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HIGHLIGHTS

• Comparison of in-vivo coronary vessel diameter with existing scaling laws.

• Assessment of different power-law criteria in the characterization of blood

flow models.

• Novel approach to enforce matching between averaged wall shear stresses

in branching vessels.

• Huo-Kassab’s criterion results in improved shear stress balancing between

branching vessels.
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Abstract

The geometry of coronary arteries is believed to play the role as an atheroscle-

rotic risk factor on its own. The full characterization of the normal coronary

network has been reported in the literature. Reports on the integration of

geometry and functional data for normal coronary vessels started to prolifer-

ate more recently. In this work, we analyze and integrate the geometric data

retrieved from angiography images of the left main coronary bifurcation in an-

giographically normal patients and hemodynamic data generated from blood

flow models to analyze the role of allometric laws and the connection between

flow distribution and wall shear stress loads on the left anterior descending and

left circumflex arteries. This in-silico study contributes to the characterization

of normal coronary anatomy and its impact on the hemodynamic shear stresses

acting over the vessel wall, shedding light on the impact of geometry-based
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versus simulation-based hypotheses to define boundary conditions for numeri-

cal simulations. We discuss the role of the wall shear stress corresponding to

scenarios adopted by the scientific community and the ones proposed in this

study. For the simulation-based hypothesis, we propose an iterative strategy

to define boundary conditions at the main left coronary bifurcation, such that

wall shear stresses are matched between the left descending and left circumflex

arteries. From this study, we conclude that a one-fits-all power law exponent

of 7/3 results in an good trade-off between computational cost and wall shear

stress balance between daughter vessels.

Keywords: Coronary arteries, Allometric laws, Angiography, Vascular

geometry, Blood flow, Simulation

WORD COUNT: 4418

1. Introduction1

Since the emergence of the concept of geometric risk factors in atherosclerosis2

research [1], the study of arterial geometry in the coronary network has received3

attention along the years [2, 3, 4]. Knowledge of arterial geometry is vital4

for any image-based diagnostic protocol [5], and also for therapeutic planning5

concerning stent deployment [6, 7, 8].6

In the field of computational hemodynamics, the importance of the proper7

characterization of the arterial geometry is twofold:8

(a) the macro-scale geometry (observable vessels from medical images) is used9

to define the vascular domain where the blood flow is to be analyzed from10

computer simulations;11

(b) the same arterial geometry is employed as a surrogate of the downstream12

micro-scale vasculature (peripheral vessels not visible in medical images),13

to define boundary conditions for simulations.14
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Particularly, the latter case is crucial because the boundary conditions deter-15

mine the way in which blood flow is regionally distributed among the vascular16

territories composing the myocardium wall. This greatly impacts the perfor-17

mance of simulation-based diagnosis procedures, such as non-invasive fractional18

flow reserve (FFR) [9, 10].19

Investigation of coronary arterial branching has been matter of intensive20

research, and different scaling laws have been derived to provide a characteriza-21

tion of the fractal nature of arterial bifurcations in the coronary network. Since22

Murray’s landmark contribution [11], numerous authors have proposed exten-23

sions and validations of Murray’s law for different organs [12, 13, 14, 15, 16]24

and also in the case of stenotic disease [17]. Modeling the geometry of coronary25

networks allowed the development of massive coronary networks [18], leading26

to the development of complex multi-scale models bridging the large coronary27

vessels to the tissue microcirculation [19].28

Integration of geometric analysis and blood flow simulation started to pro-29

liferate more recently. The impact of boundary conditions on the wall shear30

stress was studied previously [20], rising concerns about the applicability of the31

Murray’s law to define boundary conditions. These findings are complementary32

to the evidence that deviation from Murray’s law is associated to plaque com-33

position [21]. Going back to the field of blood flow simulations, the impact of34

boundary conditions on the blood flow distribution, using 1D and 3D models,35

and its effect in the computation of flow-derived quantities was acknowledged36

in [22, 23].37

Nevertheless, the interplay between geometry and boundary conditions in38

a semi-controled scenario can provide insight about the role of macro-scale ge-39

ometry and micro-scale vasculature. In this work, we investigate the relation40

between arterial geometry and wall shear stresses (WSS) determined from blood41

4

                  



flow simulations. We assessed angiographic images from 50 angiographically42

normal patients and extracted the diameters of the left main (LM), left anterior43

descending (LAD) and left circumflex (LCX) vessels. With these data, several44

simulation scenarios are considered to study the WSS in both branching vessels45

(LAD/LCX). The strategies employed to define boundary conditions are based46

on either conventional power laws, or in geometric-based and simulation-based47

criteria. For the simulation-based criteria, we propose an optimality criterion48

by which the boundary conditions are adapted to match the averaged WSS in49

the LAD and LCX. This perfect WSS balance is the main theoretical outcome50

of Murray’s law. We will see that the Murray’s law does not deliver such a per-51

fect matching as a consequence of the three-dimensional nature of blood flow.52

Finally, we quantify and analyze the deviation of such an optimal condition53

from Murray’s law and discuss on the practical aspects of alternative choices to54

reduce the mismatch in the WSS between daughter vessels.55

2. Materials and methods56

2.1. Study format and patient population57

Cases were retrospectively selected from a cohort of patients who underwent58

invasive angiography for stratification of suspected coronary disease since 2017.59

Patients were excluded if presenting: i) previous coronary invasive treatment60

(either surgical or percutaneous); ii) any angiographic abnormality (i.e. luminal61

irregularities, stenotic, and/or ectatic-aneurysmatic disease); iii) trifurcated left62

main coronary; iv) absent or short (i.e. < 5 mm in length) left main coronary; v)63

absent or short (i.e. < 5 mm in length) proximal left circumflex or left anterior64

descending arteries. Finally, only patients with adequate images for optimal65

quantitative coronary angiography (QCA) were ultimately included (i.e. two66
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orthogonal views, no foreshortening, no crossing branches, visible angiographic67

catheter for calibration) (see top panels in Figure 1).68

Figure 1: Top: Left main coronary artery in two orthogonal views (cranial left anterior oblique
and cranial right anterior oblique). The left main coronary (white arrow head) is bifurcated
and originates the left anterior descending (white arrow) and the left circumflex arteries (black
arrow). Note the absence of coronary obstructions, the long tubular segments of all target
segments. Bottom: Segment window to extract diameter measurements.

A minimal sample size of 45 cases was calculated, aiming to allow to test69

the hypothesis that any predicted vessel size (e.g. side branch size predicted70

by Murray’s law) would correlate with the actual vessel measurements with a71

correlation coefficient (r) of least 0.7, assuming a two-tailed alpha of 0.001 (i.e.72

0.1% probability of a Type I error [rejecting the null hypothesis when it is in fact73

correct]) and a beta of 0.01 (i.e. 1% probability of a Type II error [accepting74
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Male, [%] 62
Age [y] 61.6± 12.1
Diabetes 18.0
Hypertension 42.0
Body mass index [kg/m2] 28.8± 4.5
Ejection fraction, [%] 63.5± 0.1
Left ventricular mass index, [g/m2] 92.3± 26.1
Right/Left/Co-dominance 47/2/1

Table 1: Demographic characteristics (n = 50 patients). Numbers are proportions or mean ±
standard deviation.

the null hypothesis when it is in fact false]). Ultimately, therefore, a total of75

50 consecutive cases were included and comprised the present study population76

(see Table 1).77

2.2. Quantitative coronary angiography78

The mean diameter of the tubular portions of the left main, left anterior de-79

scending artery and circumflex artery were measured using a dedicated QCA80

software (QangioXA 7.3, by Medis medical imaging systems BV, Leiden, The81

Netherlands). All vessels were analyzed in two orthogonal views. From each82

view, the spatial window corresponding to each segment (LM, LAD and LCX)83

were delimited, as seen in the bottom panel of Figure 1, and the vessel diam-84

eter in each segment was averaged over a spatial window of 5 mm. The final85

vessel diameter that we consider for the present study was obtained by taking86

the average between the values of the two angiographic views. The accuracy87

and precision of the measurements (i.e. the mean difference and the standard88

deviation of repeated QCA measurements performed in a session > 1 month89

apart) were assessed in a sample of ten cases and were 0.01 mm and 0.17 mm,90

respectively.91

Vessel diameters are denoted by DLM, DLAD and DLCX for the left main,92

left anterior descending and left circumflex arteries, correspondingly.93
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2.3. Allometric laws94

Murray’s law [11] establishes that, at a bifurcation, the diameter of the parent

vessel is related to the diameters of both daughter vessels through a cubic power

law. Other alternative allometric laws were proposed in the literature, such

as the Huo-Kassab’s and the Finet’s laws [24]. For the case of the left main

bifurcation, power laws are usually encountered in the following format

Dγ
LM = Dγ

LAD +Dγ
LCX, (1)

where DLM, DLAD and DLCX are the LM, LAD and LCX diameters, respec-95

tively. Then, for Murray’s law we have γM = 3, and for Huo-Kassab’s law it is96

γHK = 7/3 = 2.333.97

In this work we consider two additional power laws, called geometry-specific98

(GS) and simulation-specific (SS) power laws. In the geometry-specific law the99

exponent γGS is computed such that the power law (1) holds for the specific ves-100

sel diameters DLM, DLAD, DLCX measured for each patient. In the simulation-101

specific law the exponent γSS is computed such that the flow distribution renders102

the same WSS in both daughter vessels.103

Note that a patient-specific triple (DLM, DLAD, DLCX), does not necessarily

verify the power law (1), for some exponent γ. In those cases, the Murray ratio,

defined in [21], measures the deviation from the power law format, this is

RC =
DγC

LM

DγC
LAD +DγC

LCX

C ∈ {M,HK,SS}. (2)

Note that, by definition, RGS = 1 for all patients.104

From the measured diameters we also compute the asymmetry ratio defined

as (see [25])

ζ =

(
DLCX

DLAD

)2

. (3)
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105

2.4. Computational hemodynamics106

2.4.1. Phantom model generation107

Phantom geometries are constructed based in the anatomical information pro-108

vided in [26], where morphological information from 217 patient-specific left-109

main coronary bifurcations were analyzed to describe their shape variations (di-110

ameters and angles). A model centerline is built based on the data reported in111

that work: LAD and LCX are considered to be coplanar segments with a sepa-112

ration angle of β = β1 +β2 = 75.2◦, LM segment forms an angle α = 8◦ with the113

LAD-LCX plane and the angle between LM and LAD branches is δ = 138.6◦.114

Straight segments have the same length L = 3 cm. Tubular surfaces are gener-115

ated on top of the centerline, from a given vessel diameter, following the pipeline116

described in [27]. Tubes are considered to be straight and the junction is re-117

constructed enforcing geometrical smoothness, naturally required in this kind118

of applications. Definition of model geometry is shown in Figure 2. In this119

work, such a strategy was applied to the sample of 50 geometries employing the120

measurements of LM, LAD and LCX arterial diameters.121

LCX

LAD

LM

LM

LAD

LCX

LCX

LAD

LM

LM

LAD

LCX

LM LCX

LAD

Figure 2: Left: Definition of the LM-LAD-LCX geometry for α = 8◦, β1 = 33.8◦, β2 =
41.4◦, δ = 138.6◦. Right: Reconstructed surface for a specific case from the patient sample.
Inlet/Outlet boundaries are ΓLM,ΓLAD,ΓLCX. Over the endothelial boundaries colored re-
gions indicate the part of the boundaries ∂ΩLM, ∂ΩLAD, ∂ΩLCX where the average wall shear
stress is computed.
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2.4.2. Blood flow simulation122

For each phantom coronary, denoted as Ω, the equations from fluid mechanics

are approximately solved. Specifically, we consider the flow to be incompress-

ible, and the regime to be steady-state. This assumption is reasonable because

we are interested in the per-segment average WSS, and previous works [28, 29]

showed that for average quantities the steady-state assumption yields satisfac-

tory results. Also, the arterial wall is considered to be rigid, and lateral flow

condition is no-slip. The problem amounts to find the velocity u and the pres-

sure p fields, such that





ρ(∇u)u− µ4u +∇p = 0 in Ω,

div u = 0 in Ω,

u = 0 on ΓW,

∫
ΓLM

u · ndΓ = QLM on ΓLM,

−pn + µ(∇u +∇uT )n = −RAQAn on ΓA A ∈ {LAD,LCX},

(4)

where ρ and µ are the fluid density and dynamic viscosity, respectively, ΓW is

the lateral wall boundary, ΓLM is the inlet boundary at the left main artery, and

ΓLAD and ΓLCX are the corresponding outlet boundaries at the LAD and LCX

vessels, respectively. At the inlet we prescribe the flow rate to be QLM, while the

outlet boundary conditions model the pressure-flow linear relation (resistance

relation) at each downstream vasculature. Hence, RLAD and RLCX model the

hemodynamic behavior of the corresponding peripheral territories. The value

of these resistances is as given in (12). Also, note that

QA =

∫

ΓA

u · ndΓ A ∈ {LAD,LCX}. (5)
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Finally, the strategy for the definition of RLAD and RLCX is explained in next123

section.124

The system of equations in (4) includes the so-called defective boundary

conditions [30, 31]. This arises from the fact that the velocity profile is not

known a priori at ΓLM,ΓLAD,ΓLCX. Thus, the boundary conditions involve

a constraint over the velocity field. In the present work, we assume that

the normal component of the stress tensor is uniform in the corresponding

boundary. Moreover, a Lagrange multiplier approach is considered to enforce

the constraint at the inlet. The resulting variational equation reads: find

(u, p, λLM) ∈ H1
0,ΓW

(Ω)× L2(Ω)× R such that

∫

Ω

(
ρ(∇u)u · û + 2µ∇su · ∇sû− pdiv û− p̂ div u

)
dΩ

+

∫

ΓLAD

RLAD

(∫

ΓLAD

u · ndΓ

)
n · ûdΓ

+

∫

ΓLCX

RLCX

(∫

ΓLCX

u · ndΓ

)
n · ûdΓ

+

(∫

ΓLM

u · ndΓ−QLM

)
λ̂LM +

∫

ΓLM

λLMn · ûdΓ = 0

∀(û, p̂, λ̂LM) ∈ H1
0,ΓW

(Ω)× L2(Ω)× R (6)

where ∇s is the symmetric gradient operator, L2(Ω) is the space of square125

integrable functions in Ω and H1
0,ΓW

(Ω) is the space of square integrable vector126

functions in Ω with square integrable gradients in Ω, and whose trace is null127

over the lateral boundary ΓW.128

Numerical approximation of the variational form (6) is performed using the129

Transversally Enriched Pipe Element Method (TEPEM). This technique is an130

element-based approach tailored to computational hemodynamics applications.131

The geometry is discretized into 4 704 elements, of axial length h = 0.1 cm,132

and approximately 129K degrees of freedom. Overall, 200 simulations were133
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performed. Each simulation was performed in a personal computer (with 8134

processors) and solving the flow problem in a mean time of 4 minutes. The135

reader will find the technical aspects of the numerical methodology in [27].136

2.4.3. Model parameters and data processing137

We consider ρ = 1.04 g/cm3, µ = 4 cP. The incoming flow rate QLM is com-138

puted following [32], taking into consideration arterial dominance. Thus, we139

have QLM = 2.60 ml/s for right dominant coronary circulation, and QLM =140

3.38 ml/s for left dominant and co-dominant coronary circulations.141

Resistances RLAD and RLCX are defined as a function of a power law with

exponent γ. Assuming a power law relation between flow rate and arterial

diameter we have

QA = σDγ
A A ∈ {LAD,LCX}. (7)

The power optimality criterion developed by Murray leads to γM in (7). For the

case of the LM-LAD-LCX bifurcation, these two equations are complemented

with the mass conservation

QLM = QLAD +QLCX (8)

Introducing expressions (7) into (8) we obtain the constant σ, that is

σ =
QLM

Dγ
LAD +Dγ

LCX

(9)

and characterize the flow splitting at the bifurcation

QA =
Dγ

A

Dγ
LAD +Dγ

LCX

QLM A ∈ {LAD,LCX}. (10)

If we assume that the peripheral resistance fully determines the pressure drop
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(this is reasonable because we are analyzing a small portion of the arterial

network), we can write

QA =
PLM − Pv

RA
A ∈ {LAD,LCX} (11)

where PLM − Pv is the pressure drop between the aortic root and the venous

return (in this work PLM − Pv = 90 mmHg). Hence, with (9) into (10), we

characterize the resistances RLAD and RLCX used in (4) as follows

RA =
(PLM − Pv)(Dγ

LAD +Dγ
LCX)

QLM
D−γ

A A ∈ {LAD,LCX} (12)

Observe that different exponents define different blood flow simulations through

different peripheral resistances, which are denoted RC
A, A ∈ {LAD,LCX}, C ∈

{M,HK,GS,SS}. Murray and Huo-Kassab exponents, γM = 3 and γHK = 7/3,

are the same for all geometric models (both are one-fits-all approaches). The

geometric-specific (GS) law implies finding γGS such that (1) holds for each spe-

cific patient. Finally, in the simulation-specific (SS) law we seek for the value

of γSS such that

WSSLAD = WSSLCX (13)

where WSSA is the spatially averaged wall shear stress magnitude in the en-

dothelial wall of the A vessel, A ∈ {LAD,LCX}, that is

WSSA =
1

|∂ΩA|

∫

∂ΩA

|τA|d∂Ω A ∈ {LAD,LCX}, (14)

where τA is the wall shear stress vector field over the corresponding endothelium142

∂ΩA, whose measure is |∂ΩA|, A ∈ {LAD,LCX}, computed from the velocity143

field u solution of (4). The endothelial boundaries used for the calculation of144

the WSS are highlighted in color in Figure 2.145
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To find γSS we initially solve (4) with the boundary conditions given by146

RM
LAD, R

M
LCX.147

Then, we modify these resistances iteratively until (13) is verified up to a148

given tolerance (tol = 0.001).149

To find γSS we proceed iteratively as follows: set initial guess resistances as

R0
LAD = RM

LAD, R0
LCX = RM

LCX, then

for k = 0, 1, 2, . . ., do

using (RkLAD, R
k
LCX) solve (6) to obtain (uk+1, pk+1, λk+1

LM ),

compute (WSSk+1
LAD,WSSk+1

LCX) with (14),

compute θk+1 =
1

2

(
1 +

WSSk+1
LCX

WSSk+1
LAD

)
,

if θk+1 = 1 then exit algorithm,

if θk+1 > 1 then Rk+1
LAD = (2− θk+1)RkLAD,

if θk+1 < 1 then Rk+1
LAD = θk+1RkLAD,

compute Rk+1
LCX =

(
1

RM
LAD

+
1

RM
LCX

− 1

Rk+1
LAD

)−1

,

until
|WSSk+1

LAD −WSSk+1
LCX|

WSSk+1
LAD

< ε,

with ε = 0.001. Note that the equivalent resistance is the same at all iterations.150

151

This iterative procedure yields the optimal resistances RSS
LAD, R

SS
LCX. Thus,

the value of γSS is found through the ratio of both expressions (12), leading to

RSS
LAD

RSS
LCX

=

(
DLCX

DLAD

)γSS

, (15)
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and so

γSS =
log
(RSS

LAD

RSS
LCX

)

log
(
DLCX

DLAD

) . (16)

Expression (16) is singular for DLAD = DLCX, which implies that, under the152

hypotheses considered, (13) holds regardless the value of γSS. This is not exactly153

true in practice because we are solving problem (4) and the hypotheses are154

not exactly verified. Out of the 50 patients, 2 featured nearly the same LAD155

and LCX diameters, and were removed in the analysis corresponding to the156

simulation-specific scenario.157

In the same way expression (2) measures the geometric deviation at the

patient level, we also define the functional index

FC
A =

WSSC
A

WSSSS
A

A ∈ {LAD,LCX}, C ∈ {M,HK,GS}, (17)

which measures the deviation of the wall shear stress in each vessel from the

optimal scenario in which these stresses are perfectly balanced between LAD

and LCX (situation given by the SS scenario). Also, we define the LAD/LCX

WSS balancing index

BC =
WSSC

LAD

WSSC
LCX

C ∈ {M,HK,GS}. (18)

3. Results158

The exponents of the different power laws investigated in this work are reported159

in Figure 3(a). Geometric-specific and simulation-specific power laws imply160

in an exponent γ which is specific for each case. For the geometric-specific161

law, we obtained (n = 50): γGS = 2.32 ± 1.05, range [1.03, 7.40], and median162

(IQR) of 2.03(1.68, 2.87). A gamma distribution was used to fit γGS, yielding163

parameters a = 6.90, b = 0.34, see Figure 3(b). In turn, the simulation-specific164
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law (n = 48, two cases removed because DLAD = DLCX) rendered an exponent165

γSS = 2.62± 0.64, range [1.05, 6.36], and median (IQR) of 2.59(2.41, 2.74). The166

gamma distribution used to fit γSS resulted in parameters a = 22.16, b = 0.12,167

see Figure 3(c).168

Law γ

M 3

HK 7/3

GS 2.32± 1.07∗

SS 2.62± 0.64+

(a) (b) (c)

Figure 3: Left: Table summarizing the analyzed allometric laws. Murray’s (M) and Huo-
Kassab’ (HK) laws are power laws with a well-defined exponent. Geometry-specific (GS)
law is the power law constructed using the diameters obtained from the image analysis (∗:
computed from image data, see Results section). Simulation-specific (SS) law is the power
law constructed from the simulation in which the WSS is matched in both branching vessels
(+: computed from simulation data, see Results section). Right: Distributions of exponents
γGS and γSS from the entire sample. A Gamma distribution is used to approximate the data.

Figure 4 features the correlation plot between the measured diameter (hor-169

izontal axis) and the diameter predicted by the power law (1) (vertical axis),170

where the exponent γ is either γM, γHK, or γSS. The three plots are gener-171

ated considering: (a) DLAD, DLCX as given data to predict DLM using (1), (b)172

DLM, DLAD as given data to predict DLCX using (1), and (c) DLM, DLCX as173

given data to predict DLAD using (1). Correlation coefficients are also reported174

in these plots. Power law with Murray coefficient rendered the better correlation175

coefficient between predicted and measured vessel diameters.176

Figure 5 shows the geometric and optimality measures, R and F respectively.177

The violin plots in Figure 5(a) and Figure 5(b) illustrate the distribution of the178

discrepancy measures around the theoretical value of 1. A different visualization179

is shown in the R vs. B plot from Figure 5(c). These figures confirm that the180
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(a) (b) (c)

Figure 4: Correlation plots between measured vessel diameter and prediction using the dif-
ferent allometric laws (M: Murray, HK: Huo-Kassab, SS: simulation-specific). (a) data:
DLAD, DLCX, prediction: DLM, (b) data: DLM, DLAD, prediction: DLCX, (c) data:
DLM, DLCX, prediction: DLAD.

GS scenario yields perfect RGS = 1, while the simulation-specific scenario gives181

BSS = 1.182

(a) (b) (c)

Figure 5: Geometric (R) and balancing (B) measures of the performance of each power law
for the different scenarios: M: Murray, HK: Huo-Kassab, GS: geometry specific (such that (1)
holds), SS: simulation-specific (such that (13) holds).

Table 2 provides the statistics for the geometric and functional measures183

introduced here. Figure 6 displays the distribution of the functional indexes that184

measure the discrepancy in the WSS with respect to the baseline SS scenario in185

both LAD and LCX. Figure 6(a) and Figure 6(b) present the violin plots for the186

discrepancy with respect to the SS scenario, as measured by the functional index187

F for the LAD and LCX, respectively. Figure 6(c) shows the inverse relation188
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existing between these two indexes.189

Index Law (C) mean ± std [min, max] median (IQR)

RC

M 1.47 ± 0.55 [0.66, 3.62] 1.38 (1.03, 1.70)
HK 1.15 ± 0.33 [0.62, 2.36] 1.10 (0.88, 1.30)
GS 1.00 ± 0.00 [1.00, 1.00] 1.00 (1.00, 1.00)
SS 1.29 ± 0.50 [0.64, 2.96] 1.22 (0.91, 1.49)

BC

M 1.01 ± 0.08 [0.82, 1.15] 1.02 (0.94, 1.09)
HK 0.96 ± 0.04 [0.81, 1.06] 0.97 (0.94, 0.98)
GS 0.95 ± 0.16 [0.49, 1.38] 0.95 (0.86, 1.06)
SS 1.00 ± 0.00 [1.00, 1.00] 1.00 (1.00, 1.00)

FC
LAD

M 1.00 ± 0.04 [0.87, 1.05] 1.01 (0.97, 1.03)
HK 0.99 ± 0.01 [0.95, 1.04] 0.99 (0.98, 0.99)
GS 0.98 ± 0.07 [0.80, 1.12] 0.98 (0.94, 1.03)

FC
LCX

M 0.99 ± 0.04 [0.89, 1.07] 0.99 (0.95, 1.03)
HK 1.02 ± 0.03 [0.98, 1.18] 1.02 (1.01, 1.04)
GS 1.05 ± 0.13 [0.80, 1.71] 1.03 (0.97, 1.09)

Table 2: Statistics for the indexes that measure the geometric and functional behavior of
the left main coronary bifurcation. R: Murray ratio, see (2); F: functional index, see (17);
B: balancing index, see (18). These indexes are reported for the different laws, M: Murray,
HK: Huo-Kassab, GS: geometric-specific, SS: simulation-specific. IQR stands for interquartile
range.

In Figure 7 we report the analysis of the results as a function of the asymme-190

try ratio ζ. We can see that the distribution of the asymmetry ratio is around 1.191

The Murray ratio R is mildly negatively correlated with ζ, and this correlation192

is not statistically significant (see Figure 7(a)). For the functional indexes FLAD193

and FLCX, the correlation with Murray and Huo-Kassab is high, as expected194

because we are using these rules to define the boundary conditions. In turn, the195

dispersion of the indexes in the geometric-specific scenario is larger, and is more196

similar to the Huo-Kassab law, but the correlation in the data is only mild, as197

seen in Figures 7(b) and 7(c).198
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(a) (b) (c)

Figure 6: Indexes FLAD (left) and FLCX (right) (see (17)) characterizing the relation of wall
shear stress (WSS) in the LAD and LCX for the different scenarios (M, HK, GS) with respect
to the WSS-balanced SS setting.

R

F F

(a) (b) (c)

Figure 7: Results as a function of the asymmetry ratio ζ. Murray index R (left), and indexes
FLAD (middle) and FLCX (right) (see (17)), for the different scenarios (M, HK, GS), as a
function of the asymmetry ratio ζ.

19

                  



4. Discussion199

4.1. Main findings200

We investigated the anatomical features of the left main coronary bifurcation,201

and employed computer simulation to estimate the wall shear stresses in the202

daughter vessels using a set of 50 patients featuring angiographically normal203

coronary arteries (free from obstructive disease). The study focused on the204

role of power laws to describe arterial branching, its relation with flow splitting205

and the impact on the shear stresses acting over the endothelium. Particularly,206

we compared conventional power laws with geometric-specific and simulation-207

specific power laws.208

Compared to one-fits-all approaches, such as the Murray exponent γM = 3209

and the Huo-Kassab exponent γHK = 7/3 = 2.33, from the geometric analysis210

of the main bifurcation in the coronary tree (γGS = 2.32 ± 1.07) we conclude211

that, in average, the HK law is the one that better described the observed vessel212

diameters. Even though, from all the laws studied, the one that featured a more213

compact distribution of the Murray ratio (see (2)) is the HK law, as seen in214

Figure 5(a). This finding is at odds with the fact that Murray exponent proved215

to yield better correlation between predicted and measured vessel diameter once216

a couple of vessel diameters are known, implying that a better correlation does217

not necessarily imply better geometric and hemodynamic features.218

Another important observation is the fact that the perfect Murray ratio R219

between LM and LAD/LCX vessel diameters counteracts the perfect WSS bal-220

ance between LAD and LCX, resulting in a significant spread in the functional221

index B (see (18) and see Figure 5(b)). Note that the flow splitting dictated222

by a perfect geometric bifurcation in the sense of the perfect Murray ratio, i.e.223

R = 1, is far from ensuring perfect WSS balance, i.e. B = 1, between the daugh-224

ter vessels. The Murray law is the approach that, in average, offers the best225
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balancing index (see Table 2). However, the distribution is wide, and it turns226

out that the HK law results in a trade-off between geometry and functionality,227

as observed in Figure 5(c), and confirmed by the statistics in Table 2. This is228

crucial for hemodynamic simulation settings, as most of the works in the litera-229

ture rely on some sort of power law fed with the patient’s vessel diameters. Such230

observation can be explained by the fact that the flow splitting is governed by231

microvascular peripheral resistance, whose allometric law is certainly different232

from the power law observed in the along vessel generations. In [33], the authors233

reported that the average exponent actually varies, along network depth, in the234

ranges (1.3, 3), (1.7, 2.7), and (0.1, 7.2) for different territories in the cerebral235

vasculature. In the present study, we have seen that even such apparently small236

variability could lead to important deviations in the LAD/LCX WSS balance.237

From all the laws investigated, again the HK law is the one that featured more238

balanced LAD/LCX endothelial stresses provoked by the action of blood flow.239

Again, the conclusion drawn from this observation is that the HK law is more240

compliant with the precept that the arterial tree is continuously adapting to241

maintain homogeneous WSS values across the arterial tree [34, 35].242

Exploiting the simulation-specific (SS) scenario, in which the WSS is per-243

fectly balanced between LAD and LCX, as a reference solution, we can ob-244

serve the relative impact of considering the Murray, the Huo-Kassab and the245

geometry-specific exponents. Relative to the SS case, the WSS delivered by the246

HK power law resulted in a more compact and symmetric distribution, while the247

Murray and the geometry-specific exponents rendered skewed distributions for248

both LAD and LCX (see Figure 6 and also the statistics in Table 2). Moreover,249

we note that the Murray scenario yielded the mean value which is closest to250

the reference one. However, this is not compensated by the wider distribution251

compared to the HK law. The negative correlation observed between the rela-252
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tive deviation of the WSS in the LAD and in the LCX with respect to the SS253

scenario is explained by the fact that the flow rate into the left main vessel is254

ensured to be the same for all cases, enforcing the same Reynolds number, and255

the same flow regime for all the scenarios (M, HK, GS, SS).256

From the analysis of the strategies proposed in this study, it is also inter-257

esting to highlight the possibility of generalizing the branching power law. A258

possible approach to doing that based on geometry, is to expand the power law259

by adding a parameter depending. Here, we assessed the dependence of the260

branching models with the asymmetry ratio [25]. The functional index in the261

geometric-specific scenario showed only a mild correlation with the asymmetry262

ratio. Interestingly, the correlation was close to that featured by the Huo-Kassab263

branching rule.264

The downside of the SS scenario is the need for performing three-dimensional265

simulations, which may be costly for large vascular models. With the advent266

of machine learning algorithms a by-product of the present study could be the267

generation of ground truth data (the flow splitting ratio obtained in the SS268

scenario), to train and validate learning algorithms. Such learned branching laws269

(or flow-splitting rules) may become more accurate regarding the homogeneity270

of WSS among vessels. This is left as future work, and as a potential application271

of the core ideas introduced in this study.272

The present study focused on the left main bifurcation and on idealized273

tubular geometries. Although the extrapolation of the present findings to down-274

stream bifurcations could be a common practice, it should be subjected to275

scrutiny in view of the variability of bifurcation exponents with network depth276

[33]. The use of realistic vascular geometries to investigate the impact of branch-277

ing laws on the WSS, and the construction of physics-driven boundary condi-278

tions based on geometric considerations is still an open problem. Indeed, the279
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multiple outlet problem may not have a solution if we seek for the BCs such280

that the WSS is the same in all branches. Therefore, the present study may not281

be replicable in realistic geometries with many outlets. Definitely, this problem282

of defining outlet boundary conditions will continue to deserve attention from283

the community.284

4.2. Limitations285

The geometric models employed in the analysis do not take into account the real286

arterial geometry, but it is a phantom model built from vessel diameter data.287

Assembling a large patient dataset is challenging. Large studies including multi-288

modality imaging do not include simulation [21]. The utilization of simulation289

techniques to provide functional insight about blood flow on top of geometry290

solely posits several challenges, because of the cost involved in the numerical291

simulations and in the management of input/output data processing. Here we292

employed an efficient numerical approach that enables the study of hundreds of293

simulations. Analyzing the effect of the different scenarios proposed in realistic294

geometries and also comparing control and diseased patients is out of the scope295

of this paper and should be addressed in the future.296

The blood flow model is steady-state, in contrast to the pulsatile conditions297

of coronary blood flow. Even if this is a rather simplifying hypothesis, observe298

that Murray’s law was also conceived under steady-state conditions. Thus, in299

this work we preferred to focus on the more fundamental question about the300

criterion to determine the flow splitting, instead of the hypotheses underlying301

the blood flow model. Moreover, concerning the computation of average WSS,302

there is evidence that steady-state models possess great predictive capabilities303

compared to the ground truth solution given by time-dependent models [28, 36,304

29].305
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Patient-specific coronary flow rate measurements were not available, so we306

considered the same flow rate prescribed at the inlet of the bifurcation, where307

the value depended solely on arterial dominance. Inter-individual variability308

can be large concerning the myocardial flow supply. Nevertheless, note that the309

Reynolds number in the coronary circulation is not large, and so we expect this310

assumption is not influential for the analysis based on the average of WSS. The311

same may not hold for maximum values and even oscillatory behavior of the312

WSS, which were not analyzed in the present study.313

Another limitation is that we restricted our analysis to the main left bi-314

furcation, regardless the number of vessels downstream the LAD and LCX.315

Complementary research should consider an extended vascular domain.316

5. Final Remarks317

Large anatomical variability is a normal feature of arterial morphology, both in318

diseased and control patients, which allows us to conclude that macrovascular319

branching patters cannot be used to solely explain pathology. Moreover, based320

on the principle that the wall shear stress tends to be homogeneous across the321

different scales in the circulation, a power law formula calibrated with patient-322

specific branching data does a disservice to dictating the flow rate splitting in323

mathematical models, under the hypothesis for the flow-diameter relationship324

considered here. The proposed approach to define peripheral resistances such325

that the endothelial shear stresses in both LAD and LCX are the same showed326

us that from all the studied laws, the Huo-Kassab power law stands out as the327

one that renders less heterogeneity in the wall shear stresses, when comparing328

LAD to LCX.329
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