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Abstract In this paper we address an n + 1-body gravitational problem governed by the
Newton’s laws, where n primary bodies orbit on a plane Π and an additional massless
particle moves on the perpendicular line to Π passing through the center of mass of the
primary bodies. We find a condition for the described configuration to be possible. In the
case when the primaries are in a rigid motion, we classify all the motions of the massless
particle. We study the situation when the massless particle has a periodic motion with the
same minimal period as the primary bodies. We show that this fact is related to the existence
of a certain pyramidal central configuration.
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1 Introduction

In this paper we study the following restricted Newtonian n+1-body problem P (see Fig. 1):

P1 We have n primary bodies of masses m1, . . . ,mn and an additional massless particle.
P2 The primary bodies are in a homographic motion (see Llibre et al. 2015, Section 2.9).

This motion is carried out in a plane Π .
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P3 The massless particle is moving on a perpendicular line to Π passing through the center
of mass of the primary bodies.

Problems like the one presented above have been extensively discussed in the literature.
Sitnikov (1960) considered the problem of two bodies in a Keplerian elliptic motion and a
massless particle moving on the perpendicular line to the orbital plane passing through the
center of mass. Sitnikov obtained deep results about the existence of solutions, for small
e > 0, with a chaotic behavior [see Moser 1973, III(5)]. Periodic solutions for a Sitnikov
configuration were considered in Corbera and Llibre (2000, 2002), Llibre and Ortega (2008)
and Pustyl’nikov (1990).

Generalized circular Sitnikov problems, i.e., when there are n ≥ 3 primaries in a relative
equilibrium motion, were addressed more recently. Soulis et al. (2008) studied the existence,
linear stability and bifurcations for a problem similar to P . They considered a Lagrangian
equilateral triangle configuration for the primary bodies, which were supposed to have the
same mass m1 = m2 = m3. Bountis and Papadakis (2009) extended the results of Soulis
et al. (2008) to n primaries (n ≥ 3) in a polygonal equal masses configuration. Later, Pandey
and Ahmad (2013) generalized the analysis started in Soulis et al. (2008) to the case with
oblate primaries. Li et al. (2013) studied a special type of the restricted circular n + 1-body
problem with equal masses for the primaries in a regular polygonal configuration. Periodic
solutions for generalized Sitnikov problems with primaries performing no rigid motions
were studied in Pustyl’nikov (1990) and Rivera (2013). We emphasize that in Bountis and
Papadakis (2009), Li et al. (2013), Pandey and Ahmad (2013), Pustyl’nikov (1990), Rivera
(2013) and Soulis et al. (2008), it is assumed that the primary bodies are in the vertices
of a regular polygon. As far as we know, the first non-polygonal configuration of primary
bodies was considered in Marchesin and Vidal (2013) where Marchesin and Vidal studied
the problem P for a rigid motion of primaries in a rhomboidal configuration. Bakker and
Simmons (2015) studied escape regions for the massless particle in a similar problem to
P where the primaries perform certain type of periodic orbits including non homographic
motions.

In the present paper, after introducing preliminary facts in Sect. 2, we obtain in Sect. 3
necessary and sufficient conditions on the configuration of the primary bodies in order to the z-
axis be invariant for the flow associated with the equations of motion of the massless particle.
For this type of configurations, that we call admissible, the Sitnikov problem has sense.
The conclusions of Sect. 3 are obtained basically by elementary linear algebra arguments.
We consider that the main contribution of Sect. 3 is to expand the variety of problems of
Sitnikov type. In Sect. 4, we find all admissible configurations for n ≤ 4 primaries. The

Fig. 1 Five-body problem with
primaries in a collinear
configuration
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Perpendicular Bisector Theorem of Moeckel (see Moeckel 1990) is an important help to
solve this question. In Sect. 5 we describe all possible motions of the massless particle when
the primaries are in a relative equilibrium (or rigid) motion. In this direction, we observe that
only escape (both parabolic and hyperbolic) and periodic motions are possible. We also give
in Theorem 5 a formula expressing the period of solutions by means of integrals. We prove
in Corollary 1 that the complete n+1-body system has infinite number of periodic solutions.
We solve some problems raised in Sect. 5 by two alternative techniques: (1) elementary
arguments, by using energy conservation (Arnold 1989, Ch. 2) and (2) variational techniques
inspired in Li et al. (2013), Ferrario and Terracini (2004) and Zhao and Zhang (2015). In
Sect. 6 we discuss the situation when the entire system has a solution with the same period
as the motion of primaries. We call it synchronous solution. Surprisingly, the existence of
synchronous solutions is related to the existence of certain pyramidal central configurations
(for the definition of this concept see Fayçal 1996, 1995; Ouyang et al. 2004). Finally, in the
last section, we study certain non-admissible configurations which provide some particular
solutions of problem P .

In this paper, we generalize and extend some previously obtained results. For example, the
results in Sect. 5, obtained for admissible configurations, generalize some results in Marchesin
and Vidal (2013) established for rhomboidal configurations. In Sect. 6 we prove that there
exist synchronous solutions for primaries in a regular polygonal equal mass configuration if
and only if 2 ≤ n ≤ 472. The sufficiency of this fact was established in Li et al. (2013).

2 Preliminaries

We start considering n mass points, n > 2, of masses m1, . . . ,mn moving in a
Euclidean three-dimensional space according to Newton’s laws of motion. We assume
that x1(t), . . . , xn(t) are the coordinates of the bodies in some inertial Cartesian coor-
dinate system. We can suppose, without any loss of generality, that the center of mass
C := ∑

j m j x j/M (M := ∑
j m j ) is fixed at the origin (C = 0).

Initially we suppose that the bodies are in a planar homographic motion on the plane Π

(see Llibre et al. 2015), where Π is the plane determined by the first two coordinate axes.
Concretely, we are assuming that

x j (t) = r(t)Q(θ(t))q j , (1)

where

Q(θ) =
⎛

⎝
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎞

⎠

and q j ∈ Π , j = 1, . . . , n are vectors in a planar central configuration (CC) in Π . We recall
the following definition of this concept (see Llibre et al. 2015).

Definition 1 Letq = (q1, . . . , qn) be an n-tuple of positions inR3 and letm = (m1, . . . ,mn)

be a vector of masses. We say that (q,m) is a central configuration if there exists λ ∈ R such
that

∇ jU (q1, . . . , qn) + λm jq j = 0, j = 1, . . . , n, (2)
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where

U (q1, . . . , qn) =
∑

i< j

mim j

ri j
, (3)

ri j = |qi − q j | and ∇ j denotes the 3-dimensional partial gradient with respect to q j .

From Llibre et al. (2015, Eq. (2.16)), the functions r(t) and θ(t) solve the two-dimensional
Kepler problem in polar coordinates, which is

r̈(t) − r(t)θ̇ (t)2 = − λ

r(t)2

d

dt

[
r(t)2θ̇ (t)

] = 0. (4)

It may be the case that the solutions of (4) are defined only on a proper subset of R. We
denote by O the domain of the solutions r and θ . In the particular case of rigid motion, we
have O = R, r(t) ≡ 1 and θ(t) = √

λt + θ(0). In this case the primary bodies perform a
periodic motion with minimal period T := 2π/

√
λ.

Let x0(t) be the position of the massless particle. According to the Newtonian equations
of motion, x0 satisfies

ẍ0 =
n∑

i=1

mi (xi − x0)

|xi − x0|3 =: f (t, x0). (5)

In the previous equation, we assume that we know the positions of the primaries. Therefore,
this equation plus the initial conditions determine the position of the particle completely.

3 Admissible configurations

Henceforth, we denote by L the coordinate z axis.
A necessary and sufficient condition for that L be invariant under the flow associated with

the non-autonomous system (5) is f (t, L) ⊂ L for all t ∈ O, i.e., L is f -invariant for every
t ∈ O. This fact follows by applying (Brezis 1970, Th. 1) to the first-order autonomous
system

⎧
⎪⎪⎨

⎪⎪⎩

ds
dt = 1

dx
dt = v

dv
dt = f (s, x)

which is equivalent to Eq. (5). In addition, the following observations must be taken into
account: i) the autonomous vector field F(s, x, v) = (1, v, f (s, x)) satisfies F(O×L×L) ⊂
O×L×L if and only if f (t, L) ⊂ L for all t ∈ O and ii) if A ⊂ R

d is a subspace, x ∈ A and
v ∈ R

d then d(x + hv, A)/h → 0, when h → 0 if and only if v ∈ A. In the last assertion d
denotes the distance function.

Definition 2 We say that a central configuration (q,m) is admissible if and only if

1. qi 
= 0, for i = 1, . . . , n.
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2. For any r > 0, if the set

Fr := {i : |qi | = r}
is non-empty, then

∑

i∈Fr
miqi = 0, (6)

i.e., every maximal set of bodies which are equidistant from the origin has a center of
mass equal to 0.

Remark 1 In the previous definition, we introduced the condition qi 
= 0 in order to avoid
collisions between the primaries and the particle.

Theorem 1 L is f -invariant for every t ∈ O if and only if (q,m) is admissible.

For the proof of the previous theorem we need the following result.

Lemma 1 For c > 0 we define the function yc(t) := (c + t)−3/2. If 0 < t1 < t2 < . . . < tk
then the functions y j (t) := yt j (t) are linearly independent on each open interval I ⊂ R

+.

Proof It is sufficient to prove that the Wronskian

W := W (y1, . . . , yk)(t) = det

⎛

⎜
⎜
⎜
⎜
⎝

y1 · · · yk
dy1
dt · · · dyk

dt
...

. . .
...

dk−1 y1
dtk−1 · · · dk−1 yk

dtk−1

⎞

⎟
⎟
⎟
⎟
⎠

is not null on I .
Using induction, it is easy to show that

di yc
dt i

= βi y
2i+3

3
c , for some βi 
= 0, and for all i = 1, . . . . (7)

Fix any t ∈ I . Then, according to (7) and writing λ j := (t + t j )−1, we have

W (t) = det

⎛

⎜
⎜
⎜
⎜
⎝

λ
3/2
1 λ

3/2
2 · · · λ

3/2
k

β1λ
5/2
1 β1λ

5/2
2 · · · β1λ

5/2
k

...
...

. . .
...

βk−1λ
k+1/2
1 βk−1λ

k+1/2
2 · · · βk−1λ

k+1/2
k

⎞

⎟
⎟
⎟
⎟
⎠

= β1β2 · · · βk−1λ
3/2
1 λ

3/2
2 · · · λ3/2

k det

⎛

⎜
⎜
⎜
⎝

1 1 · · · 1
λ1 λ2 · · · λk
...

...
. . .

...

λk−1
1 λk−1

2 · · · λk−1
k

⎞

⎟
⎟
⎟
⎠

= β1β2 · · · βk−1λ
3/2
1 λ

3/2
2 · · · λ3/2

k

∏

1≤i< j≤n

(λ j − λi ),

where the last equality follows from the well known Vandermonde determinant identity.
Therefore, W 
= 0 if and only if λi 
= λ j , i 
= j , which in turn is equivalent to ti 
= t j ,
i 
= j . ��
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Proof (Proof of Theorem 1) The condition f (t, L) ⊂ L for all t ∈ O is equivalent to

n∑

i=1

mir(t)Q(θ(t))qi
(
r(t)2|qi |2 + z2

)3/2 = 0 ∈ R
2, (8)

for every t ∈ O and z ∈ R.
Let D = {|qi | : i = 1, . . . , n}. Suppose that D = {s1, . . . , sk}, with si 
= s j for i 
= j .

Therefore {1, . . . , n} = Fs1 ∪ · · · ∪ Fsk . Then, multiplying Eq. (8) by r(t)2Q−1(θ(t)) and
writing ζ = (z/r(t))2 we have that (8) is equivalent to

k∑

j=1

⎧
⎪⎨

⎪⎩

1

(s2
j + ζ )3/2

∑

i∈Fs j
miqi

⎫
⎪⎬

⎪⎭
= 0.

According to Lemma 1, the last equation is equivalent to (6). ��

4 Admissible configurations for n ≤ 4

In this section, we find all admissible configurations with n ≤ 4. Since the center of mass is
an excluded position, an admissible configuration satisfies

#Fr 
= 1. (9)

It is a trivial fact that the configuration of two point masses m1 and m2 is admissible if
and only if m1 = m2.

From (9), a three-body admissible configuration consists of equidistant bodies from the
origin. Therefore, it must be the Lagrangian equilateral triangle. Now, by Eq. (6) and an
elementary geometrical reasoning, we have m1 = m2 = m3.

The case n = 4 is more interesting. We include Definition 3 and Theorem 2, which were
introduced for the first time in Moeckel (1990), for the reader’s convenience.

Definition 3 Let q be a planar configuration. For each pair i , j , the line containing qi and q j

together with its perpendicular bisector form axes which divide the plane into four quadrants.
The union of the first and third quadrants is an hourglass-shaped region which will be called
a ‘cone’; similarly, the second and fourth quadrants together form another cone. The phrase
‘open cone’ refers to a cone minus the axes.

Theorem 2 (Perpendicular Bisector Theorem) Let (q,m) be a planar central configuration
and let qi and q j be any two of its points. Then if one of the two open cones determined by the
line through qi and q j and its perpendicular bisector contains points of the configuration,
so does the other one.

Next, we characterize all the four-body admissible configurations.

Theorem 3 Let (q,m) be a four-body central configuration. Then (q,m) is admissible if
and only if qi 
= 0 and for a suitable enumeration of bodies, q1 = −q3, q2 = −q4, m1 = m3,
m2 = m4, and (q,m) is of some of the following mutually exclusive types:

CCcl. collinear,
CCr. a rhombus with r13 < r24 and m1 > m2,
CCs. a square with four equal masses.
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Remark 2 In Shoaib and Faye (2011), central configurations of type CCcl were studied, while
CCr configurations were treated in Long and Sun (2002) and Perez-Chavela and Santoprete
(2007).

Proof From (9) we have to consider two cases.
Case 1 m1 ≥ m2, |q1| 
= |q2|, |q1| = |q3| and |q2| = |q4|. Now (6) implies that m1 = m3,

m2 = m4, q1 = −q3 and q2 = −q4. We divide the plane into two open cones Ci , i = 1, 2,
by means of a line P joining q1 and q3 together with its perpendicular bisector M . From
Theorem 2, if q2 is in C1, then q4 is in C2, and vice versa. This is a contradiction with the fact
that q2 = −q4. Then q2, q4 ∈ P or q2, q4 ∈ M , i.e., q is collinear or a rhombus with equal
masses in opposite vertices. In the first case, (q,m) is of CCcl type. In the second case, if
m1 > m2, was proved in Long and Sun (2002, Eqs. (3.44) and (3.45)) that r13 < r24. Hence
(q,m) is of CCr type. From Perez-Chavela and Santoprete (2007, Corollary 2) if m1 = m2

then the configuration is a square which is a contradiction with the fact that |q1| 
= |q2|.
Case 2 |q1| = |q2| = |q3| = |q4|. In this situation, in Hampton (2005) it was proved that

the configuration is the equal mass square. ��

5 Massless particle motion

In this section and in Sect. 6, we will suppose that the primary bodies are in a T -periodic rigid
motion associated with an admissible CC (q,m), i.e r(t) ≡ 1 and according to the remark
that follows Eq. (4), θ(t) = √

λt (w.l.o.g we assume that θ(0) = 0). As to the particle, we
suppose that it is moving on L , i.e., x0(t) = (0, 0, z(t)). From Theorem 1, x0 is a solution
of (5), if and only if z(t) is a solution of the autonomous equation

z̈ = −
n∑

i=1

mi z

(s2
i + z2)3/2

, (10)

where si = |qi |.
We will analyze all possible motions for the massless particle x0. In particular, we shall

see that every motion is either periodic or an escape trajectory. We shall find that there exist
T0-periodic solutions for all T0 in an interval (σ (q,m),+∞). This fact implies that there
exists an infinite quantity of periodic solutions for the entire n + 1-body system.

The second-order Eq. (10) is conservative, and therefore its solutions conserve the energy

E(z, v) := |v|2
2

−
n∑

i=1

mi
(
s2
i + z2

) 1
2

, (11)

i.e., E(z(t), ż(t)) is constant.
Following Arnold et al. (2007) (see also Marchesin and Vidal 2013), we introduce the

next concepts.

Definition 4 (Chazy 1922) Let z(t) be a solution of (10) such that limt→∞ z(t) = ∞. Then
z(t) is called:

– hyperbolic when there exists limt→∞ ż(t) and it is not null,
– parabolic if limt→∞ ż(t) = 0.

The following theorem characterizes all the possible motions for the massless particle.
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Theorem 4 We assume that (q,m) is an admissible configuration and the primaries are in
a rigid motion. Every solution of (10) is of some of the following types:

1. Hyperbolic, when E > 0,
2. Parabolic, when E = 0,
3. Periodic, when Emin := −∑n

i=1
mi
si

< E < 0,
4. Equilibrium solution when E = Emin.

Proof We follow a standard argument for Hamiltonian systems (see Arnold 1989).
We consider the level sets S(E) = {(z, v) : E(z, v) = E} on the phase space (z, v). An

elementary analysis shows that

– If E ≥ 0 then S(E) is the union of two bounded graphs. They are symmetric with respect
to the z-axis, each of which is contained in some semiplane v > 0 or v < 0. The v-
positive branch is the graph of a function v(E, z), which is decreasing with respect to
|z|. Moreover, lim|z|→∞ v(E, z) = √

2E .
– For every E ≥ Emin, the energy curve S(E) cuts the v-axis at the value ±(2E +

2
∑n

i=1 mis
−1
i )

1
2 .

– If Emin < E < 0 then S(E) is a simple closed curve, symmetric with respect to the z
and v axes.

– An energy curve cuts the z-axis, only in the case that E < 0, at the point ±zE , where zE
is the only positive solution of −∑n

i=1 mi (s2
i + z2

E )− 1
2 = E .

In Fig. 1, we show the phase portrait for a rhomboidal configuration with masses m1 =
m3 = 1 and m2 = m4 = 0.5.

The function ϕ(t) = (z(t), ż(t)) solves the system ϕ̇(t) = F(ϕ(t)), where
F(z, v) = (v,−∑n

i=1 mi z(s2
i + z2)−3/2). It is easy to show that the vector field F has

a bounded Jacobian DF . Therefore F(z, v) is a global Lipschitz function on R
2. This fact

and Betounes (2009, Th. B.1) imply that the trajectories t �→ (z(t), ż(t)) are defined for
every time. On the other hand, since ż = v, the motion along trajectories is in clockwise
direction. The only fixed point of F is (z, v) = (0, 0). Therefore, the level surfaces S(E), with
E 
= Emin, do not contain stationary points. Then the limt→∞ ϕ(t) does not exist. As a con-
sequence, the map t �→ ϕ(t) fills completely one connected component of its corresponding
energy curve (Fig. 2).

We observe that any solution z crosses the v-axis. On the other hand, if E ≥ 0 and
v(E, 0) > 0 (v(E, 0) < 0) then z(t) is increasing (decreasing) with respect to t . If z(t)
remained bounded when t → +∞, then there would be the limit ζ∞ := limt→∞ z(t).
This would imply that (ζ∞, 0) would be a fixed point of F , which is a contradiction. As a
consequence, if E ≥ 0 then |z(t)| → ∞ when t → +∞. Moreover limt→+∞ ż(t) = ±√

2E .
From this fact, we conclude that the trajectory is hyperbolic when E > 0 and it is parabolic
in the case when E = 0.

In the case when Emin < E < 0, we have that the trajectory is contained in a closed curve;
therefore, it is a periodic orbit.

Finally, if E = Emin we clearly have that z(t) ≡ 0. ��

Theorem 5 We denote by T0(E) the minimal period for a solution of (10) with Emin < E <

0. Then

1.

T0(E) = 23/2
∫ zE

0

(

E +
n∑

i=1

mi (s
2
i + z2)−

1
2

)− 1
2

dz, (12)
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Fig. 2 Energy level for a
rhomboidal configuration with
masses m1 = m3 = 1 and
m2 = m4 = 0.5

where zE is the only positive solution of −∑n
i=1 mi (s2

i + z2
E )− 1

2 = E ,
2. T0(E) is an increasing function.

3. T0 ((Emin, 0)) = (Tmin,+∞), where Tmin = 2π

(
∑n

i=1
mi
s3
i

)−1/2

.

Proof Let Emin < E < 0 and let z(t) be the only solution with z(0) = 0, ż(0) > 0 and
energy equals to E . Therefore z(t) is T0(E)-periodic. As a consequence of the symmetries
of the equation, we have that z(T0(E)/4) = zE . Then, taking account of (11), we have

T0

4
= 1√

2

∫ T0/4

0

(

E +
n∑

i=1

mi (s
2
i + z2)−

1
2

)− 1
2

żdt

= 1√
2

∫ zE

0

(

E +
n∑

i=1

mi (s
2
i + z2)−

1
2

)− 1
2

dz,

and we have proved item 1. In order to prove item 2, we note that

2−3/2T0(E) =
∫ zE

0

(
n∑

i=1

mi

(
(s2
i + z2)−

1
2 − (s2

i + z2
E )−

1
2

)
)− 1

2

dz

=
∫ zE

0

(
z2
E − z2)− 1

2 f (z, zE )dz

=
∫ 1

0

(
1 − u2)− 1

2 f (zEu, zE )du,

where

f (z, zE ) =
(

n∑

i=1

mi
{
(s2
i + z2)(s2

i + z2
E )
}− 1

2
{
(s2
i + z2)

1
2 + (s2

i + z2
E )

1
2

}−1
)− 1

2

.

We point out that f (zEu, zE ) is an increasing function with respect to zE for any fixed
u ∈ [0, 1]. This assertion implies item 2.
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On the other hand,

lim
zE→0

f (zEu, zE ) =
(

n∑

i=1

mi

2s3
i

)− 1
2

and lim
zE→+∞ f (zEu, zE ) = +∞.

Thus, from the dominated convergence theorem and monotone convergence theorem, we
have

lim
E→Emin

T0 = lim
zE→0

T0 = 2π

(
n∑

i=1

mi

s3
i

)− 1
2

and lim
E→0

T0 = lim
zE→+∞ T0 = +∞.

Finally, since T0 = T0(zE ) is continuous and increasing with respect to zE , we conclude the
statement of item 3. ��

Remark 3 It is possible to use the classical theory of Hamiltonian systems (see Arnold 1989)
to derive the formula (12) (see Acinas et al. 2014 for this approach in a related problem).

Remark 4 Let us show a second proof of item 3 of Theorem 5.
The inequality T0 > Tmin is a consequence of a comparison of Sturm’s theorem applied to

equations z̈+h(z)z = 0, where h(z) = ∑n
i=1 mi

(
s2
i + z2

)−3/2
, and z̈+

(∑n
i=1 mis

−3
i

)
z =

0. This proves that T0 ((Emin, 0)) ⊂ (Tmin,+∞).
For the reverse inclusion, we follow the arguments of Zhao and Zhang (2015) and Li et al.

(2013) based on variational principles.
Let T0 > Tmin. We consider the action integral

I(z) =
∫ T0

0

1

2
|ż|2 +

n∑

i=1

mi
√
s2
i + z2

dt.

Then T0-periodic solutions of (10) are critical points of I in the space H1(T,R) of
the functions which are absolutely continuous, T0-periodic with ż ∈ L2(T,R) and being
T = R/T0Z (see Mawhin and Willem 1989, Cor. 1.1). We prove the existence of critical
points by means of the direct method of calculus of variations, i.e., we will prove that I
has a minimum. The functional I is not coercive in H1(T,R). This deficiency is overcome
with symmetry techniques (see Ferrario and Terracini 2004). The group Z2 acts on H1(T,R)

according to the following assignments (0̄ · z)(t) = z(t) and (1̄ · z)(t) = −z(t + T0
2 ). The

symmetry involved in the previous definition is called Italian Symmetry (see Meyer et al.
2009, p. 327). The functional I is Z2-invariant, i.e., I(g · z) = I(z). We define the space of
all Z2-symmetric functions

Λ(T,R) := {
z ∈ H1(T,R)|∀g ∈ Z2 : z = g · z} .

The functional I restricted to Λ is coercive. This fact follows from an obvious adaptation of

Proposition 4.1 of Ferrario and Terracini (2004). We note that F(z) := ∑n
i=1 mi (s2

i + z2)− 1
2

satisfies the condition (A) in Mawhin and Willem (1989), p. 12, then I is continuously
differentiable and weakly lower semicontinuous on H1(T,R) (see Mawhin and Willem
1989, p. 13). Therefore I has a minimum z0 in Λ(T,R). Then by the Palais’ principle of
symmetric criticality, z0 is a critical point of I in H1(T,R) (see Ferrario and Terracini 2004;
Palais 1979).

123



The Sitnikov problem for several primary bodies configurations Page 11 of 17  45 

We use the second variation δ2I in order to show that z0 
≡ 0. It is well known (see Jost
and Li-Jost 1998, Th. 1.3.1) that if z0 is a minimum of I on H1(T,R) then δ2I(z0, ϕ) ≥ 0
for all ϕ ∈ H1(T,R). In our case,

δ2I(0, ϕ) =
∫ T0

0
|ϕ̇|2 −

n∑

i=1

mi

s3
i

ϕ2dt

(see Jost and Li-Jost 1998, Eq. 1.3.6). In particular, if ϕ(t) = sin(2π t/T0) it follows from
T0 > Tmin that

δ2I(0, ϕ) =
(

4π2

T 2
0

−
n∑

i=1

mi

s3
i

)
T0

2
< 0. (13)

It is sufficient to guarantee that z0 ≡ 0 is not a minimum. ��
This second proof, unlike the first one, does not prove that T0 is the minimum period of

z0. It could happen that z0 had period T0/m, with natural m ∈ N. Because of the Italian
symmetry this m should be odd.

Corollary 1 The complete n + 1-body system has an infinite quantity of periodic solutions.

Proof We recall that T denotes the minimal period of the primaries. Let l/m be a positive
rational number with T l/m > Tmin. Then, there exists a solution of the entire system with
period lT . ��

6 Synchronous solutions and pyramidal CC

If Eq. (10) has a T -periodic solution, we say that the solution is synchronous. In Li et al.
(2013) the problem of existence of synchronous solutions for n equal mass primary bodies
in a regular polygon configuration was studied.

In this section we establish a relation between the existence of synchronous solutions and
the concept of pyramidal central configuration (see Fayçal 1996, 1995; Ouyang et al. 2004).

Definition 5 A central configuration ofn+1 mass pointq0, . . . , qn inR3 is called a pyramidal
central configuration (PCC) if and only if n points, we say q1, . . . , qn , are in some plane Π

and q0 /∈ Π .

The following lemma was proved in Ouyang et al. (2004) (see also Fayçal 1995).

Lemma 2 (Ouyang et al. 2004, Lemma 2.1) Let q0, . . . , qn be a PCC such that m0 is off the
plane containing m1, . . . ,mn. If m0 > 0 then m0 is equidistant from m1, . . . ,mn.

We remark that the condition m0 > 0 is important in the previous lemma. In the examples
below, we will show two PCC with m0 = 0 which do not satisfy the conclusion of Lemma 2.

Proposition 1 We assume that q = q1, . . . , qn is an admissible configuration and that the
primaries are in a rigidmotion. Then, there is a synchronous solution if and only if there exists
c ∈ R such that the points (0, 0, c), q1, . . . , qn associated with the masses 0,m1, . . . ,mn

form a PCC.
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Proof We start assuming that there exist a synchronous solution. As a consequence of The-
orem 5(3) and the fact that T 2 = 4π2/λ, we get

λ <

n∑

i=1

mi

s3
i

. (14)

Since
∑n

i=1 mi
(
s2
i + c2

)−3/2 → 0, when c → +∞, there exists c ∈ R such that
∑n

i=1 mi
(
s2
i + c2

)−3/2 = λ. Therefore

−
n∑

i=1

mic
(
s2
i + c2

)3/2 = −λc. (15)

As q1, . . . , qn is an admissible configuration, then

n∑

i=1

miqi
(
s2
i + c2

)3/2 = (0, 0). (16)

Equations (15), (16) and the fact that q1, . . . , qn is a CC with constant λ, complete the proof.
The proof of the reciprocal statement follows in a direct way. ��
Corollary 2 We assume that (q,m) is an admissible configuration and the primaries are in
a rigid motion. Then, there is a synchronous solution if and only if

∑

i< j

mim j

ri j
<

(
n∑

i=1

mi

s3
i

)(
n∑

i=1

mis
2
i

)

. (17)

Proof The result is a consequence of (14) and the fact that T 2 = 4π2 ∑n
i=1 mis2

i /U (see Lli-
bre et al. 2015, p. 109). ��
Remark 5 Let (q,m) be an admissible CC with constant λ > 0 satisfying (17) and let r, μ be
positive numbers. Then (rq, μm) is a CC with constant λμr3, and (17) remains unchanged.
In virtue of the previous observation, we can assume that any length and any mass take any
desired value. Equation (10) has a synchronous solution if and only if the same equation with
(rq, μm) instead of (q,m) has a synchronous solution.

The sufficiency of the condition n ≤ 472 in the following corollary was proved in Li et al.
(2013).

Corollary 3 We suppose that (q,m) is the equal masses regular polygon configuration (this
is an admissible CC). Then, there exists a synchronous solution if and only if 2 ≤ n ≤ 472.

Proof In this case s1 = s2 = · · · = sn =: r and m1 = m2 = · · · = mn =: M . Then, from
the law of cosines, we obtain

∑

i< j

mim j

ri j
= nM2

4r

n−1∑

j=1

1

sin
(

jπ
n

) .

Therefore, the condition (17) is equivalent to

1

n

n−1∑

j=1

1

sin
(

jπ
n

) < 4. (18)
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This inequality was also derived by Li et al. (2013), where the authors proved (performing
computer calculations) that inequality (18) holds true for 2 ≤ n ≤ 472. Let us prove that any
other n does not satisfy (18).

Using that 1/ sin(x) is a convex function on [0, π] and the composite trapezoid rule
(see Kincaid and Cheney 1991), we have

∫ n−1
n π

π
n

1

sin(x)
dx ≤ π

2n

⎧
⎨

⎩

1

sin
(

π
n

) + 1

sin
( n−1

n π
) + 2

n−2∑

j=2

1

sin
(
j π
n

)

⎫
⎬

⎭

= π

n

n−2∑

j=1

1

sin
(
j π
n

) .

Hence

1

n

n−1∑

j=1

1

sin
(

jπ
n

) ≥ 1

π

∫ π(n−1)
n

π
n

1

sin(x)
dx + 1

n sin
( n−1

n π
)

= 1

2π
log

(
1 − cos(x)

1 + cos(x)

)∣
∣
∣
∣

n−1
n π

π
n

+ 1

n sin
(

π
n

)

= 1

π

{

log

(
1 + cos( π

n )

1 − cos( π
n )

)

+ π/n

sin
(

π
n

)

}

=: f
(π

n

)
.

It is easy to see that f (x) is a decreasing function on (0, π/2). Moreover f (π/842) ≈
4.0006 > 4. Thus, if n ≥ 842 then n does not satisfy inequality (18). The validity of the
inequality (18), for n ≤ 841 can be easily checked using computer. This gives the result that
the inequality holds only for n ≤ 472. ��

Our next goal is to verify that condition (17) is satisfied for all admissible CC of three-body
or four-body. Since (17) holds for an equilateral triangle and square configurations of equal
masses bodies, it only rests to prove, in virtue of Theorem 3, the following result.

Theorem 6 The central configurations CCcl and CCr satisfy condition (17).

Proof Let us start by analyzing the central configuration CCr. From Remark 5, we can suppose
without loss of generality that q1 = −q3 = (0, y) for 0 < y < 1, q2 = −q4 = (1, 0). The
condition (17) becomes

m2
1

2y
+ 4m1m2

√
1 + y2

+ m2
2

2
<

(
2m1

y3 + 2m2

)
(
2m1y

2 + 2m2
)
.

As m2
1/(2y) < 4m2

1/y, m2
2/2 < 4m2

2 and 4m1m2/
√

1 + y2 < 4m1m2/y3 (since y < 1), we
have that the inequality holds.

Now we consider the central configuration CCl. From Remark 5 again, we can suppose
that q1 = −q3 = 1, q2 = −q4 = x with 0 < x < 1, and m1 = m3 = μ, m2 = m4 = 1 − μ,
with 0 < μ < 1. Then, inequality (17) becomes
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2μ(1 − μ)

1 − x
+ 2μ(1 − μ)

1 + x
+ μ2

2
+ (1 − μ)2

2x
< 4μ2 + 4μ(1 − μ)x2

+4μ(1 − μ)

x3 + 4(1 − μ)2

x
.

As μ2/2 < 4μ2 and (1 − μ)2/(2x) < 4(1 − μ)2/x , it is sufficient to show that

2μ(1 − μ)

1 − x
+ 2μ(1 − μ)

1 + x
<

4μ(1 − μ)

x3 ,

and, this is equivalent to see that

x3

1 − x2 < 1. (19)

The values of x involved in the inequality above are such that the configuration of positions
(−1,−x, x, 1) and masses (μ, 1−μ, 1−μ,μ) is central. It was shown in Moulton (1910) that
given a mass μ there is only one value of x satisfying this condition (see also Shoaib and Faye
2011). Consequently, we can define x(μ) as such value of x . We note that h(x) = x3/(1−x2)

is an increasing function with respect to x ∈ (0, 1) and h(x) < 1 for x ∈ (0, 3/4). Hence, if
we could prove that x(μ) is a decreasing function and

lim
μ→0

x(μ) < 3/4, (20)

we would have justified (19).
Let us first prove that x(μ) is a decreasing function. Eliminating λ from Eqs. (2) and

replacing q j and m j by their expressions in x and μ, we get

μ

4
− μ

x (x + 1)2 + μ

x (−x + 1)2 + −μ + 1

(x + 1)2 + −μ + 1

(−x + 1)2 − 1

x3

(

−μ

4
+ 1

4

)

= 0,

which is equivalent to

μ = − 8x5 − x4 + 8x3 + 2x2 − 1

(x − 1) (x + 1)
(
x5 − 9x3 + x2 − 1

) .

Therefore

dμ

dx
= x2

(
16x9 − 3x8 + 32x7 + 12x6 − 304x5 − 2x4 + 44x2 − 51

)

(x − 1)2 (x + 1)2 (x5 − 9x3 + x2 − 1
)2 .

Since 44x2 < 51 and 16x9 + 32x7 + 12x6 < 304x5 for x ∈ (0, 1), then dμ/dx < 0 on the
interval (0, 1). Which, in turn, implies that x is decreasing with respect to μ.

Let us see now that (20) holds. When μ goes to 0, x(μ) converges to the only solution on
the interval (0, 1) of equation 8x(0)5−x(0)4+8x(0)3+2x(0)2−1 = 0. Then, 8x(0)3−1 < 0
which implies that x(0) < 3/4 as we wanted to prove. ��
Remark 6 As a consequence of the previous results, there exist five-body PCC ′s with
m1, . . . ,m4 in a CCcl or CCr configuration and the mass m0 = 0 is in the perpendicu-
lar line to the plane containing m1, . . . ,m4 and passing by the center of mass. These are
examples of PCC ′s which do not verify the conclusion of Lemma 2.

Corollary 4 For all admissible CC of three-body or four-body, the problem P has a syn-
chronous solution.
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7 Non-admissible central configurations

The following result shows when a non-admissible CC has a solution of the problem P .

Theorem 7 We suppose that (q,m) is a non-admissible CC with qi 
= 0 and that the pri-
maries are in a homographic motion, i.e., Eq. (1) is satisfied. Assume that the massless
particle is moving on the z-axis with position vector x0(t) = (0, 0, z(t)). Then, one and only
one of the following statements is satisfied:

1. The massless particle is in a stationary motion and

n∑

i=1

miqi
s3
i

= 0, (21)

i.e., the positions 0, q1, . . . , qn and the masses 0,m1, . . . ,mn are in a CC.
2. The n + 1-body system is in a homothetic motion, i.e., Q(θ(t)) in Eq. (1) is the identity

matrix and z(t) = cr(t), for some constant c. Moreover, the configuration q0, . . . , qn is
a PCC, where q0 = (0, 0, c) and m0 = 0.

Proof We recall the definition of the function f and line L from Sect. 3.
The fact that the massless particle is moving on L is equivalent to the condition

f (t, x0(t)) ∈ L for all t ∈ O, which is equivalent to the equality
n∑

i=1

mir(t)Q(θ(t))qi
(
r(t)2|qi |2 + z(t)2

)3/2 = 0, (22)

for every t ∈ O.
With the same notation and reasoning as in the proof of Theorem 1, we prove that

k∑

j=1

⎧
⎨

⎩

1

(s2
j + (z(t)/r(t))2)3/2

∑

i∈Fj

miqi

⎫
⎬

⎭
= 0. (23)

If z(t)/r(t) would be a non-constant function then the previous equation and Lemma 1
would imply that q is admissible, which is a contradiction. Hence, there exists c ∈ R such
that z(t) = cr(t). Now, we have two cases.

Case 1 c = 0. Then z ≡ 0 and (21) follows from (22).
Case 2 c 
= 0. From Eq. (10), the Kepler equations (4) and the fact that z(t) = cr(t), we

have

− 1

r(t)2

n∑

i=1

mi

(s2
i + c2)3/2

= − λ

r(t)2 + r(t)θ̇ (t)2. (24)

The second equality in (4) implies Kepler’s second law, i.e., there exists d ∈ R such that
r2θ̇ ≡ d . Replacing θ̇ in Eq. (24) and multiplying by r(t)3, we obtain

− r(t)

(
n∑

i=1

mi

(s2
i + c2)3/2

− λ

)

= d2. (25)

Therefore, if d 
= 0 then ṙ(t) ≡ 0, and this implies ż(t) ≡ 0. As z(t) is a constant
function and it solves Eq. (10), then z(t) ≡ 0. Hence we are in case 1 again. Consequently
we suppose d = 0. Therefore θ(t) is a constant function and the motion is homothetic.
From (23) and (25), we deduce that in this new situation Eqs. (15) and (16) hold. This fact,
as in the proof of Proposition 1, implies the desired result. ��
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Example 1 We present an example of a 3 + 1-body system satisfying the situation described
in item 1 of Theorem 7, i.e., (q,m) is a non-admissible CC and z(t) ≡ 0. For this purpose,
it is sufficient to find a four-body CC with a zero mass body located in the center of mass.

We start with an Euler’s collinear central configuration formed by three primary bodies of
masses m1 = 4 −μ, m2 = 2 +μ and m3 = 1, where 0 < μ < 1, and positions, with respect
to a convenient 1-dimensional coordinate system, given by q1 = 0, q2 = 1 and q3 = 1 + r .
It is known (see Moeckel 2014) that r is the only positive solution of

p(r, μ) := 6r5 + (16 − μ) r4 + (14 − 2μ) r3 − (μ + 5) r2 − (2μ + 7) r − μ − 3 = 0.

Since p(0, μ) = −μ−3 and p(1, μ) = −7μ+21, then r = r(μ) ∈ (0, 1), for all 0 < μ < 1.
Therefore, as the center of massC = C(μ) is equal to (μ+r+3)/7, we obtainC ∈ (0, 1).
We consider a massless particle with coordinate x . The acceleration resulting from the

action of the gravitational field is equal to

f (x) = −4 − μ

x2 + μ + 2

(−x + 1)2 + 1

(r − x + 1)2 .

Note that the right-hand side of the previous equation is an increasing function that tends
to −∞ when x goes to 0, and tends to +∞ when x goes to 1, so there is a unique point
x̄ = x̄(μ) ∈ (0, 1) such that the equality f (x̄) = 0 holds. This point is an equilibrium for
the gravitational field generated for the primaries.

Let us see that there exists μ ∈ (0, 1) such that C(μ) = x̄ , i.e., f (C) = 0. For this
purpose, since C is a continuous function with respect to μ, it is sufficient to show that f
changes its sign on (0, 1). The function f (x) can be written as

f (x) = g(x)

h(x)
,

where h(x) = x2 (x − 1)2 (r − x + 1)2. Note that h(x) > 0 for all x ∈ (0, 1). If we consider
μ = 0 and compute g(C), we have

g(C) = r4

2401
+ 1514r3

2401
+ 2245r2

2401
+ 1110r

2401
+ 333

2401
> 0.

On the other hand, if μ = 1 then

g(C) = − 71r4

2401
+ 1486r3

2401
+ 401r2

2401
− 1480r

2401
− 592

2401
< 0,

because 0 < r < 1.

Remark 7 The following question is posed. Is there some non-admissible central configura-
tion (q,m) such that the n + 1-body system perform the motion described in Theorem 7(2)?
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