
Abstract
The identification of Aedes aegypti breeding hotspots in urban

areas is crucial for the rational design of control strategies against
this disease vector. Remote sensing and geographic information
systems offer valuable tools for mapping habitat suitability of a
given area. However, predicting species occurrences by means of
probability distribution maps based on transversal entomological
surveys has limited utility for local authorities. The aim of the pre-
sent study was to carefully examine the temporal evolution of the
number of houses infested with immature stages of Ae. aegypti in

each individual neighbourhood and to explore the value of pro-
ducing environmental clusters generated with information provid-
ed by remotely sensed variables to explain the observed differen-
tial temporal behaviour. Entomological surveys were conducted
between 2011 and 2013 throughout a small town in Argentina reg-
istering the number of houses with containers harbouring imma-
ture stages of Ae. aegypti. A SPOT 5 satellite image was used to
obtain land cover variables, which were subsequently submitted to
k-means partitioning for grouping neighbourhoods into four envi-
ronmental clusters. Finally, a generalized linear model was fitted
showing that the number of houses found to be positive for Ae.
aegypti was jointly affected by the interaction between environ-
mental clusters and the year of sampling. Moreover, the number of
positive houses in one of the clusters was 9.5 times higher
(P<0.005, SE=0.37) in 2013 than in 2012, but we did not observe
any other statistically significant increases.

Introduction
Aedes (Stegomyia) aegypti (L.) (Diptera, Culicidae) is the

main vector of dengue, chikungunya and zika viruses (Liang et al.,
2015). According to the World Health Organization (WHO) these
arboviruses (viruses transmitted by arthropods) infect more than
300 million people in the world every year, causing more than
20,000 deaths (WHO, 2016). During 2009, a dengue outbreak
spread widely throughout Argentina causing five deaths and
27,752 non-lethal infections in 13 provinces. Since then, cases are
continuously reported eventually leading to the strongest dengue
outbreak in Argentina’s history during 2016, with 76,962 notified
cases (data provided by the National Ministry of Health of
Argentina). In addition, Ae. aegypti is also involved in the explo-
sive epidemics of chikungunya (alphavirus) (Higgs et al., 2015)
and zika (flavivirus) (Gatherer and Kohl, 2016), which reinforces
its role as a vector of diseases with increasing importance in the
Americas and the entire world. Considering this scenario, the pre-
vention of infections transmitted by Ae. aegypti can only be
achieved by reducing or eliminating bites by infected vector
mosquitoes.

Control of mosquitoes can be directed against their adult or
immature aquatic stages (larvae and pupae), with a number of
methods available for each approach. The promotion of peri-
domestic clean-up to reduce mosquito breeding sites have been
routine practices, mostly as one of many elements within multiple
interventions including indoor and outdoor spraying, house
screening, insecticide-treated materials and biological control
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(Bowman et al., 2016). Although it is not possible to quantify the
specific contribution of such programmes to the reduction of vec-
tor populations or their impact on virus transmission, strong evi-
dence from Cuba (Toledo et al., 2011) indicates that community
working groups, including the promotion of environmental man-
agement, reduce the vector index significantly, even more than
other Ae. aegypti control programmes. Independently of the con-
trol method applied, care in designing strategies is crucial, and a
clear identification of vector hotspots in populated areas is a valu-
able tool for the prevention of disease transmission. According to
Ostfeld et al. (2005), disease risk is more closely correlated with
abundance of vectors than with their presence. Also, within the
complex context of arthropod-borne diseases, studies must not
only be focused on infected hosts, but also on the vector
mosquitoes, to finally move into integrative approaches consider-
ing the interactions between them. Geographic information sys-
tems (GIS) and remote sensing can be useful in characterizing the
environmental conditions that favour the development of the bio-
logical disease vector cycle (Reisen, 2010). In other words, these
technologies offer the opportunity of mapping the habitat suitabil-
ity of a particular area (Cleckner et al., 2011; Espinosa et al.,
2016a).

Since 2008, Mundo Sano Foundation (www.mundosano.org)
implemented an extensive programme for monitoring Ae. aegypti
domestic breeding sites in Clorinda, a border town in the northern

province of Formosa, Argentina. In a previous study, the changes
in abundance of Ae. aegypti breeding sites infested with immature
stages were analyzed and different temporal behaviours within
each zone in the town were recognized. It was a remarkable find-
ing considering the small size of Clorinda and the lack of system-
atic control activities during previous years. Focused on that issue,
the main goal of the present study was to examine, in depth, the
temporal evolution of the number of houses infested with imma-
ture stages of Ae. aegypti in each individual neighbourhood, and to
explore if the different behavioural characteristics found could be
attributed to areas that share the same environmental conditions.
To that end, the information provided by remotely sensed variables
was used to group all the sampled neighbourhoods into a reduced
set of environmental clusters within Clorinda evaluating their util-
ity as a proxy for the temporal evolution of dengue epidemics.

Materials and Methods

Study area
Clorinda (25°17’S, 57°43’W) is located in the easternmost

limit of the province of Formosa in north-eastern Argentina four
km from the Paraguayan border (Figure 1). The town lies on the
right bank of the Pilcomayo River, 10 km before its confluence

                   Article

Figure 1. Geographic location of Clorinda. Clorinda (yellow dot) is situated within the province of Formosa (orange) on the border
with Paraguay; the base layer is a Landsat 8 scene taken from the United States Geological Survey archive (USGS/Landsat NASA pro-
gram).
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with the Paraguay River. This region presents a subtropical climate
without a dry season. The annual median temperature is about
23°C and the mean annual precipitation 1,300 mm due to a rainy
season stretching from October to May (Gürtler et al., 2009).
According to the latest national census in Argentina, conducted in
2010, the town has 16,600 homes and its population is 23,290.

Entomologic data
From October 2011 to November 2013, the presence and

abundance of Ae. aegypti breeding sites at the household level
were registered throughout seven entomological surveys in
Clorinda. Each time, 20% of the homes were randomly selected
for monitoring, including a total of 10,981 houses in the study.
Verbal consent was obtained from the dwellers in order to per-
form the entomological sampling. The larvae and pupae collected
during the survey were transported to the entomologic laboratory
of Mundo Sano Foundation for taxonomic determination using a
specific morphological key (Rossi and Almirón, 2004). Houses
found to have at least one container with one or more Ae. aegypti
larvae or pupae in it were considered positive sites. Spatially the
counts were grouped by neighbourhood and temporally by period
(2011-2012, 2012-2013) as well as by season (spring, summer,
autumn).

The open-source Quantum GIS (QGIS), version 2.10.1 PISA
(http://www.qgis.org/) software was used to build the point vec-
tor layers (.shp files) locating sampled points, recording sites of
mosquito presence, collecting abundance data for each survey
and grouping them by year. Sites with presence of Ae. aegypti
immature stages were indicated as positive cases and those with-
out as negative. Based on these layers, the QGIS heatmap tool
was used to estimate the density of positive cases per year. To be
able to count on a visual source for the evaluation of the spatial
variability of densities, the difference between layers of different
years was calculated as a raster image by season. Finally, the
number of positive houses was calculated by neighbourhood and
year, and this value was used in the spatio-temporal modelling.

Mapping of environmental variables
An image from the satellite SPOT 5 (http://www.

geoimage.com.au/satellite/spot-5), obtained on April 9 2013, was
used to generate the land cover classification and macro-environ-
mental products described by Espinosa et al. (2016b). Briefly,
unsupervised classification (k-means) was performed to classify
the area under study obtaining seven land cover classes: bare soil,
superficial water, wetlands, low vegetation (grass), high vegeta-
tion (bushes and trees), urban buildings and pasture/crops.
Through the use of Google Earth, a set of 40 control points
(ground truth) was created for each environmental cover to cor-
roborate the accuracy of the classification. To this end, a confu-
sion matrix was created, in which the classification results were
compared to the additional ground truth information in order to
identify the nature of any classification error and its quantity.
QGIS and the image processing software ENvironment for
Visualizing Images (ENVI), version 4.8 by Exelis Visual
Information Solutions (https://exelisvis.com/) were used to create
vectors and classification images, respectively, to assess the
accuracy level of the classifications; then two different types of
macro-environmental variables were generated for each class.
The distance from each pixel to the class of interest was calculat-
ed using the ENVI buffer zone image tool resulting in a raster
image in which every pixel had a value defined as the distance

from that pixel to the nearest pixel of the selected class; then the
percentage of each land cover class was calculated by applying
the methodology described by Espinosa et al. (2016b). The win-
dow size for the generation of the percentage map was 31×31
pixels, attributing the average value of the window pixels to the
central pixel. Shannon’s diversity index, a quantitative gauge of
the different categories in a dataset, was calculated as a measure
of landscape heterogeneity, using LecoS python plug-in for auto-
mated landscape analysis in QGIS (Jung, 2013). In addition, the
normalized burn ratio thermal (NBRT) layer was obtained as
proxy for the annual land surface temperature. This index
includes near infrared, short wave infrared (SWIR) and thermal
infrared Landsat bands (http://landsat.gsfc.nasa.gov/). These
composites are made from Level L1T orthorectified scenes, using
the computed top-of-atmosphere reflectance (Holden et al.,
2005) and can be obtained from several repositories of Earth
data, for example that in Google Earth Engine. A vector layer of
the sampled neighbourhoods in Clorinda was used to extract the
mean value of each macro-environmental variable, using the
zonal statistics tool available in QGIS.

K-means clustering
A subset of variables with low correlation (r<0.7) and/or bio-

logical importance in the Ae. aegypti ecology was chosen for
subsequent analyses. All statistical analyses were performed in R
(www.r-project.org) after standardizing the mean values of the
chosen environmental variables in order to account for unit dif-
ferences. The matrix of the values assigned to the different neigh-
bourhoods was submitted to k-means clustering (Hartigan and
Wong, 1979). The package cluster (Maechler et al., 2017) was
used to graph the arrangement of neighbourhoods obtained from
the analysis.

Generalized linear model
A generalized linear model (GLM) was fit to assess the con-

tribution of each of the environmental clusters to explain any
change in abundance of Ae. aegypti breeding sites. Absolute
counts were corrected by the total number of sampled houses
from one year to the next. As frequently occurs with counts, our
data displayed overdispersion. Since the imposition of a Poisson
distribution would be inappropriate, a negative binomial error
distribution was chosen for handling this issue. The different
clusters and the two years of sampling were set as factors and
used as explanatory variables of the number of positive houses
(the response variable). The model was run using the MASS
library (Venables et al., 1999) and validated throughout the
graphical exploration of the distribution of residuals (Zuur et al.,
2010). Multiple comparisons with Bonferroni correction were
performed between interaction terms using the multicomp
(Hothorn et al., 2008) and factorplot (Armstrong, 2016) pack-
ages.

Results
The variation in the observed densities of positive houses in

the neighbourhoods sampled over six seasons during two consec-
utive years (2012 and 2013) is represented in Figure 2, which
shows that different neighbourhoods had different temporal
abundance patterns. For example, some near neighbourhoods,
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such as 7-8, 14-15-16 or 21-22, show differences between com-
parable seasons. The heatmaps shown in Figure 3 represent an
interpolated surface showing the changes of density of positive
houses from Clorinda between the two years with sampled data,
which were also separated by seasons.

A total of 17 environmental layers were obtained after per-
forming the unsupervised classification of the SPOT 5 scene con-
taining Clorinda. The confusion matrix used with validation con-
trol points showed an overall classification accuracy of 77.6%
and a Kappa coefficient of 0.74. Some classes (water,

                   Article

Figure 2. Temporal distribution of positive houses per neighbourhood 2012-2013. Entomological surveys were performed in spring,
summer and autumn of 2012 and 2013.

Figure 3. Inter-annual variation of the estimated densities of positive houses in Clorinda. Increases shown in blue (negative) and red
(positive) colour gradients for A) spring, B) summer, C) autumn.
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pasture/crops, low and high vegetation, wetlands) reached values
above 80% accuracy, while others (bare soil and urban buildings)
presented 50% and 76% accuracy, respectively. From the com-
plete set of variables, the following eight showed low correlation
(r<0.7) and were chosen for clustering the sampled neighbour-
hoods by k-means partitioning: distance to surface water, dis-
tance to wetlands, distance to areas with buildings, distance to
tall vegetation, short-wave infrared, percentage of wetlands, per-
centage of tall vegetation and Shannon diversity index.

The k value that incorporates a high proportion of the vari-
ability among groups was set to 4 for the subsequent environ-
mental class assignation of neighbourhoods, since higher values
would lead to less parsimonious arrangements or overlapping
among classes. Then, the matrix of values of the environmental
variables per neighbourhood was classified by k-means partition-
ing, which resulted in the arrangement of the 32 sampled neigh-
bourhoods into four environmental clusters (Figure 4).

Cluster k-I was composed by middleclass residential areas
and a commercial zone mainly occupied by storehouses and car
repair shops; the town’s cemetery is also located within this
group (neighbourhood 11). Cluster k-II was represented by
neighbourhoods with intense commercial activity in precarious
houses, and floodable areas near the rivers, while cluster k-III was
mostly composed by densely populated social housings (neigh-
bourhoods 6, 7, 24, and 31) and a settlement of the native
American Toba people (neighbourhood 26). Finally, cluster k-IV
harboured peripheral neighbourhoods, such as farms and crops, all
located in areas that must often be evacuated because of their prox-
imity to the Pilcomayo River. The corresponding mean vectors of
each cluster are shown as centroid values in Table 1.

The GLM results showed that the global interaction between
years and environmental clusters was statistically significant (LR
Chisq: 23.69, Df: 3, P<0.001), which means that the number of
positive houses is jointly affected by the interaction between the
environmental clusters and the year of sampling. When we per-
formed multiple comparisons among the different interacting lev-
els (each year with each environmental cluster) we noted that only
the neighbourhoods included in cluster k-I were significantly dif-
ferent between the years (Figure 5). More precisely, the number of
positive houses in k-I was 9.48 times higher (P<0.005, SE=0.37) in
2013 than in 2012. We did not observe any other significant
increases among the pair-wise comparisons.

The proportion of variability explained by the model was sat-
isfactory (D2= 0.75). The non-random distribution in the frequen-
cies of infested houses among clusters was taken into considera-
tion, thus the overdispersion (ф=1.19) was modelled with a nega-
tive binomial residual distribution. Also, the diagnostic plots of
residuals from the model did not show any pattern that suggested
violation of the normal error distribution and the homogeneity of
error variance.

                                     
Article
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Figure 4. K-means partitioning of 32 neighbourhoods in
Clorinda. Clustering including the selected environmental layers
was performed. The k-value was set to 4 based on the observation
of the plot of the within-groups sum of squares by number of
clusters extracted. Grouping was done by minimizing the sum of
squared Euclidean distances between neighbourhoods and the
corresponding mean vector of each cluster.

Figure 5. Classification and location of the 32 neighbourhoods
from Clorinda. The colour codes divide the neighbourhoods ana-
lyzed into four environmental clusters based on k-means parti-
tioning. The box in the upper-right shows the plot of the number
of positive houses modelled by GLM - a statistically significant
increase (*) between 2012 and 2013 was only observed for cluster
k-I. Base layer: Landsat 8 scene from the USGS/Landsat NASA
archive.

Table 1. Centroid standardized values of each environmental variable in the different clusters defined by k-means partitioning.

Cluster                 DSWa                   DWLb                 DABc                    DTVd                SWIRe                %WLf               %TVg                 ShIh

k-I                                  1.5565                      0.1738066                  –0.4937                         1.0061                     0.5347                     –0.4380                 –0.5728                  –0.4806
k-II                               –0.0222                       –0.1064                    –0.2915                        –0.2289                    0.1336                     –0.2624                 –0.3196                    0.0941
k-III                              –0.4236                        1.4163                     –0.6191                         0.7319                     0.8995                     –0.5666                 –0.5836                  –1.2486
k-IV                              –1.1521                       –1.1901                     1.5658                         –1.2084                   –1.5538                     1.4109                    1.6666                     1.3760
adistance to surface water; bdistance to wetlands; cdistance to areas with buildings; ddistance to tall vegetation; eshortwave infrared; fpercentage of wetlands; gpercentage of tall vegetation; hShannon’s diversity index.
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Discussion and Conclusions
It is widely accepted that the ecology of vector systems is com-

plex and subject to rapid changes related to alterations in the envi-
ronment, such as land use, urbanization, transport, and climate
(Weaver, 2013; Estrada-Peña et al., 2014). It is therefore important
to develop a good understanding of vector systems in their context,
which involves adopting an ecological approach, which requires
cooperation with specialists from diverse fields such as microbiol-
ogy, entomology, climatology, ecology, urban planning, social sci-
ence, political science, public health, etc. In the case of mosquito
vectors, one of the challenges facing health authorities in urban
areas is surveying potential breeding areas for habitats and intro-
duction of control measures. In the present study, we assessed the
utility of remotely sensed data to explore the use of environmental
clustering of neighbourhoods in a small town as a proxy for
increases in the number of houses with breeding sites infested with
immature forms of Ae. aegypti.

Although Clorinda is a relatively small town, the differences in
the number of houses that harbour containers infested with Ae.
aegypti larvae (positive houses) between years provide evidence
for the variation patterns structured throughout the town. In a pre-
vious study Espinosa et al. (2016b) analyzed the absolute values of
positive houses by year, comparing five arbitrary geographical
areas of Clorinda. For a more detailed overview of the abundance
of infested breeding sites, we analyzed the differences among
every sampled neighbourhood, taking into account the values
obtained per season. The variation in the observed densities of pos-
itive houses not only showed that different areas are characterized
by divergent behaviour (Figure 2), but also that the density
increase of positive houses involves the whole town during spring-
time (Figure 3). These changes appeared to be more intense and
localized in specific areas during summer and autumn, with maxi-
mum values tending to increase over time. According to data pro-
vided by the Argentinean National Weather Service, the maximum
temperatures during summer and autumn were higher in 2013 than
in 2012, with little variability in the average monthly temperatures,
which is of interest as it is known that high temperatures have an
effect on survival and demographic productivity (Brady et al.,
2013). Although no relevant differences were observed with
respect to total rainfall between the years (1,376 mm in 2012 and
1,561 in 2013), precipitations during the first year were accumulat-
ed in the summer-autumn period, while in 2013 they were concen-
trated during winter and spring. The fact that the rains started ear-
lier in 2013 than in 2012 could explain the early increases in the
number of positive houses during springtime; however, it does not
account for the spatial structuring shown in the buffer distance
maps. Taken together, these observations demonstrate that each
particular region has its own spatio-temporal dynamics. The shift-
ing hotspots of Ae. aegypti infestation significantly challenge the
identification and targeting of key premises as demonstrated previ-
ously in Iquitos, Peru, where the identification of geographical
areas with historically high levels of viral transmission may be
more effective than targeting mosquito hotspots (LaCon et al.,
2014). Based on this spatio-temporal dynamics, we oriented the
subsequent analyses to investigate the possible association
between the temporal evolution of the abundance of positive hous-
es and a set of macro-environmental layers obtained from remotely
sensed images. Interestingly, the clusters obtained by k-means par-
titioning (Figure 4) were consistent with field descriptions provid-
ed by the local headquarter of Mundo Sano Foundation, according

to which these areas have their different characteristics. As stated
above, one environmental cluster (k-I) showed a significant
increase in the number of positive houses between the two years
under study (Figure 5). The neighbourhoods belonging to this clus-
ter were characterized by short distances to areas with buildings,
far to tall vegetation and surface water and with a low percentage
of this type of environment (Table 1). It is well accepted that, with
the exception of the sylvatic ancestral form, Ae. aegypti
mosquitoes are extremely anthropophilic, meaning that they find
the favourable conditions for the development of their life cycle in
human settlements, especially in domestic arrangements (Powell
and Tabachnick, 2013). In this sense, it is expected that environ-
mental variables related to areas with buildings are good proxies
for Ae. aegypti abundance and distribution, as demonstrated in pre-
vious studies based on remote sensing (Fuller et al., 2010; Landau
and van Leeuwen, 2012; Espinosa et al., 2016a). Vegetation affects
the distribution patterns of Ae. aegypti depending on the urban fea-
tures of the area under study, independently of the geographical
region surrounding the study area. For example, Hayden et al.
(2010) used oviposition traps to evaluate the importance of micro-
climate and human factors in predicting Ae. aegypti distribution in
an arid environment. They found that the species presence was
positively associated with highly vegetated areas within the neigh-
bourhoods. In our study, cluster k-I was not associated with tree-
covered areas. Although Clorinda is located on the subtropical,
humid Chaco region where the physical conditions are optimal for
the development of mosquito life cycles, the typically thick vege-
tation in this phytogeographical region offers the ecological niche
for sylvatic species, but not necessarily for domestic mosquitoes
that find their breeding requirements within and around urban
structures. Similarly, natural water bodies, such as the rivers and
wetlands around and within Clorinda are not suitable as breeding
sites for a domestic species that prefers artificial water containers
for oviposition. Water storage in tanks due to irregular supply is a
recurrent practice in Clorinda, but even more evident in neighbour-
hoods 4, 30 and 5, included in cluster k-I. In previously reported
surveys, neighbourhood 4 (Primero de Mayo) showed high infes-
tation levels relative to the rest of Clorinda (Garelli et al., 2009),
and these values were associated with the common presence of
ground-level water storage tanks (Garelli et al., 2011). As men-
tioned above, the town’s cemetery is also located within this clus-
ter, offering high availability of containers for Ae. aegypti breed-
ing. In addition, the presence of storehouses and car repair shops
increase the environmental heterogeneity and the availability of
breeding sites. These results could indicate that the synthesis
achieved with macro-environmental predictors is a good proxy for
events occurring at the micro-environmental level, and that a sim-
ple and robust environmental clustering could allow for easy and
rapid identification of the most problematic areas within the town
when operative decisions must be taken.

Although environmental variables can be useful to explain, at
least partially, the temporal behaviour of mosquito populations,
future studies should include the community participation in
demographic and socioeconomic surveys during the monitoring of
mosquito breeding sites (Obenauer et al., 2018). When studying
anthropophilic vectors it is recommendable to include socioeco-
nomic variables for modelling the spatiotemporal behaviour of
local populations. According to the WHO, various factors other
than environmental ones have been determined to influence a com-
munity’s vulnerability to dengue epidemics (World Health
Organization, 2009). In this sense, variables like human population
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density, settlement characteristics, conditions of land tenure, hous-
ing styles, education, and socioeconomic status are important for
planning and for assessing dengue risk. For example, in a previous
study (Espinosa et al., 2016a), a deficit in the supply of potable
water was associated with high abundance of mosquito breeding
sites in particular areas of Clorinda. This type of information is
recorded only every ten years in Argentina, by means of a national
census, and the geographic scale in which it is taken is unsuitable
for modelling mosquito species distribution at the micro-habitat
level. 

In summary, when sanitary decision-makers deal with prob-
lems related to vector-borne diseases, normally the main goal of
geospatial analysts is to construct a risk map based on geographic
in situ information and environmental variables obtained by differ-
ent means, including Earth-observing satellites. A typically implic-
it assumption is that a given map, even if obtained for a specific
time, could still be valid much longer, as if relative response values
were temporally invariant. However, we observed that the pattern
of abundance of positive houses is spatially and temporally vari-
able. These differences could be attributed to: i) differential
responses determined by the composition of macro-environmental
variables, such as those analyzed in the present study; ii) the effect
of processes only observable at the microhabitat scale (Phillips et
al., 2006); iii) issues related to entomological surveys and the dif-
ficulty to obtain a precise picture of the entomologic situation
across an entire town or city for a given time (Vezzani et al., 2005).
In this sense, future studies should take into account observations
of microhabitat characteristics that may affect the suitability of
containers as breeding sites for Ae. aegypti, sustained longitudinal
entomological surveys, including the use of oviposition traps, and
the incorporation of sociodemographic explanatory variables.
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