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Analyzing artificial intelligence 
systems for the prediction of atrial 
fibrillation from sinus‑rhythm 
ECGs including demographics 
and feature visualization
Pietro Melzi1, Ruben Tolosana1*, Alberto Cecconi2, Ancor Sanz‑Garcia2, 
Guillermo J. Ortega3,4, Luis Jesus Jimenez‑Borreguero2,5,6 & Ruben Vera‑Rodriguez1,6

Atrial fibrillation (AF) is an abnormal heart rhythm, asymptomatic in many cases, that causes several 
health problems and mortality in population. This retrospective study evaluates the ability of different 
AI‑based models to predict future episodes of AF from electrocardiograms (ECGs) recorded during 
normal sinus rhythm. Patients are divided into two classes according to AF occurrence or sinus 
rhythm permanence along their several ECGs registry. In the constrained scenario of balancing the 
age distributions between classes, our best AI model predicts future episodes of AF with area under 
the curve (AUC) 0.79 (0.72–0.86). Multiple scenarios and age‑sex‑specific groups of patients are 
considered, achieving best performance of prediction for males older than 70 years. These results 
point out the importance of considering different demographic groups in the analysis of AF prediction, 
showing considerable performance gaps among them. In addition to the demographic analysis, we 
apply feature visualization techniques to identify the most important portions of the ECG signals 
in the task of AF prediction, improving this way the interpretability and understanding of the AI 
models. These results and the simplicity of recording ECGs during check‑ups add feasibility to clinical 
applications of AI‑based models.

Atrial fibrillation (AF) is one of the most common sustained arrhythmias, increasing the risk of  strokes1, heart 
 failure2, and other heart-related  complications3. AF is often asymptomatic and it may remain undiagnosed until 
a first manifestation of  stroke4,5. Approximately 20% of patients who have a stroke associated to AF are first diag-
nosed with AF at the time of stroke or shortly  thereafter6. The identification of those possible individuals at risk 
of developing AF, and their consequent treatment, can reduce mortality and strokes as well as health care  costs7.

Despite this, a commonly accepted standardized assessment of symptoms is missing, partly because of the 
complex clinical decision-making process in patients with  AF8. The electrocardiogram (ECG) provides mean-
ingful information that may contribute substantially to the detection of present AF and estimation of future AF 
 risk9, even if existing commercial ECG interpreters show limitations and  errors10,11. Traditional techniques for 
AF prediction combine discrete features extracted from ECGs and machine learning  classifiers12,13. Promising 
features for the prediction of AF, such as P wave duration, RR interval duration, and PQ segment level, have been 
considered in the  literature14. However, this kind of approaches takes into account only little information from 
the ECG and require a time-consuming phase to extract and select handcrafted  features15, also prone to errors.

In the last decade, artificial intelligence (AI) has brought a considerable breakthrough in many fields such as 
image and signal  processing16,17. Important advances have also occurred with application to ECGs. Deep neural 
networks (DNNs) can automatically learn representative and robust features from ECG signals to replace or 
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complement traditional handcrafted  features18,19. The automatic classification of ECGs according to different 
heart rhythms has already achieved important  results20. Also, DNNs have shown to be able to identify in 12-lead 
ECGs subtle abnormalities due to structural  derangements21. Atrial structural changes may occur before AF. In 
particular, structural remodeling is seen as the main contributor for initiation and persistence of  AF22.

The use of DNNs to process ECGs with normal sinus rhythm and assess the risk of developing future AF has 
been investigated in previous studies achieving good  results23–25. However, in these previous studies there is a lack 
of analysis and comparison of different AI  approaches23,24. Also, the prevalence of AF in adults is significantly 
related to age, while its relationship with sex is mostly  unclear26–28. In addition, the details of the study population 
are usually described summarily in previous articles in the literature, without making any distinction between 
healthy and AF suffering patients. Instead, we believe it is important to point out the differences between the 
two classes of  patients29 and to take them into consideration when evaluating the results of the study. Finally, 
in previous articles there is a missing interpretability and explainability of the AI models. Despite DNNs have 
outperformed traditional techniques, they continue to be treated as black-box tools which map given inputs to 
classification outputs. Incorporating DNNs into medical diagnosis, planning, and control requires a higher level 
of trust of the machine  capabilities30 and the possibility to explain the processes carried out by DNNs.

In this study we take all these aspects into consideration. We carry out a comparative analysis of different AI 
models, some of them based on DNNs, to identify subtle traits that may anticipate pending episodes of AF in 
ECGs with normal sinus rhythm. The AI models may also reveal undiagnosed AF in some patients. We consider 
a database of 12-lead ECGs collected from a large cohort of 122,394 patients at La Princesa University Hospital 
(Madrid, Spain).

Studies in the literature agree on the increase of incidence in elderly persons but suggest diverse evidences 
regarding its relationship with  sex26–28. In this study we compare multiple scenarios, featured with different age 
distributions between healthy and AF suffering patients. We also compare the performance achieved by AI 
models in predicting AF across multiple age-sex-specific group of patients to observe if the model performance 
is affected by age and sex of patients.

Finally, we try to overcome the limitation of interpretability by applying AI techniques for feature visualization 
to the processed ECG samples. We discover which portions of ECGs are the most exploited for AF prediction 
and draw a comparison of the contributions in AF prediction provided by each lead.

In all the experiments, we keep in mind that ECGs collected too early may not even contain a subtle notice 
of AF while ECGs collected in the days before AF may refer to hospitalized patients who also suffered other 
diseases or underwent surgery. If the latter, AF is induced by causes that are out of the scope of this work, such 
as systemic inflammation, and it is important to properly handle this aspect.

The use of AI-enhanced techniques for predicting AF from ECGs recorded during sinus rhythm is also hin-
dered by the inadequate evidence that screening with ECG is more effective than usual  care6. Potential harms 
of finding AF earlier in people with no symptoms include unnecessary treatment or overtreatment, which can 
have major side effects such as bleeding caused by blood thinners or complications from more invasive heart 
 procedures31.

The goal of this study, along with the early detection of AF by processing ECG samples recorded during 
normal sinus rhythm, is the analysis of those aspects that affect AF prediction and have not been investigated 
enough in previous studies. Such analysis leads to the implementation of more reliable and trusted AI-enhanced 
predictors of AF. The properties of ECGs make them very convenient for the task: they can be quickly recorded in 
a doctor’s office or by means of wearable devices and contain ready-to-use information suitable for AF prediction.

Results
Study population. The study is conducted with a database of ECGs collected from a large cohort of 122,394 
patients at La Princesa University Hospital (Madrid, Spain) between May 5, 2010, and February 4, 2019. ECGs 
have been recorded and processed by the Philips 12-Lead Algorithm (https:// phili ps. to/ 36CPa bZ) that provides 
the raw ECG time measures along with an automatic interpretation of rhythm and extracts discrete variables 
related to global and lead-specific attributes of the signal. We divide patients into two groups: (i) the ones who 
developed AF at least once along their clinical history, and (ii) the ones who only have ECGs with interpretation 
of “sinus rhythm” (SR) along their clinical history. For patients in the first group, we define the AF index date 
as the date in which the first episode of AF occurred. For patients in the second group, we define the SR index 
date as the date of their last recorded ECG. In both groups, we only consider ECGs that present an automatic 
interpretation of “sinus rhythm”, according to our goal of predicting AF from normal-rhythm ECGs that do not 
contain clear evidence of AF yet. Details on the database and data cleaning operations are provided in “Methods” 
and Supplementary Figure S1.

These operations result in two groups of data composed of: (i) 12,198 ECGs recorded from 3,761 patients (AF 
group) and (ii) 64,829 ECGs recorded from 22,896 patients (SR group). Patients in AF group present a median 
age of 80 years (IQRs 70–86) at their AF index date and 49.61% of them are females. Patients in SR group present 
a median age of 64 years (IQRs 50–77) at their SR index date and 52.96% of them are females. For each patient 
and according to their AF or SR index date, we consider temporal intervals containing the ECGs of interest in 
our experiments. We define these temporal intervals “time windows” and detail them in “Methods”.

Description of experiments. For the analysis of AI-based systems that predict AF from ECGs recorded 
during sinus rhythm, we divide our experiments into two main phases. The first one examines state-of-the-art AI 
models and different age distributions in the datasets, while the second one investigates the behavior of AI mod-
els for age-sex-specific groups of patients. In the first phase, we define six different AI models whose description 
is provided in “Methods”. We investigate and compare their ability to predict AF exploiting different kinds of 

https://philips.to/36CPabZ


3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22786  | https://doi.org/10.1038/s41598-021-02179-1

www.nature.com/scientificreports/

features extracted from 12-lead raw ECGs. For each ECG sample, our AI models compute an output that rep-
resents the risk of future AF episodes (AF score). We train and evaluate the six models always keeping the same 
experimental protocol, to obtain a fair comparison of the performance and features exploited for prediction. The 
test set contains multiple ECGs for several patients. We consider multiple rules to aggregate AF scores related to 
the same patients, to provide a unique score representing the risk of developing AF for patients. We assess the 
performance of single models. Then, we average the AF scores provided by the six models for each ECG sample 
and observe if we can achieve any improvement in performance. We also analyze the performance of three of 
our models when we train and evaluate them with datasets provided with specific characteristics related to the 
distribution of patients age. This analysis allows to compare the impact of age in different models.

For the second phase of the analysis, we balance the datasets by matching the age distribution of patients 
between the AF and SR groups. We train one of our six models and evaluate its performance with multiple test 
sets, which represent age-sex-specific groups of patients. We establish five consecutive age ranges according to 
the age distribution of our data and the significant intervals provided by other  studies32,33 to group patients into 
different sets: patients younger than 60, 60–70, 70–80, 80–90, and older than 90 years. For each age range we 
build two distinct sets of patients, one for males and one for females, and we obtain a total of ten age-sex-specific 
groups of patients.

Finally, we apply AI techniques for feature visualization to the ECG samples included in our test sets. Thereby 
we can locate on the ECG signals the most significative portions for our model to predict the future presence or 
absence of AF. With the information provided by feature visualization, we can quantify the contribution of each 
lead for AF prediction and observe the differences among age-sex-specific groups of patients.

First phase: analysis of state‑of‑the‑art AI models and age distributions. We build datasets for 
the training and evaluation of our six AI models by randomly sampling patients and ECGs in terms of age and 
sex. In the training set we include 5,337 ECGs from the AF group, with a maximum of five ECGs per patient. 
All the ECGs are recorded before the first event of AF. For validation and test sets we consider a smaller time 
window that contains ECGs collected between 2 months and 1 week before the first AF. In the validation set 
we include 85 ECGs, with a maximum of five ECGs per patient, while in the test set we include all the ECGs 
available in the specified time window, from a set of 60 patients randomly sampled. SR ECGs in the training 
and validation sets for the AF group present a median age of 79 years (IQRs 70–84) and 77 years (IQRs 72–87), 
respectively. In the test set, the median age of AF patients is 82.5 years (IQRs 73–88). We specify the median 
age of patients and not ECGs because, for each patient in the test set, we aggregate the AF scores related to their 
ECGs and provide a unique score representing their own risk of developing AF.

In both the training and validation sets, we select ECGs from the SR group until we obtain the same num-
ber of ECGs representing the two groups of patients. Given the higher number of patients available in the SR 
group, we consider at most one ECG for each SR patient. With such constraint, we aim at increasing the amount 
of information exploitable by our AI model. In the test set we include all the available ECGs from a set of 300 
patients. SR ECGs in the training and validation sets present a median age of 63 years (IQRs 50–75) and 66 years 
(IQRs 54–77), respectively. In the test set, the median age of SR patients is 64 years (IQRs 50–75). This is similar 
to the experimental protocols considered in previous  studies9,23 and real scenarios, where AF affects mostly 
older people.

We define two rules to aggregate AF scores that belong to the same patients: for each patient, we consider i) 
the average and ii) the maximum of their AF scores. In Table 1 we provide the results achieved with the differ-
ent AI models. AUC is computed in three different ways for each model: according to the aggregated AF scores 
obtained with the two different rules (Avg ECGs, Max ECGs) and considering the entire amount of AF scores, 
without applying any aggregation rule (All ECGs). In the case of MLR, and consequently in the fusion of the six 
models, we discard from the test set 6 AF patients and 73 SR patients because of missing values contained in the 

Table 1.  Comparison of AUC results achieved for different models, according to different aggregation rules. 
The performance of six different models is evaluated with AUC. AUC for the Fusion model is computed by 
averaging for each ECG sample the six AF scores computed by the different models. The same data have 
been used to train and evaluate the six models. The only exception refers to MLR and Fusion models, where 
ECG samples with missing discrete values have been discarded from the analysis. AUC results are computed 
according to three different aggregation rules: i) no aggregation (All ECGs), ii) average of AF scores related 
to the same patient (Avg ECGs), and iii) selection of the highest AF score for each patient (Max ECGs). 95% 
confidence intervals are reported in brackets. ECG Electrocardiogram, AUC  Area Under the Curve, RNN 
Recurrent Neural Network, MLR Multivariate Logistic Regression.

Model All ECGs–AUC Avg ECGs–AUC Max ECGs–AUC 

Resnet 0.84 (0.78–0.90) 0.87 (0.81–0.93) 0.84 (0.78–0.91)

Resnet with age/sex 0.85 (0.80–0.91) 0.89 (0.83–0.95) 0.87 (0.81–0.93)

Resnet + Recurrent layers 0.83 (0.78–0.89) 0.87 (0.81–0.93) 0.84 (0.78–0.91)

RNN 0.77 (0.70–0.83) 0.81 (0.74–0.88) 0.75 (0.68–0.83)

Wavelet Scattering 0.78 (0.71–0.84) 0.80 (0.73–0.87) 0.77 (0.69–0.84)

MLR 0.85 (0.79–0.91) 0.86 (0.80–0.93) 0.85 (0.78–0.92)

Fusion 0.85 (0.79–0.91) 0.87 (0.81–0.94) 0.86 (0.79–0.92)
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discrete features of their ECGs. For every model, the highest AUC is obtained with the AF score aggregation by 
average. Hence, in the following experiments we only provide results computed with aggregation by average. 
The first three models, with the bottom layers of ResNet, are better than recurrent neural network (RNN) and 
wavelet scattering. They achieve a performance similar to multivariate logistic regressor (MLR), with the best 
AUC of 0.89 (0.83–0.95) obtained for ResNet with age/sex model and aggregation by average rule.

At this point, we focus on three models (ResNet with age/sex, ResNet, and MLR) and evaluate the perfor-
mance achievable by training and evaluating them with different datasets. We keep the same AF data, and we 
randomly sample new SR data complying with the constraints defined for the previous selection of SR data. We 
consider two new scenarios: (i) SR data sampling to balance the age distributions of AF patients (median ages: 
75 years (IQRs 67–80) in training, 77 years (IQRs 72–87) in validation and 82.5 years (IQRs 73–88) in test sets) 
and (ii) SR data sampling of patients younger in average than all the previously considered sets of data (median 
ages: 53 years (IQRs 43–60) in training, 53 years (IQRs 45–59) in validation and 53 years (IQRs 43.375–60) in 
test sets). In Table 2 we provide the AUC results achieved for different datasets and AI models.

We observe that by increasing the difference between age distributions, we can also increase the performance 
of the models (AUC = 0.79 with balanced age distributions, AUC = 0.89 with random sampling, and AUC = 0.98 
with younger SR data). Related studies should always address this aspect and detail any difference in the age 
distributions of patients belonging to the two opposite groups, this has not been considered in most of previous 
 studies23–25. It is very simple to boost the model performance by selecting opportune sets of patients. ResNet 
with age/sex always achieves the highest AUC. It is important to notice that the ResNet model performs better 
than MLR in terms of AUC only in the scenario with balanced age distributions, where features other than age 
increase their significance and may be better exploited by complex models. The MLR system is highly dependent 
on the age distributions. In fact, for the dataset with young SR patients, MLR even almost outperforms ResNet 
with age/sex. In Table 3 we provide additional metrics related to the three models, computed in the scenario of 
balancing age distributions.

We also identify an interesting pattern by analyzing the age of misclassified patients in the scenario of balanced 
age distributions. Even if the mean age of patients in both AF and SR groups is equal (79 years), AF patients 
classified as SR patients are younger in average (74.43 years) and SR patients classified as AF patients are older 
in average (82.42 years). We consider for this analysis the output computed by the ResNet model, as it does not 
require the age of patients as input parameter.

Second phase: analysis of age‑sex‑specific groups of patients. For the second phase of the analy-
sis, we build new datasets with the double aim of: (i) balancing the age distribution between AF and SR groups 
of patients and (ii) equally representing all the age-sex-specific groups of patients under investigation. We train 
the ResNet model, which does not require the age and sex of patients as input parameters, to evaluate the perfor-
mance of age-sex-specific groups of patients. With ResNet, we can also apply AI techniques for the visualization 
of features learned by the model in a straightforward  way34. We include in the training set 400 SR ECGs from 
AF patients and 400 SR ECGs from SR patients for each age-sex-specific group of patients, with a maximum of 
five ECGs per patient, in compliance with the time windows specified in “Methods”. In cases with not enough 
samples, we also include in the training set SR ECGs from AF patients recorded after their AF index date and 
SR ECGs from SR patients recorded between one and two years before their SR index date. The age-sex-specific 

Table 2.  Comparison of AUC results achieved for different models, according to different scenarios. In each 
scenario (random sampling, balancing distribution, young SR data) the same ECG samples have been used to 
train and evaluate the three different AI models. The only exception refers to MLR, where ECG samples with 
missing discrete values have been discarded from the analysis. AUC results are computed according to the 
aggregation rule by average. 95% confidence intervals are reported in brackets. ECG Electrocardiogram, MLR 
Multivariate Logistic Regression.

Model Random sampling Balancing distributions Young SR data

Resnet 0.87 (0.81–0.93) 0.77 (0.70–0.84) 0.92 (0.87–0.97)

Resnet with age/sex 0.89 (0.83–0.95) 0.79 (0.72–0.86) 0.98 (0.95–1.00)

MLR 0.86 (0.80–0.93) 0.71 (0.64–0.78) 0.97 (0.94–1.00)

Table 3.  Comparison of the performances obtained for different models, in the scenario of balancing 
distributions. In the scenario of balancing distributions, we compare the three models considered. To compute 
the metrics additional to AUC, we set a threshold for each model, as described in “Methods”. Performances are 
assessed according to the aggregation rule by average. 95% confidence intervals are reported in brackets. M 
Male, F Female, AUC  Area Under the Curve, DOC Diagnostic Odd Ratio.

AUC Sensitivity Specificity DOR F1 score

Resnet 0.77 (0.70–0.84) 65.00% (51.60–76.87) 70.67% (65.16–75.76) 4.47 (2.49–8.04) 0.42 (0.30–0.45)

Resnet with age/sex 0.79 (0.72–0.86) 78.33% (65.80–87.93) 69.33% (63.78–74.50) 8.17 (4.22–15.84) 0.47 (0.35–0.50)

MLR 0.71 (0.64–0.78) 66.67% (52.53–78.91) 67.32% (60.44–73.69) 4.12 (2.18–7.79) 0.46 (0.36–0.54)
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groups with patients above 90 years and the one with female patients between 18 and 59 years result less repre-
sented than the other groups of patients due to lack of data. In conclusion, the AI model is trained with 6,382 
ECGs (around 4,500 patients) and evaluated on ten different test sets, representing the ten different age-sex-spe-
cific groups of patients. The age distribution between AF and SR data is balanced in all the datasets considered, as 
detailed in Supplementary Table S1. The experimental results are provided in Table 4. The ResNet model predicts 
AF in the different age-sex-specific groups of patients with different precisions. For male patients, the model 
is more accurate in the prediction of AF for older patients. Regarding the two youngest age ranges, the model 
performance is higher for female patients than for male patients. It is the opposite between male and female 
patients in the age-sex-specific groups that refer to the three older age ranges. The performance of a DNN-based 
model has been already evaluated in another  work35 for different age-sex-specific groups of patients. It provides 
better performance compared to our AI model. However, it is important to highlight that there is a difference 
of 13 years in the mean ages of the AF and SR patients included in the testing cohort of the overall experiment, 
which considers data from all the different age-sex-specific groups of patients (i.e., mean and std ages are 72.3 
± 12.7 and 59.0 ± 16.6 for AF and SR patients, respectively). In their experiments considering age-sex-specific 
groups (18–49, 50–64, > 65), the authors do not provide information about the mean and standard deviation of 
the patients in the AF and SR group, therefore it is not possible to know whether both groups are equally distrib-
uted or if it happens like in their overall experiment. This can dramatically change the real performance of the 
AI model as indicated previously in the first phase and Table 2. In our experiment, we minimize such difference 
by balancing the age distributions of AF and SR patients in each age-sex-specific group of patients and consider 
thinner age ranges for older patients, subject to a rapid increase of AF incidence.

Feature visualization. To conclude the analysis and improve the explainability of the AI models, we apply 
an algorithm for visualizing the features automatically learned by ResNet model: the Gradient-weighted Class 
Activation Mapping (Grad-CAM) algorithm, which is usually applied to images to highlights the class-specific 
discriminative regions of  them36. Since the architecture of ResNet contains a global average pooling layer fol-
lowed by a final fully connected layer, we can apply the simplified version of the algorithm, Class Activation Map-
ping (CAM)37, in a straightforward way.Indeed, the global average pooling layer of the ResNet model receives as 
input two-dimensional matrices from each feature channel, as in the case of images. They represent the temporal 
sequence of the 12-lead processed signals. The Grad-CAM algorithm for feature visualization allows to identify 
the portions of ECG signals that the ResNet model exploits to predict the future presence or absence of AF. All 
the 12 leads present different patterns. We provide examples of the outputs obtained by applying the Grad-CAM 
algorithm to our ECG signals (Supplementary Figures S2-S5). The importance of the different portions of ECG 
signals is quantified by numerical values normalized in the interval [0, 1]. Grad-CAM has also been applied in 
other studies involving ECG signals to visualize the discriminant features learned by DNN-based  models38,39.

By focusing on the lead-specific values obtained with the Grad-CAM algorithm for each ECG signal, we 
calculate the average contribution provided by each lead in the prediction of future AF episodes. To examine 
the correct behavior of our model, we include in this lead-specific analysis only the correctly classified signals of 
each test set. We observe the differences in the contribution provided by each lead across the different age-sex-
specific groups of patients. For the prediction of future AF episodes, all the leads provide a positive contribution 
in all the age-sex-specific groups of patients. From youth to older patient groups, the contribution provided 
by each lead tends to increase and the difference between the 12 different contributions tends to decrease. In 
most of the age-sex-specific groups, leads V2 and V3 are among the leads that provide the highest contribution 
(Fig. 1). For the prediction of AF absence, the contribution of each lead tends to remain constant between the 
different age-sex-specific groups. Some leads (aVR, aVL, and V1) provide a minimum contribution, negligible 
and sometimes negative, in most of the age-sex-specific groups (Fig. 2).

Table 4.  Comparison of the performances obtained for age-sex-specific groups of patients with the ResNet 
model. We evaluate the same ResNet model with ten age-sex-specific test sets. The model is trained with ECG 
samples that fairly represent all the ten groups of patients. To compute the metrics additional to AUC, we set a 
unique threshold for the ResNet model, as described in “Methods”. Performances are assessed according to the 
aggregation rule by average. 95% confidence intervals are reported in brackets. M Male, F Female, AUC  Area 
Under the Curve, DOC Diagnostic Odd Ratio.

AUC Sensitivity Specificity DOR F1 score

[18, 60)—M 0.61 (0.49–0.72) 33.33% (17.29–52.81) 80.67% (73.43–86.65) 2.09 (0.88–4.93) 0.29 (0.15–0.43)

[60, 70)—M 0.63 (0.52–0.75) 46.67% (28.34–65.67) 71.33% (63.39–78.41) 2.18 (0.98–4.84) 0.32 (0.19–0.44)

[70, 80)—M 0.78 (0.68–0.89) 70.00% (50.60–85.27) 68.00% (59.90–75.37) 4.96 (2.11–11.63) 0.42 (0.30–0.54)

[80, 90)—M 0.76 (0.66–0.87) 83.33% (65.28–94.36) 52.67% (44.36–60.87) 5.56 (2.02–15.31) 0.40 (0.29–0.50)

90 +—M 0.83 (0.72–0.93) 96.67% (82.78–99.92) 46.88% (29.09–65.26) 25.59 (3.10–211.26) 0.76 (0.65–0.86)

[18, 60)—F 0.65 (0.54–0.76) 30.00% (14.73–49.40) 88.67% (82.48–93.26) 3.35 (1.32–8.50) 0.32 (0.15–0.47)

[60, 70)—F 0.73 (0.62–0.84) 36.67% (19.93–56.14) 90.67% (84.84–94.80) 5.62 (2.23–14.17) 0.40 (0.23–0.56)

[70, 80)—F 0.69 (0.58–0.81) 43.33% (25.46–62.57) 79.33% (71.97–85.51) 2.94 (1.29–6.69) 0.35 (0.21–0.49)

[80, 90)—F 0.72 (0.61–0.83) 63.33% (43.86–80.07) 68.67% (60.59–75.98) 3.79 (1.67–8.58) 0.40 (0.27–0.51)

90 +—F 0.76 (0.66–0.87) 80.00% (61.43–92.29) 52.89% (43.61–62.03) 4.49 (1.71–11.78) 0.43 (0.31–0.54)
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We also analyze the outputs provided by the ResNet model using the Grad-CAM algorithm to identify some 
recurrent patterns for the prediction of AF episodes and AF absence. We observe that the network focuses 
on P-waves and first half of QRS-complexes to predict AF episodes, while it focuses on the portions of ECG 
preceding P-waves and entire QRS-complexes to predict AF absence. Peculiar features automatically learnt 
by our ResNet model are mostly observable in leads I, aVL, V6 when predicting AF episodes (Supplementary 
Figures S2-S3) and in leads II, V4, V5 when predicting AF absence (Supplementary Figures S4-S5). Hence the 
features extracted from lead I, the only lead available when ECGs are measured with non-medical wearable 
 devices40, are promising. Wearable devices are less precise but give the possibility of recording ECGs anytime 
and anywhere. From our observations, P-wave is the key component of ECG signals in the task of AF predic-
tion. P-wave is clearly visible in ECG signals related to AF absence, in contrast with ECG signals preceding AF 
episodes where P-wave is minimum or missing.

Discussion
This study provides various insights into prediction of future AF with an AI-enhanced analysis of ECGs recorded 
during sinus rhythm. At first, we compare the performances of state-of-the-art AI models, three of which are 
convolutional neural networks (CNNs). CNNs have been employed with good results in  literature23–25 and allow 
the application of Grad-CAM algorithm to investigate how the input ECG signals are processed by the  network41. 
The results achieved with our three CNN-based models are promising and similar to each other, despite the dif-
ferent output layers of the three models. This fact emphasizes the strength of the features extracted with CNNs at 
the bottom layers. Also, the best AUC achieved in the scenario of random data sampling in terms of age and sex 
is consistent with the results of previous  studies23,25. However, in this study we carry out an analysis of the effect 
of the age distribution difference between AF and SR groups showing that, without age balancing, we can obtain 
very high values of AUC just by changing the age distributions of patients. The age of patients is a key aspect to 
take into consideration before applying AI-based models in real settings in order to obtain meaningful results.

The study also confirms that it is easier to predict AF for old and male patients, in accordance with a previous 
study where age represents the second most important factor for the AF score predictor  proposed9. However, 
the trend of AUC in the different groups of female patients is more unsettled. Multiple age-sex-specific models 

Figure 1.  Lead importance in the prediction of future AF. The average contribution of each lead-specific 
processed signal for the prediction of future AF is shown for the ten different age-sex-specific groups of patients. 
95% CIs are also reported for the average values computed.

Figure 2.  Lead importance in the prediction of AF absence. The average contribution of each lead-specific 
processed signal for the prediction of AF absence is shown for the ten different age-sex-specific groups of 
patients. 95% CIs are also reported for the average values computed.
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may be deployed with age-sex-specific datasets when a larger initial database with enough data in each age-sex-
specific group is available.

The analysis of lead contribution shows that lead-specific signals are exploited in different ways across age-
sex-specific groups of patients. Hence, we expect that age-sex-specific models can extract more accurate age-
sex-specific features and achieve better performances compared to a single model.

For the first time, ECG features extracted for AF prediction by an AI-enhanced model are analyzed with a 
particular focus on lead-specific contributions and age-sex-specific groups of patients. The outcome resulting 
from the application of Grad-CAM algorithm to our ECG samples can be examined by doctors to acknowledge 
the behavior of the network and possibly identify subtle traits of ECGs important for AF prediction. The analysis 
of lead importance across age-sex-specific groups of patients and the comparison of behavior when predicting 
the presence or absence of AF complement the outcome provided by Grad-CAM.

Our AI-based systems provide promising results and are simple to implement, although it is necessary to 
overcome some limitations before employing them in real situations. Detailed information about health state, 
impact of pharmacological and other therapy, and treatments of patients before their first AF onset is fundamen-
tal to rule out from the analysis those data with potentially misleading effects. Also, the SR group may include 
patients with undetected or asymptomatic episodes of paroxysmal AF within the temporal window of recorded 
ECG. This limitation is common to all the other similar studies. Finally, the availability of additional AF data 
would reduce the width of CIs in our experiments.

For future work, we can assess the feasibility of training autoencoders with the ECG samples discarded dur-
ing data cleaning. CNNs can extract robust features from ECGs and an appropriate use of autoencoders would 
leave more ECGs available for fine-tuning and testing the systems. The outcome provided by Grad-CAM can be 
further investigated to understand the causes of false predictions, in both AF and SR groups.

Methods
Study design and participants. This retrospective study is conducted with a database of ECGs collected 
from a large cohort of 122,394 patients at La Princesa University Hospital (Madrid, Spain) between May 5, 
2010 and February 4, 2019. The Clinical Ethics Committee from Hospital La Princesa approved this study with 
a waiver of obtaining informed consent from patients. All methods were performed in accordance with the 
relevant guidelines and regulations. The initial database contains 296,022 12-lead ECGs from 122,394 patients. 
Each ECG is measured with a sample frequency of 500 Hz and lasts ten seconds. ECGs have been processed by 
the Philips 12-Lead Algorithm (https:// phili ps. to/ 36CPa bZ) that provides an automatic interpretation of rhythm 
and extracts discrete variables related to global and lead-specific attributes of the signal. Variables and raw sig-
nals are stored in XML files together with information related to patients. Signals are preprocessed to main-
tain frequencies between 0.7 and 90 Hz and remove frequencies around 50 Hz, noisy due to power supply. We 
exclude from the study patients with no information about age and patients with only one recorded ECG, since 
they are not helpful in our analysis.

We identify in the database patients who developed AF at least once, according to the automatic interpreta-
tion given by the recording machine. Atrial flutter is treated equally to atrial fibrillation because of their close 
 interrelationship42. For each patient we define the AF index date as the date in which the first episode of AF 
occurred. The automatic interpretation of the ECG rhythm provided by commercial-off-the-shelf (COTS) record-
ing machines is prone to errors: a study showed that the positive predictive accuracy for non-sinus rhythms is 
only 53.5%10. In particular, the automatic interpretation of AF is incorrect between 9.3% and 19% of  ECGs43,44. 
On the other hand, the automatic interpretation of sinus rhythm has a positive predictive accuracy of 95%10. 
Hence, we trained a DNN-based classifier of ECG rhythms in order to doubly confirm any interpretation of 
AF provided by the Philips recording machine. To train and evaluate our rhythm classifier, we used a subset 
of ECGs manually labelled by cardiologists at La Princesa University Hospital. We achieved AUC of 0.9986 
(95% CI 0.9931–1.000) with a test set of 190 ECG samples that equally represented the two rhythms. With the 
rhythm classifier we computed a score for all those ECGs that represent the first episode of AF for a patient. We 
discarded patients whose ECG scores are below a fixed threshold of 0.3. In the set of ECGs with the automatic 
interpretation of AF that we checked, 3,066 of 11,707 ECGs (26.19%) were discarded. This operation aims to 
minimize the errors due to the interpretation of AF provided by the Philips recording machine, without having 
to manually check thousands of ECGs.

After this, we divide patients into two groups: (i) the ones who developed AF at least once along their clinical 
history, and (ii) the ones who only have ECGs in sinus rhythm along their clinical history. For patients in both 
groups, we only consider ECGs that present an automatic interpretation of “sinus rhythm”, according to our 
goal of predicting AF from normal-rhythm ECGs that do not contain clear evidence of AF yet. For each patient 
in the SR group, we define the SR index date as the date of their last recorded ECG. In both groups we apply 
the following exclusion criteria: ECGs with age < 18 years, with extrasystoles, with atrial to ventricular ratio > 2 
or < 1/2, with an average number of P waves per QRS complex ≠ 1, and with number of QRS complexes in the 
rhythm group higher than the average number of P waves per QRS complex. These rules are set to avoid atrial 
oversensing secondary to artifacts and to increase the specificity of sinus rhythm  diagnosis9.

Time windows. Time windows are defined for each patient according to their AF or SR index date and con-
sist of temporal intervals containing the ECGs of interest in our experiments. Several concerns have been raised 
regarding ECG selection  in23: in particular, only the first ECG in a 24-year period is considered for patients in 
SR  group45 and the median distance between SR ECGs in the AF group and their AF index date is 0  days46. In 
our study, ECGs in the initial database are collected in a 9-year period and multiple ECGs from the same patient 
may be selected in experiments, potentially reducing the time distance between ECGs in the AF and SR groups 

https://philips.to/36CPabZ
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due to the different criteria used for ECG selection. Unless otherwise specified, for each patient in AF group, we 
consider time windows that include ECGs recorded between two months and one week before their AF index 
date for the evaluation of the models, and ECGs recorded before their AF index date for the training of models. 
In this way we avoid the otherwise likely inclusion of SR ECGs recorded after electrical, pharmacological, or 
spontaneous cardioversion that could alter the ECG in ways detected by the AI  algorithm46. Differently from 
other  studies23,25 and according to a previous  work9, ECGs recorded in the last week before AF are ruled out for 
evaluation. Hence, we do not consider ECGs that may refer to hospitalized patients, whose AF may be induced 
by causes that are out of the scope of this work. Unless otherwise specified, for each patient in SR group we con-
sider only ECGs recorded at least two years before the SR index date. This constraint increases the confidence 
that SR data employed in the experiments are at least two years far from potential episodes of AF, that may not 
be included in the initial database.

AI models. We define six AI models and investigate their ability to predict AF exploiting different kinds 
of features automatically learned from 12-lead raw ECGs. The first three models have the same bottom layers, 
obtained from a CNN named Residual Network adapted to time  series41, and different output layers. The bot-
tom layers consist in three residual blocks, each of them followed by a dropout layer that prevents overfitting. 
With the same purpose, a gaussian noise with standard deviation equal to 0.1 is added to the processed signal 
after each dropout layer. All the convolutional layers in the first block have 128 filters, while in the next two 
blocks they have 256 filters. Within residual blocks, each convolutional layer processes signals along the tempo-
ral dimension. Signals are combined along the lead dimension only at last layers.

The last three models are: recurrent neural network (RNN), wavelet scattering, and multivariate logistic 
regressor (MLR). The input signal of the first four models is two-dimensional: the one-dimensional 10-s signals 
provided by the different leads are aligned and joined in a second dimension. These models extract features 
related to the temporal evolution of the ECG signals. For the fifth model, the 12 one-dimensional signals related 
to single leads are processed individually and combined at a later layer of the architecture. The model extracts 
features related to the frequency domain of ECG signals. Finally, the input of the sixth model is composed of 
discrete features extracted from the ECG signals during recording.

The output of each model represents the risk of future AF for patients whose ECGs are provided in input. We 
call the risk “AF score”. Here we further describe the six models:

• ResNet. After the third residual block, a global average pooling layer averages the two-dimensional values 
computed for each of the 256 feature channels. The resulting values are processed by a fully connected layer 
that outputs the AF score.

• ResNet with age and sex inputs. After the third residual block, a global average pooling layer averages the 
two-dimensional values computed for each of the 256 feature channels. The resulting values are processed 
by a fully connected layer that outputs four aggregated features. They are concatenated with two numerical 
values, representing the age and the sex of the patient, and processed by another fully connected layer that 
outputs the final AF score.

• ResNet + recurrent layers. After the third residual block, a convolutional layer merges values along the lead 
dimension and outputs a two-dimensional signal, with temporal and filter dimensions, that is processed by 
two stacked LSTM layers and one fully connected layer to output the AF score.

• Recurrent neural network. In this model, only the first 5 s of ECG signals are processed. They provide results 
comparable to 10 s-signals at lower computational costs. Max pooling (pool size = 4) is performed on the 
temporal dimension of each lead-specific signal. Then, the resulting values are processed by two stacked 
LSTM layers, a dropout layer and a fully connected layer that outputs the AF score.

• Wavelet scattering. Each single-lead signal of the ECG is processed by a wavelet scattering network with an 
invariance scale equal to 5 s and two filter banks, the first with eight wavelet filters per octave and the second 
with two filters per octave. The network extracts frequency-related features from the input signal and gener-
ates a two-dimensional scattering transform, whose dimensions represent the consecutive time intervals of 
the signal and the coefficients computed for each of them. For every ECG and time interval, we select the 
scattering coefficients related to all the 12 leads and provide them as input to another neural network, com-
posed of multiple fully connected layers. The last layer outputs the AF score. For every ECG, the average of 
AF scores related to the different time intervals is computed.

• Multivariate logistic regressor. This model exploits a subset of the discrete features computed from ECGs 
during recording. The original model is proposed in another  study9, where features are selected with statisti-
cal analysis. Here we do not consider the ’distance’ feature because it assumes two different meanings in the 
two studies.

Statistical analysis. Our first five AI models are trained for multiple epochs, until the early stopping con-
dition is fulfilled. They are evaluated on the validation dataset and in the training phase we set not having a 
decreasing loss for six epochs. The threshold that we consider for the analysis of model accuracy is selected by 
computing the receiving operation characteristic (ROC) curve of the validation set at the best epoch. At this 
threshold, the values of sensitivity and specificity are equal. The AI models are implemented in Python version 3 
and machine learning packages include scikit-learn and keras. The wavelet scattering network is implemented in 
MatLab. In the first phase of our analysis, we compute AUC to compare different models and different impacts 
on performance provided by datasets built in different scenarios. In the second phase, we compute AUC, sensi-
tivity, specificity, diagnostic odd ratio (DOR), and  F1 score with confidence intervals (CIs) of 95% to accurately 
evaluate the model performance achieved in different age-sex-specific groups of patients. CIs for AUC and DOR 
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are computed with closed-form expressions, CIs for sensitivity and specificity are computed with MedCalc Soft-
ware Ltd (https:// www. medca lc. org/ calc/ diagn ostic_ test. php), and CIs for  F1 score are computed using boot-
strap with 10 000 replications.

Data availability
Anonymized data analyzed during the current study are available from the corresponding author on reasonable 
request, if approved by the Clinical Ethics Committee of the Hospital.
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