, respectively. Analogously, we obtain the mean values 𝜙 and b

for both mdpl2 100 ℎ−1Mpc (with 103 subvolumes) and smdpl 50
(with 83 subvolumes).

Figures 3 and 4 show (in circle-dashed line) the mean values
for the HMF and 2PCF, respectively. We also plot (in continuos
line) the HMF and 2PCF corresponding to the full simulations. For
both figures, we have the following cases: smdpl 50 ℎ−1Mpc (left),
mdpl2 50 ℎ−1Mpc (centre) and mdpl2 100 ℎ−1Mpc (right). Error
bars indicate the standard deviation of the subvolume sets. In Figure
3, we note that, as it happens in themdpl2 full simulation, the boxes
also present a lack of lowmass haloes (centre and right). The vertical
dashed line indicates the minimum mass we consider in our study
(1010.4 ℎ−1 M�). Figure 4 shows the clustering signal computed
considering only haloes with masses greater than 1010.4 ℎ−1M� .
We note that for very low separations (. 0.02 ℎ−1Mpc), the scatter
in b is high, which is reflected in the magnitude of the error bars.
This effect is mainly due to the fact that at these scales, the number
of pairs is scarce and therefore Poissonian error dominates.

In order to find the best mdpl2 50 ℎ−1Mpc box, we need to
characterise how representative each of our subsamples is. To esti-
mate how much each box deviates from the full mdpl2 simulation
(regarding to the 2PCF and the HMF), and pre-select some boxes
that can be good candidates, we compute MAPE (mean absolute
percentage error) estimates, i.e., for a given sub-box 𝑗 , we compute
the sum over all bins

MAPE
[
ℎ ( 𝑗)

]
=
1
𝑛

𝑛∑︁
𝑖=1

|ℎ ( 𝑗)
𝑖

− ℎ𝑖 |
|ℎ𝑖 |

, (15)

where ℎ represents either of the relevant constraining functions (i.e.,
the 2PCF b or theHMF 𝜙), 𝑗 indicates the given sub-box, and 𝑛 is the
number of bins where the function is computed. In this expression,
ℎ𝑖 indicates the value of function ℎ in a given bin 𝑖 corresponding
to the full simulations.

As mentioned above, the fullmdpl2 simulation is not complete
for low masses; furthermore, the correlation function computed in
boxes becomes too noisy for scales below 0.02 ℎ−1Mpc. Taking
this into account, for each box we only consider MAPE [𝜙] errors
for masses higher than 1010.4 ℎ−1 𝑀� and MAPE [b] errors for
separations in the range 0.02 − 1 ℎ−1Mpc. We choose candidates
for the best mdpl2 50 ℎ−1Mpc box as the ones that simultaneously
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Figure 3. HMF for the selected boxes compared to the full simulations and the mean of the boxes. Results are shown for the smdpl 50 ℎ−1Mpc (left), mdpl2
50 ℎ−1Mpc (centre) and mdpl2 100 ℎ−1Mpc (right). Upper panels: The continuos black line correspond to the full simulations. The circle-dashed black line
shows the mean value for the halo mass function computed from the small boxes. The error bars correspond to the standard deviation at each halo mass bin. Red
triangle-dashed lines correspond to the best boxes found. Lower panels: Fractional differences in HMF taking the full simulations as a reference. The vertical
line denotes the mass cut at ∼ 1010.4 ℎ−1M� . In the case of mdpl2 50 ℎ−1Mpc, the HMF of the selected box is slightly higher than the mean for all masses.
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Figure 4. 2PCF for the selected boxes compared to the full simulations and the mean of the boxes. Results are shown for the smdpl 50 ℎ−1Mpc (left), mdpl2
50 ℎ−1Mpc (centre) and mdpl2 100 ℎ−1Mpc (right). Upper panels: The continuous black line shows the mean value for the 2PCF computed from the small
boxes. The error bars correspond to the standard deviation. Red dashed lines correspond to the best boxes found. Lower panels: Fractional differences in 2PCF
taking the full simulations as a reference. The vertical dashed line indicates the scale 0.2 ℎ−1Mpc. This limit corresponds to the smaller scale we use to make
the comparison, since below this limit, boxes have very few pairs and the correlation function becomes too noisy.
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minimises both MAPE [𝜙] and MAPE [b]. From these candidates
we choose our final best box by visual inspection, prioritizing the
2PCF.

Figure 3 shows in triangle-dashed red line the HMF of the best
subvolumes for smdpl 50 ℎ−1Mpc (left), mdpl2 50 ℎ−1Mpc (cen-
ter) and mdpl2 100 ℎ−1Mpc (right). The method applied to find the
best subvolumes for smdpl 50 ℎ−1Mpc and mdpl2 100 ℎ−1Mpc, is
analogous to what we have done for mdpl2 50 ℎ−1Mpc. Likewise,
Figure 4 shows in triangle-dashed red lines the 2PCF of the best sub-
volumes for the same box sizes. These figures show that we are able
to find smaller boxes in which to perform the parameter exploration,
that are representative of the complete simulation boxes.

4 RESULTS

In this section, wemake an exploration of the parameter space of the
orbit model for orphan galaxies and see how the HMF and the 2PCF
change when these parameters are varied. We recall the meaning of
the parameters under consideration: 𝑏 characterises the dynamical
friction through the Coulomb logarithm (equation 4), 𝛼 controls the
tidal stripping (equation 6) and 𝑓 is related to the merger criterion
(equation 7).

Figure 5 shows the results obtained after applying the orbit
model for orphan satellites to the mdpl2 50 ℎ−1Mpc sub-volume
introduced in Section 3. Here we plot fractional differences taking
the full smdpl simulation as a reference, and selecting all haloes
with masses greater than 1010.4 ℎ−1M� at redshift 𝑧 = 0. The
top panels show fractional differences in HMF while the bottom
panels show fractional differences in 2PCF. The solid (black) line
indicates the fractional difference between mdpl2 and smdpl full
simulations, while the dotted (black) line indicates the fractional
difference for the mdpl2 50 ℎ−1Mpc box. The dashed lines with
symbols correspond to fractional differences considering different
parameter combinations of the model. In all panels, the dashed-
circle (black) line correspond to the same parameters (𝑏 = 0.35, 𝑓 =
0.04, 𝛼 = 1.0). From left to right we vary 𝑏 (left panels), 𝑓 (centre
panels) and 𝛼 (right panels), in each case we leave the remaining
parameters fixed.

4.1 Variation of parameter 𝑏

The parameter 𝑏 enters the dynamical friction force term through
the Coulomb logarithm (see equations 1 and 4). Decreasing 𝑏 is
equivalent to increasing the value of theCoulomb logarithm lnΛ and
this leads to a greater deceleration of subhaloes due to dynamical
friction drag. Since decreasing 𝑏 leads to a greater deceleration
force, then we have a greater number of subhalo mergers and a
lower number of total subhaloes. On the other hand, increasing 𝑏
decreases the value of lnΛ, we have smaller deceleration and the
subhaloes decay at a slower rate. Thus, if we increase 𝑏 we have a
lower number of mergers and a greater number of total subhaloes.

Aswe have seen in the previous paragraph, decreasing 𝑏 results
in a smaller number of total subhaloes, and 𝜙 decreases over the
entire mass range. On the other hand, if we increase 𝑏 we have a
greater number of total subhaloes and 𝜙 increases. The HMF for
different values of 𝑏, it is shown in the upper-left panel of Figure 5.
The 2PCF for different values of 𝑏 is shown in dashed lines in the
lower-left panel of Figure 5. Since increasing 𝑏 results in a lower
number of total satellite haloes,we have a smaller fraction of satellite
haloes and the clustering signal decreases mainly at low scales. If
we decrease 𝑏, we obtain a greater fraction of satellite haloes and

the clustering increases at low scales. Note that since decreasing 𝑏
implies that the satellite haloes decay faster, one might think there
should be an increase in clustering at lower scales. However, this
does not occur because most of these haloes end up merging with
its main system and therefore do not contribute to the 2PCF.

4.2 Variation of parameter 𝑓

The parameter 𝑓 is related to the merger criterion, increasing (de-
creasing) the value of 𝑓 reduces (increases) the distance at which
satellites merge with their hosts. Therefore, a higher value of 𝑓 im-
plies shorter merging times, a greater number of subhalo mergers
and a lower number of total satellite haloes. A lower value of 𝑓

implies larger merging times, a smaller number of mergers and a
higher number of total satellite haloes.

The central panels of Figure 5 shows, in dashed lines, the
results of the satellite model for different values of parameter 𝑓 . As
we have seen, a higher value of 𝑓 implies a lower number of satellites
haloes and the HMF decreases, while a lower value of 𝑓 implies
a higher number of total satellite haloes and the HMF increases.
This is shown in the upper-central panel of Figure 5. For the 2PCF,
we note that increasing (decreasing) 𝑓 decreases (increases) the
value of the correlation function b. This is shown in the lower-
central panel of Figure 5. This effect is more relevant for separations
below log(𝑟/ℎ−1Mpc) ≤ −1 than at intermediate separations, i.e.
log(𝑟/ℎ−1Mpc) ≥ −1. Since increasing 𝑓 decreases the number
of satellite haloes, then we have a stronger clustering signal at low
scales than for intermediate scales, because the 1-halo term of b
depends strongly on the satellite fraction.

4.3 Variation of parameter 𝛼

The parameter 𝛼 controls the rate at which the tidal stripping mech-
anism removes mass from a subhalo. A greater value of 𝛼 implies
a more efficient tidal stripping, and more material is removed via
TS. A lower value of 𝛼 slows down the TS effect and we have less
material removed from a satellite.

The top-right panel of Figure 5 shows (in dashed lines) the
HMF for different values of 𝛼. As we increase 𝛼, the HMF decreases
over the entire range of masses. Since 𝛼 controls the rate at which
the tidal stripping mechanism removes mass from a subhalo, then
a greater value of 𝛼 implies a more efficient TS, and 𝜙 decreases.
Finally, the bottom-right panel of Figure 5 shows (in dashed lines)
the 2PCF for different values of 𝛼. Since increasing 𝛼 increases the
efficiency of TS, this reduces the fraction of satellite haloes and
then the clustering signal decreases.

4.4 Best fitting parameters

To find the best fit parameters, we perform an exploration of the
parameter space running the model over the calibration box mdpl2
50 ℎ−1Mpc varying the parameters 𝑏, 𝑓 and 𝛼. For parameter 𝑏,
we consider values in the range 0.05 − 1.50, we allow 𝑓 to vary
between 0.01− 0.08 and 𝛼 takes values between 1.0− 5.0. For each
run output, we compute the corresponding HMF and the 2PCF at
redshift 𝑧 = 0 and then we compare the values of these functions
with those of smdpl. Then, we select the best fit parameters as
those parameters that minimise the errors for HMF and 2PCF. The
most suitable parameters found with this method corresponds to
(𝑏 = 0.02, 𝑓 = 0.04, 𝛼 = 1.43).
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Figure 5. Fractional differences in HMF (top panels) and in 2PCF (bottom panels) with respect to the smdpl full simulation for a sample obtained from
applying the orbit model of orphan satellites to themdpl2 50 ℎ−1Mpc calibration considering different parameter combinations of the model (dashed lined with
symbols). The dashed-circle (black) line correspond to the same parameters (𝑏 = 0.35, 𝑓 = 0.04, 𝛼 = 1.0) in all panels. Solid and dotted lines correspond to
the fractional difference for mdpl2 and the mdpl2 50 ℎ−1Mpc calibration box, respectively. Left panels: effect of varying the parameter 𝑏 leaving 𝑓 and 𝛼

fixed. Parameter 𝑏 enters the dynamical friction force term through the Coulomb logarithm. Decreasing this parameter increases lnΛ and the DF effect, thus
more satellite merge with its host and 𝜙 decreases. Since we have a smaller satellite fraction, the clustering signal b also decreases. Central panels: correspond
to different values of the parameter 𝑓 leaving 𝑏 and 𝛼 fixed. The value of 𝑓 determines the minimum distance a satellite halo can be from its host before it
is considered as merged with it. Increasing this parameter, implies a higher number of mergers and a lower number of satellite haloes. This also impacts the
clustering signal b , which decreases. Right panels: show the effect of varying 𝛼 leaving 𝑏 and 𝑓 fixed. Increasing the value of 𝛼 implies greater efficiency
of the TS process and greater mass loss and, consequently, a lower number of satellite haloes. As we have fewer satellites, then b and 𝜙 decreases. For more
details see text.

5 DISCUSSION

We present the treatment for the evolution of the orbits of orphan
satellites and the method used for calibrating the free parameters
of the model. Here we discuss in more detail some aspects of our
results.

From the analysis presented above we have that, in general,
the inclusion of the subhaloes of orphan galaxies helps to enhance
the HMF over the entire mass range. However, as we can see from
the panels upper-panels of Figure 5, HMF depends more strongly
on parameter 𝛼, while varying 𝑏 and 𝑓 has little impact on the
overall shape of the HMF. Since 𝑏 and 𝑓 are related mainly to the
evolution of the position of the satellites, thus HMF fails to put a
tight constraint on those parameters. In particular, note that since
the dynamical friction decelaration is proportional to the mass of
the satellite (equation 1), then massive haloes are more sensitive to
variations of the DF model. However, the lack of massive subhaloes

makes it difficult to put a strong constraint on parameter 𝑏 using
only information from the halo mass function.

On the other hand, we see that the 2PCF is sensitive to varia-
tions of the three parameters (see lower panels of Figure 5), although
the behavior is different depending on the scales considered. For
very small scales (. 0.3 ℎ−1Mpc, see van den Bosch et al. 2013),
the correlation function is dominated by the 1-halo term which
depends strongly on the satellite fraction, then this region is very
sensitive to variations on the dynamical friction model (𝑏) or the
merging criterion ( 𝑓 ). At greater separations (& 0.3 ℎ−1Mpc), the
2-halo term begins to compete with the 1-halo term and the con-
straining power of the correlation function is reduced. It is worth
noticing that if the strength of TS is high (𝛼 ∼ 5.0), then the clus-
tering is strongly suppressed at small scales. This shows that while
HMF fails to constraint 𝑏 and 𝑓 , the correlation function has great
constraining power for all parameters of the model.

As a result of the exploration of the model parameters, we
have found the following best fit: 𝑏 = 0.2, 𝑓 = 0.04, 𝛼 = 1.43. For
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𝑏 = 0.2, we can estimate the maximum and minimum values of
the Coulomb logarithm. Since the dynamical friction term can only
produce deceleration, we impose that lnΛ = 0when 𝑟 ≤ 𝑏𝑅sat, as in
equation 4. On the other hand, in our simulations, the virial radius of
haloes (and subhaloes) are in the range 10−1000 ℎ−1 kpc. Assuming
a maximum satellite-host distance of the order of the virial radius
of main systems, then we have that, at most, 𝑟/𝑅sat ∼ 𝑅vir/𝑅sat ∼
100. Therefore, (lnΛ)max ∼ 6.2. These estimated values are in
agreement with our simulations, where the maximum andminimum
values for Coulomb logarithm are in the range 0 − 7.2.

In the literature, there are previousworks that explore the possi-
ble values that the Coulomb logarithm can take. Pullen et al. (2014)
assume a fixed value lnΛ = 2. Other authors choose the value of
this parameter in order to reproduce the results of numerical simu-
lations. For example, Velazquez &White (1999), by studying orbits
in numerical simulations, find values of this parameter between
1 − 2. On the other hand, Yang et al. (2020), using a model similar
to the one presented here, perform a parameter space exploration
finding values for lnΛ of the order of 1.5. Clearly, the maximum
for Coulomb logarithm we have found does not agree with the re-
sults of these previous works. However, we remark that those results
were obtained assuming a constant value for lnΛ, whereas in our
simulations we assume a Coulomb logarithm that varies with the
satellite-host distance.

The parameter 𝑓 determines the minimum distance a satellite
can approach before merging with its host, therefore this value gives
us an estimate of the size of the central galaxy that will inhabit the
DM halo as provided by a SAM. For 𝑓 = 0.04, the central galaxy
size would be of the order 𝑅g ∼ 0.04𝑅vir. This value is compatible
with the size-virial radius relation found by Kravtsov (2013). This
relation links the half mass radius of a galaxy with the virial radius
of its host according to 𝑟1/2 ∼ 0.02 − 0.03 𝑅200.

As we have seen, the parameter 𝛼 controls the efficiency of
TS mechanism. Zentner & Bullock (2003) assumes a fixed value
𝛼 = 1, while other authors adjust 𝛼 in order to match the results of
simulations finding 𝛼 = 2.5 (Zentner et al. 2005, Z05) and 𝛼 = 3.5
(Pullen et al. 2014, P14). On the other hand, other authors assume
TS to be an instantaneous process which implies 𝛼 = ∞ (Peñarrubia
& Benson 2005). In our parameter exploration, we have found that
𝛼 = 1.43, which is much smaller than the results obtained by Z05
and P14. Finally, our results suggest that a value 𝛼 > 5 would
make the 2PCF to be almost totally suppressed at small separations,
disfavouring an instantaneous tidal stripping scenario.

One possible explanation for our lower value of 𝛼, as compared
to other works, could be the fact that in our model, the lnΛ is
variable, whereas in previous works, this value is usually taken as
constant. In our model, we initially have a larger value of lnΛ, and
hence, the satellites decay more rapidly and come closer to the host,
where the TS is stronger. On the other hand, in the case of fixed
lnΛ, the initial deceleration is smaller and therefore it takes more
time for the satellite to reach inner regions, where the density and
TS are higher. To compensate for this, a higher value of 𝛼 would be
required, in order to have a higher mass loss.

We also perform a convergence test using the other calibra-
tion boxes described in Section 3.3. We run the model using the
best fit parameters over mdpl2 050 ℎ−1Mpc (MD050), mdpl2
100 ℎ−1Mpc (MD100) and smdpl 50 ℎ−1Mpc boxes (SM050).
The results of this exercise are shown (in dashed lines with sym-
bols) in Figure 6 and Figure 7 for HMF and 2PCF, respectively. In
dotted lines with symbols we plot the calibration boxes without the
orphan satellites. As a reference, we plot the mdpl2 full simulation
(in dashed line) and the smdpl full simulation (in continuous line).

In the lower panel of these figures, we show fractional differences
taking the smdpl full simulation as a reference.

Figure 6 shows that, after applying the model, we have a good
agreement on the different calibration boxes after including the
orphan satellites (dashed lineswith symbols), compared to the boxes
without including the orphans (dotted lineswith symbols). From this
figure,we also notice that smdpl 50 ℎ−1Mpc andmdpl2 50 ℎ−1Mpc
present some “spikes” at masses of the order of 1012 ℎ−1M�; this
is a particular characteristic of the selected boxes. For lower halo
masses, the inclusion of orphans in smdpl 50 ℎ−1Mpc (in squares)
has little impact on the halo mass function. For mdpl2 50 ℎ−1Mpc
(in circles) we note that the addition of orphan satellites helps to
enhance the HMF at low masses, in this case the agreement with
the HMF of smdpl full is within 5 percent over the entire mass
range. Finally, for mdpl2 100 ℎ−1Mpc (in triangles), we obtain a
good agreement (within 5 percent) with the other cases except for
masses below 1011 ℎ−1M� where the difference is of the order of
10 percent.

Figure 7 shows the effect of running the model over the cali-
bration boxes using the best fit parameters for the 2PCF. In general,
the addition of orphan satellites in mdpl2 50 ℎ−1Mpc and mdpl2
100 ℎ−1Mpc, considerably improves the two point correlation func-
tion over the entire range of scales (dasehd lines with symbols),
compared to the boxes without the addition of orphans (dotted lines
with symbols). However, this enhancement is more important at
small scales (0.02 − 0.10 ℎ−1Mpc) where the 1-halo term domi-
nates, which mainly depends on the fraction of satellite haloes. In
general, fractional errors for 2PCF are within 10 percent for the
three cases considered. Note that for both mdpl2 subvolumes, the
clustering is strongly suppressed with a discrepancy greater than
50 percent for scales close to 0.02 ℎ−1Mpc. From these results, we
can conclude that the inclusion of orphans improves the HMF and
2PCF of the simulation with lower resolution (mdpl2) as compared
to smdpl.

With this analysis, we have shown that, on the one hand, the
smdpl simulation has a complete population of satellite galaxies
above 1010.4 ℎ−1M� , and can be used as a reference for the ex-
ploration of the parameters of the orbit model. Indeed, if we ap-
ply the orbit model to a smaller fraction of smdpl, namely smdpl
50 ℎ−1Mpc, we would obtain the same HMF and 2PCF (see Figure
6 and 7). On the other hand, the mdpl2 50 ℎ−1Mpc box is suf-
ficiently good to test the parameters, and we do not need a larger
box. This can be verified by taking a larger box, namely mdpl2
100 ℎ−1Mpc, in which the results, when the best fit parameters are
used, are consistent with those of the mdpl2 50 ℎ−1Mpc box (the
observed differences are due to the selected box).

6 CONCLUSIONS

In this paper, we present an updated model for the orbital evolution
of dark matter subhaloes. The model used includes tidal stripping
effects and dynamical friction. It also takes into account the possible
merger of the haloes using a proximity criterion. We have charac-
terised our model by three free parameters (𝑏, 𝑓 , 𝛼). The proposed
model describes the main processes that affect the orbital evolution
of a satellite halo and it is simple enough to be relatively cheap from
a computational point of view (at least two order of magnitude faster
than a full N-body simulation of the same resolution and size).

In order to calibrate the free parameters of the model, satellite
halo evolution studies in the literature used the HMF as a constraint.
Figure 5 shows that 𝜙 is sensitive to variations in the efficiency of the
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Figure 6. Upper panel:Halo mass functions. The dotted lines with symbols
correspond to calibration boxes (see Section 3.3), i.e. without the orphan
satellites. The dashed lines with symbols correspond to the calibration boxes
after applying the orbit evolution model using the best parameters (see Sec-
tion 4.4). Here SM050 correspond to smdpl 50 ℎ−1Mpc best box, MD050
to mdpl2 50 ℎ−1Mpc and MD100 indicates 100 ℎ−1Mpc simulations. The
simple dashed line denotes mdpl2 full and continuous line correspond to
the smdpl full simulation. Lower panel: Fractional differences taking the
smdpl full simulation as a reference. We see that after applying the model,
for smdpl 50 ℎ−1Mpc and mdpl2 50 ℎ−1Mpc the difference is below 5
percent for the entire mass range.

tidal stripping (parameter 𝛼). On the other hand, the halo mass func-
tion fails to put tight constraints on the dynamical friction model,
since this effect is most important for massive satellites, which are
less abundant in the simulation (see right panels Figure 5). In this
work, we have introduced the 2PCF as another constraint to the non-
linear evolution of the orbits of orphan satellite haloes. In contrast
with the HMF, the correlation function includes information about
the distribution of subhaloes around their host. In this sense, the in-
clusion of clustering information helps to constrain the dynamical
friction model and merging criterion (see left and centre panels of
Figure 5).

We have performed an exploration of the parameter space of
the model, this gives us the following best fit set ( 𝑓 = 0.04, 𝑏 =

0.02, 𝛼 = 1.43). The value 𝑓 = 0.04 is compatible with the value
of half mass radius relation presented by Kravtsov (2013). The
parameter 𝑏 gives us a variable Coulomb logarithm which takes
minimum - maximum values in the range lnΛ ∼ 0 − 7.2. Other
works in the literature usually use lnΛ = 1 − 2; since these values
are taken to be constant, we cannot compare them directly with our
results. On the other hand, 𝛼 = 1.43, the parameter that controls the
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Figure 7. Upper panel: Two-point correlation functions. The dotted lines
with symbols correspond to the calibration boxes, i.e. without the orphan
satellites. The dashed lines with symbols correspond to the samples obtained
from the best boxes after applying the orbit model using the best parame-
ters. Here, SM050 correspond to SMDPL 50 ℎ−1Mpc best box, MD050 to
MDPL2 50 ℎ−1Mpc and MD100 indicates MDPL2 100 ℎ−1Mpc satellites.
The simple dashed line denotes mdpl2 full and continuous line correspond
to the smdpl full simulation. Lower panel: fractional differences in the
HMFs taking smdpl full as a reference. After applying the model, we ob-
tain an enhancement of the clustering for MDPL2 50 ℎ−1Mpc and MDPL2
100 ℎ−1Mpc. In general, the agreement between the different calibration
boxes is within 10 percent except for scales below 0.03 ℎ−1Mpc, where the
agreement is within 20 percent.

efficiency of the TS mechanism, is lower compared to the values
obtained in previous works. This might be related to the fact that we
are assuming a variable Coulomb logarithm instead of a constant
one, but this point requires further study.

Finally, we remark that we have not included a tidal heating
term in our orbital evolution model. Tidal heating is a mechanism
produced by rapid changes in tidal forceswhen a halo passes through
the pericentre. These tidal shocks transfer energy to the satellite,
then the subhalo expands and therefore a greater amount of matter
is susceptible to be removed via tidal stripping. In a future work,
we plan to include tidal heating effects in the orbital evolution of
subhaloes and study individual orbits, taking special care on the
evolution of masses and radius.
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APPENDIX A: INGREDIENTS OF THE ORBIT MODEL
FOR A NFW DENSITY PROFILE

In numerical studies, the detected dark matter haloes are well de-
scribed by a double power-law function of the radius, first introduced
by (Navarro et al. 1997). Here we describe the Navarro-Frenk-White
(NFW) density profile, and we give expressions for the dynamical
friction formula and tidal radius equation corresponding to this par-
ticular profile. The Navarro-Frenk-White is given by the following
expression

𝜌(𝑟) =
𝜌0c𝛿char

𝑟
𝑟s

(
1 + 𝑟

𝑟s

)2 . (A1)

The parameters of this expression are the scale radius 𝑟s and the
characteristic density 𝛿char. The concentration parameter is defined
as

𝑐 =
𝑟vir
𝑟s

, (A2)

where 𝑟vir is the virial radius of the halo, defined as the distance
from the center of the halo within which the mean density is Δ
times the critical density 𝜌0c . The value of the virial overdensity is
often assumed to be 178, predicted by the spherical collapse model.
However, numerical simulations typically use Δ = 200.

We also introduce the dimensionless distance 𝑠 and the function
𝑔(𝑐), which often appears in calculations involving theNFWprofile,

𝑠 =
𝑟

𝑟vir
, (A3)

𝑔(𝑐) = 1
log(1 + 𝑐) − 𝑐/(1 + 𝑐) . (A4)

With the above definitions, the density equation becomes

𝜌(𝑠)
𝜌0c

=
Δ𝑐2𝑔(𝑐)
3𝑠(1 + 𝑐𝑠)2

. (A5)

The mass of the halo is usually defined as the mass within the virial
radius

𝑀vir =
4
3
𝜋𝑟3virΔ𝜌

0
𝑐 (A6)

Then the mass profile in units of the virial mass is

𝑀 (𝑠)
𝑀vir

= 𝑔(𝑐)
[
log(1 + 𝑐𝑠) − 𝑐𝑠

1 + 𝑐𝑠

]
(A7)

Using the same definitions, we can express the gravitational poten-
tial as

Φ(𝑠)
𝑉2c

= −𝑔(𝑐) log(1 + 𝑐𝑠)
𝑠

, (A8)

where 𝑉2c is the circular velocity at 𝑟 = 𝑟vir.
For a point particle moving within a halo with a NFW density

profile, the 𝑖-component of the acceleration is

a = −𝑔(𝑐)
[
log(1 + 𝑐𝑠)

𝑠2
− 𝑐

(1 + 𝑐𝑠)𝑠

]
s
𝑠

(A9)

In this case, the Chandrasekhar formula for the dynamical friction
force is given by

adf = −𝑀sat lnΔc
𝑣2

𝑐2𝑔(𝑐)
𝑠(1 + 𝑐𝑠)2

[
erf (𝑋) − 2𝑋√

𝜋
exp−𝑋2

]
v
𝑣
. (A10)

Finally, we need to compute the tidal radius, i.e.

𝑟t =

(
𝐺𝑀sat

𝜔2 − 𝑑2Φ/𝑑𝑟2

)1/3
. (A11)

For 𝑑2Φ/𝑑𝑟2 we have

𝑑2Φ

𝑑𝑟2
(𝑟 = 𝑟sat) = −2𝐺𝑀host (< 𝑟sat)

𝑟3sat
+ 4𝜋𝐺𝜌(𝑟sat). (A12)

Then using the above expressions for 𝑀host (A7) and 𝜌host (A5), we
obtain the tidal radius.
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