

ORIGINAL ARTICLE

The Sitnikov problem for several primary bodies configurations

Gastón Beltritti¹ · Fernando Mazzone1 · Martina Oviedo2

Received: 4 October 2017 / Revised: 28 May 2018 / Accepted: 1 June 2018 © Springer Nature B.V. 2018

Abstract In this paper we address an $n + 1$ -body gravitational problem governed by the Newton's laws, where *n* primary bodies orbit on a plane Π and an additional massless particle moves on the perpendicular line to Π passing through the center of mass of the primary bodies. We find a condition for the described configuration to be possible. In the case when the primaries are in a rigid motion, we classify all the motions of the massless particle. We study the situation when the massless particle has a periodic motion with the same minimal period as the primary bodies. We show that this fact is related to the existence of a certain pyramidal central configuration.

Keywords Sitnikov \cdot *n*-Body \cdot Periodic solutions \cdot Central configurations

1 Introduction

In this paper we study the following restricted Newtonian $n + 1$ -body problem *P* (see Fig. [1\)](#page-1-0):

- P_1 We have *n* primary bodies of masses m_1, \ldots, m_n and an additional massless particle.
- *P*² The primary bodies are in a homographic motion (see Llibre et al[.](#page-16-0) [2015](#page-16-0), Section 2.9). This motion is carried out in a plane Π .

Martina Oviedo moviedo@itba.edu.ar

² CONICET - Instituto de Investigaciones Matemáticas "Luis A. Santaló", Facultad de Ciencias Exactas y Naturales-UBA, C1428EGA Buenos Aires, Argentina

B Gastón Beltritti gbeltritti@exa.unrc.edu.ar Fernando Mazzone fmazzone@exa.unrc.edu.ar

¹ CONICET - Dpto. de Matemática, Facultad de Ciencias Exactas Fsico-Qumicas y Naturales, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Córdoba, Argentina

 P_3 The massless particle is moving on a perpendicular line to Π passing through the center of mass of the primary bodies.

Problems like the one presented above have been extensively discussed in the literature. Sitniko[v](#page-16-1) [\(1960\)](#page-16-1) considered the problem of two bodies in a Keplerian elliptic motion and a massless particle moving on the perpendicular line to the orbital plane passing through the center of mass. Sitnikov obtained deep results about the existence of solutions, for small $e > 0$, with a chaotic behavio[r](#page-16-2) [see Moser [1973,](#page-16-2) III(5)]. Periodic solutions for a Sitnikov configuration were considered in Corbera and Llibr[e](#page-16-3) [\(2000,](#page-16-3) [2002](#page-16-4)), Llibre and Orteg[a](#page-16-5) [\(2008\)](#page-16-5) and Pustyl'niko[v](#page-16-6) [\(1990\)](#page-16-6).

Generalized circular Sitnikov problems, i.e., when there are $n \geq 3$ primaries in a relative equilibrium motion, were addressed more recently. Soulis et al[.](#page-16-7) [\(2008\)](#page-16-7) studied the existence, linear stability and bifurcations for a problem similar to *P*. They considered a Lagrangian equilateral triangle configuration for the primary bodies, which were supposed to have the [s](#page-16-8)ame mass $m_1 = m_2 = m_3$. Bountis and Papadakis [\(2009](#page-16-8)) extended the results of Soulis et al[.](#page-16-7) [\(2008](#page-16-7)) to *n* primaries ($n \ge 3$) in a polygonal equal masses configuration. Later, Pandey and Ahma[d](#page-16-9) [\(2013\)](#page-16-9) generalized the analysis started in Soulis et al[.](#page-16-7) [\(2008](#page-16-7)) to the case with oblate primaries[.](#page-16-10) Li et al. [\(2013\)](#page-16-10) studied a special type of the restricted circular $n + 1$ -body problem with equal masses for the primaries in a regular polygonal configuration. Periodic solutions for generalized Sitnikov problems with primaries performing no rigid motions were studied in Pustyl'niko[v](#page-16-6) [\(1990\)](#page-16-6) and River[a](#page-16-11) [\(2013\)](#page-16-11). We emphasize that in Bountis and Papadaki[s](#page-16-8) [\(2009](#page-16-8)), Li et al[.](#page-16-10) [\(2013](#page-16-10)), Pandey and Ahma[d](#page-16-9) [\(2013](#page-16-9)), Pustyl'niko[v](#page-16-6) [\(1990](#page-16-6)), River[a](#page-16-11) [\(2013](#page-16-11)) and Soulis et al[.](#page-16-7) [\(2008](#page-16-7)), it is assumed that the primary bodies are in the vertices of a regular polygon. As far as we know, the first non-polygonal configuration of primary bodies was considered in Marchesin and Vida[l](#page-16-12) [\(2013](#page-16-12)) where Marchesin and Vidal studied the problem *P* for a rigid motion of primaries in a rhomboidal configuration. Bakker and Simmon[s](#page-15-0) [\(2015](#page-15-0)) studied escape regions for the massless particle in a similar problem to *P* where the primaries perform certain type of periodic orbits including non homographic motions.

In the present paper, after introducing preliminary facts in Sect. [2,](#page-2-0) we obtain in Sect. [3](#page-3-0) necessary and sufficient conditions on the configuration of the primary bodies in order to the *z*axis be invariant for the flow associated with the equations of motion of the massless particle. For this type of configurations, that we call *admissible*, the Sitnikov problem has sense. The conclusions of Sect. [3](#page-3-0) are obtained basically by elementary linear algebra arguments. We consider that the main contribution of Sect. [3](#page-3-0) is to expand the variety of problems of Sitnikov type. In Sect. [4,](#page-5-0) we find all admissible configurations for $n \leq 4$ primaries. The

Perpendicular Bisector Theorem of Moeckel (see Moecke[l](#page-16-13) [1990](#page-16-13)) is an important help to solve this question. In Sect. [5](#page-6-0) we describe all possible motions of the massless particle when the primaries are in a relative equilibrium (or rigid) motion. In this direction, we observe that only escape (both parabolic and hyperbolic) and periodic motions are possible. We also give in Theorem [5](#page-7-0) a formula expressing the period of solutions by means of integrals. We prove in Corollary [1](#page-10-0) that the complete $n + 1$ -body system has infinite number of periodic solutions. We solve some problems raised in Sect. [5](#page-6-0) by two alternative techniques: (1) elementary arguments, by using energy conservation (Arnol[d](#page-15-1) [1989,](#page-15-1) Ch. 2) and (2) variational techniques inspired in Li et al[.](#page-16-10) [\(2013\)](#page-16-10), Ferrario and Terracin[i](#page-16-14) [\(2004](#page-16-14)) and Zhao and Zhan[g](#page-16-15) [\(2015\)](#page-16-15). In Sect. [6](#page-10-1) we discuss the situation when the entire system has a solution with the same period as the motion of primaries. We call it *synchronous solution*. Surprisingly, the existence of synchronous solutions is related to the existence of certain pyramidal central configurations (for the definition of this concept see Fayça[l](#page-16-16) [1996](#page-16-16), [1995;](#page-16-17) Ouyang et al[.](#page-16-18) [2004\)](#page-16-18). Finally, in the last section, we study certain non-admissible configurations which provide some particular solutions of problem *P*.

In this paper, we generalize and extend some previously obtained results. For example, the results in Sect. [5,](#page-6-0) obtained for admissible configurations, generalize some results in Marchesin and Vida[l](#page-16-12) [\(2013](#page-16-12)) established for rhomboidal configurations. In Sect. [6](#page-10-1) we prove that there exist synchronous solutions for primaries in a regular polygonal equal mass configuration if and only if $2 \le n \le 472$ [.](#page-16-10) The sufficiency of this fact was established in Li et al. [\(2013](#page-16-10)).

2 Preliminaries

We start considering *n* mass points, $n > 2$, of masses m_1, \ldots, m_n moving in a Euclidean three-dimensional space according to Newton's laws of motion. We assume that $x_1(t), \ldots, x_n(t)$ are the coordinates of the bodies in some inertial Cartesian coordinate system. We can suppose, without any loss of generality, that the center of mass $C := \sum_j m_j x_j / M$ ($M := \sum_j m_j$) is fixed at the origin ($C = 0$).

Initially we suppose that the bodies are in a *planar homographic motion* on the plane Π (see Llibre et al[.](#page-16-0) [2015\)](#page-16-0), where Π is the plane determined by the first two coordinate axes. Concretely, we are assuming that

$$
x_j(t) = r(t)Q(\theta(t))q_j,
$$
\n(1)

where

$$
Q(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

and $q_j \in \Pi$, $j = 1, \ldots, n$ are vectors in a planar *central configuration* (CC) in Π . We recall the following definition of this concept (see Llibre et al[.](#page-16-0) [2015\)](#page-16-0).

Definition 1 Let $q = (q_1, \ldots, q_n)$ be an n-tuple of positions in \mathbb{R}^3 and let $m = (m_1, \ldots, m_n)$ be a vector of masses. We say that (q, m) is a central configuration if there exists $\lambda \in \mathbb{R}$ such that

$$
\nabla_j U(q_1, \dots, q_n) + \lambda m_j q_j = 0, \quad j = 1, \dots, n,
$$
 (2)

 $\circled{2}$ Springer

where

$$
U(q_1,\ldots,q_n) = \sum_{i < j} \frac{m_i m_j}{r_{ij}},\tag{3}
$$

 $r_{ij} = |q_i - q_j|$ and ∇_i denotes the 3-dimensional partial gradient with respect to q_i .

From Llibre et al. [\(2015,](#page-16-0) Eq. (2.16)), the functions $r(t)$ and $\theta(t)$ solve the two-dimensional Kepler problem in polar coordinates, which is

$$
\ddot{r}(t) - r(t)\dot{\theta}(t)^{2} = -\frac{\lambda}{r(t)^{2}}
$$

$$
\frac{d}{dt}\left[r(t)^{2}\dot{\theta}(t)\right] = 0.
$$
(4)

It may be the case that the solutions of (4) are defined only on a proper subset of R. We denote by *O* the domain of the solutions *r* and θ. In the particular case of *rigid motion*, we have $\mathcal{O} = \mathbb{R}$, $r(t) \equiv 1$ and $\theta(t) = \sqrt{\lambda}t + \theta(0)$. In this case the primary bodies perform a periodic motion with minimal period $T := 2\pi/\sqrt{\lambda}$.

Let $x₀(t)$ be the position of the massless particle. According to the Newtonian equations of motion, x_0 satisfies

$$
\ddot{x}_0 = \sum_{i=1}^n \frac{m_i (x_i - x_0)}{|x_i - x_0|^3} =: f(t, x_0).
$$
\n(5)

In the previous equation, we assume that we know the positions of the primaries. Therefore, this equation plus the initial conditions determine the position of the particle completely.

3 Admissible configurations

Henceforth, we denote by *L* the coordinate *z* axis.

A necessary and sufficient condition for that *L* be invariant under the flow associated with the non-autonomous system [\(5\)](#page-3-2) is $f(t, L) \subset L$ for all $t \in \mathcal{O}$, i.e., *L* is *f*-*invariant* for every $t \in \mathcal{O}$. Thi[s](#page-16-19) fact follows by applying (Brezis [1970,](#page-16-19) Th. 1) to the first-order autonomous system

$$
\begin{cases} \frac{ds}{dt} &= 1\\ \frac{dx}{dt} &= v\\ \frac{dv}{dt} = f(s, x) \end{cases}
$$

which is equivalent to Eq. (5) . In addition, the following observations must be taken into account: i) the autonomous vector field $F(s, x, v) = (1, v, f(s, x))$ satisfies $F(\mathcal{O} \times L \times L) \subset$ $O \times L \times L$ if and only if $f(t, L) \subset L$ for all $t \in O$ and ii) if $A \subset \mathbb{R}^d$ is a subspace, $x \in A$ and $v \in \mathbb{R}^d$ then $d(x + hv, A)/h \to 0$, when $h \to 0$ if and only if $v \in A$. In the last assertion *d* denotes the distance function.

Definition 2 We say that a central configuration (q, m) is *admissible* if and only if

1. $q_i \neq 0$, for $i = 1, ..., n$.

2. For any $r > 0$, if the set

$$
F_r := \{i : |q_i| = r\}
$$

is non-empty, then

$$
\sum_{i \in F_r} m_i q_i = 0,\tag{6}
$$

i.e., every maximal set of bodies which are equidistant from the origin has a center of mass equal to 0.

Remark 1 In the previous definition, we introduced the condition $q_i \neq 0$ in order to avoid collisions between the primaries and the particle.

Theorem 1 *L* is *f*-invariant for every $t \in \mathcal{O}$ if and only if (q, m) is admissible.

For the proof of the previous theorem we need the following result.

Lemma 1 *For c* > 0 *we define the function* $y_c(t) := (c + t)^{-3/2}$. *If* $0 < t_1 < t_2 < ... < t_k$ *then the functions* $y_j(t) := y_{t_j}(t)$ *are linearly independent on each open interval* $I \subset \mathbb{R}^+$ *.*

Proof It is sufficient to prove that the Wronskian

$$
W := W(y_1, \ldots, y_k)(t) = \det \begin{pmatrix} y_1 & \cdots & y_k \\ \frac{dy_1}{dt} & \cdots & \frac{dy_k}{dt} \\ \vdots & \ddots & \vdots \\ \frac{d^{k-1}y_1}{dt^{k-1}} & \cdots & \frac{d^{k-1}y_k}{dt^{k-1}} \end{pmatrix}
$$

is not null on *I*.

Using induction, it is easy to show that

$$
\frac{d^i y_c}{dt^i} = \beta_i y_c^{\frac{2i+3}{3}}, \quad \text{for some } \beta_i \neq 0, \text{ and for all } i = 1, \dots \tag{7}
$$

Fix any *t* ∈ *I*. Then, according to [\(7\)](#page-4-0) and writing $\lambda_i := (t + t_i)^{-1}$, we have

$$
W(t) = \det \begin{pmatrix} \lambda_1^{3/2} & \lambda_2^{3/2} & \dots & \lambda_k^{3/2} \\ \beta_1 \lambda_1^{5/2} & \beta_1 \lambda_2^{5/2} & \dots & \beta_1 \lambda_k^{5/2} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{k-1} \lambda_1^{k+1/2} & \beta_{k-1} \lambda_2^{k+1/2} & \dots & \beta_{k-1} \lambda_k^{k+1/2} \end{pmatrix}
$$

= $\beta_1 \beta_2 \dots \beta_{k-1} \lambda_1^{3/2} \lambda_2^{3/2} \dots \lambda_k^{3/2} \det \begin{pmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_k \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \dots & \lambda_k^{k-1} \\ \lambda_1^{k-1} & \lambda_2^{k-1} & \dots & \lambda_k^{k-1} \end{pmatrix}$
= $\beta_1 \beta_2 \dots \beta_{k-1} \lambda_1^{3/2} \lambda_2^{3/2} \dots \lambda_k^{3/2} \prod_{1 \le i < j \le n} (\lambda_j - \lambda_i),$

where the last equality follows from the well known Vandermonde determinant identity. Therefore, $W \neq 0$ if and only if $\lambda_i \neq \lambda_j$, $i \neq j$, which in turn is equivalent to $t_i \neq t_j$, $i \neq j$. \neq *j*.

 $\hat{\mathfrak{D}}$ Springer

$$
\sum_{i=1}^{n} \frac{m_i r(t) Q(\theta(t)) q_i}{(r(t)^2 |q_i|^2 + z^2)^{3/2}} = 0 \in \mathbb{R}^2,
$$
\n(8)

for every $t \in \mathcal{O}$ and $z \in \mathbb{R}$.

Let $D = \{ |q_i| : i = 1, ..., n \}$. Suppose that $D = \{ s_1, ..., s_k \}$, with $s_i \neq s_j$ for $i \neq j$. Therefore $\{1,\ldots,n\} = F_{s_1} \cup \cdots \cup F_{s_k}$. Then, multiplying Eq. [\(8\)](#page-5-1) by $r(t)^2 Q^{-1}(\theta(t))$ and writing $\zeta = (z/r(t))^2$ we have that [\(8\)](#page-5-1) is equivalent to

$$
\sum_{j=1}^k \left\{ \frac{1}{(s_j^2 + \zeta)^{3/2}} \sum_{i \in F_{s_j}} m_i q_i \right\} = 0.
$$

According to Lemma [1,](#page-4-2) the last equation is equivalent to (6) .

4 Admissible configurations for *n* **≤ 4**

In this section, we find all admissible configurations with $n \leq 4$. Since the center of mass is an excluded position, an admissible configuration satisfies

$$
\#F_r \neq 1. \tag{9}
$$

It is a trivial fact that the configuration of two point masses m_1 and m_2 is admissible if and only if $m_1 = m_2$.

From [\(9\)](#page-5-2), a three-body admissible configuration consists of equidistant bodies from the origin. Therefore, it must be the Lagrangian equilateral triangle. Now, by Eq. [\(6\)](#page-4-3) and an elementary geometrical reasoning, we have $m_1 = m_2 = m_3$.

The case $n = 4$ is more interesting. We include Definition [3](#page-5-3) and Theorem [2,](#page-5-4) which were introduced for the first time in Moecke[l](#page-16-13) [\(1990\)](#page-16-13), for the reader's convenience.

Definition 3 Let *q* be a planar configuration. For each pair *i*, *j*, the line containing q_i and q_j together with its perpendicular bisector form axes which divide the plane into four quadrants. The union of the first and third quadrants is an hourglass-shaped region which will be called a 'cone'; similarly, the second and fourth quadrants together form another cone. The phrase 'open cone' refers to a cone minus the axes.

Theorem 2 (Perpendicular Bisector Theorem) *Let* (*q*, *m*) *be a planar central configuration and let qi and q ^j be any two of its points. Then if one of the two open cones determined by the line through qi and q ^j and its perpendicular bisector contains points of the configuration, so does the other one.*

Next, we characterize all the four-body admissible configurations.

Theorem 3 *Let* (*q*, *m*) *be a four-body central configuration. Then* (*q*, *m*) *is admissible if and only if* $q_i \neq 0$ *and for a suitable enumeration of bodies,* $q_1 = -q_3$ *,* $q_2 = -q_4$ *,* $m_1 = m_3$ *,* $m_2 = m_4$, and (q, m) *is of some of the following mutually exclusive types:*

CCcl. collinear, CCr. a rhombus with $r_{13} < r_{24}$ *and* $m_1 > m_2$ *, CCs. a square with four equal masses.*

R[e](#page-16-20)mark 2 In Shoaib and Faye [\(2011\)](#page-16-20), central configurations of type CCcl were studied, while CCr configurations were treated in Long and Su[n](#page-16-21) [\(2002\)](#page-16-21) and Perez-Chavela and Santopret[e](#page-16-22) [\(2007](#page-16-22)).

Proof From [\(9\)](#page-5-2) we have to consider two cases.

*Case 1 m*₁ \geq *m*₂, $|q_1| \neq |q_2|$, $|q_1| = |q_3|$ and $|q_2| = |q_4|$. Now [\(6\)](#page-4-3) implies that *m*₁ = *m*₃, $m_2 = m_4$, $q_1 = -q_3$ and $q_2 = -q_4$. We divide the plane into two open cones C_i , $i = 1, 2$, by means of a line *P* joining *q*¹ and *q*³ together with its perpendicular bisector *M*. From Theorem [2,](#page-5-4) if q_2 is in C_1 , then q_4 is in C_2 , and vice versa. This is a contradiction with the fact that $q_2 = -q_4$. Then $q_2, q_4 \in P$ or $q_2, q_4 \in M$, i.e., q is collinear or a rhombus with equal masses in opposite vertices. In the first case, (q, m) is of CCcl type. In the second case, if $m_1 > m_2$, was proved in Long and Sun [\(2002,](#page-16-21) Eqs. (3.44) and (3.45)) that $r_{13} < r_{24}$. Hence (q, m) is of CCr type. From Perez-Chavela and Santoprete [\(2007,](#page-16-22) Corollary 2) if $m_1 = m_2$ then the configuration is a square which is a contradiction with the fact that $|q_1| \neq |q_2|$.

Case 2 $|q_1| = |q_2| = |q_3| = |q_4|$. I[n](#page-16-23) this situation, in Hampton [\(2005](#page-16-23)) it was proved that configuration is the equal mass square. the configuration is the equal mass square. 

5 Massless particle motion

In this section and in Sect. [6,](#page-10-1) we will suppose that the primary bodies are in a *T* -periodic rigid motion associated with an admissible CC (q, m) , i.e $r(t) \equiv 1$ and according to the remark that follows Eq. [\(4\)](#page-3-1), $\theta(t) = \sqrt{\lambda t}$ (w.l.o.g we assume that $\theta(0) = 0$). As to the particle, we suppose that it is moving on *L*, i.e., $x_0(t) = (0, 0, z(t))$. From Theorem [1,](#page-4-1) x_0 is a solution of (5) , if and only if $z(t)$ is a solution of the autonomous equation

$$
\ddot{z} = -\sum_{i=1}^{n} \frac{m_i z}{(s_i^2 + z^2)^{3/2}},\tag{10}
$$

where $s_i = |q_i|$.

We will analyze all possible motions for the massless particle x_0 . In particular, we shall see that every motion is either periodic or an escape trajectory. We shall find that there exist *T*₀-periodic solutions for all *T*₀ in an interval ($\sigma(q, m)$, $+\infty$). This fact implies that there exists an infinite quantity of periodic solutions for the entire $n + 1$ -body system.

The second-order Eq. [\(10\)](#page-6-1) is conservative, and therefore its solutions conserve the energy

$$
E(z, v) := \frac{|v|^2}{2} - \sum_{i=1}^{n} \frac{m_i}{\left(s_i^2 + z^2\right)^{\frac{1}{2}}},\tag{11}
$$

i.e., $E(z(t), \dot{z}(t))$ is constant.

Following Arnold et al[.](#page-15-2) [\(2007](#page-15-2)) (see also Marchesin and Vida[l](#page-16-12) [2013\)](#page-16-12), we introduce the next concepts.

Definition 4 (Chazy 1922) Let $z(t)$ be a solution of [\(10\)](#page-6-1) such that $\lim_{t\to\infty} z(t) = \infty$. Then *z*(*t*) is called:

– hyperbolic when there exists $\lim_{t\to\infty} \dot{z}(t)$ and it is not null,

– parabolic if $\lim_{t\to\infty} \dot{z}(t) = 0$.

The following theorem characterizes all the possible motions for the massless particle.

Theorem 4 *We assume that* (*q*, *m*) *is an admissible configuration and the primaries are in a rigid motion. Every solution of* [\(10\)](#page-6-1) *is of some of the following types:*

- *1. Hyperbolic, when* $E > 0$,
- 2. Parabolic, when $E = 0$,
- *3. Periodic, when* $E_{\min} := -\sum_{i=1}^{n} \frac{m_i}{s_i} < E < 0$,
- 4. Equilibrium solution when $E = \tilde{E}_{\text{min}}$.

Proof We follow a standard argument for Hamiltonian systems (see Arnol[d](#page-15-1) [1989\)](#page-15-1).

We consider the level sets $S(E) = \{(z, v) : E(z, v) = E\}$ on the phase space (z, v) . An elementary analysis shows that

- $-$ If $E \ge 0$ then $S(E)$ is the union of two bounded graphs. They are symmetric with respect to the *z*-axis, each of which is contained in some semiplane $v > 0$ or $v < 0$. The *v*positive branch is the graph of a function $v(E, z)$, which is decreasing with respect to |*z*|. Moreover, $\lim_{|z| \to \infty} v(E, z) = \sqrt{2E}$.
- For every $E \ge E_{\text{min}}$, the energy curve $S(E)$ cuts the v-axis at the value $\pm (2E +$ $\sum_{i=1}^{n} m_i s_i^{-1} \big)^{\frac{1}{2}}$.
- If $E_{\text{min}} < E < 0$ then $S(E)$ is a simple closed curve, symmetric with respect to the *z* and v axes.
- An energy curve cuts the *z*-axis, only in the case that $E < 0$, at the point $\pm z_E$, where z_E is the only positive solution of $-\sum_{i=1}^{n} m_i (s_i^2 + z_E^2)^{-\frac{1}{2}} = E$.

In Fig. [1,](#page-1-0) we show the phase portrait for a rhomboidal configuration with masses $m_1 =$ $m_3 = 1$ and $m_2 = m_4 = 0.5$.

The function $\varphi(t) = (z(t), \dot{z}(t))$ solves the system $\dot{\varphi}(t) = F(\varphi(t))$, where $F(z, v) = (v, -\sum_{i=1}^{n} m_i z (s_i^2 + z^2)^{-3/2})$. It is easy to show that the vector field *F* has a bounded Jacobian *DF*. Therefore $F(z, v)$ is a global Lipschitz function on \mathbb{R}^2 . This fact and Betounes [\(2009,](#page-16-24) Th. B.1) imply that the trajectories $t \mapsto (z(t), \dot{z}(t))$ are defined for every time. On the other hand, since $\dot{z} = v$, the motion along trajectories is in clockwise direction. The only fixed point of *F* is (*z*, *v*) = (0, 0). Therefore, the level surfaces *S*(*E*), with $E \neq E_{\text{min}}$, do not contain stationary points. Then the $\lim_{t\to\infty} \varphi(t)$ does not exist. As a consequence, the map $t \mapsto \varphi(t)$ fills completely one connected component of its corresponding energy curve (Fig. [2\)](#page-8-0).

We observe that any solution *z* crosses the v-axis. On the other hand, if $E \ge 0$ and $v(E, 0) > 0$ ($v(E, 0) < 0$) then $z(t)$ is increasing (decreasing) with respect to *t*. If $z(t)$ remained bounded when $t \to +\infty$, then there would be the limit $\zeta_{\infty} := \lim_{t \to \infty} z(t)$. This would imply that (ζ_{∞} , 0) would be a fixed point of *F*, which is a contradiction. As a consequence, if $E \ge 0$ then $|z(t)| \to \infty$ when $t \to +\infty$. Moreover $\lim_{t \to +\infty} \dot{z}(t) = \pm \sqrt{2E}$. From this fact, we conclude that the trajectory is hyperbolic when $E > 0$ and it is parabolic in the case when $E = 0$.

In the case when $E_{\text{min}} < E < 0$, we have that the trajectory is contained in a closed curve; therefore, it is a periodic orbit.

Finally, if $E = E_{\text{min}}$ we clearly have that $z(t) \equiv 0$.

Theorem 5 *We denote by* $T_0(E)$ *the minimal period for a solution of* [\(10\)](#page-6-1) *with* $E_{\text{min}} < E$ 0*. Then*

1.

$$
T_0(E) = 2^{3/2} \int_0^{z_E} \left(E + \sum_{i=1}^n m_i (s_i^2 + z^2)^{-\frac{1}{2}} \right)^{-\frac{1}{2}} dz, \qquad (12)
$$

 \mathcal{L} Springer

where z_E *is the only positive solution of* $-\sum_{i=1}^n m_i(s_i^2 + z_E^2)^{-\frac{1}{2}} = E$, 2. $T_0(E)$ *is an increasing function.*

3. *T*₀ ((*E*_{min}, 0)) = (*T*_{min}, +∞), where $T_{\min} = 2\pi \left(\sum_{i=1}^{n} \frac{m_i}{s_i^3} \right)$ $\int^{-1/2}$.

Proof Let $E_{\text{min}} < E < 0$ and let $z(t)$ be the only solution with $z(0) = 0$, $\dot{z}(0) > 0$ and energy equals to *E*. Therefore $z(t)$ is $T_0(E)$ -periodic. As a consequence of the symmetries of the equation, we have that $z(T_0(E)/4) = z_E$. Then, taking account of [\(11\)](#page-6-2), we have

$$
\frac{T_0}{4} = \frac{1}{\sqrt{2}} \int_0^{T_0/4} \left(E + \sum_{i=1}^n m_i (s_i^2 + z^2)^{-\frac{1}{2}} \right)^{-\frac{1}{2}} z dt
$$

$$
= \frac{1}{\sqrt{2}} \int_0^{z_E} \left(E + \sum_{i=1}^n m_i (s_i^2 + z^2)^{-\frac{1}{2}} \right)^{-\frac{1}{2}} dz,
$$

and we have proved item *1*. In order to prove item *2*, we note that

$$
2^{-3/2}T_0(E) = \int_0^{z_E} \left(\sum_{i=1}^n m_i \left((s_i^2 + z^2)^{-\frac{1}{2}} - (s_i^2 + z_E^2)^{-\frac{1}{2}} \right) \right)^{-\frac{1}{2}} dz
$$

=
$$
\int_0^{z_E} (z_E^2 - z^2)^{-\frac{1}{2}} f(z, z_E) dz
$$

=
$$
\int_0^1 (1 - u^2)^{-\frac{1}{2}} f(z_E u, z_E) du,
$$

where

$$
f(z, z_E) = \left(\sum_{i=1}^n m_i \left\{(s_i^2 + z^2)(s_i^2 + z_E^2)\right\}^{-\frac{1}{2}} \left\{(s_i^2 + z^2)^{\frac{1}{2}} + (s_i^2 + z_E^2)^{\frac{1}{2}}\right\}^{-1}\right)^{-\frac{1}{2}}.
$$

We point out that $f(z_E u, z_E)$ is an increasing function with respect to z_E for any fixed $u \in [0, 1]$. This assertion implies item 2.

 $\hat{\mathfrak{D}}$ Springer

On the other hand,

$$
\lim_{z_E \to 0} f(z_E u, z_E) = \left(\sum_{i=1}^n \frac{m_i}{2s_i^3}\right)^{-\frac{1}{2}} \quad \text{and} \quad \lim_{z_E \to +\infty} f(z_E u, z_E) = +\infty.
$$

Thus, from the dominated convergence theorem and monotone convergence theorem, we have

$$
\lim_{E \to E_{\min}} T_0 = \lim_{z_E \to 0} T_0 = 2\pi \left(\sum_{i=1}^n \frac{m_i}{s_i^3} \right)^{-\frac{1}{2}} \text{ and } \lim_{E \to 0} T_0 = \lim_{z_E \to +\infty} T_0 = +\infty.
$$

Finally, since $T_0 = T_0(z_E)$ is continuous and increasing with respect to z_E , we conclude the statement of item 3.

Remark 3 It is possible to use the classical theory of Hamiltonian systems (see Arnol[d](#page-15-1) [1989\)](#page-15-1) to derive the formula [\(12\)](#page-7-1) (see Acinas et al[.](#page-15-3) [2014](#page-15-3) for this approach in a related problem).

Remark 4 Let us show a second proof of item 3 of Theorem [5.](#page-7-0)

The inequality $T_0 > T_{\text{min}}$ is a consequence of a comparison of Sturm's theorem applied to equations $\ddot{z} + h(z)z = 0$, where $h(z) = \sum_{i=1}^{n} m_i (s_i^2 + z^2)^{-3/2}$, and $\ddot{z} + (\sum_{i=1}^{n} m_i s_i^{-3}) z =$ 0. This proves that T_0 ((E_{min} , 0)) ⊂ (T_{min} , +∞).

For the reverse inclusion, we follow the arguments of Zhao and Zhan[g](#page-16-15) [\(2015](#page-16-15)) and Li et al[.](#page-16-10) [\(2013](#page-16-10)) based on variational principles.

Let $T_0 > T_{\text{min}}$. We consider the action integral

$$
\mathcal{I}(z) = \int_0^{T_0} \frac{1}{2} |\dot{z}|^2 + \sum_{i=1}^n \frac{m_i}{\sqrt{s_i^2 + z^2}} dt.
$$

Then T_0 -periodic solutions of [\(10\)](#page-6-1) are critical points of $\mathcal I$ in the space $H^1(\mathbb T,\mathbb R)$ of the functions which are absolutely continuous, T_0 -periodic with $\dot{z} \in L^2(\mathbb{T}, \mathbb{R})$ and being $\mathbb{T} = \mathbb{R}/T_0\mathbb{Z}$ $\mathbb{T} = \mathbb{R}/T_0\mathbb{Z}$ $\mathbb{T} = \mathbb{R}/T_0\mathbb{Z}$ (see Mawhin and Willem [1989](#page-16-25), Cor. 1.1). We prove the existence of critical points by means of the direct method of calculus of variations, i.e., we will prove that *I* has a minimum. The functional *I* is not coercive in $H^1(\mathbb{T}, \mathbb{R})$. This deficiency is overcome w[i](#page-16-14)th symmetry techniques (see Ferrario and Terracini [2004\)](#page-16-14). The group \mathbb{Z}_2 acts on $H^1(\mathbb{T}, \mathbb{R})$ according to the following assignments $(\bar{0} \cdot z)(t) = z(t)$ and $(\bar{1} \cdot z)(t) = -z(t + \frac{T_0}{2})$. The symmetry involved in the previous definition is called *Italian Symmetry* (see Meyer et al[.](#page-16-26) [2009](#page-16-26), p. 327). The functional *I* is \mathbb{Z}_2 -invariant, i.e., $\mathcal{I}(g \cdot z) = \mathcal{I}(z)$. We define the space of all \mathbb{Z}_2 -symmetric functions

$$
\Lambda(\mathbb{T},\mathbb{R}) := \left\{ z \in H^1(\mathbb{T},\mathbb{R}) | \forall g \in \mathbb{Z}_2 : z = g \cdot z \right\}.
$$

The functional *I* restricted to Λ is coercive. This fact follows from an obvious adaptation of Propos[i](#page-16-14)tion 4.1 of Ferrario and Terracini [\(2004\)](#page-16-14). We note that $F(z) := \sum_{i=1}^{n} m_i (s_i^2 + z^2)^{-\frac{1}{2}}$ satisfies the condition (*A*) in Mawhin and Wille[m](#page-16-25) [\(1989\)](#page-16-25), p. 12, then I is continuously differentiable and weakly lower se[m](#page-16-25)icontinuous on $H^1(\mathbb{T}, \mathbb{R})$ (see Mawhin and Willem [1989](#page-16-25), p. 13). Therefore *I* has a minimum z_0 in $\Lambda(\mathbb{T}, \mathbb{R})$. Then by the Palais' principle of symmetr[i](#page-16-14)c criticality, z_0 is a critical point of *I* in $H^1(\mathbb{T}, \mathbb{R})$ (see Ferrario and Terracini [2004](#page-16-14); Palai[s](#page-16-27) [1979\)](#page-16-27).

We use the second variation $\delta^2 \mathcal{I}$ in order to show that $z_0 \neq 0$. It is well known (see Jost and Li-Jos[t](#page-16-28) [1998](#page-16-28), Th. 1.3.1) that if z_0 is a minimum of $\mathcal I$ on $H^1(\mathbb T,\mathbb R)$ then $\delta^2\mathcal I(z_0,\varphi)\geq 0$ for all $\varphi \in H^1(\mathbb{T}, \mathbb{R})$. In our case,

$$
\delta^2 \mathcal{I}(0, \varphi) = \int_0^{T_0} |\dot{\varphi}|^2 - \sum_{i=1}^n \frac{m_i}{s_i^3} \varphi^2 dt
$$

(see Jos[t](#page-16-28) and Li-Jost [1998](#page-16-28), Eq. 1.3.6). In particular, if $\varphi(t) = \sin(2\pi t/T_0)$ it follows from $T_0 > T_{\text{min}}$ that

$$
\delta^2 \mathcal{I}(0, \varphi) = \left(\frac{4\pi^2}{T_0^2} - \sum_{i=1}^n \frac{m_i}{s_i^3}\right) \frac{T_0}{2} < 0. \tag{13}
$$

It is sufficient to guarantee that $z_0 \equiv 0$ is not a minimum.

This second proof, unlike the first one, does not prove that T_0 is the minimum period of *z*₀. It could happen that *z*₀ had period T_0/m , with natural $m \in \mathbb{N}$. Because of the Italian symmetry this *m* should be odd.

Corollary 1 *The complete n* + 1*-body system has an infinite quantity of periodic solutions.*

Proof We recall that *T* denotes the minimal period of the primaries. Let *l*/*m* be a positive rational number with $Tl/m > T_{min}$. Then, there exists a solution of the entire system with period lT .

6 Synchronous solutions and pyramidal CC

If Eq. [\(10\)](#page-6-1) has a *T* -periodic solution, we say that the solution is *synchronous*. In Li et al[.](#page-16-10) [\(2013](#page-16-10)) the problem of existence of synchronous solutions for *n* equal mass primary bodies in a regular polygon configuration was studied.

In this section we establish a relation between the existence of synchronous solutions and the concept of pyramidal central configuration (see Fayça[l](#page-16-16) [1996,](#page-16-16) [1995](#page-16-17); Ouyang et al[.](#page-16-18) [2004\)](#page-16-18).

Definition 5 A central configuration of $n+1$ mass point q_0, \ldots, q_n in \mathbb{R}^3 is called a pyramidal central configuration (PCC) if and only if *n* points, we say q_1, \ldots, q_n , are in some plane Π and $q_0 \notin \Pi$.

The following lemma was proved in Ouyang et al. [\(2004\)](#page-16-18) (see a[l](#page-16-17)so Fayçal [1995](#page-16-17)).

Lemma 2 (Ouyang et al[.](#page-16-18) [2004,](#page-16-18) Lemma 2.1) Let q_0, \ldots, q_n be a PCC such that m_0 is off the *plane containing* m_1, \ldots, m_n . If $m_0 > 0$ then m_0 is equidistant from m_1, \ldots, m_n .

We remark that the condition $m_0 > 0$ is important in the previous lemma. In the examples below, we will show two PCC with $m_0 = 0$ which do not satisfy the conclusion of Lemma [2.](#page-10-2)

Proposition 1 *We assume that* $q = q_1, \ldots, q_n$ *is an admissible configuration and that the primaries are in a rigid motion. Then, there is a synchronous solution if and only if there exists* $c \in \mathbb{R}$ *such that the points* $(0, 0, c), q_1, \ldots, q_n$ *associated with the masses* $0, m_1, \ldots, m_n$ *form a PCC.*

Proof We start assuming that there exist a synchronous solution. As a consequence of The-orem [5\(](#page-7-0)3) and the fact that $T^2 = 4\pi^2/\lambda$, we get

$$
\lambda < \sum_{i=1}^{n} \frac{m_i}{s_i^3}.\tag{14}
$$

Since $\sum_{i=1}^{n} m_i (s_i^2 + c^2)^{-3/2} \rightarrow 0$, when $c \rightarrow +\infty$, there exists $c \in \mathbb{R}$ such that $\sum_{i=1}^{n} m_i (s_i^2 + c^2)^{-3/2} = \lambda$. Therefore

$$
-\sum_{i=1}^{n} \frac{m_i c}{\left(s_i^2 + c^2\right)^{3/2}} = -\lambda c.
$$
 (15)

As q_1, \ldots, q_n is an admissible configuration, then

$$
\sum_{i=1}^{n} \frac{m_i q_i}{\left(s_i^2 + c^2\right)^{3/2}} = (0, 0). \tag{16}
$$

Equations [\(15\)](#page-11-0), [\(16\)](#page-11-1) and the fact that q_1, \ldots, q_n is a CC with constant λ , complete the proof. The proof of the reciprocal statement follows in a direct way. \Box

Corollary 2 *We assume that* (*q*, *m*) *is an admissible configuration and the primaries are in a rigid motion. Then, there is a synchronous solution if and only if*

$$
\sum_{i < j} \frac{m_i m_j}{r_{ij}} < \left(\sum_{i=1}^n \frac{m_i}{s_i^3}\right) \left(\sum_{i=1}^n m_i s_i^2\right). \tag{17}
$$

Proof The result is a consequence of [\(14\)](#page-11-2) and the fact that $T^2 = 4\pi^2 \sum_{i=1}^n m_i s_i^2 / U$ (see Lli- \Box bre et al[.](#page-16-0) [2015](#page-16-0), p. 109).

Remark 5 Let (q, m) be an admissible CC with constant $\lambda > 0$ satisfying [\(17\)](#page-11-3) and let r, μ be positive numbers. Then $(rq, \mu m)$ is a CC with constant $\lambda \mu r^3$, and [\(17\)](#page-11-3) remains unchanged. In virtue of the previous observation, we can assume that any length and any mass take any desired value. Equation [\(10\)](#page-6-1) has a synchronous solution if and only if the same equation with $(rq, \mu m)$ instead of (q, m) has a synchronous solution.

The sufficiency of the condition $n \leq 472$ in the following corollary was proved in Li et al[.](#page-16-10) [\(2013](#page-16-10)).

Corollary 3 *We suppose that* (*q*, *m*) *is the equal masses regular polygon configuration (this is an admissible CC). Then, there exists a synchronous solution if and only if* $2 \le n \le 472$ *.*

Proof In this case $s_1 = s_2 = \cdots = s_n =: r$ and $m_1 = m_2 = \cdots = m_n =: M$. Then, from the law of cosines, we obtain

$$
\sum_{i < j} \frac{m_i m_j}{r_{ij}} = \frac{n M^2}{4r} \sum_{j=1}^{n-1} \frac{1}{\sin\left(\frac{j\pi}{n}\right)}.
$$

Therefore, the condition [\(17\)](#page-11-3) is equivalent to

$$
\frac{1}{n} \sum_{j=1}^{n-1} \frac{1}{\sin\left(\frac{j\pi}{n}\right)} < 4. \tag{18}
$$

 \circledcirc Springer

This inequality was also derived by Li et al[.](#page-16-10) [\(2013\)](#page-16-10), where the authors proved (performing computer calculations) that inequality [\(18\)](#page-11-4) holds true for $2 \le n \le 472$. Let us prove that any other *n* does not satisfy (18) .

Using that $1/\sin(x)$ is a convex function on [0, π] and the composite trapezoid rule (see Kincaid and Chene[y](#page-16-29) [1991](#page-16-29)), we have

$$
\int_{\frac{\pi}{n}}^{\frac{n-1}{n}\pi} \frac{1}{\sin(x)} dx \le \frac{\pi}{2n} \left\{ \frac{1}{\sin\left(\frac{\pi}{n}\right)} + \frac{1}{\sin\left(\frac{n-1}{n}\pi\right)} + 2 \sum_{j=2}^{n-2} \frac{1}{\sin\left(j\frac{\pi}{n}\right)} \right\}
$$

$$
= \frac{\pi}{n} \sum_{j=1}^{n-2} \frac{1}{\sin\left(j\frac{\pi}{n}\right)}.
$$

Hence

$$
\frac{1}{n}\sum_{j=1}^{n-1} \frac{1}{\sin\left(\frac{j\pi}{n}\right)} \ge \frac{1}{\pi} \int_{\frac{\pi}{n}}^{\frac{\pi(n-1)}{n}} \frac{1}{\sin(x)} dx + \frac{1}{n \sin\left(\frac{n-1}{n}\pi\right)}
$$

$$
= \frac{1}{2\pi} \log\left(\frac{1-\cos(x)}{1+\cos(x)}\right) \Big|_{\frac{\pi}{n}}^{\frac{n-1}{n}} + \frac{1}{n \sin\left(\frac{\pi}{n}\right)}
$$

$$
= \frac{1}{\pi} \left\{ \log\left(\frac{1+\cos(\frac{\pi}{n})}{1-\cos(\frac{\pi}{n})}\right) + \frac{\pi/n}{\sin\left(\frac{\pi}{n}\right)} \right\}
$$

$$
=: f\left(\frac{\pi}{n}\right).
$$

It is easy to see that $f(x)$ is a decreasing function on $(0, \pi/2)$. Moreover $f(\pi/842) \approx$ 4.0006 > 4. Thus, if $n \ge 842$ then *n* does not satisfy inequality [\(18\)](#page-11-4). The validity of the inequality [\(18\)](#page-11-4), for $n \leq 841$ can be easily checked using computer. This gives the result that the inequality holds only for $n \leq 472$.

Our next goal is to verify that condition (17) is satisfied for all admissible CC of three-body or four-body. Since [\(17\)](#page-11-3) holds for an equilateral triangle and square configurations of equal masses bodies, it only rests to prove, in virtue of Theorem [3,](#page-5-5) the following result.

Theorem 6 *The central configurations CCcl and CCr satisfy condition* [\(17\)](#page-11-3)*.*

Proof Let us start by analyzing the central configuration CCr. From Remark [5,](#page-11-5) we can suppose without loss of generality that $q_1 = -q_3 = (0, y)$ for $0 < y < 1$, $q_2 = -q_4 = (1, 0)$. The condition [\(17\)](#page-11-3) becomes

$$
\frac{m_1^2}{2y} + \frac{4m_1m_2}{\sqrt{1+y^2}} + \frac{m_2^2}{2} < \left(\frac{2m_1}{y^3} + 2m_2\right) \left(2m_1y^2 + 2m_2\right).
$$

As $m_1^2/(2y) < 4m_1^2/y$, $m_2^2/2 < 4m_2^2$ and $4m_1m_2/\sqrt{1+y^2} < 4m_1m_2/y^3$ (since $y < 1$), we have that the inequality holds.

Now we consider the central configuration CCl. From Remark [5](#page-11-5) again, we can suppose that $q_1 = -q_3 = 1$, $q_2 = -q_4 = x$ with $0 < x < 1$, and $m_1 = m_3 = \mu$, $m_2 = m_4 = 1 - \mu$, with $0 < \mu < 1$. Then, inequality [\(17\)](#page-11-3) becomes

$$
\frac{2\mu(1-\mu)}{1-x} + \frac{2\mu(1-\mu)}{1+x} + \frac{\mu^2}{2} + \frac{(1-\mu)^2}{2x} < 4\mu^2 + 4\mu(1-\mu)x^2 + \frac{4\mu(1-\mu)}{x^3} + \frac{4(1-\mu)^2}{x}.
$$

As $\mu^2/2 < 4\mu^2$ and $(1 - \mu)^2/(2x) < 4(1 - \mu)^2/x$, it is sufficient to show that

$$
\frac{2\mu(1-\mu)}{1-x} + \frac{2\mu(1-\mu)}{1+x} < \frac{4\mu(1-\mu)}{x^3},
$$

and, this is equivalent to see that

$$
\frac{x^3}{1-x^2} < 1. \tag{19}
$$

The values of *x* involved in the inequality above are such that the configuration of positions $(-1, -x, x, 1)$ a[n](#page-16-30)d masses (μ , $1-\mu$, $1-\mu$, μ) is central. It was shown in Moulton [\(1910](#page-16-30)) that giv[e](#page-16-20)n a mass μ there is only one value of x satisfying this condition (see also Shoaib and Faye [2011](#page-16-20)). Consequently, we can define $x(\mu)$ as such value of *x*. We note that $h(x) = x^3/(1-x^2)$ is an increasing function with respect to $x \in (0, 1)$ and $h(x) < 1$ for $x \in (0, 3/4)$. Hence, if we could prove that $x(\mu)$ is a decreasing function and

$$
\lim_{\mu \to 0} x(\mu) < 3/4,\tag{20}
$$

we would have justified (19) .

Let us first prove that $x(\mu)$ is a decreasing function. Eliminating λ from Eqs. [\(2\)](#page-2-1) and replacing q_i and m_j by their expressions in x and μ , we get

$$
\frac{\mu}{4} - \frac{\mu}{x(x+1)^2} + \frac{\mu}{x(-x+1)^2} + \frac{-\mu+1}{(x+1)^2} + \frac{-\mu+1}{(-x+1)^2} - \frac{1}{x^3} \left(-\frac{\mu}{4} + \frac{1}{4} \right) = 0,
$$

which is equivalent to

$$
\mu = -\frac{8x^5 - x^4 + 8x^3 + 2x^2 - 1}{(x - 1)(x + 1)(x^5 - 9x^3 + x^2 - 1)}.
$$

Therefore

$$
\frac{d\mu}{dx} = \frac{x^2 \left(16x^9 - 3x^8 + 32x^7 + 12x^6 - 304x^5 - 2x^4 + 44x^2 - 51\right)}{(x - 1)^2 (x + 1)^2 (x^5 - 9x^3 + x^2 - 1)^2}.
$$

Since $44x^2 < 51$ and $16x^9 + 32x^7 + 12x^6 < 304x^5$ for $x \in (0, 1)$, then $\frac{d\mu}{dx} < 0$ on the interval (0, 1). Which, in turn, implies that *x* is decreasing with respect to μ .

Let us see now that [\(20\)](#page-13-1) holds. When μ goes to 0, $x(\mu)$ converges to the only solution on the interval (0, 1) of equation $8x(0)^5 - x(0)^4 + 8x(0)^3 + 2x(0)^2 - 1 = 0$. Then, $8x(0)^3 - 1 < 0$
which implies that $x(0) < 3/4$ as we wanted to prove which implies that $x(0) < 3/4$ as we wanted to prove.

Remark 6 As a consequence of the previous results, there exist five-body *PCC s* with m_1, \ldots, m_4 in a CCcl or CCr configuration and the mass $m_0 = 0$ is in the perpendicular line to the plane containing *m*1,..., *m*⁴ and passing by the center of mass. These are examples of *PCC s* which do not verify the conclusion of Lemma [2.](#page-10-2)

Corollary 4 *For all admissible CC of three-body or four-body, the problem P has a synchronous solution.*

7 Non-admissible central configurations

The following result shows when a non-admissible CC has a solution of the problem *P*.

Theorem 7 *We suppose that* (q, m) *is a non-admissible CC with* $q_i \neq 0$ *and that the primaries are in a homographic motion, i.e., Eq.* [\(1\)](#page-2-2) *is satisfied. Assume that the massless particle is moving on the z-axis with position vector* $x_0(t) = (0, 0, z(t))$ *. Then, one and only one of the following statements is satisfied:*

1. The massless particle is in a stationary motion and

$$
\sum_{i=1}^{n} \frac{m_i q_i}{s_i^3} = 0,
$$
\n(21)

i.e., the positions $0, q_1, \ldots, q_n$ *and the masses* $0, m_1, \ldots, m_n$ *are in a CC.*

2. The n + 1*-body system is in a homothetic motion, i.e.,* $Q(\theta(t))$ *in Eq.* [\(1\)](#page-2-2) *is the identity matrix and z*(*t*) = *cr*(*t*)*, for some constant c. Moreover, the configuration* q_0, \ldots, q_n *is a PCC, where* $q_0 = (0, 0, c)$ *and* $m_0 = 0$ *.*

Proof We recall the definition of the function *f* and line *L* from Sect. [3.](#page-3-0)

The fact that the massless particle is moving on *L* is equivalent to the condition $f(t, x_0(t)) \in L$ for all $t \in \mathcal{O}$, which is equivalent to the equality

$$
\sum_{i=1}^{n} \frac{m_i r(t) Q(\theta(t)) q_i}{(r(t)^2 |q_i|^2 + z(t)^2)^{3/2}} = 0,
$$
\n(22)

for every $t \in \mathcal{O}$.

With the same notation and reasoning as in the proof of Theorem [1,](#page-4-1) we prove that

$$
\sum_{j=1}^{k} \left\{ \frac{1}{(s_j^2 + (z(t)/r(t))^2)^{3/2}} \sum_{i \in F_j} m_i q_i \right\} = 0.
$$
 (23)

If $z(t)/r(t)$ would be a non-constant function then the previous equation and Lemma [1](#page-4-2) would imply that *q* is admissible, which is a contradiction. Hence, there exists $c \in \mathbb{R}$ such that $z(t) = cr(t)$. Now, we have two cases.

Case 1 c = 0. Then $z \equiv 0$ and [\(21\)](#page-14-0) follows from [\(22\)](#page-14-1).

Case 2 c \neq 0. From Eq. [\(10\)](#page-6-1), the Kepler equations [\(4\)](#page-3-1) and the fact that $z(t) = cr(t)$, we have

$$
-\frac{1}{r(t)^2} \sum_{i=1}^n \frac{m_i}{(s_i^2 + c^2)^{3/2}} = -\frac{\lambda}{r(t)^2} + r(t)\dot{\theta}(t)^2.
$$
 (24)

The second equality in [\(4\)](#page-3-1) implies Kepler's second law, i.e., there exists $d \in \mathbb{R}$ such that $r^2 \dot{\theta} \equiv d$. Replacing $\dot{\theta}$ in Eq. [\(24\)](#page-14-2) and multiplying by $r(t)^3$, we obtain

$$
-r(t)\left(\sum_{i=1}^{n}\frac{m_i}{(s_i^2+c^2)^{3/2}}-\lambda\right)=d^2.
$$
 (25)

Therefore, if $d \neq 0$ then $\dot{r}(t) \equiv 0$, and this implies $\dot{z}(t) \equiv 0$. As $z(t)$ is a constant function and it solves Eq. [\(10\)](#page-6-1), then $z(t) \equiv 0$. Hence we are in case 1 again. Consequently we suppose $d = 0$. Therefore $\theta(t)$ is a constant function and the motion is homothetic. From (23) and (25) , we deduce that in this new situation Eqs. (15) and (16) hold. This fact, as in the proof of Proposition [1,](#page-10-3) implies the desired result. 

 $\circled{2}$ Springer

Example 1 We present an example of a $3 + 1$ -body system satisfying the situation described in item 1 of Theorem [7,](#page-14-5) i.e., (q, m) is a non-admissible CC and $z(t) \equiv 0$. For this purpose, it is sufficient to find a four-body CC with a zero mass body located in the center of mass.

We start with an Euler's collinear central configuration formed by three primary bodies of masses $m_1 = 4 - \mu$, $m_2 = 2 + \mu$ and $m_3 = 1$, where $0 < \mu < 1$, and positions, with respect to a convenient 1-dimensional coordinate system, given by $q_1 = 0$, $q_2 = 1$ and $q_3 = 1 + r$. It is known (see Moecke[l](#page-16-31) [2014\)](#page-16-31) that *r* is the only positive solution of

$$
p(r, \mu) := 6r^5 + (16 - \mu)r^4 + (14 - 2\mu)r^3 - (\mu + 5)r^2 - (2\mu + 7)r - \mu - 3 = 0.
$$

Since $p(0, \mu) = -\mu - 3$ and $p(1, \mu) = -7\mu + 21$, then $r = r(\mu) \in (0, 1)$, for all $0 < \mu < 1$.

Therefore, as the center of mass $C = C(\mu)$ is equal to $(\mu + r + 3)/7$, we obtain $C \in (0, 1)$. We consider a massless particle with coordinate *x*. The acceleration resulting from the action of the gravitational field is equal to

$$
f(x) = -\frac{4-\mu}{x^2} + \frac{\mu+2}{(-x+1)^2} + \frac{1}{(r-x+1)^2}.
$$

Note that the right-hand side of the previous equation is an increasing function that tends to $-\infty$ when *x* goes to 0, and tends to $+\infty$ when *x* goes to 1, so there is a unique point $\bar{x} = \bar{x}(\mu) \in (0, 1)$ such that the equality $f(\bar{x}) = 0$ holds. This point is an equilibrium for the gravitational field generated for the primaries.

Let us see that there exists $\mu \in (0, 1)$ such that $C(\mu) = \bar{x}$, i.e., $f(C) = 0$. For this purpose, since C is a continuous function with respect to μ , it is sufficient to show that *f* changes its sign on $(0, 1)$. The function $f(x)$ can be written as

$$
f(x) = \frac{g(x)}{h(x)},
$$

where $h(x) = x^2 (x - 1)^2 (r - x + 1)^2$. Note that $h(x) > 0$ for all $x \in (0, 1)$. If we consider $\mu = 0$ and compute $g(C)$, we have

$$
g(C) = \frac{r^4}{2401} + \frac{1514r^3}{2401} + \frac{2245r^2}{2401} + \frac{1110r}{2401} + \frac{333}{2401} > 0.
$$

On the other hand, if $\mu = 1$ then

$$
g(C) = -\frac{71r^4}{2401} + \frac{1486r^3}{2401} + \frac{401r^2}{2401} - \frac{1480r}{2401} - \frac{592}{2401} < 0,
$$

because $0 < r < 1$.

Remark 7 The following question is posed. Is there some non-admissible central configuration (q, m) such that the $n + 1$ -body system perform the motion described in Theorem [7\(](#page-14-5)2)?

References

- Acinas, S., Giubergia, G., Mazzone, F., Schwindt, E.: On estimates for the period of solutions of equations involving the ϕ-Laplace operator. J. Abstr. Differ. Equ. Appl. **5**(1), 21–34 (2014)
- Arnold, V.I.: Mathematical Methods of Classical Mechanics, Volume 60 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1989)
- Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (2007)
- Bakker, L., Simmons, S.: A separating surface for Sitnikov-like *n* + 1-body problems. J. Differ. Equ. **258**(9), 3063–3087 (2015)

Betounes, D.: Differential Equations: Theory and Applications. Springer, New York (2009)

- Bountis, T., Papadakis, K.: The stability of vertical motion in the n-body circular Sitnikov problem. Celest. Mech. Dyn. Astron. **104**(1), 205–225 (2009)
- Brezis, H.: On a characterization of flow-invariant sets. Commun. Pure Appl. Math. **23**(2), 261–263 (1970)
- Corbera, M., Llibre, J.: Periodic orbits of the Sitnikov problem via a Poincaré map. Celest. Mech. Dyn. Astron. **77**(4), 273–303 (2000)
- Corbera, M., Llibre, J.: On symmetric periodic orbits of the elliptic Sitnikov problem via the analytic continuation method. Contemp. Math. **292**, 91–128 (2002)
- Fayçal, N.: On the classification of pyramidal central configurations. PhD thesis, School of Mathematics and Mathematics and Statistics, Carleton University, Ottawa, Canada (1995)
- Fayçal, N.: On the classification of pyramidal central configurations. Proc. Am. Math. Soc. **124**(1), 249–258 (1996)
- Ferrario, D.L., Terracini, S.: On the existence of collisionless equivariant minimizers for the classical *n*-body problem. Invent. Math. **155**, 02 (2004)
- Hampton, M.: Co-circular central configurations in the four-body problem. In: EQUADIFF 2003, pp. 993–998. World Scientific, Singapore (2005)
- Jost, J., Li-Jost, X.: Calculus of Variations, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1998)
- Kincaid, D., Cheney, W.: Numerical Analysis: Mathematics of Scientific Computing. Brooks-Cole, Pacific Grove (1991)
- Li, F., Zhang, S., Zhao, X.: The characterization of the variational minimizers for spatial restricted $N + 1$ -body problems. Abstr. Appl. Anal. 2013(Article ID 845795) (2013)
- Llibre, J., Ortega, R.: On the families of periodic orbits of the Sitnikov problem. SIAM J. Appl. Dyn. Syst. **7**(2), 561–576 (2008)
- Llibre, J., Moeckel, R., Simó, C.: Central Configurations, Periodic Orbits, and Hamiltonian Systems, Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser, Basel (2015)
- Long, Y., Sun, S.: Four-body central configurations with some equal masses. Arch. Ration. Mech. Anal. **162**(1), 25–44 (2002)
- Marchesin, M., Vidal, C.: Spatial restricted rhomboidal five-body problem and horizontal stability of its periodic solutions. Celest. Mech. Dyn. Astron. **115**(3), 261–279 (2013)
- Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences. Springer, Berlin (1989)
- Meyer, K., Hall, G., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the *N*-Body Problem, Applied Mathematical Sciences. Springer, Berlin (2009)
- Moeckel, R.: On central configurations. Math. Z. **205**(1), 499–517 (1990)
- Moeckel, R.: Central configurations. Scholarpedia **9**(4), 10667 (2014). [https://doi.org/10.4249/scholarpedia.](https://doi.org/10.4249/scholarpedia.10667) [10667.](https://doi.org/10.4249/scholarpedia.10667) **(revision #142886)**
- Moser, J.: Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics, Annals Mathematics Studies. Princeton University Press, Princeton (1973)
- Moulton, F.R.: The straight line solutions of the problem of n bodies. Ann. Math. **12**(1), 1–17 (1910)
- Ouyang, T., Xie, Z., Zhang, S.: Pyramidal central configurations and perverse solutions. Electron. J. Differ. Equ. **2004**(106), 1–9 (2004)
- Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. **69**(1), 19–30 (1979)
- Pandey, L.P., Ahmad, I.: Periodic orbits and bifurcations in the Sitnikov four-body problem when all primaries are oblate. Astrophys. Space Sci. **345**(1), 73–83 (2013)
- Perez-Chavela, E., Santoprete, M.: Convex four-body central configurations with some equal masses. Arch. Ration. Mech. Anal. **185**(3), 481–494 (2007)
- Pustyl'nikov, L.D.: On certain final motions in the *n*-body problem. J. Appl. Math. Mech. **54**(2), 272–274 (1990)
- Rivera, A.: Periodic solutions in the generalized Sitnikov (*n* + 1)-body problem. SIAM J. Appl. Dyn. Syst. **12**(3), 1515–1540 (2013)
- Shoaib, M., Faye, I.: Collinear equilibrium solutions of four-body problem. J. Astrophys. Astron. **32**(3), 411– 423 (2011)
- Sitnikov, K.: The existence of oscillatory motions in the three-body problem. Dokl. Akad. Nauk SSSR **133**, 303–306 (1960)
- Soulis, P.S., Papadakis, K.E., Bountis, T.: Periodic orbits and bifurcations in the Sitnikov four-body problem. Celest. Mech. Dyn. Astron. **100**(4), 251–266 (2008)
- Zhao, X., Zhang, S.: Nonplanar periodic solutions for spatial restricted 3-body and 4-body problems. Bound. Value Probl. **2015**(1), 1 (2015)