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Abstract. This paper presents a systematic and accurate treatment of the evolution of
cosmological perturbations in self-interacting dark matter models, for particles which decoupled
from the primordial plasma while relativistic. We provide a numerical implementation of the
Boltzmann hierarchies developed in a previous paper [JCAP, 09 (2020) 041] in a publicly
available Boltzmann code and show how it can be applied to realistic DM candidates such
as sterile neutrinos either under resonant or non-resonant production mechanisms, and for
different field mediators. At difference with traditional fluid approximations - also known as
a ceff − cvis parametrizations- our approach follows the evolution of phase-space perturbations
under elastic DM interactions for a wide range of interaction models, including the effects
of late kinetic decoupling. Finally, we analyze the imprints left by different self interacting
models on linear structure formation, which can be constrained using Lyman-α forest and
satellite counts. We find new lower bounds on the particle mass that are less restrictive than
previous constraints.
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1 Introduction

The nature, mass and dynamics of the dark matter (DM) particles are still a mistery that have
sparked several extensions to the standard model of particle physics. Most of the evidence
of its existence comes from astrophysical and cosmological observations, from which we can
search for clues about its behaviour [1, 2]. So far, the most likely explanation for the dark
matter phenomenology has some sort of microscopic origin [3–5]. In the standard model
of structure formation, DM haloes form on a “bottom-up” hierarchy: small scales collapse
first to form virialized objects, later merging and accreting into larger ones [1, 6, 7]. This
paradigm is in remarkable agreement with observations at large and small scales, such as the
distribution of large-scale structure [8, 9], CMB anisotropies [1] and the internal structure of
DM haloes [2]. However, recent observations at small scales have become challenging to be
described within the paradigm [10]. Such observations include a number of satellite galaxies
in the Milky Way that is far smaller than predicted (the “missing satellite problem”)[11–13];
the lack of observation of the most massive haloes, which are predicted to be luminous (the
“too big to fail” problem)[14]; and inconsistencies with the inner structure of dSph galaxies
(the “core-cusp” problem) [10, 15, 16], among others.

While these tensions by no means rule out the concordance model, as they can be
alleviated within ΛCDM itself, they have raised an increasing amount of interest in alternative
DM models which may reduce these tensions in a more natural way. Some of the earliest
approaches to these alternative models imply modifying the DM fluid’s properties themselves.
The earliest approaches include a DM mixture of CDM and a “hot” version of DM; low mass
particles with a velocity dispersion such as to erase small scale structure [17, 18]. Related
to this approach, recently there has been growing interest in the field of interacting dark
matter: while some of these models propose interactions between CDM and standard model
particles, others assume a dark mediator field with low mass, interacting with CDM and
contributing to the energy density budget of the universe. These types of models are widely
known as “Self Interacting Dark Matter” (SIDM): such self interactions, apart from modifying
the cosmological evolution of these particles, affect significantly the clustering of matter in
N-body simulations, as collisions can flatten the inner regions of most galaxies in CDM,
reconciling these values with observation and alleviating the core-cusp problem [19–21]. Some
particle physics models for SIDM may involve mirror world DM (see [22, 23] and references
therein), light or heavy mediators through a broken U(1) symmetry [24–26], non Abelian
interactions [27] or “dark atoms” [28], to name a few.

Other promising approaches include “Warm Dark Matter”(WDM): these models slightly
reduce the preferred mass ranges of DM enough to include a moderate amount of initial velocity
dispersion and free streaming, sufficient to erase some of the smallest scale structure [29–31].
If this free streaming length today is smaller than the size of galaxy clusters, it can alleviate
the missing satellites and too-big-to-fail problems [32–34]. Traditionally, these particles were
also expected to generate DM cores in haloes and solve the core-cusp tension, however in
recent years it has been shown that the WDM particle mass required for this to happen
in N-body simulations is inconsistent with phase-space constraints [35, 36]. Nevertheless,
different approaches to DM halo structure may indeed relax these tensions, in particular the
ones considering halo formation from a maximum entropy production principle, which can
account for the expected DM distribution and halo-sizes in dSphs, while being in agreement
with phase-space bounds [37].
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A promising extension to the standard model of particle physics that naturally leads
to these types of WDM models can be found in νMSM (neutrino minimal standard model),
which includes intermediate mass sterile neutrinos [31, 38]. For such model, the preferred
production mechanism involves active-sterile oscillations in the neutrino fluid, around the
time of the quark-hadron transition [39–41]. It is possible to strongly constrain these models
using a set of cosmological and astrophysical data. Indeed, a combination of limits from DM
production; constraints from the predicted X-Ray radiative decay of sterile neutrinos; and
structure formation bounds such as MW subhalo counts and Lyman-α forest severely reduced
the allowed region in the parameter space of the models [34, 38, 42–45]. In fact, this last set
of observations have, in recent years, almost completely ruled out this particular realization
of WDM [34, 44, 45].

These tight constraints may be alleviated by performing simple extensions to this basic
sterile neutrino WDM paradigm. In this work, we aim at a particular subset of these extensions,
that combines both WDM and SIDM approaches, which we label as “Self Interacting Warm
Dark Matter” (SI-WDM). Previous studies have suggested that including self interactions
in WDM sterile neutrino may contribute to its production in the early universe [31, 46–48],
others have studied the effects of WDM in self interacting N-body simulations [49], while
others have explored the νMSM parameter space with the inclusion of self interactions [48].
Moreover, it has been recently suggested that self interactions in WDM may play a significant
role in the evolution of cosmological perturbations. That is, many studies have shown that
strongly self interacting light DM (with particle masses ranging from O(1− 100) keV) will
remain in kinetic equilibrium until late times: this significantly modifies the linear evolution
of cosmological perturbations, with respect to non-interacting models [50–53] 1.

Following the footsteps of a previous work [54], where a full theoretical framework was
given in order to treat the linear evolution of SI-WDM perturbations, we seek to improve
these earlier numerical studies on several aspects and provide a more accurate framework for
studying the evolution of SI-WDM, at the same time providing a comprehensive theoretical
framework and developing a straightforward numerical application. To this end, we develop an
extension of the public Boltzmann solver CLASS v2.7.2 [55], and provide a free distribution link
at github.com/yunis121/siwdm-class. We begin with an accurate approach to the Boltzmann
collision term in cosmological perturbation theory as in [54], and consider several SI-WDM
candidates, interactions and production mechanisms. Then, we properly introduce the
necessary approximations for a feasible numerical application, paying special attention to the
relaxation time and tight coupling approximations. Regarding the evolution of cosmological
perturbations, many authors choose to compute the evolution of self interacting warm species
using a fluid-like approximation (also known as a ceff − cvis parametrization) either during
its entire evolution as in [51, 52], or up to self-interaction decoupling [53]. However, it
has been argued in [56, 57] and shown in [58], that those fluid-like approximations, typical
of CDM scenarios, provide inaccurate results for the computation of the power spectrum
for self-interacting neutrinos and WDM respectively, and several doubts have been raised
[28, 56, 59] about its physical meaningfulness.

1While finalizing this manuscript, the work [53] was presented on arXiv which studies WDM together with
self interactions including the effects of kinetic coupling until the non-relativistic transition. Though they
implemented approximations such as instantaneous self-interaction decoupling and a partial-fluid description
which are superseded by our more self-consistent approach, both works show relaxed bounds when including
the self interaction effects.
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Thus, we choose here to fully follow the evolution of the perturbations to the background
DM distribution function, accounting for the elastic DM interactions self-consistently through-
out the evolution of the species and up to today. This implies a more rigorous approach to
the evolution of SI-WDM perturbations with respect to previous works on the subject (see
above), which either use fluid parametrizations or focus solely on the background evolution.
Throughout this work, we present these self-interacting models as minimal extensions to
existing WDM candidates (such as the sterile neutrino νMSM) instead of effective toy models
(such as the scalar field DM models [60]). This has the advantage of presenting numerous
constraints from various sources to the parameter space, and including our models in a more
realistic framework that can account for several other processes such as DM production, baryo-
genesis and neutrino mass. We leave for a future work the possible effects self interactions may
have on these predictions. The evolution of DM perturbations typically leave their strongest
imprint in observables such as the CMB, Milky Way satellite counts and the Lyman-α forest
[10, 31, 61]. We consider these last two and compare our results with observations, obtaining
the strongest constraints on the mass of the DM particles from the Lyman-α forest.

The paper is organized as follows. In the remaining of this introduction, we will explore
and discuss several production mechanisms for WDM, as the distribution function resulting
from these processes will have significant consequences on the evolution of perturbations and,
consequently, on structure formation observables. Afterwards, following from [54], we will
present in section 2 the full formalism for SI-WDM in linear theory. We will recall some
previous results on the Boltzmann collision terms, explore the relaxation time approximation,
discuss about different regimes of DM self decoupling (introducing the non-relativistic self
decoupling regime) and provide simple forms for the relevant quantities ideal for numerical
implementation. This will be fully explored in section 3, where we give details on the
development of a SI-WDM linear cosmology solver based on CLASS, together with relevant
approximations. We also include in that section a numerical application of non-relativistic
self decoupling and present some initial results on the power spectra obtained. With that in
mind, in section 4 we compare the results from this solver with observations. We will focus
particularly on the predicted number of MW satellites and the Lyman-α forest observations.
We explore the results of these analysis for various initial conditions, and compare the self
interacting alternative to the standard νMSM. Finally, in section 5 we draw out conclusions.

1.1 WDM Production in the Early Universe

Before introducing the assumptions and governing equations of SI-WDM as a whole, it is
important to discuss briefly about its production in the early universe. This discussion serves
a two-fold purpose. Firstly, a relevant model should allow DM to be sufficiently produced in
the early universe as to match its abundance today. Secondly, the production mechanism gives
the initial condition for the whole structure formation process, which results in additional
constraints on the model [31, 41]. An interesting example that is constrained by the latter
but not the former is Hot Dark Matter (HDM) [62], which can be efficiently produced in
equilibrium with the hot plasma but their resulting high velocity dispersion does not reproduce
the observed DM halo assembly history [6]. Thus, it is important to consider the possible
production mechanisms for these models as a first step in their analysis.

There have been recent advancements in exploring some models of WDM production
in the presence of self interactions, with varying degrees of success in describing the DM
abundance as observed today [46, 47]. We choose to avoid these questions for now, as they
exceed the scope of this work, mostly aimed at discerning these effects at the level of linear
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theory of perturbations. Thus, along this work we will simply explore a few relevant WDM
production mechanisms, assuming that they are not significantly altered by the presence of
self interactions (other than in a few obvious aspects such as thermalization of the initial
distribution function (DF), see section 3) and observe the consequences at the level of
structure formation. We remind the reader that we do not explore whether or not dark matter
production is significantly modified by the presence of self interactions, and we aim to address
these questions and provide a more in-depth treatment in future works.

Having clarified this, we will consider a few production mechanisms for these models:
namely thermal production and production through active-sterile neutrino mixing (both on
the resonant and non-resonant scenarios). The first scenario is the most straightforward,
DM particles are produced in equilibrium in the hot plasma through interactions with other
species and, as their interaction rate falls, they decouple from the hot plasma and evolve
independently from the other species. This scenario is very similar to WIMP decoupling,
however they decouple while relativistic with a relatively high particle mass, generally seen as
incompatible with them being produced at the same time as WIMPS or neutrino HDM, when
weak force interactions decouple (see e.g. [61]). Indeed, the abundance today for a particle
that decouples while relativistic is approximately [63]

Ωi,0h
2 ≈ 7.64 × 10−2

[
gi,eff

g∗,s(Tf)

](
mi

eV

)
, (1.1)

where gi,eff = gi for bosons, gi,eff = (3/4)gi for fermions, gi the spin degeneracy of the species
and Tf its freeze-out temperature. This indeed results in overproduction for typical WDM
masses of m ∼ O(keV), unless the particles are produced much earlier, when the number of
relativistic degrees of freedom g∗ is much higher than ∼ 103 [61]. Thus, thermal models are
assumed to be produced at extremely high energies on an equilibrium background distribution,
with an overall temperature of (T/Tν)3 = ΩDMh

2(94 eV/m) if we assume these to take up
the whole DM budget in the universe [61].

While these thermal models are easily extended to many DM candidates, the other
models we will consider are particular for the case of sterile neutrinos. Typical sterile neutrinos
are heavier, mostly right handed companions of the active neutrinos, with the lightest of these
particles acting as WDM. There exists mixing in these models between active and sterile
species, measured by the angle θ, which in the models considered here contributes to both
their production and decay. When discussing these sterile neutrino models, we will mostly
focus on a particular realization of these, which involves a minimal extension to the standard
model of particle physics: νMSM (see e.g. [31, 38] for comprehensive reviews).

Indeed, DM production in these models results from the quantum oscillations between
active and sterile neutrinos in the hot plasma. In the cases relevant to sterile neutrino DM, the
Boltzmann equation for the quantum-damped, collisionally driven sterile neutrino production
is [41]

∂fνs
∂t
−Hp∂fνs

∂p
=

∑
νµ+a+...→i+...

∫
d3pa

(2π)32Ea
...

d3pi
(2π)32Ei

(2π)4δ4
D(p+ pa + ...− pi − ...)

× 1
2
[
〈Pm(νµ → νs)〉 (1− fνs)

∑
|M|2i+...→a+νµ+... fi...(1± fa)(1− fνµ)...

− 〈Pm(νs → νµ)〉 fνs(1− fνµ)
∑
|M|2µν+a+...→i+... fa...(1± fi)...

]
.

(1.2)
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The r.h.s. of this equation sums up all interactions that produce or consume, in this case,
a muon neutrino, with the respective Bose enhancement and Pauli blocking terms (1± f).
The Pm are the active-sterile oscillation probabilities in matter modified by interactions with
the medium, which are parametrized by neutrino self energy and quantum damping. The
oscillation probability Pm then reads

〈Pm(νµ ↔ νs; p, t)〉 =
1
2∆2(p) sin2 2θ

{
∆2(p) sin2 2θ +D2(p) +

[
∆(p) cos 2θ − V L − V th(p)

]2} (1.3)

where ∆(p) is the vacuum oscillation rate ∆(p) ≡ δmνµ,νs/2p, δmνµ,νs is the mass difference
between active and sterile neutrino, the quantity D(p) is the quantum damping rate (half
the interaction rate of active neutrinos) and the neutrino self energy is split into the lepton
asymmetry potential V L and the thermal potential V th. More information on these potentials,
as well as detailed calculations can be found in [41].

Two distinct regimes appear in this case: first, under no initial lepton asymmetry the
potential V L becomes zero. This situation, as originally proposed by [64], is known as
non-resonant production. In this case, the resulting distribution function of sterile neutrinos
roughly follows the one for active ones, but normalized depending on the mixing angle θ.
Thus, in this last production scenario, only a small window of mixing angles can provide the
correct DM abundance today.

However, in the presence of a nonzero lepton asymmetry the potential V L enhances
the production rate, allowing for smaller mixing angles and, at the level of the distribution
function, resulting in a nonequilibrium function which is generally colder [39, 40]. This
mechanism, in the presence of a significant lepton asymmetry, is the scenario known as
resonant production. The resulting background distribution functions depend on the mixing
angle, particle mass and lepton asymmetry values; and their shapes are typically computed
numerically (see [41] for a typical application, together with a public numerical tool).

It is important to remark here that the form of the Boltzmann equation (1.2), particularly
the interaction terms, are the ones responsible for DM production and most relevant in the
early radiation dominated era. Later in this work, we will use a different form of the Boltzmann
equation to calculate the evolution of perturbations (equations (2.2) and (2.16)), in which we
neglect this production term and only consider elastic DM collisions. This is due to the fact
that the perturbations typically evolve later in cosmological history. However, the details of
DM production still affect the evolution of perturbations as they act as initial conditions for
the background distribution function.

2 Boltzmann Formalism for Self Interactions in WDM

In a previous paper [54], we introduced a full framework to study the effect of self interactions
in WDM in Cosmological Perturbation Theory and its impact on the linear power spectrum.
In particular, we considered an extension to [57] where the full collision integrals are calculated
for a scalar mediator and effectively massless particles, and extended it for massive particles,
maintaining a certain degree of generality in the mediator model.

While the formalism we develop is fairly general, a key task of the present work is to
calculate the effects on cosmological observables under a certain scenario, described by the
following hypotheses:
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• We consider a typical (fermionic) WDM particle of mass O(1−50) keV, that is produced
and also decouples from the plasma while being relativistic, and becomes non-relativistic
in the radiation dominated era (see, for example, [31]). In any case, the formalism
itself makes no assumptions on particle mass, so limiting forms (either relativistic or
non-relativistic) can provide accurate treatment for light and heavy relics, provided the
other assumptions here listed are met.

• We assume that, after production/decoupling from the plasma, the only form of interac-
tion is an elastic self interaction. We further assume that these effects can be modeled
by a tree-level scattering process following Feynmann rules of e.g. [65, 66] (Note: the
amplitudes presented here apply only for Majorana fermions) 2.

• We neglect the cosmological population of mediator particles, and avoid calculating the
evolution of the mediator fields themselves. This is a justified assumption on massive
mediator scenarios: the initial population of mediators is assumed to have already
decayed at Tγ < mmed (the mediator mass), and further production is kinematically
supressed. The case for massless mediators has been briefly discussed in [54] and
thoroughly discussed in [56] for light DM.

• In order to model these self interactions, we work under a specific ansatz for the
scattering amplitude:

|M|2 = At(s)t2 +Bt(s)t+ Ct(s) = Au(t)u2 +Bu(t)u+ Cu(t) (2.1)

where At, Bt and Ct are simple functions of s and Au, Bu and Cu are simple functions
of t, where s, t, u are the Mandelstam variables, and the two expressions are related by
s+ t+ u = 4m2. This ansatz includes various massive mediator cases, as well as a few
others, and we explicitly presented results in [54] for three different mediator models:
Constant Amplitude, Massive Scalar and Massive Vector Field.

In this section, we will provide a brief summary of the results in [54] and provide some
new concepts. First, we will summarize the full framework for studying Boltzmann Hierarchies
in the scenarios we introduce in that previous work. Then, we present the Relaxation Time
Approximation used to construct Boltzmann Hierarchies and specialize the results in [54]
to the specific models we consider in section 1. Finally, we will study the evolution of the
background distribution function f0 under these models and provide here a self-consistent
study on the effects of self interaction decoupling, superseding (most) of the previous results
in the literature.

2.1 Formal Boltzmann Framework

Following the derivations in [54], the linear Boltzmann hierarchy for SI-WDM is given by:

2A notable example where this is not the case is in light mediator models: as the DM particle becomes
non-relativistic, scattering increasingly relies on the effects of point-charge potentials. In terms of Feynmann
diagrams, this means that events where many mediator particles are exchanged in each process become
increasingly relevant [27, 67].
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Ḟ0(k,Eq, τ) =− qk

Eq
F1(k,Eq, τ) + ḣ

6
∂f0

∂ ln q

−G0aF0(k,Eq, τ)Γ(Eq, τ) +G0a

∫
dElF0(k,El, τ)K(1)

0 (Eq, El, τ)

Ḟ1(k,Eq, τ) = qk

3Eq
F0(k,Eq, τ)− 2qk

3Eq
F2(k,Eq, τ)

−G0aF1(k,Eq, τ)Γ(Eq, τ) +G0a

∫
dElF1(k,El, τ)K(1)

1 (Eq, El, τ)

Ḟ2(k,Eq, τ) = qk

5Eq

[
2F1(k,Eq, τ)− 3F3(k,Eq, τ)

]
− ∂f0

∂ ln q

[
1
15 ḣ+ 2

5 η̇
]

−G0aF2(k,Eq, τ)Γ(Eq, τ) +G0a

∫
dElF2(k,El, τ)K(1)

2 (Eq, El, τ)

Ḟl(k,Eq, τ) = qk

(2l + 1)Eq

[
lF(l−1)(k,Eq, τ)− (l + 1)F(l+1)(k,Eq, τ)

]
−G0aFl(k,Eq, τ)Γ(Eq, τ) +G0a

∫
dElFl(k,El, τ)K(1)

l (Eq, El, τ) , l ≥ 3

(2.2)

in the synchronous gauge, defined by the line element ds2 = a2(τ)
{
−dτ2 + (δij + hij)dxidxj

}
,

where the scalar mode of the perturbation hij can be described in terms of two fields h(~k, τ)
and η(~k, τ), the trace and traceless parts of the hij perturbation in Fourier space, respectively.
An overdot denotes derivation with respect to comoving time τ , and moments ~q = a~p are
comoving proper momenta, with ~p the proper momentum measured by an observer in a fixed
spatial coordinate, and Eq =

√
m2 + q2/a2, with m the DM mass.

The various kernel moments are defined as:

Γ(Eq, τ) = 1
Eqq

∫
dEldsf0(El)χ(s) , (2.3)

K(1)
l (Eq, El, τ) = −χl(Eq, El)f0(Eq) + 2 1

Eqq
Kl(Eq, El, τ) , (2.4)

with G0 = 1/[4(2π)3], s refering to the Mandelstam variable s ≡ (q + l)2 and, for the purposes
of the integration kernels Γ,K the momenta q is not comoving: q ≡

√
E2
q −m2. Integration

over these terms (and in all definitions) runs over the whole range of the variable when
integration limits are not specified. The l-th moment of the perturbed DF, Fl, is defined as in

F (|k|, |q|, cos ε) =
∞∑
l=0

(−i)l(2l + 1)Fl(|k|, |q|)Pl(cos ε) ,

Fl(|k|, |q|) = il

2

∫ 1

−1
d cos εF (|k|, |q|, cos ε)Pl(cos ε) ,

(2.5)

and Kl, χl the Legendre transforms of the K, χ kernel functions are defined as in

Kl(Eq, El, τ) ≡
∫
dsK(Eq, El, s, τ)Pl(cos θ(s)) . (2.6)

The K, χ functions, the proper kernel functions, encode the behaviour of the particular
mediator model and are defined in terms of the coefficients (2.1) as:
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χ(s) = 1
3At(s− 4m2)2 + 1

2Bt(s− 4m2) + Ct , (2.7)

K(Eq, Eq′ , t, τ) =
{

Au

8|~q − ~q′|5

{
〈f0〉2

[
4t
(
3(Eq + Eq′)2t− ((Eq − Eq′)2 − t)(−4m2 + t)

) ]

+ 〈f0〉1

[
4t(4(Eq − Eq′)2(Eq + 3Eq′)m2

− 4(Eq(Eq − Eq′)(Eq + 2Eq′) + (Eq + 3Eq′)m2)t+ (Eq + 3Eq′)t2)
]

+ 〈f0〉0

[
(48(Eq − Eq′)4m4 − 16(Eq − Eq′)2m2(2E2

q − 3EqEq′ + 6m2)t

+ 8(E2
q (Eq − Eq′)2 + (7E2

q − 12EqEq′ + 3E2
q′)m2 + 6m4)t2

− 4(2E2
q − 3EqEq′ + 6m2)t3 + 3t4)

]}

+ Bu

2|~q − ~q′|3

{
〈f0〉1

[
t(Eq + Eq′)

]
+ 〈f0〉0

[
2(Eq − Eq′)2m2 + 2Eq(−Eq + Eq′)t− 4m2t+ t2

]}

+ Cu

|~q − ~q′|
〈f0〉0

}
(2.8)

with the background distribution moments 〈f0〉i defined as:

〈f0〉n (Eq, Eq′ , t, τ) =
∫ ∞
R2

dEl′f0(El′ , τ)Enl′ , (2.9)

which are functions of (Eq, Eq′ , t) only through R2, defined as

R2 = 1
2

Eq − Eq′ − |~q − ~q′|
√

1− 4m2

t

 .

The Boltzmann Hierarchy (2.2) provides an accurate, relatively model-independent
approach to the collisional Boltzmann hierarchies in the DM cosmological scenario above de-
scribed. Once the interaction model amplitude is specified in equation (2.1), these Boltzmann
hierarchies can be solved coupled to the Einstein equations in order to provide an accurate
description of SI-WDM. While the expressions are lengthy, most of these model-dependent
kernels have forms relatively straightforward to evaluate and all these kernels can be precom-
puted, once the evolution of f0 is known. The evolution of the background distribution f0
due to elastic self interactions is also given in [54], and we refer the reader to section 3.2 there
for a full expression of the collision terms.

Still, in order to provide a better understanding of these collision terms and their broad
effects on the cosmological evolution, it is always useful to provide some more straightforward
approximation to the collision terms in these hierarchies. In the rest of this section we will
review how to bring this exact operator into a simpler form, provide approximate Boltzmann
hierarchies (yet portraying accurately the general behaviour of elastic collisions) and use
this formalism to better comprehend the cosmological evolution of the SI-WDM component.
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This approach of providing approximate forms for the collision terms in the Boltzmann
equation comes into contrast with previous works on the evolution of SI-WDM, which choose
to avoid calculating perturbations to the distribution function entirely by relying on a fluid
approximation of the energy-momentum tensor [51, 52, 68]. However, it has been shown in
[56, 57] to not accurately portray the evolution of species that decouple while relativistic and
methods based on the full Boltzmann hierarchies were favored.

2.2 Relaxation Time Approximation
The evolution of the collisional DM fluid can be approximated in a simpler way by noting the
general behavior of the collisions in the phase space density f(~k, ~q, τ) as a whole. Statistical
systems evolving through the Boltzmann equation with a significant collision term tend to relax
to their local equilibrium distributions due to entropy maximization: these equilibrium forms
carry the particularity of nullyfying the Liouville operator, the collision term and it can be
shown to satisfy the detailed balance condition ln [feq(q)]+ln [feq(l)] = ln [feq(q′)]+ln [feq(l′)]
with the 4-momenta q, l,q′, l′ satisfying conservation of total 4-momentum, where the primed
momenta correspond to the outgoing particles in an interaction.

In general, it can be shown [69] that in a FLRW expanding universe there is no general
equilibrium distribution function, i.e., there is no function feq that satisfies L(feq) = 0 at all
times under this metric. However, solutions can be found in two limiting cases:

feq(p, t) =

frel(p, t) ∝ e
−βpa(t), if p� m

fnrel(p, t) ∝ e−β
p2
2ma

2(t), if p� m
(2.10)

with β a constant, usually interpreted as the inverse of the temperature today and p the
physical momentum, and we have suppressed quantum effects in feq for simplicity, see [70] for
a full expression. We will refer to frel as the relativistic equilibrium DF and to fnrel as the
non-relativistic equilibrium DF.

Taking into consideration this behavior, we can construct a much simpler operator for
the collision term that recreates the expected behavior for small departures from equilibrium:(

∂f

∂t

)(1)

col
= −f(~x, ~p, τ)− feq(~p, τ)

τrel(q)
(2.11)

where τrel is a quantity known as relaxation time and feq is a local equilibrium distribution
function - in the context of cosmology, we will specify this local equilibrium function to be
the background DF, f0, that describes the isotropic evolution.

This approximate form is known as the Relaxation Time Approximation (RTA). In general,
this operator will qualitatively “erase” all perturbations to f0 bringing the system back into
equilibrium (even erasing collisional invariants such as number and energy densities). The
quantity τrel governs the time scale in which these perturbations relax back into equilibrium
and, in general, the rate of change of the distribution function as a whole. This approximate
form can be obtained from the full collision term by assuming that the perturbation to the
DF is highly localized in momenta or, equivalently, forcing the evolution of the perturbations
to be local in momentum space.

It has been shown in a previous paper [54] that this quantity can be expressed in terms
of the collision kernel χ as:

τrel(q)−1 = −D2[feq](q, τ)
feq(q, τ) = g3

i

32(2π)3Eqq

∫
dEldsfeq(El, τ)χ(s) (2.12)
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where feq is now an equilibrium DF, gi is the number of spin degrees of freedom of the
DM particle and, in the last equality, momenta and energies are defined as in (2.2). In
general this expression is momentum dependent, but it is possible to further simplify this
approach by constructing a momentum independent thermal average of the relaxation time
〈τrel(q)〉th ≡ τrel =

∫
d3qτrel(q)feq(q, τ)/

∫
d3qfeq(q, τ). Thus, the thermal averaged relaxation

time (hereby, just relaxation time) can be expressed in terms of collision kernels as:

τ−1
rel = g3

i

32(2π)3

∫
dEq dEl ds feq(Eq, τ) feq(El, τ)χ(s)∫

dEq q Eq feq(Eq, τ) , (2.13)

assuming the azimuthal angle ψ between ~q and ~l has already been averaged out (see [56]).
At this stage, one can draw a parallelism between this kernel function χ and the invariant

rate defined in [71], as R ∝ χ. Also, through the invariant flux F = 1
2
√
s(s− 4m2) 3, we

find that σF = 4EqElσvmol = g2
i
4 χ with σ the total cross section of the interaction and vmol

the Moller velocity. This allows us to put this relaxation time in terms of more well-known
expressions as:

Γ ≡ τ−1
rel = n 〈σvmol〉 = n

∫
d3q d3l σvmol feq(q, τ) feq(l, τ)∫
d3q d3l feq(q, τ) feq(q, τ) (2.14)

where Γ is the interaction rate, n is the DM number density and, to keep the same nota-
tion/normalization as in [72, 73], we use σvmol = g2

i /4
4EqElχ. This form allows us to compare

with their results and to condense the overall normalization of the distribution function in n4.
With this simpler form for the relaxation time, constructing a Boltzmann Hierarchy

becomes straightforward: in terms of the perturbations to the cosmological background DF,
the approximate form (2.11) becomes(

∂f

∂t

)(1)

col,l
≈ −Fl(k, q, τ)

τrel
(2.15)

where we have used the momentum averaged relaxation time τrel and, by making use of this,
the full Boltzmann Legendre expansion is relatively simple:

Ḟ0(k,Eq, τ) '− qk

Eq
F1(k,Eq, τ) + ḣ

6
∂f0
∂ ln q

Ḟ1(k,Eq, τ) ' qk

3Eq
F0(k,Eq, τ)− 2qk

3Eq
F2(k,Eq, τ)

Ḟ2(k,Eq, τ) ' qk

5Eq

[
2F1(k,Eq, τ)− 3F3(k,Eq, τ)

]
− ∂f0
∂ ln q

[
1
15 ḣ+ 2

5 η̇
]
− aF2(k,Eq, τ)

τrel

Ḟl(k,Eq, τ) ' qk

(2l + 1)Eq

[
lF(l−1)(k,Eq, τ)− (l + 1)F(l+1)(k,Eq, τ)

]
− aFl(k,Eq, τ)

τrel
, l ≥ 3 .

(2.16)
3In general, as seen in [71], the general expression for the invariant flux is F = n1n2

p1.p2
E1E2

Vr with n1,2 the
number density and Vr the special relativity relative velocity. In this case, the expression reduces to this form
assuming that one particle states are normalized to 2E and that incoming and outgoing particles are of the
same species.

4It is important to differentiate this definition for σvmol from the one used in [54]. In that case, the
normalization and definition for the cross section matches [74], and differs from this one on a numerical factor.
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In this hierarchy, while the l = 0, 1 moments of the collision term have the same form as
all the others, we choose to set them to zero in order to restore particle number, velocity and
energy conservation to the elastic collision term (an approach sometimes referred to as the
Lorentz model, see [75]).

2.3 Evolution of f0 and Self Interaction Decoupling

The only missing piece of information regarding the calculation of the relaxation time and its
application in a Boltzmann Hierarchy, is the equilibrium distribution function feq. We will
now discuss its behavior, how it evolves in time and what are the mechanisms that may alter
it. In the general case, the background distribution function is governed by the zero order
Boltzmann equation

∂f0
∂t
−H(t)p∂f0

∂p
=
(
∂f0
∂t

)(0)

col
(2.17)

where H is the Hubble parameter, ȧ/a, and for clarity, we have expressed this equation in
terms of time t and physical (not comoving) momentum p ∝ a−1. In general, this zero order
collision term includes all possible interactions that the DM particle suffers: production,
annihilation, scattering, etc.

The process by which a particle loses equilibrium with the hot plasma (“decouples”) has
been well studied in the past years, and several reviews are dedicated to this problem [63, 70].
In equation (2.17) the two timescales involved are the gravitational (Hubble) timescale and
the timescales of all involved interactions {Γprod,Γannh,Γscatt, ...} for production, annihilation,
scattering, etc. Whenever the expansion rate of the universe (measured by the Hubble
expansion H) overcomes the total interaction rate Γtot = ∑

i Γi, such a species gets out of
equilibrium with the hot plasma and effectively decouples from the evolution of the universe,
its evolution governed only by the cosmological redshift of momenta.

While a given species is in equilibrium with the hot plasma, its distribution function is
governed by a Fermi-Dirac or Bose-Einstein function:

feq(~p, τ) = 1
exp

[
E(p)−µ(τ)

T (τ)

]
± 1

, (2.18)

where E is the particle energy, T is the temperature and µ is the chemical potential (equal to
zero for Majorana particles). At the time of decoupling, the temperature of the species is
approximately equal to the photon temperature, and after this time the particles move in
geodesics, with their physical momenta redshifting with the expansion of the universe. Thus,
their distribution functions evolve as:

f(~p, τ) ≡ f(~p a
af
, tf ) , (2.19)

i.e., the distribution function is “frozen-in” at the value it had at decoupling. In the case that
the decoupling happens while the particle is still ultra-relativistic (T � m), this distribution
evolves as:

frel(~p, τ) = 1
exp

[
p

T (t)

]
± 1

, (2.20)
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where we have neglected the impact of the chemical potential µ, and we interpret the
temperature evolving as T = Tfaf/a ∝ a−1. In the case that it decouples from the hot plasma
while non-relativistic, the types of interactions that are involved must be carefully considered.
For such a species, if it is being kept in equilibrium by non-elastic interactions, its distribution
function becomes kinematically suppressed, and it can be expressed as

fnrel(~p, τ) = exp
[
−m
Tf

]
exp

[
− p2

2mT (τ)

]
, (2.21)

where now T evolves as T = Tfa
2
f/a

2 ∝ a−2. While these distribution functions can be used to
calculate abundances, it is often required to fully solve the dynamics of freeze-out in equation
(2.17) in order to obtain accurate results. Studying properly the freeze-out mechanism is
necessary to calculate the expected thermal abundance of a given DM species, and is often a
major component of DM production in the early universe.

In this work, however, we will focus on a slightly different type of freeze-out mechanism.
Throughout this paper, we will assume that number non-conserving interactions have frozen
out deep into the relativistic dominated era and well before the epoch relevant to the evolution
of perturbations. We will indeed assume that the only relevant interaction in this era is
the self interaction of WDM, and here we study this special scenario where the species has
decoupled from the plasma long ago and inelastic interactions are no longer relevant. It is
important to clarify that these (elastic) self interactions are considered here as a separate
process from any interactions the DM component may have with the plasma. All of these
interactions between DM and standard model particles (both elastic and inelastic) will be
considered to have decoupled at an early time, while the self interactions may decouple at a
time relevant to the evolution of perturbations.

Qualitatively, the main effect of this assumption is that, as self interactions conserve
number density, total momentum and energy density (referred as collisional invariants), these
quantities are effectively “locked” since the species gets out of equilibrium with the plasma (or
is produced, see [38]). While elastic self interactions might change the form of the background
distribution function and the evolution of perturbations, they cannot alter the collisional
invariant quantities. Furthermore, we will assume that the original production mechanism
of the SI-WDM has indeed produced the correct abundance of the species as to be the sole
DM component, and leave the discussion of how this might be achieved for future discussions.
Regarding the decoupling of these self interactions, we assume that at the early times these
maintain the SI-WDM component in kinetic equilibrium and, at some point, they would
decouple and equilibrium would be lost until today.

In order to clarify these concepts, we will introduce the following notation: we will label
the decoupling temperature from the hot plasma, i.e., the typical “freeze-out” temperature,
with the standard notation Tf . The other relevant scale we will refer to is the self interaction
decoupling temperature TSID, the scale at which ΓSI(TSID) = H, with ΓSI referring to the
interaction rate of self interactions only. According to our assumptions, Tf would have
happened at some very high temperature (relative to the scales of Cosmological Perturbation
Theory, CPT) and after this moment the only relevant form of interactions are self interactions,
which are assumed to decouple at some point during the computation of perturbations:
Tf � Tearly � TSID � T0, where Tearly is the earliest computed time in CPT, and T0 is
the temperature of the CMB photons today. We will distinguish between two cases: when
TSID � m (relativistic self decoupling) and when TSID � m (non-relativistic self decoupling).
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Relativistic Self Decoupling
In the case that the self decoupling happens while the particle is still relativistic, i.e. TSID � m,
the scenario is rather similar to what happens with no self interactions. In this case, after the
decoupling from the hot plasma at Tf takes place, the DM gets out of equilibrium from the
rest of the species in the universe. However, as it maintains kinetic equilibrium with itself,
it keeps its distribution function in equilibrium according to the DF of a relativistic species
(2.18):

f0(p, Tf > T (t) > TSID) ≡ f0,R = CR
1

exp
[
pa(t)
T0,R

]
± 1

= CR
1

exp
[

q
T0,R

]
± 1

, (2.22)

where p is the local momentum, q is the comoving momentum q = ap, T0,R is the temperature
the species would have today if it maintains a relativistic DF, and we have introduced the
normalization factor CR in order to enforce the proper abundance today. Here, the temperature
T is to be interpreted to evolve as T ∝ a−1, and the whole distribution function can be cast
in terms of the temperature today T0,R by using comoving quantities. It is important to note
that as this species is evolving accordingly to its own temperature, it is not affected by the
entropy release in the hot plasma as other species decouple.

When the self interactions finally decouple at TSID, the specie’s temperature is frozen
out at this temperature and the evolution of the DF becomes governed by the redshift of
momenta according to (2.20). This, incidentally, gives the same form for the background DF
as in (2.22), yet maintaining it frozen in this ultra relativistic form even when T < m.

Non-Relativistic Self Decoupling
The situation becomes drastically different in the case TSID � m and self interactions remain
coupled through the non-relativistic transition, T = m. In this case, the situation is the
same as in the relativistic self decoupling as long as m < T � Tf : the species maintains its
own temperature T0,R but remains effectively decoupled from the rest of the hot plasma. As
soon as the temperature approaches the particle’s mass, self interactions cannot maintain
equilibrium in the distribution function anymore, as the equilibrium distribution itself becomes
ill-defined.

Once the (pseudo, see [76]) temperature of the species falls well below the particle’s
mass m� T � TSID, self interactions are able to restore equilibrium into the DM species,
but now fall into a non-relativistic distribution function, as in (2.10),

f0(p,m > T (t) > TSID) ≡ f0,NR = CNR exp
[
− p2a2(t)

2mT0,NR

]
= C exp

[
− q2

2mT0,NR

]
, (2.23)

with CNR some appropriate normalization and T0,NR its temperature today (generally, different
from the temperature T0,R for the relativistic decoupling case). Given the properties of the
self interactions, this distribution function would be considerably different from (2.21). Since
collisional invariance protects the number density, velocity and energy density, this new
function should preserve these quantities through the non-relativistic transition, fixing the
values for temperature and normalization once the DF at Tf is specified.

After self interaction decoupling, the evolution of this DF should follow from the redshift
of momenta according to (2.19), with the particles moving along a geodesic. This ultimately
results in this distribution function being frozen out in this same form even after TSID, making
the form (2.23) valid even for T < TSID in the case the species is coupled through T = m.
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Transition Approximations and Contour Conditions

Now, we turn to the question of how to properly specify the conservation conditions for these
collisional invariants. We will not consider overall momentum: while it is conserved, we
assume traslational invariance for the background distribution function. Instead, we will focus
ourselves in other conserved quantities in order to specify the non-relativistic distribution
function.

In the case of number density, it is safe to assume that it is conserved throughout the
non-relativistic transition. As it evolves due to the cosmic expansion as n ∝ a−3 regardless of
the decoupling scenario, it is enough to impose that the total number density for this new
distribution function today (2.23) to be the same as the relativistic version (2.22), valid only
in Tf � T � m but extrapolated until today. Thus, we have our first contour condition

n0,R = CR
3
4
ζ(3)
π2 gmT 3

0,R = CNRgm

(
T0,NRm

2π

)3/2
= n0,NR . (2.24)

For the next condition, we would have to rely on the conservation of the energy density
ρ. Ideally, the evolution of the energy density should be identical in this case to the case
where there are no self interactions at all, as the species only interacts with itself through
elastic collisions. Indeed if we demand the condition that the number densities follow the
same evolution for the two distribution functions (relativistic and non relativistic), it can
be readily shown that this condition is automatically fulfilled. In order to determine both
temperature and normalization, we would have to make a few assumptions about how
particular thermodynamical quantities evolve during the non-relativistic transition itself.
Here, we will present three sets of assumptions, which all lead to variations of the same result.

For the first set of contour conditions, we will take a look at the evolution of the
energy density. We make the (rough) approximation of extrapolating the expression for
energy density in the ultra relativistic regime (with a relativistic DF, temperature TR(t) and
normalization CR) and the energy density in the non-relativistic regime (with a non-relativistic
DF, temperature TNR(t) and normalization CNR) into the exact moment of the non-relativistic
transition T = TR = TNR = m, and impose continuity in the energy density. So, we impose
the condition ρR(TR = m) = ρNR(TNR = m) at the transition temperature, with ρR the
relativistic limit of the energy density and ρNR the non-relativistic limit. This condition,
together with the condition n0,R = n0,NR will be our first set of contour conditions, which we
will name the microcanonical contour conditions.

For the next two sets of contour conditions, we will perform similarly, but considering
different thermodynamic variables. First, if we impose continuity in the temperature between
the two different distribution functions, we end up with the condition T0,NR = T 2

0,R/m.
Together with the condition on number density today, we name this set as the canonical
contour conditions. In the case of the final set, we take a look at the entropy density, calculated
as s = (ρ + p)/T . As before, this case constitutes the isentropic contour condition. We
summarize the results for all the different contour conditions in table 1.

These contour conditions are set in order to avoid the complicated non-equilibrium
dynamics involved in the transition to the non-relativistic coupled regime. A more accurate
treatment can be obtained by fully solving the problem and including the results of a full zero-
order Boltzmann solution to the DF (2.17) considering a full expression for the collision term.
Even when we choose to avoid this problem altogether by making use of these conditions,
the question of what sort of background f0 to use in the regime T ∼ m still holds. We
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f0(T < m) = CNR exp
[
−αq2/T 2

0,R

]
CNR/CR α

Micro-Canonical
n0,R = n0,NR , ρR(T = m) = ρNR(T = m)

7
8
π2

30 (2π)3/2 ∼ 4.534 1
2

(
180
7
ζ(3)
π4

)3/2
∼ 1.075

Canonical
n0,R = n0,NR , TR(T = m) = TNR(T = m)

3
4
ζ(3)
π2 (2π)3/2 ∼ 1.439 1

Isoentropic
n0,R = n0,NR , sR(T = m) = sNR(T = m)

7
360π

2(2π)3/2 ∼ 3.022 π8/3

18

(
10
7 ζ(3)

)3/2
∼ 0.8201

Table 1: Summary of results for the distribution functions at T < m for the different contour
conditions mentioned in section 2.3. These distributions are characterized by the factors α
and CNR/CR

have studied a phenomenological approach to this, by interpolating between the two known
solutions, and will come back to this question in section 3.2.

2.4 Limiting forms for the Relaxation Time

Finally, let us obtain limiting expressions for the relaxation time τrel both in the deep
relativistic and non-relativistic regimes. In the relativistic case, we can make use of the results
in [72], where a compact expression for the thermal average 〈σvmol〉 (2.14) is given assuming
a background DF f0 ∝ exp [−E/T ], where T is the temperature of the species. In this case,
this quantity reduces to the following form, in terms of the kernel χ(s):

〈σvmol〉 = 1
4m4TK2

2 (m/T )

∫ ∞
4m2

dsχ(s)g
2
i

4
√
s− 4m2K1(

√
s/T ) , (2.25)

where Ki are the modified Bessel functions, and we have corrected an error in the prefactors
in [54] due to differences in the normalization of χ(s). While in [72] this expression is always
valid, in our case it only applied to the relativistic case. Indeed, in the non-relativistic limit (in
both the relativistic and non-relativistic self decoupling scenarios) the background DF is not
well approximated by exp [−E/T ], which carries the kinematic suppression factor in (2.21).
For this case, we take the limit of equation (2.14) in both the relativistic and non-relativistic
self decoupling scenarios.

First, we start by reducing the form of the kernels χ in the non-relativistic limit. In this
case, we take s→ m2(4 + v2

r ) with v2
r = (~vq − ~vl)2 the relative velocity of incoming particles.

In this limit, the kernel χ takes the form:

χ
[
s→ m2(4 + v2

r )
]

= C0
t vr
2 + 1

16v
3
r

(
4B0

tm
2 − C0

t + 8C1
t

)
+ 1

768v
5
r

(
128A0

tm
4 − 24B0

tm
2 + 192B1

tm
2 + 9C0

t − 48C1
t + 384C2

t

)
+O

(
v7
r

)
,

(2.26)

where we have separated Ct = ∑
iC

i
tv

2i
r in powers of v2

r , and the same for Bt and At. Then,
we can take the non-relativistic limit in equation (2.14) [73], where vmol is now replaced by
vr which reads, in terms of χ(s):
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〈σvmol〉NR =
∫
d3v1 d

3v2 σvr feq(v1) feq(v2)∫
d3v1 d3v2 feq(v1) feq(v2) ≡

∫
d3v1 d

3v2 χ
[
s→ m2(4 + v2

r )
]
g2
i /4 feq(v1) feq(v2)

4m2 ∫ d3v1 d3v2 feq(v1) feq(v2) .

(2.27)
In the case of the relativistic self decoupling scenario, this would be a distribution

matching the one of a relativistic, decoupled particle species. If we assume a Maxwell-
Boltzmann form (ignoring quantum effects in f0, in this case), the integral (2.27) can be
carried out directly

〈σvmol〉R−SID
NR = 35

16m2

(
C0
t

2

(
T

m

)
+ 9

4
(
4B0

tm
2 − C0

t + 8C1
t

)( T
m

)3

+ 99
32
(
128A0

tm
4 − 24B0

tm
2 + 192B1

tm
2 + 9C0

t − 48C1
t + 384C2

t

)( T
m

)5
)

+O (T/m)7

(2.28)

In the case of a non-relativistic distribution function, the integral can also be carried
out directly: following the results in [71], we reach the following expression

〈σvmol〉NR−SID
NR = 1√

πm2

(
C0
t

2

(
T

m

)1/2
+ 1

2
(
4B0

tm
2 − C0

t + 8C1
t

)( T
m

)3/2

+ 1
8
(
128A0

tm
4 − 24B0

tm
2 + 192B1

tm
2 + 9C0

t − 48C1
t + 384C2

t

)( T
m

)5/2
)

+O (T/m)7/2

(2.29)

We can see the evolution of the relaxation time for, for example, a vector field case in
fig. 1. There we compare the self interaction rate Γ with the Hubble rate H to give a more
appropriate idea of the decoupling process: whenever the (self) interaction rate falls below
the Hubble rate, the species can be considered as (self) decoupled, thus having lost kinetic
equilibrium (with itself). For this case, we can see from both the figure and the limiting
expression (2.29) a well known behaviour (e.g. [77]) of the thermal averaged cross section,
behaving as 〈σvmol〉 ∝ T 1/2, but remarkably only when the background distribution function
is non relativistic, which is not always the case for a self interacting species. In any case, in
both scenarios the interaction rate behaves as Γ ∝ a−4 with the scale factor.

Both in the deep relativistic as well as in the non-relativistic regimes, the expressions
(2.29), (2.28) and (2.25) are used along this paper to calculate the relaxation time and the
interaction rates for all mediator models. However, in the intermediate regime, where none of
these approximations are valid, we are left without any straightforward calculation method
for those quantities. Thus, we choose to calculate the interaction rate in the intermediate
regime as an interpolation between the relativistic and non-relativistic regimes with the form:

Γi ' 1
2
(
P(ΓiNR) + P(ΓiR)

)
(2.30)
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Figure 1: Self Interaction rate for a vector field SI-WDM model for two values of the DM particle
mass: 1 keV (right panel) and 10 keV (left panel), compared to the Hubble expansion rate H as a
function of scale factor, considering the effects of non-relativistic self decoupling. Dotted lines show
the intermediate regime 0.1mDM < T < 10mDM, where none of the approximate forms described
in section 2.4 are used and instead the interpolating form (2.30) is used. The interaction constant
CV = g4

Vm
−4
V cos−4 θ′W (with gV the Lagrangian coupling constant, mV the mediator mass and θ′W

the dark sector Weinberg angle) corresponding to the Bullet Cluster upper limit constraints (see [78])
are shown in thick lines, and vertical lines label Tγ = m.

with P indicating a power-law fit and ΓiR, ΓiNR indicating the relativistic and non-relativistic
approximations of the interaction rates for model i, respectively (valid for both non-relativistic
and relativistic self decoupling modes). This approximation provides good results in the case
of massive scalar and vector field mediators and, while it is a rough approximation to the
true relaxation time, it is a subdominant component of the overall error in our calculations
introduced by other approximations.

Now, with all of the ingredients ready (the relaxation time approximation of the Boltz-
mann Hierarchies, a study on the evolution of the background f0 and a way of computing the
relaxation time τrel), we are set to implement the SI-WDM hierarchies in a Boltzmann solver.
In the next section, we will see the details regarding the implementation of this species in
CLASS, and present the main results for this work.

3 Numerical Implementation in CLASS

We implemented the Relaxation Time Approximation (2.16) in the public Boltzmann solver
CLASS (version 2.7.2), as a modification to the existing module handling WDM and non cold
relics with the objective of assessing the impact of SI-WDM on the power spectrum and on
CMB anisotropies 5. To this end, we have modified the code appropriately in order to handle
the thermal history outlined in section 2 for this new species and developed or adapted a few
approximations and procedures to provide fast and accurate results, which we describe in this
section.

5We provide a free distribution link to this modified version of CLASS in github.com/yunis121/siwdm-class,
requiring a pre-existing installation of CLASS v2.7.2 (which we also provide in the repository). This particular
version does not precompute the relaxation time within CLASS, but is instead supplied with a relaxation time
table as an external file.
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The CLASS Boltzmann solver introduced a complex method of optimized momentum
sampling in order to deal with non cold relics, such that it maximizes the precision in the
integrals of the perturbations of the form qnFl(k,Eq, τ) with n = 2, 3, 4 and l = 0, 1, 2 (see
[58], sec. 5 for more details). As the approximated Boltzmann hierarchy (2.16) does not
couple different momentum bins, this optimization method remains unchanged in this version
of SI-WDM implementation, except for a few minor modifications in the non-relativistic self
decoupling scenario which we describe in section 3.2.

Once the relaxation times are already pre-computed, the thermal history for this species
is calculated according to what was outlined in section 2. If this thermal history is met (the
species is self coupled at the earliest computed time, and decouples at some point afterwards),
a few procedures are put in order to obtain self consistence. As the program can be initialized
under any arbitrary background distribution function, a few steps are taken in order to
i) thermalize the distribution: i.e. if a non-equilibrium distribution is given, construct an
equilibrium distribution that matches its number and energy densities, according to

neq = CR

(
T eq0
a

)3

F2(0) = 4π
(
Tncdm0
a

)3 ∫ ∞
0

dqq2f0(q) = ninit (3.1)

ρeq = CR

(
T eq0
a

)4

F3(0) = 4π
(
Tncdm0
a

)4 ∫ ∞
0

dqq2f0(q)ε(q,m) = ρinit (3.2)

where T eq0 , Tncdm0 are the equilibrium and initial temperatures of the species today, and
ii) re-normalize the distribution function in order to match the desired abundance today (a
function already implemented in standard CLASS for non cold relics). These steps are taken
in order to fulfill the assumptions we have taken in section 2 and reflect the expected effects
of self interactions at early times.

Once these self consistency steps are taken, the program further checks what decoupling
scenario it should implement, whether that may be relativistic or non-relativistic self decou-
pling. As the distribution (in comoving variables) is not modified in the first scenario, the
evolution of f0 continues the same way as for standard WDM, but for the non-relativistic
decoupling scenario a few extra steps are taken, described in section 3.2 and according to
what is discussed in section 2.3.

Once the evolution of f0 and the decoupling scenario is specified, the evolution of
perturbations Fi in the RTA (2.16) can be implemented, based on the existing implementation
of non cold relics in CLASS [58]. The hierarchy (2.16) is implemented by adding a momentum
independent collision term to the existing WDM hierarchies, with a time dependent relaxation
time calculated as in section 2.4. Afterwards, the steps regarding the calculation of the
angular power spectrum of CMB anisotropies, Cl’s, as well as obtaining the linear power
spectrum today follow directly from the WDM implementation. The timescale τrel of this
new interaction term can overcome the other phenomenological timescales of the system
1/H = a/ȧ and τk = ε/qk, suppressing high-l multipoles and warranting a Tight-Coupling
approximation (TCA), as was described in [57] and extended here to SI-WDM in section 3.1.

3.1 The Tight-Coupling Approximation

The Tight Coupling Approximation, described in [57], holds whenever the timescale of self
interactions, in this case τrel dominates over all of the other timescales of the system. For the
Boltzmann hierarchies (2.16), these would be the conformal Hubble rate 1/H = a/ȧ related to
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the metric perturbations and the combination τk = ε/qk related to the streaming of particles
to higher l moments.

In the case TCA holds, the interaction terms have the effect of strongly suppressing
the perturbations l > 1 as the term Cl[F ] = −aΓ(τ)Fl(k, q, τ) dominates. Thus, the species
becomes essentially a perfect fluid with zero shear stress, and the only non trivial equations for
the system become the ones corresponding to the l = 0, 1 moments. The proper implementation
is especially important in the case of numerical integration, as the strong suppression of high
l-moments that takes place in this regime can result in a numerically “stiff” system.

While the validity of TCA is in this case with m 6= 0 and dependent on the momentum
bin considered, for the sake of simplicity we take the approximation as valid as long as it
holds for q ∼ 1. We can see in fig. 2 the regions of validity of the TCA approximation in
the k, z plane. As was pointed out in [57], given a fixed interaction coupling constant Geff
the TCA always fails at large wavenumbers, then starts failing later in time for progressively
smaller k until it formally fails for all k at the same time.
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Figure 2: Regions of validity of the Tight-Coupling approximation for different values of the coupling
constant, in the case of a vector field mediator for mDM = 10 keV. The black line represents the
moment when a mode k undergoes horizon crossing (k = aH). For each CV , the TCA is valid within
their respective colored regions. The colored lines represent the moment when TCA stops being valid,
i.e. τ−1

rel ≡ aΓ = max(aH, (qk/ε)|q=1). We have used, for simplicity, Γ ∼ CV T 5
ncdm [57].

High l-moments in TCA

A further refinement on the tight coupling approximation can be achieved by making use of
the suppressed moments on l ≥ 2. If we assume the rate of variation of the interaction term is
much higher than the variation of other source terms, the equations for these high l-moments
in the TCA regime can be approximated as:
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Ψ
τrel
∼ qk

5ε (2Ψ1 − 3Ψ3)−
( 1

15 ḣ+ 2
5 η̇
)
d ln f0
d ln q ,

Ψl≥3
τrel

∼ qk

(2l + 1)ε [lΨl−1 − (l + 1)Ψl+1] .
(3.3)

where Ψl(k, q, τ) = Fl(k, q, τ)/f0(q, τ). By making use of the closing assumption for Ψlmax+1 ≈
Ψlmax(2lmax + 1)ε/(qkτ) − Ψlmax−1 (see [68]) and only using the value of the first moment
in the hierarchy (obtained through the Boltzmann solver), this system can be inexpensively
solved by tridiagonal matrix solving algorithms [79]. Thus, a value for F2 (suppressed by a
factor of τrel) can be included back on the evolution equation for F1. This has the advantage
of increasing the precision and providing extra numerical stability as the TCA approaches
the limit of its validity range, allowing us to be less reliant on the precise region of validity of
TCA at a marginal computational cost.

3.2 Non-Relativistic Decoupling

Once the background evolution for f0 (described at the beginning of this section) has been
calculated, we are in the position of discerning between the two scenarios described in section
section 2.3. In the case that non-relativistic self decoupling is detected, a few extra steps are
taken in order to implement this scenario in the evolution of the perturbations and background
quantities.

First, we tackle the problem of specifying the new background distribution itself. Once
the contour conditions are specified (from the ones we calculated in section 2.3), we have
both limiting cases for the background distribution function: at T � m we have f0,R ∼
(exp[q/T ]±1)−1 (2.22) and when T � m we have f0,NR ∼ [−q2/2mT ] (2.23). However, in the
intermediate regime, the distribution function still has to be specified: as a first approximation
we choose to interpolate between these two regimes using the following function:

fSw(q, T/m) = Sw(T/m)f0,NR(q) + (1− Sw(T/m)) f0,R(q) , (3.4)
where the switching function Sw(x) is defined as:

Sw(x) = 1
2erfc [log(x)] , (3.5)

and erfc(x) is the complementary error function.
When the non-relativistic decoupling scenario is specified, all function calls to the

background distribution function can be replaced by this new function. This includes both
calls to f0 itself and the logarithmic derivative ∂ ln f0/∂ ln q that appears in the Boltzmann
hierarchy (2.2). In practice, we also precalculate values for f0(qi) and [∂ ln f0/∂ ln q] (qi),
where qi are the momentum samples, in the deep relativistic and non-relativistic regimes and
replace the function evaluations for these precomputed values whenever appropriate.

An interesting question is how to evolve the perturbations through the relativistic to
non-relativistic transition itself. As it was the case for the background distribution function,
the problem of transitioning between the relativistic and non relativistic regimes appears in the
perturbations too. Ideally, a full approach to the Boltzmann hierarchies, complete with moment
dependent collision terms such as the ones implemented in (2.2) would naturally include
this transition, and no extra care would be needed. However, when using an approximate
framework such as the RTA, it is important to consider this transition separately.
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One simple approach to this would be to simply assume that the RTA hierarchies
(2.16) are valid during the whole evolution, particularly during this transition. In that case,
the perturbation moments Fl(q, k, τ) would evolve without changes through the transition.
However, as the background distribution gets suppressed severely during the transition for
high q, the ratio F/f0|q�1 would greatly increase and the perturbations would leave the linear
regime. This is not representative of the behavior of these relaxation processes, as we expect
the interactions that transfer phase space density to lower momenta at this stage to both affect
background and perturbation. This phase space density transfer from high to low momenta
cannot be described through the RTA, as it is local in momentum space, making this simple
approach a poor choice. We instead opt for another way of accounting for these effects that
does not imply solving the full collision integrals: we set the background-scaled perturbation
Ψl = Fl/f0 to be constant through the transition, as a straightforward approximation to this
complex process.

Special care needs to be taken in the case of computing the integrals resulting in the
energy-momentum perturbations. These quantities are obtained via integration rules of the
form

I =
∫ ∞

0
dqf0(q)g(q) ≈

n∑
i=1

Wig(qi) (3.6)

where the integrated function can be either g(q) = ĝ(q) describing a background quantity
or g(q) = ĝ(q)Ψi(q, τ) describing an energy-momentum perturbation. The weights Wi are
optimized via a complex method (see [58]) in order to obtain maximum precision in the
calculation of these integrals for ĝ(q) = {q2, q3, q4} (describing energy, momentum, pressure
and shear integrals). In order to take advantage of the methods already implemented in
CLASS, but extend it to this time dependent background DF we choose to re-define the
integration rule (3.6) as:

n∑
i=1

Wig(qi)→
n′∑
i=1

(
fSw(qi, T/m)
f0,R(qi)

)
W ′ig(qi) , (3.7)

where the weights W ′i are now optimized in order to obtain the desired precision in the
function

t(q) = a2q
2 + a3q

3 + a4q
4 + b2

(
f0,NR
f0,R

)
q2 + b3

(
f0,NR
f0,R

)
q3 + b4

(
f0,NR
f0,R

)
q4 (3.8)

and the coefficients are chosen such as

an

∫
dq

qn

eq + 1 = 1 , bn

∫
dqqne−q

2 = 1 .

As before, we precompute the values for (fSw(qi, T/m)/f0,R(qi)) in the deep non-
relativistic limit and use them appropriately.

With this machinery in place, it is possible to compute the evolution for SI-WDM under
the RTA approximation (2.16) and obtain desired observables such as CMB perturbations
and power spectrum, among others. We will further explore the results of this extension to
CLASS in section 4, in the light of the particle models we describe in section 1.
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3.3 Effects on the Matter Power Spectrum
Having developed this extension to CLASS in order to implement the evolution of SI-WDM,
we take a first look in this section to the cosmological results in the linear regime. We show
some of the main features that these alternative DM models introduce in the power spectrum,
in order to discuss observable effects in section 4. One of the most noticeable effects is a
suppression on the matter power spectrum at high k. We compare here the suppression
produced by SI-WDM to the one produced by other alternative models, such as WDM or
SIDM models. Typically, both the tightest constraints and the alleviation of the small scale
tensions mentioned in section 1 have been related to this suppression in the power spectrum
for the case of WDM [10, 80], therefore in this work we will focus on it and leave the analysis
of other quantities such as the Cl’s to future works.

We show a few results of the matter power spectrum P (k) for different masses and
interaction constants in fig. 3 and fig. 4 , for the case of a massive Vector Field self interaction.
In particular, fig. 4 shows the full effect of the non-relativistic self interaction decoupling
mentioned in section 3.2, while in fig. 3 this phenomenon is ignored altogether. These very
same plots, this time for the case of a Massive Scalar mediator, can be found in figures D.2
and D.1 in appendix D.
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Figure 3: Power Spectrum (top panel) and Transfer Functions with respect to standard WDM
(bottom panels) for a vector field SI-WDM model, simulated using the modification to CLASS described
in section 3. In this case, the effects of non-relativistic self decoupling are ignored and we assume a
relativistic DF (2.18) holds until today. We assume the relaxation time approximation (2.16), and
consider two values of the DM particle mass: 1 and 10 keV. Also plotted are the power spectra of a
CDM model and of WDM models with DM mass of 1 and 10 keV. All WDM and SI-WDM models
consider a nonresonant production scenario (Dodelson-Widrow mechanism, [64]) with T ∼ (4/11)1/3Tγ .

In these figures, we compare the power spectrum with their most similar counterpart,
standard WDM, as well as a reference CDM model. We have chosen two different particle
masses of 1 and 10 keV, the first one to provide a parallelism with [77], and the second
one to show a model with predictions that agree better with current observations [42, 44].
We have assumed a simple background model: a thermal background with a temperature
T0 = (4/11)1/3Tγ identical to SM neutrinos, renormalized to give the correct DM abundance
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Figure 4: Simulated Power Spectrum and Transfer Functions with respect to standard WDM
for several SI-WDM models under the same assumptions as in fig. 3, but considering the effects of
non-relativistic self decoupling when appropriate, as described in section 2.3 and section 3.2.

(non-resonant sterile neutrino production [64]). Over these, we show the results of several
SI-WDM cosmologies, for the mediator models described in [54] and in section 1. We show
three examples for each, ranging from a very weak interaction to one matching the upper limits
for the scattering amplitude of DM self interactions coming from Bullet Cluster constraints
(σ/mDM ≤ 0.1cm2/g, see [78]). We show also the transfer functions for the self interacting
models with respect to their WDM counterparts, defined as Ti(k) = (Pi(k)/PWDM(k))1/2.

We parametrize these mediator models via their effective interaction constants, which
are defined according to the expressions in section 3.3 in [54]. In particular, we considered
in these figures a Massive Vector Field interaction, where C̄V =

(
gVm

−1
V cos−1 θ′W

)4
, where

gV is the coupling constant appearing in the Lagrangian interaction term, mV the mediator
mass and θ′W is the (dark sector) Weinberg angle, in units of the Fermi constant GF . The
other interaction model we consider, a Massive Scalar mediator interaction, is also defined
according to [54] as Cm = (gm/mΦ)4, with gm the coupling constant of the interaction and
mΦ the mediator mass.

The first obvious conclusion we can draw from both figures is that, for low enough
interaction constants the results are, predictably, indistinguishable from the ones of WDM.
This is evident for a large range of values of the interaction constants, and is indeed the
case if interactions are completely irrelevant during the matter dominated era when metric
perturbations start to grow. Even for constants when this is not the case, the “base” WDM
model can give us an idea of the general behaviour of SI-WDM: a suppression in the power
spectrum, typical of WDM models, is also seen in SI-WDM models. This suppression is
identical for low enough interaction constant and, as can be seen from these figures, it would
remain almost identical even for higher constants were it not for the effect of non-relativistic
Self Decoupling.

This brings us to a second feature of these power spectra: the effects of non-relativistic
Self Decoupling. For the models shown in both fig. 3 and fig. 4, the highest interaction
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constants would correspond to a situation of non-relativistic Self Decoupling as explained
in section 2.3 and section 3.2. We can see that both of these high-constant spectra are the
ones that show significant departures from its corresponding WDM equivalent but only a
small oscillation at high k is present if we don’t consider these effects. If we consider the
effects described in section 3.2, then the suppression scale moves to a significantly higher
k and a completely different pattern of oscillation appears. This is remarkable, as a high
interaction constant might make a SI-WDM model “colder” than its WDM counterpart, i.e.
as if it corresponds to a much higher particle mass: we will explore this further in section 4.
Also, regarding the various contour conditions that were considered in section 2.3, we have
found that all of them produce virtually indistinguishable results in the power spectrum.

Finally, we can discuss about the final evident feature in these spectra, the oscillations
themselves. Indeed, these oscillations are not necessarily exclusive to SI-WDM models, and we
can see them in several other self interaction models [21] as well as a few approximation schemes
to WDM itself [58]. In fact, this is common to most fluid or pseudo-fluid approximations to
the full Boltzmann hierarchy and we will explore quantitatively how, for the case of SI-WDM,
these oscillations come as a consequence of the tight-coupling regime in appendix A.

4 Comparison with Observables

Having discussed about the underlying particle models for SI-WDM in section 1, developed
theoretical knowledge about their cosmological evolution in section 2, and incorporated this
theory into a numerical tool in section 3, it is time to use this framework to put bounds in the
parameter space of these models. As we mentioned before, in this work we have focused on
obtaining and constraining the simulated matter power spectrum, which is likely the quantity
that is more sensitive to the evolution of small scale structure. Thus, in this section we will
use some observables of the small-scale structure in order to identify the simulated spectra
that are allowed by cosmology and thus restrict the available parameter space for SI-WDM.

However, comparing the outcome of simulated linear cosmology with the structure
observed today may not be a straightforward task to begin with. In fact, the smallest
gravitationally bound structures today have typically collapsed long ago, a highly nonlinear
phenomenon that is not well captured by linear cosmology and is traditionally modeled
via N-body numerical simulations [16, 35, 49]. However, certain predictions about the
collapsed nonlinear structure are possible by exploiting the statistical properties of the cosmic
density field. In particular, the extended Press-Schechter (PS) formalism allows us to obtain
predictions about, for example, the estimated mass functions of haloes and subhaloes [34].
These predictions are directly related to the linear power spectrum extrapolated until today,
thus we can obtain constraints on it by using these theoretical predictions and comparing
them against direct observation of structure such as, in this case, the number of subhaloes in
the Milky Way.

In [81] it is shown that the linear power spectrum can be parametrized for various
particle physics models via a phenomenological transfer function defined as

T (k) =
[
1 + (αk)β

]γ
, (4.1)

where {α, β, γ} are fitting coefficients to the transfer function T (k). Such a transfer function
based approach was used in that work to derive predictions about both Milky Way satellite
galaxy counts and Lyman-α forest data.
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In this work, however, we use exclusively the simulated data from our modified version of
CLASS in order to put constraints on these observables. Still, we observe that our numerical
results can be parametrized using this phenomenological function and, moreover, that the
coefficients {α, β, γ} can be put in terms of the physical parameters {m,Ci}. We remind
the reader that, while this phenomenological fitting function does not capture some richer
behaviour, such as the oscillatory patterns, it describes well the power spectrum damping and
is accurate when used to calculate the observables relevant for this section, such as subhalo
counts and Lyman-α forest measurements.

Thus, we fit this phenomenological transfer function (4.1) to the simulated data and
we find formulas for the fitting coefficients {α, β, γ} in terms of the model parameters that
fit well our results in appendix C. We remark that these fitting functions, while providing
relatively accurate approximations for the transfer function, can incur in significant errors in
the absolute values of the parameters {α, β, γ}, along with the parametrization of the transfer
function itself ignoring more complex effects such as power spectrum oscillations as described
in appendix A.

We show a few examples of simulated power spectra in fig. 5. For these examples, we
also show the best fit spectra using the parametrization 4.1 for the transfer function in terms
of {α, β, γ}. We also compare these with the resulting parameters from the phenomenological
fitting formulae outlined in appendix C, in terms of {m,Ci} and the relevant DM interaction
model and thermal history scenario.
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Figure 5: Power spectra obtained through fitting functions, compared to the simulated data. We
considered four different simulations, for the cases of thermal production (shown in red) and low
θ sterile neutrino WDM (shown in purple, see fig. B.1) and the cases of relativistic (triangles) and
nonrelativistic (circles) self interaction decoupling (note that θ is the value of the sterile neutrino
mixing angle with the SM neutrinos). On top of these, we plot the power spectra obtained from the
best fit of the transfer function eq. (4.1) and its corresponding values {α, β, γ}, in blue. We show as
well the power spectra corresponding to the values of {α, β, γ} obtained from the fitting formulae
shown in appendix C, in green. As a reference we also show a CDM power spectrum (black), and the
shaded region corresponds to the relevant values of k for the Lyman-α analysis outlined in section 4.2.
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4.1 Milky Way Satellite Counts

We provide here short summaries of the methods used in [81] to compare the linear power
spectrum with both the observations of Milky Way satellite counts and the Lyman-α forest
data. In general, the ΛCDM model predicts a number of satellite galaxies of the Milky Way
that is too large, as many as ∼ 1000, compared to the observed ∼ 50 [10]. In order to get an
estimate number of observed satellites of the Milky Way, we add the number of classical MW
satellites to the number of ultra-faint ones observed by SDSS, accounting for the limited sky
coverage of the survey and a 10% sampling variance, arriving to a conservative number of
observed MW satellites of Nsat = 57.

We compare that with the estimated number of subhaloes predicted by the PS formalism.
According to [34, 81], the subhalo mass function, for a given host halo of mass Mhalo, is given
by:

dN

dMsub
= 1

44.5
1

6π2
Mhalo

M2
sub

P (1/Rsub)
R3
sub

√
2π(Ssub − Shalo)

, (4.2)

with Msub, Ssub the mass and variance of a given subhalo and Mhalo, Shalo the ones for the
main host halo, defined as:

Si = 1
2π2

∫ 1/Ri

0
dkk2P (k) , Mi = 4π

3 Ωmρc(cRi)3 , c = 2.5 (4.3)

with Ωm the matter density parameter, ρc the critical density of the universe (today) and
P (k) the linear power spectrum for a given cosmological model, extrapolated to z = 0. We
can obtain a prediction for the total number of subhaloes for the MW using an assumption
for it mass of MMW ∼ 1.2× 1012M�/h [82] and integrating expression (4.2) from a minimum
subhalo mass of 108M�/h up toMMW . We obtain a constraint by requiring that the predicted
number of subhaloes must be equal or greater than the conservative bound for the observed
MW satellites, and report the results for various SI-WDM cosmologies in section 4.3.1.

4.2 Lyman-α Constraints

Another relevant probe of the small scale matter distribution is the so called Lyman-α forest:
at a quick glance, the Lyman-α absorption spectrum produced by the intergalactic medium
on the spectra of distant quasars. This absorption spectra is produced by the inhomogeneous
distribution of neutral hydrogen and has been widely used as an accurate probe of the matter
power distribution on small and intermediate scales, namely 0.5 h/Mpc ≤ k ≤ 100 h/Mpc
[80, 81, 83, 84]. While computing accurate bounds would imply a full statistical analysis, we
here instead follow the methods of [34, 81] in order to investigate the plausibility of small
deviations to already well-explored non-cold DM cosmologies, namely the thermal 3.5 keV
constraints obtained though a full analysis of Lyman-α forest data [84].

We use the criterion set in [81] to characterize the deviation of a model from a ΛCDM
cosmology. At a given scale k, we quantify this by the ratio of the 1-dimensional power spectra

r(k) = P1D(k)
PΛCDM

1D (k)
(4.4)

which is itself defined as the following integral of the 3-dimensional power spectrum

P1D(k) = 1
2π

∫ ∞
k

dk′k′P (k′) (4.5)
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This quantity allows us to obtain a rough estimate of how suppressed is a given power
spectrum with respect to ΛCDM. We thus can adopt the following criterion in order to
determine whether or not a particular cosmology is allowed by this analysis: if a given power
spectrum is “more suppressed” than the reference 3.5 keV thermal WDM model, then this
model would be excluded. We can quantify this suppression at all scales k by introducing the
following estimator

δA = AΛCDM −A
AΛCDM

(4.6)

where A is the integral of the ratio r(k) in the scales probed by the Lyman-α forest observations:
0.5Mpc/h ≤ λ ≤ 100Mpc/h for the MIKE/HIRES+XQ-100 combined dataset used in [81, 84].

Thus, by using the 3.5 keV thermal WDM power spectrum, the authors in [81] obtain an
estimated suppression value of δA = 0.38. This serves as the most extreme model that can be
allowed according to this analysis: any model that shows a higher value of this suppression
estimator δA is considered to be excluded by the Lyman-α forest data at at least 95% C.L.
These authors also include a tighter constraint of δA = 0.21 for a fixed thermal history, which
we will include in our analysis for completeness.

It is important, however, to discuss about the validity of this method. A full analysis
of the Lyman-α forest data requires a careful statistical analysis and a complex set of
hydrodynamical simulation in order to compute the most convenient statistics for this set of
observations, namely the flux power spectrum PF (k) [34, 80, 85]. However, in [34, 81] it is
argued that as the relation between flux and linear 3-dimensional matter power spectra can be
accurately modeled as PF (k) = b2(k)P3D(k), with b2(k) a bias factor. This bias factor differs
little between ΛCDM and modified DM models such as SI-WDM, which are “fairly close”
to the reference case, and thus equation (4.4) can be reasonably applied to the flux power
spectra as well. We remind the reader that this is an approximate method and a proper,
robust bound should be obtained via a full hydrodynamical simulation as in, for example,
[80].

4.3 Parameter Space Constraints

4.3.1 Exploring the SI-WDM parameter space
In this section, we present the results of the Milky Way satellite count and Lyman-α analysis
for a suite of SI-WDM cosmological parameters. We analyze the resulting power spectra for
different mediator models and initial conditions for the background distribution function, each
of them with approximately ∼ 400 simulated spectra. For each combination of mediator model
and initial conditions, we covered a uniform grid in the SI-WDM parameters (particle mass
and interaction constant), and performed the analysis we outline in section 4.1, section 4.2
for each of them. We plot the results for a vector field mediator under a high asymmetry,
resonantly produced sterile neutrino model in fig. 6, and we show the results for the other
mediator-initial condition combinations in appendix D.

For the specific case of resonant sterile neutrino production, we considered two different
scenarios depending on the values of the sterile neutrino mixing angle with the SM neutrinos
(θ2). As in this scenario sterile neutrinos are produced both by the non-resonant [64] and
resonant [39, 41] mechanisms, and the latter depends on the amount of initial lepton asymmetry
in the universe, one can arrive to the proper DM abundance for a multitude of SM mixing
angles by varying this asymmetry value. Therefore, in this case we have considered two cases:
one with high θ (low asymmetry) and one with low θ (high asymmetry), sampled from the
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slices in the sterile neutrino parameter space for νMSM we show in fig. B.1. For each mass
value sampled along these lines, we have obtained the initial distribution functions at T = 10
MeV by using the sterile-dm routine in [41].

We can see many features in fig. 6, and most of them are shared across all production
mechanisms and interaction models, albeit with small differences in their constraints. First
of all, we can see that for small enough interaction constants (depending on the interaction
model itself), the results for each initial conditions are comparable to the ones for standard
WDM. We find similar results to the analysis on [34, 81] in the lower end of interaction
constants, and indeed during the whole parameter space corresponding to the relativistic
self decoupling scenario. Following the same arguments as in the discussion following fig. 4,
we can attribute this to the fact that these perturbations do not grow during the radiation
dominated era, thus the effects of self interactions deep into the particle’s relativistic regime
(which is itself deep into the radiation dominated era) is indeed negligible, and the results are
comparable to WDM cosmology.

Consistently with the findings of [34, 81, 84], we find that the results for Lyman-α forest
analysis are indeed much tighter than the ones from MW satellite counts for all models, and
in particular looking at fig. 6 is is possible to exclude almost all of the available parameter
space for resonantly produced νMSM sterile neutrinos using these observations, at least in
the non interacting case. We see, however, that the situation changes drastically if we instead
include strong enough self interactions.

A clear transition in both Nsub and δA can be seen whenever the models transition to
the non-relativistic self decoupling regime. A sharp change takes place for this regime, as the
spectra become immediately much colder (as we have discussed after fig. 4). This basically
results in spectra which are much less suppressed than in the relativistic decoupling regime
when compared to ΛCDM, with a much higher suppression scale in k space. This can be
thought of as a “shift to the left” in mass space: models that originally correspond to a mass
that is highly suppressed now result in similar predictions as models with a much higher mass
through the introduction of self interactions. Thus, spectra corresponding to WDM become
“colder” through the effect of self interactions.

For the models themselves, these colder spectra have two main consequences: first it
re-allows models previously excluded by observations. As these models now become much
more similar to a ΛCDM cosmology, the predictions arising from the linear power spectrum
become increasingly more consistent with observation. At the same time WDM models
that are allowed by observations become, through the inclusion of self interactions in this
regime, not able to alleviate small scale structure tensions to ΛCDM through the linear power
spectrum alone. Still, we remind the reader that some of these tensions can be alleviated via
the inclusion of self interactions in the later, non-linear stages of structure formation [10, 49].

4.3.2 The νMSM Parameter Space in the Presence of Self Interactions

From the previous section we have concluded that, even in a resonant production scenario
relevant to νMSM, sufficiently strong self interactions may significantly relax the constraints on
MW satellites and Lyman-α. Indeed, we have seen that, for a given particle mass and mixing
angle θ, the differences between low interaction constant under relativistic self decoupling and
high interaction with non-relativistic self decoupling are particularly marked, and a number
of models that are excluded by the analysis in the first scenario are admitted in the second.

Thus, we can go a step further and analyze the full parameter space of νMSM, discerning
exactly how much of the {θ,m} parameter space can be readmitted under the effects of
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self interactions. This new model would be comprised of three parameters now: particle
mass m, mixing angle θ and the interaction coupling constant Ci. For this analysis, we are
interested in which section of the {θ,m} parameter space can be readmitted by using any
interaction model (quantified by Ci). As we have seen from the past section, for fixed {θ,m}
a higher interaction constant always results in equal or colder spectra. Thus if for these fixed
parameters the model with the highest allowed interaction constant is allowed by a given
observation, we can conclude that there is indeed a finite range of interacting models for
which that particular value of {θ,m} is allowed.

So, we calculated these constraints in the νMSM parameter space and show these results
in figure 7. In this analysis, for each point in parameter space, we consider that particular
model to be admitted by each observable (MW satellites and Lyman-α) if they are allowed
for the highest value of the interaction constant consistent with Bullet Cluster constraints
(our current upper limit on the interaction strength).

On top of these bounds, we can see the other sources of constraints for this particular
model, namely production bounds (based on upper limits to the amount of lepton asymmetry
consistent with Big Bang Nucleosynthesis) and X-Ray constraints from observation of various
galactic and extragalactic objects. For comparison, we show also the Lyman-α constraint
for standard νMSM as was calculated in [34]. We see a striking difference with the non
interacting case, with the latter expanding considerably the available parameter space with
respect to the former, which nearly excludes the whole available space for these particular
WDM models.

5 Conclusions

Following on the initial theory of self interactions in WDM linear theory set in [54], we aimed
in this paper to provide a relatively complete practical application of this framework. This
included the relevant approximations that can be used to simplify the treatment, a numerical
application in CLASS and comparison of the available parameter space of this self interacting
models with its WDM counterparts.

Thus, in section 2 we started introducing the Boltzmann formalism required to implement
these SI-WDM models. After stating the particular scenario of thermal history considered, we
recalled the results obtained in [54] and expanded upon them. In that section, we provided
an in-depth explanation of the relaxation time approximation and the resulting Boltzmann
hierarchies, introduced the situation of non-relativistic self decoupling and considered an
approximate way of treating the relativistic to non-relativistic transition for both background
and perturbations. We considered as well limiting forms for the relaxation time in all of these
scenarios.

Then, having discussed thoroughly about these approximations to the full linear evolution
of perturbations in SI-WDM, we implemented them in the public Boltzmann solver CLASS. We
made this modification publicly available at github.com/yunis121/siwdm-class, and discussed
its implementation in section 3. We first considered a few further approximations in various
regimes that are necessary to the numerical implementation, such as the tight-coupling regime,
as well as several improvements to the built-in integrator and the background DF modules for
the case of non-relativistic self decoupling. Afterwards, we took a first look at the resulting
power spectra and discussed both the effects of self interactions and non-relativistic self
decoupling in the resulting distributions.
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Having obtained these spectra, in section 4 we compared these results with observation.
From comparing these spectra with observables from structure formation such as the number of
Milky Way subhaloes and the Lyman-α forest measurements, we can obtain a very interesting
resulting parameter space for several underlying (self interacting extensions of) WDM models,
for various mediator models.

In this work, we obtained several interesting advancements in the area of SI-WDM,
together with conclusions relevant to the field of WDM. Not only we show a readily applicable
version of the results in [54], a proper discussion of the evolution of these species in the case
of the Relaxation Time Approximation and an introduction to the scenario of non-relativistic
self decoupling; but also we provide a full numerical application, which implies a very relevant
leap forward in the development of SI-WDM models. This can pose these models as a very
interesting alternative and extension to typical WDM models and providing a careful analysis
of linear perturbations can both help encase past works which included such WDM extensions
in a more complete cosmological framework, as well as motivate further study in the topic.
Particularly in the case of self interacting νMSM, we have seen in section 4 that such an
approach can severely relax the structure formation constraints, and possibly readmit a large
portion of its parameter space, as was suggested in [48].

It is important to know, however, that what is presented here is an approximate view of
a general class of SI-WDM models, and proper consideration of any particular realization
of such models would indeed require further analysis, from their particle production in the
early universe, to studies on their clustering as well as observational constraints. Also, the
approximate view of SI-WDM linear theory presented here can be improved in many ways,
some of the most obvious being extending this approach to more general models (such as light
mediators or long-range interactions). Other improvements involve the implementation of the
full collision terms shown in [54], or calculating precisely the relativistic to classical transition.

In general, we believe this work can serve as an important stepping stone in the study of
self interacting extensions to WDM. We have indeed shown here that the inclusion of self
interactions to these general class of models can alter the resulting power spectra, thermal
history and distribution today on a significant way, with important consequences for a wide
range of DM models.
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Figure 6: Parameter space constraints for SI-WDM cosmologies, according to the analysis outlined
in section 4. We show here the case of a vector field mediator model for self interactions as outlined in
[54] and resonant production (Shi-Fuller mechanism [39, 41]) in the high lepton asymmetry case. We
have also considered the case of a heavy scalar field for the mediator model and three other different
production mechanisms for the DM particles: non-resonant production (Dodelson-Widrow mechanism
[64]), thermal WDM production in the early universe (as outlined in [61, 63]) and resonant production
with low lepton asymmetry. The bounds for all combinations of background DM production and
mediator models are shown in appendix D. For this model, we show the results of the predicted total
number of subhaloes for the MW according to the analysis in section 4.1 in the top panel, and the
results of relative suppression with respect to ΛCDM regarding Lyman-α observations in the bottom
panel, according to the analysis in section 4.2. For each plot, we show in markers the individual
simulated cosmologies corresponding to each pair of parameters: DM mass and effective coupling
constant. Empty triangles correspond to a case of relativistic (standard) decoupling of self interactions
while circles denote a case of non-relativistic self decoupling (as outlined in section 2.3 and section 3.2).
We show in colors the results for Nsub and δA, and we plot as well the level curves for an interpolating
function over all data points. In grey we mark the regions of parameter space ruled out by these
analyses: for the upper panels the lower shaded regions mark Nsub ≤ 57 and for the lower panels they
mark the conservative constraint δA ≥ 0.38. We plot also in the lower panels the tighter constraint
of δA ≥ 0.21, according to [81]. The upper grey shaded regions in all panels mark regions excluded
by Bullet Cluster constraints [78]: we take the approximate bound σ/m ≤ 0.1cm2/g, with σ the
non-relativistic self interaction cross section today, taken as σ ∼ 0.144C2

v/m
2 for the vector field

mediator and σ ∼ C2
m/m

2 for the massive scalar mediator.
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Figure 7: Parameter space constraints for νMSM, where MW satellite halo counts and Lyman-α
forest bounds are analyzed under a self interacting model as outlined above. For each point (θ,m)
in the parameter space we consider a self interacting model under a vector field mediator, with its
interaction constant given by σ/m ∼ 0.144C2

v/m
3 = 0.1cm2/g, the upper limit given by Bullet Cluster

constraints [78]. A particular point in the parameter space is considered to be admitted by any given
analysis if it is so for this maximal model. For comparison, we plot the Lyman-alpha bounds for the
non interacting case for a comparable analysis, according to the results in [80]. We also plot other
bounds to the νMSM parameter space for informative purposes, namely X-Ray indirect detection
bounds [34, 43, 44] (in blue) and sterile neutrino production bounds [31, 41] (in grey), again reminding
the reader that these bounds do not include the effects of self interactions in sterile neutrino production.
Also for informative purposes, we plot the sterile neutrino model compatible with a tentative 3.5 keV
DM signal, subject of debate in recent years, as a purple triangle [86–88].
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A Power Spectrum Oscillations and Tight Coupling

Here in this appendix we take a look at the phenomena of oscillations in the final linear power
spectra we have obtained in section section 3.3. This oscillatory phenomenon only appears at
a reasonably high value of k, and it only appears when the self interaction constant reaches
values high enough as to have a significant effect in the matter dominated era. Surprisingly,
the frequency of these oscillations seems unchanged with increasing coupling constant and
indeed retains similar shape along different interaction models, only ever changing with
different particle masses. The interaction constant only seems to increase or decrease the
amplitude of such oscillations.

Indeed, phenomena like these appear to be linked to the phenomenon of tight coupling
and fluid approximations themselves, as these oscillations in the power spectra appear not
only for SI-WDM, as we show in fig. 4, but also in interacting applications of CDM [21]
or even fluid approximations to WDM itself [58]. Here, we will try to shed some light on
this phenomenon by reviewing initial insights in [58] and expanding upon them in this work,
relating them with SI-WDM itself.

We start by recalling some results initially shown in [58], where the authors developed
the homogeneous part of the non-interacting Boltzmann hierarchy for WDM (see [68]) into a
more convenient form:

Ψ̇ = qk

ε
AΨ ≡ α(τ)AΨ , (A.1)

where Ψ = (Ψ0,Ψ1, ...) and A is the following matrix:

A =



0 −1
1/3 0 −2/3

. . . . . . . . .

l/(2l + 1) 0 −(l + 1)/(2l + 1)

. . . . . . . . .


(A.2)

There, they note that the formal solution to this homogeneous system is indeed the
following matrix exponential:

Ψ(τ) = Ue
∫ τ
τi
dτ ′α(τ ′)DU−1Ψ(τi) (A.3)

with D a diagonal matrix and A = UDU−1. There, they show that the highest eigenvalue
goes to ±i for lmax →∞ and the time dependent phase accompanying this oscillation is:

φ(τ) = k

∫ τ

τi

dτ ′
q

ε(τ ′) (A.4)

In this appendix, we will start exploring this claim by analyzing the eigenvalue structure
of the matrix A. Indeed, we can check in fig. A.1 that the eigenvalues of this matrix are
purely complex, with its highest eigenvalues in modulo approaching ±i as lmax →∞ (we use
lmax = 500, for higher values the shown structure simply becomes more densely populated).
The eigenvectors also show a rich structure, alternating between real and complex and the
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l-th component possessing l zeros along the range of eigenvalues. This implies that an initial
condition in l = 0 (such as the initial condition for CPT we consider) would populate densely
all the normal modes of oscillation in the system.
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Figure A.1: Eigenvalue and eigenvector structure in the homogeneous Boltzmann Hierarchy without
a damping term, for lmax = 500. The left panel shows the eigenvalue distribution for this case in the
complex plane, with the real part of most eigenvalues being proportional to the damping term in the
case Γ� 1. The right panel shows the zero, first and second components of the normalized eigenvalues
in the case lmax = 500, as a function of the imaginary part of their eigenvalue. The real/imaginary
parts of the eigenvalues not shown in the right hand plot are negligible.

But, what happens in the case of a damping term? In this case, the homogeneous system
to resolve would be:

Ψ̇ = α(τ) [AΨ− Γ] (A.5)

with the damping term Γ = diag(0, 0,Γ,Γ, ...). In the case Γ� 1 the eigenvalue structure,
shown in fig. A.2, becomes much different. Indeed, the only eigenvalues with a real part that
is not equal to −Γ� 0 (thus, with modes that become highly suppressed during evolution)
are the ones corresponding to the eigenvalues 0 and ±i/

√
3. We can also see in the eigenvector

structure that only these last two modes are the ones initially populated by a perturbation in
the 0-th component (i.e. an initial density perturbation).

Thus, in this regime where a strong damping term is dominant over the homogeneous
structure of the system, it will oscillate with a frequency of ±i/

√
3 and a time dependent

phase according to (A.4). This damped system in particular represents the tightly-coupled
regime in the case of SI-WDM, but indeed as this term would have the overall effect of
suppressing all Boltmann hierarchy modes with l ≥ 2 we can think of it as a representation of
Boltzmann systems in general where higher modes are suppressed, such as what can happen
in the various fluid or quasi fluid approximations for either WDM or other species. Obviously,
according to the specific dynamics of the species the 0-th and first equations in the hierarchy
may involve different terms but the oscillatory nature is a common characteristic.

This oscillatory nature of the system naturally has some impact in the power spectrum
today. If this oscillation would continue until today, the linear power spectrum would be
modulated by the oscillation in the density perturbation, itself governed by the oscillations
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Figure A.2: Eigenvalue and eigenvector structure in the homogeneous Boltzmann Hierarchy with a
damping term Γ ∼ 1× 103, for lmax = 500. The left panel shows the eigenvalue distribution for this
case in the complex plane, with the real part of most eigenvalues being proportional to the damping
term in the case Γ � 1. The right panel shows the zero and first of the normalized eigenvalues in
this case, as a function of the imaginary part of their eigenvalue. The real/imaginary parts of the
eigenvalues not shown in the right hand plot are negligible.

in the 0-th component of the Boltzmann hierarchy. If we focus on only the matter power
spectrum, and ignore other effects we obtain the following approximate expression

Posc(k) ∝ δρ2(k) =
[
4πT 4

ncdm,0

∫
dqq2ε

(
e−iφ/

√
3 + eiφ/

√
3
)
f0(q)

]2
(A.6)

where we see the both frequencies selected, ±1/
√

3, and this is just assuming that the WDM
remains self coupled until today: the evolution after the self-decoupling is not considered
here and is expected to modify the spectra. We can, however, compare this approximate
power spectrum with the simulation results and we can see them side by side in fig. A.3 for
the case without non-relativistic self decoupling and in fig. A.4 for the full scenario, using a
background DF as in (2.23).

We can see in these figures that the frequency of the oscillation in the approximate form
(A.6) is somewhat similar to the simulated data, even considering the surprising amount of
approximations considered in the formula. However, the amplitude of the peaks and valleys are
considerably different, especially in the first valley which has disappeared completely, which
seems to point to more complex evolution governing the actual amplitude of the oscillations
themselves. Nevertheless, we have gained some intuition about the origin of this behavior in
the power spectrum. So, in summary:

• While the system is in tight-coupling (or potentially any other fluid approximation with
negligible power in l ≥ 2), the species shows an oscillatory nature that is imprinted in
the power spectrum.

• This oscillatory nature is not present in the full hierarchy and, by extension, in non-
interacting WDM as the system shows a dense distribution of eigenvalues and eigenvec-
tors that are uniformly populated for lmax � 1.
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Figure A.3: Transfer function obtained with the approximate form (A.6) compared to simulated data
using CLASS. We estimate the approximate transfer function using the value of

√
Posc(k) normalized

to 1 for k � 1. In this case, we take a self interaction model such as in fig. 3 for the highest interaction
constant, with a relativistic background distribution function and assuming TSI−WDM = Tνa with Tνa
the temperature of active neutrinos.
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Figure A.4: Transfer function obtained with the approximate form (A.6) compared to simulated
data using CLASS. We estimate the approximate transfer function using the value of

√
Posc(k)

normalized to 1 for k � 1. In this case, we take a self interaction model such as in fig. 4 for the highest
interaction constant, with a background distribution function from a non-relativistic self decoupling
scenario, according to the derivations in 2.3 and 3.2.

• It is reasonable to assume that, after exiting the tight-coupling phase, free evolution
erases some of the oscillations in the power spectrum, and that the longer the system
remains tightly coupled the more evident these oscillations are.

• Questions still remain about the mechanisms that govern the amplitude of the oscillations
themselves, and the differences in amplitude between different valleys in the power
spectrum/transfer function.
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B Sterile Neutrino WDM Model Subsets
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Figure B.1: Model subsets used for the resonant νMSM production model runs plotted over the
νMSM model parameter space {sin2 θ,m}, where θ is the sterile-active neutrino mixing angle and
m is the sterile neutrino mass. The models used here are sampled from the line labeled as “high
asymmetry” for the high lepton asymmetry, low mixing angle models and from the line labeled as “low
asymmetry” for the low lepton asymmetry, high mixing angle models. Over these lines, we distinguish
the qualitative results of the analysis in section 4.1 and section 4.2. In red, we represent models that
are excluded by this analysis, for any values of the SI coupling constant and any SI model. In yellow
we represent models that are allowed for some SI models but become forbidden as Ci → 0, i.e. models
that were previously forbidden but become allowed by the inclusion of self interactions. Finally, in
green we represent models that are allowed for any SI coupling constant and any model in the ranges
tested. We also plot other bounds to the νMSM parameter space for informative purposes, namely
X-Ray indirect detection bounds [34, 43, 44] and sterile neutrino production bounds [31, 41], again
reminding the reader that these bounds do not include the effects of self interactions in sterile neutrino
production.
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D Power Spectra and Parameter Space Constraints for Other Mediator
and Background Models
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Figure D.1: Power Spectrum and Transfer Functions with respect to standard WDM for several
SI-WDM models, ignoring the effects of non-relativistic self decoupling, for the case of a Massive Scalar
Mediator. See the caption in fig. 3 for more information.
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Figure D.2: Simulated Power Spectrum and Transfer Functions with respect to standard WDM for
several SI-WDM models, considering the effects of non-relativistic self decoupling when appropriate,
for the case of a Massive Scalar Mediator. See the caption in fig. 3 for more information.
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(b) Massive scalar mediator, resonant production (high asym-
metry)
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(c) Vector field mediator, non-resonant production
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(d) Vector field mediator, resonant production (high asymmetry)

– 46 –



0.8 0.9 1.0 1.1 1.2 1.3 1.4
log10mDM/keV

45.0

42.5

40.0

37.5

35.0

32.5

30.0

27.5

25.0

lo
g 1

0C
m

/m
4 D

M
/e

V
4

BC Constraints

57

0.8 0.9 1.0 1.1 1.2 1.3 1.4
log10mDM/keV

45.0

42.5

40.0

37.5

35.0

32.5

30.0

27.5

25.0

lo
g 1

0C
m

/m
4 D

M
/e

V
4

BC Constraints

0.38 0.21

40

50

60

70

80

90

100

110

N
sub

0.1

0.2

0.3

0.4

0.5

0.6

A

(e) Massive scalar mediator, resonant production (low asymme-
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(f) Vector field mediator, resonant production (low asymmetry)
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(k) Massive scalar mediator, thermal production
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(l) Vector field mediator, thermal production

Figure D.3: Parameter space constraints for SI-WDM cosmologies, according to the analysis outlined in section 4, for the
combinations of Mediator models and background/production models not considered in fig. 6. See the caption in fig. 6 for more
information.
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