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Abstract

In this article we study a class of parameters with the so-called ‘mixed bias property’. For

parameters with this property, the bias of the semiparametric efficient one step estimator is equal

to the mean of the product of the estimation errors of two nuisance functions. In non-parametric

models, parameters with the mixed bias property admit so-called rate doubly robust estimators,

i.e. estimators that are consistent and asymptotically normal when one succeeds in estimating

both nuisance functions at sufficiently fast rates, with the possibility of trading off slower rates of

convergence for the estimator of one of the nuisance functions with faster rates for the estimator

of the other nuisance. We show that the class of parameters with the mixed bias property strictly

includes two recently studied classes of parameters which, in turn, include many parameters of

interest in causal inference. We characterize the form of parameters with the mixed bias property

and of their influence functions. Furthermore, we derive two functional moment equations, each

being solved at one of the two nuisance functions, as well as, two functional loss functions, each

being minimized at one of the two nuisance functions. These loss functions can be used to derive

loss based penalized estimators of the nuisance functions.

1 Introduction

Suppose that we are given a sample Dn of n i.i.d. copies of a random vector O with law P which is
known to belong to M = {Pη : η ∈ η} where η is a large, non-Euclidean, parameter space. Our goal is to
estimate the value taken by a scalar parameter χ (η) at P . Suppose O includes a vector Z with sample
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space Z ⊂ Rd. We are interested in parameters χ (η) which cannot be estimated without estimating
some unknown function of the covariates Z, such as a conditional mean given Z or a density of Z.

Given an initial estimator η̂, the plug-in estimator χ (η̂) is a natural choice for estimating χ (η) .
However, except for special estimators η̂ targeted to specific parameters χ (η), χ (η̂) is not

√
n- consistent.

A strategy for reducing the bias of χ (η̂) is to subtract from it an estimate −Pnχ
1
η̂ of its first order bias

where for each η, χ1
η ≡ χ1

η (O) is an adequately chosen random variable and Pnh is the empirical mean
operator n−1

∑n
i=1 h (Oi). This strategy yields the one step estimator χ̂ ≡ χ (η̂) + Pnχ

1
η̂. A good choice

for χ1
η is a so called influence function of χ (η). See for example Newey et al. (1998), Newey et al. (2004)

and Robins et al. (2017). Heuristically, this choice is guided by the following analysis. Write

√
n {χ̂− χ (η)} =

√
n
{
χ (η̂)− χ (η) + Eη

(
χ1
η̂

)}
+Gn

(
χ1
η̂ − χ1

η

)
+Gn

(
χ1
η

)
.

where Eη

(
χ1
η̂

)
≡

∫
χ1
η̂ (o) dPη (o) and Gn

(
χ1
η̂

)
≡ √

nPn

{
χ1
η̂ −Eη

(
χ1
η̂

)}
.

The term Gn

(
χ1
η

)
is
√
n times the sample average of mean zero random variables, so it converges to

a normal distribution. On the other hand, if model M is not too big, then for estimators η̂ converging
to η one may expect Gn

(
χ1
η̂ − χ1

η

)
to be op (1). One can make this term op (1) even without restrictions

on model size by employing the following strategy known as cross-fitting (Schick, 1986; Van der Vaart,
2000; Ayyagari, 2010; Zheng and van der Laan, 2011) . First split sample Dn into two samples, next
compute η̂ from one subsample and the one step estimator from the other subsample. Next, compute
a second one step estimator by repeating the procedure but switching the roles of the two subsamples.
Finally, compute the estimator χ̃ of χ (η) as the average of both one step estimators. Convergence of√
n {χ̃− χ (η)} to a mean zero normal distribution thus depends essentially solely on

χ (η̂)− χ (η)− Eη

(
χ1
η̂

)
(1)

being op
(
n−1/2

)
. This last requirement suggests that we choose χ1

η to be an influence function of χ (η).

This is because for such choice Eη

(
χ1
η̂

)
acts like minus the derivative of χ (η) in the direction η̂ − η.

Consequently (1) acts like the residual from a first order Taylor’s expansion of χ (η) , and hence is of
order O

(
‖η̂ − η‖2

)
. Thus, for estimators η̂ such that n1/4 ‖η̂ − η‖ = op (1) for some norm‖·‖ , (1) should

be of order op
(
n−1/2

)
. See Chapter 25 in Van der Vaart (2000) for the definition of influence functions.

Parameters that admit influence functions are called regular parameters. Such parameters have a unique
influence function if the model M is non-parametric. By non-parametric we mean that the closed linear
span of the scores for all parametric submodels at P of model M is equal to L2 (P ) . Throughout we
will assume that M is non-parametric, that χ (η) is regular and that χ1

η is the unique influence function
of χ (η).

Many parameters χ (η) of interest in Causal Inference and Econometrics have influence functions
which satisfy the following property.

Definition 1 (Mixed bias property) For each η there exist functions a (Z) ≡ a (Z; η) and b (Z) ≡
b (Z; η) such that for any η′ :

χ (η′)− χ (η) + Eη

(
χ1
η′

)
= Eη [Sab {a′ (Z)− a (Z)} {b′ (Z)− b (Z)}] (2)
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where a′ (Z) ≡ a (Z; η′) , b′ (Z) ≡ b (Z; η′) and Sab ≡ sab (O) and o→ sab (o) is a known function, i.e. it
that does not depend on η.

As we will see in the next section, the mixed bias property implies that χ (η)+χ1
η depends on η only

through a and b and, consequently, the one step estimator depends on η̂ only through estimators â and
b̂. The property implies that for estimators â and b̂ satisfying

∫
{â (z)− a (z)}2 dPη (z) = Op (γa,n) and

∫ {
b̂ (z)− b (z)

}2

dPη (z) = Op (γb,n), equation (1) is of order OP (γa,nγb,n) . This in turn implies that,

when cross-fitting is employed, χ̃ has the so-called rate double robustness property in that
√
n {χ̃− χ (η)}

converges to a mean zero Normal distribution if γa,n = o (1) , γb,n = o (1) and γa,nγb,n = o
(
n−1/2

)
.

Because the rates of convergence γa,n and γb,n of estimators â and b̂ depend on the complexities of a
and b, then for parameters χ (η) satisfying the mixed bias property,

√
n {χ̃− χ (η)} is asymptotically

normal even if one of the functions a or b is very complex so long as the other is simple enough.
Recent articles have identified two distinct classes of parameters χ (η) with the mixed bias property

and gave many examples of parameter of interest in causal inference and econometrics, including the
examples in § 4 below. The first class, described in Robins et al. (2008) is comprised of parameters with
influence function of the form χ1

η = Saba (Z) b (Z) + Saa (Z) + Sbb (Z) + S0 − χ (η) where Sa and Sb are
statistics. The second class, described in Chernozhukov et al. (2018b) (see also Hirshberg and Wager
(2017) and Chernozhukov et al. (2018a)) is comprised of parameters of the form χ (η) = Eη {d (O, a)}
where a (Z) ≡ Eη (Y |Z) and d (O, a) is such that the map h ∈ L2 (Pη,Z) → Eη {d (O, h)} is continuous
and affine linear.

In this paper we will characterize the form of the influence function, under a non-parametric model
M, of any parameter satisfying the mixed bias property. We will show that the class of parame-
ters satisfying the mixed bias property strictly includes the union of the Robins et al. (2008) and
Chernozhukov et al. (2018b) classes. Furthermore, we will show that neither the class Robins et al.
(2008) nor that of Chernozhukov et al. (2018b) is contained in the other. We will also show that, under
mild regularity conditions, parameters that satisfy the mixed bias property are necessarily of the form

χ (η) = Eη {m1 (O, a)}+ Eη (S0) = Eη {m2 (O, b)}+ Eη (S0) (3)

for some statistic S0, and somem1 andm2 such that the maps h ∈ A → m1 (O, h) and h ∈ B → m2 (O, h)
are linear, where A ≡ {a (Z; η) : η ∈ η} and B ≡ {b (Z; η) : η ∈ η} . In addition, we will prove a number
of results about the structure of a and/or b in special cases. In particular, we will show that, under
mild regularity conditions, when a does not depend on the marginal distribution of Z, then, up to
regularity conditions, a necessary and sufficient condition for χ (η) to have the mixed bias property is
that χ (η) = Eη {m1 (O, a)}+Eη (S0) for a statistic S0, a linear map h ∈ A → m1 (O, h) and a (Z) a ratio
of two conditional means given Z.We will also show that for parameters χ (η) that satisfy the mixed bias
property the influence function naturally yields two loss functions whose expectations are minimized at
a and b respectively. These loss functions can then be used to construct loss-based machine-learning
estimators of a and b such as support vector machine estimators (Christmann and Steinwart, 2008).

Our work is related to Robins and Rotnitzky (2001) and Chernozhukov et al. (2016). These papers
discuss sufficient conditions for the existence of, so called, doubly robust estimating functions. A key
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distinction of our work is that, unlike these papers, we do not assume that the parameter solves a
population moment equation, rather we deduce this fact from the primitive condition of the mixed bias
property.

2 Characterization of the influence functions with the mixed

bias property

Our first result establishes that for parameters χ (η) that satisfy the mixed bias property, χ (η) + χ1
η

depends on η only through a and b.

Proposition 1 If χ (η) satisfies the mixed bias property and the regularity Condition 1, then χ (η)+χ1
η

depends on η only through a and b.

The Supplementary Material contains proofs of all the claims made in this article, the regularity
Conditions 1 and 2 invoked by them, and further examples of parameters with the mixed bias property.
The next Theorem characterizes the influence functions of parameters with the mixed bias property.

Theorem 1 If χ (η) satisfies the mixed bias property and the regularity Condition 1 holds, then there
exist a statistic S0 and maps h ∈ A → m1 (O, h) and h ∈ B → m2 (O, h), independent of η, such that
the maps h ∈ A → Eη {m1 (O, h)} and h ∈ B → Eη {m2 (O, h)} are linear and such that (3) and

χ1
η = Saba (Z) b (Z) +m1(O, a) +m2(O, b) + S0 − χ (η) (4)

hold. Furthermore, for all h ∈ A, Eη {Sabhb+m1 (O, h)} = 0 and for all h ∈ B, Eη {Sabha +m2 (O, h)} =
0. In addition, for any h1, h2 ∈ A and constants α1, α2 such that h ≡ α1h1 + α2h2 ∈ A and such that
m1 (O, h) , m1 (O, h1) and m1 (O, h2) are in L2 (Pη), it holds that m1 (O, h) = α1m1 (O, h1)+α2m1 (O, h2)
a.s.(Pη) . In particular, if for all h ∈ A, m1 (O, h) ∈ L2 (Pη) then the map h ∈ A → m1 (O, h) is linear
a.s.(Pη). Likewise, if for all h ∈ B it holds that m2 (O, h) ∈ L2 (Pη) then the map h ∈ B → m2 (O, h) is
linear a.s.(Pη).

Part (i) of the next result establishes that under a slightly stronger requirement on m1 and m2 and
some regularity conditions, the reverse of Theorem 1 also holds. The theorem also establishes several
additional results that we will comment after its statement.

Theorem 2 Suppose that for each η there exist functions a (Z) ≡ a (Z; η) and b (Z) ≡ b (Z; η) such
that the regularity Condition 1 holds and such that the influence function of χ (η) is of the form (4) for
m1 and m2 that satisfy that for each η, the maps

h ∈ L2 (Pη,Z) → Eη {m1 (O, h)} and h ∈ L2 (Pη,Z) → Eη {m2 (O, h)}

are continuous and linear with Riesz representers R1 (Z) and R2 (Z) respectively. Moreover, suppose
Eη {m1 (O, a)} and Eη {m2 (O, b)} exist. Furthermore, suppose that for each η, Eη (Sab|Z) a (Z) and
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Eη (Sab|Z) b (Z) are in L2 (Pη,Z). Then,
(i) the identity (2) holds for each η′ such that a′ (Z) ≡ a (Z; η′) , b′ (Z) ≡ b (Z; η′) satisfy that a′ − a ∈
L2 (Pη,Z) and b

′ − b ∈ L2 (Pη,Z).
(ii) for all h ∈ L2 (Pη,Z) it holds that Eη {Sabha+m2 (O, h)} = 0 and Eη {Sabhb+m1 (O, h)} = 0.
(iii) if Eη (Sab|Z) 6= 0 a.s.(Pη,Z) , then a (Z) = −R2 (Z) /Eη (Sab|Z) . Likewise, if Eη (Sab|Z) 6= 0
a.s.(Pη,Z) , then b (Z) = −R1 (Z) /Eη (Sab|Z) .
(iv)
(iv.a) if a ∈ L2 (Pη,Z) or if ∃ε > 0 such that (1 + t) a ∈ A for 0 < t < ε or for −ε < t < 0 then
χ (η) = Eη {m2 (O, b)}+ Eη (S0) .
(iv.b) Likewise, if b ∈ L2 (Pη,Z) or if ∃ε > 0 such that (1 + t) b ∈ B for 0 < t < ε or for −ε < t < 0
then χ (η) = Eη {m1 (O, a)}+ Eη (S0) .
(iv.c) if the conditions of parts (iv.a) and (iv.b) hold then χ (η) = −Eη (Sabab) + Eη (S0) .
(v) if a ∈ L2 (Pη,Z) , b ∈ L2 (Pη,Z) and Eη (Sab|Z) > 0 a.s.(Pη,Z) , then

a = arg min
h∈L2(Pη,Z)

Eη

{
Sab

h2

2
+m2 (O, h)

}
and b = arg min

h∈L2(Pη,Z)
Eη

{
Sab

h2

2
+m1 (O, h)

}

Note that part (ii) of Theorem 2 provides unbiased moment equations for a and b respectively
without requiring that a or b be in L2 (Pη,Z). Chernozhukov et al. (2018b) and Smucler et al. (2019)
exploit these moment equations to construct ℓ1 regularized estimators of the nuisance functions. Part
(iii) of the theorem provides the formulae for a and b in terms of the Riesz representers of the maps.
Part (iv) shows that under a strengthening on the requirements on a and b, the representation in (3)
holds. Note that the requirement that (1 + t) b ∈ B for 0 < t < ε is rather mild. For instance, for
b (Z) = 1/P (D = 1|Z) , as in example 1 below, the requirement is satisfied since the only restriction the
elements b′ of B satisfy is that for each z, b′ (z) must be greater than or equal 1. Part (v) of the Theorem
could in principle be used to derive other machine learning, loss-based estimators of these parameters,
such as support vector machines (Christmann and Steinwart, 2008).

3 Characterization of the nuisance functions

An interesting question is what can be said about the restrictions that the nuisance functions a and b
of parameters with the mixed bias property must satisfy. In this section we explore this question in the
special case in which a does not depend on the marginal law of Z. We will show that such a must be a
ratio of conditional expectations given Z.

Proposition 2 Suppose that the parameter χ (η) satisfies the mixed bias property, the regularity Con-
ditions 1 and 2 hold and Eη (Sab|Z) 6= 0 a.s. (Pη,Z) . If a depends on η only through the law of O|Z, then
there exists a statistic q (O) such that a (Z) = − Eη {q (O) |Z} /Eη (Sab|Z). Furthermore, the influence
function of χ (η) satisfies (4) for some linear map h ∈ A → m1 (O, h) and m2 (O, b) = q (O) b.
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Proposition 3 Suppose that a (Z) = − Eη {q (O) |Z} /Eη (Sab|Z) is in L2 (Pη,Z) . Suppose also that the
map h ∈ L2 (Pη,Z) → Eη {m1 (O, a)} is linear and continuous with Riesz representer R1 (Z) . Then,
χ (η) = Eη {m1 (O, a)} + Eη (S0) has influence function that satisfies (4) with m2 (O, b) = q (O) b and
b (Z) = −R1 (Z)/Eη (Sab|Z). In addition, if Eη {q (O) |Z} ∈ L2 (Pη,Z), then χ (η) has the mixed bias
property.

For a given parameter χ (η) there can exist more than one function a (Z) ≡ a (Z, η) independent
of the law of Z such that the mixed bias property holds for some b (Z) ≡ b (Z, η) . An instance is
the parameter in Example 2 below, since a (Z) can be either Eη (Y |Z) or Eη (D|Z) . However, in that
example, if a = Eη (Y |Z) then b = Eη (D|Z) and vice versa, if a = Eη (D|Z) then b = Eη (Y |Z) .
An open question is whether or not there exist two distinct triplets (Sab, a, b) and (S∗

ab, a
∗, b∗) with

(a, b) 6= (a∗, b∗) such that the parameter χ (η) satisfies the mixed bias property for both triplets. This is
important because if such distinct triplets existed, then there would exist two different pairs of nuisance
functions of the same covariate Z that one could choose to estimate in order to construct rate doubly
robust estimators of χ (η).

In the preceding propositions we have assumed a given partition of the data O into a given ‘covariate’
vector Z and the remaining variables in O. Interestingly, there exist parameters χ (η) that satisfy the
mixed bias property for two different partitions of O, one with ‘covariate’ vector Z and another with a
different ‘covariate’ vector Z∗. Specifically, in Example 1 we show that for χ (η) equal to the mean of
an outcome missing at random, there exist two possible partitions of O, into two different ‘covariate’
vectors Z and Z∗, and functions a∗ (Z∗, η) and b∗ (Z∗, η) different from a (Z) and b (Z) , a (Z, η) and
a∗ (Z∗, η) depending on η only through the law of O|Z such that for all η and η′

Sab {a (Z, η)− a (Z, η′)} {b (Z, η)− b (Z, η′)} = S∗
ab {a∗ (Z∗, η)− a∗ (Z∗, η′)} {b∗ (Z∗, η)− b∗ (Z∗, η′)} .

Consequently, the parameter χ (η) satisfies the mixed bias property for the functions a and b, but also
for the functions a∗ and b∗. In this example, Sab is not a constant but S∗

ab is a constant, so in view
of part (i) of Proposition 2, a (Z) is a ratio of two conditional expectations given Z, whereas a∗ is a
conditional expectation of a specific statistic q (O) given Z∗. This example raises the following interesting
question: suppose that χ (η) satisfies the mixed bias property for a function a (Z) that is a strict ratio
of two conditional expectations given Z, is it always possible to find a different covariate vector Z∗

such that χ (η) satisfies the mixed bias property for a function a∗ (Z∗) that is a conditional mean of a
statistic given Z∗? The answer is negative, as Example 3 below illustrates. This example proves that
the class of parameters that satisfy the mixed bias property strictly includes the class considered in
Chernozhukov et al. (2018b).

We conclude our analysis answering the question of whether a characterization exist of nuisance
functions that depend on the marginal law of Z and possibly also on the law of O|Z. The answer
to this question is negative. This can be understood from Proposition 3 because when the map h ∈
L2 (Pη,Z) → Eη {m1 (O, h)} is linear and continuous, b (Z) = −R1 (Z)/Eη (Sab|Z) where R1 (Z) is the
Riesz representer of the map. The representer R1 (Z) can be many different functionals of the marginal
law of Z, depending on the map it represents. The examples in the next section illustrate this point.

6



4 Examples

In this section we present several examples of parameters satisfying the mixed bias property. These
examples demonstrate that the class of parameters with the mixed bias property strictly includes the
classes of Chernozhukov et al. (2018b) and of Robins et al. (2008) and that neither of this classes is
included in the other. In the Supplementary Material we provide further examples.

In the following examples the parameters are, possibly some function of, parameters that are in both
the class of Chernozhukov et al. (2018b) and of Robins et al. (2008)

Example 1 (Mean of an outcome that is missing at random and average treatment effect)
Suppose O = (DY,D, Z) where D is binary, Y is an outcome which is observed if and only if D = 1
and Z is a vector of always observed covariates. If we make the untestable assumption that the density
p (y|D = 0, Z) is equal to the density p (y|D = 1, Z) , i.e. that the outcome Y is missing at random then,
for P = Pη, the mean of Y is equal to χ (η) = Eη {a (Z)} where a (Z) ≡ Eη (DY |Z) /Eη (D|Z). If a (Z) ∈
L2 (Pη,Z) and Eη (D|Z) > 0, then the parameter χ (η) satisfies the conditions of Proposition 3 with
m1 (O, h) ≡ h and S0 = 0. The map h ∈ L2 (Pη,Z) → Eη {m1 (O, h)} is continuous with Riesz representer
R1 (Z) = 1, and a (Z) = −Eη {q (O) |Z} /Eη (Sab|Z) for Sab = −D and q (O) = DY. Consequently, χ (η)
has the mixed bias property for a (Z) as defined and b (Z) = 1/Eη (D|Z) . Since m1 (O, a) = a, Proposi-
tion 2 implies that χ (η) is in the class of parameters considered by Robins et al. (2008). Interestingly,
as shown in Chernozhukov et al. (2018b) and anticipated in the previous section, the parameter χ (η) is
also in the class of Chernozhukov et al. (2018b), but for a different ‘covariate’ Z∗. Specifically, let Z∗ ≡
(D,Z) and a∗ (Z∗) ≡ Eη (DY |Z∗) . Then, we can re-express χ (η) as χ (η) = Eη {m∗

1 (O, a
∗)} where for

any h∗ (D,Z) , m∗
1 (O, h

∗) ≡ h∗ (D = 1, Z) . The map h∗ ∈ L2

(
Pη,(D,Z)

)
→ Eη {m∗

1 (O, h
∗)} is linear and

it is continuous when Eη

{
Pη (D = 1|Z)−1} < ∞ and has Riesz representer R∗

1 (Z
∗) = D/Eη (D|Z∗) .

Thus, under the latter condition, the parameter falls in the class of Chernozhukov et al. (2018b). Be-
cause a∗ (Z∗) is a conditional expectation given Z∗, Proposition 3 implies that χ (η) has the mixed bias
property for a∗ (Z∗) as defined, S∗

ab = 1 and b∗ (Z∗) = D/Eη (D|Z) . In the Supplementary Web Ap-
pendix we argue that this example implies that the average treatment effect contrast is a difference of two
parameters, each belonging to both the class of Robins et al. (2008) and of Chernozhukov et al. (2018b).

Example 2 (Expected conditional covariance) Let O = (Y,D, Z) , where Y and D are real valued.
Let χ (η) ≡ Eη {covη (D, Y |Z)} be the expected conditional covariance between D and Y . When D is
a binary treatment, χ (η) is an important component of the variance weighted average treatment effect
Robins et al. (2008). We can re-write χ (η) = Eη (DY ) + Eη {m1 (O, a)} where m1 (O, h) ≡ −Dh,
a (Z) ≡ Eη (Y |Z) = − Eη {q (O) |Z} /E (Sab|Z) with q (O) = Y and Sab = −1. Then χ (η) has the mixed
bias property with a (Z) as defined and b (Z) = R1 (Z) = −Eη (D|L) the Riesz representer of the map
h ∈ L2 (Pη,Z) → Eη {m1 (O, h)}. Thus, χ (η) is in Chernozhukov et al. (2018b) and in the Robins et al.
(2008) classes with Sa = −D, Sb = Y and S0 = DY.

The next example gives a parameter that is in the class of Robins et al. (2008) but not in the class
of Chernozhukov et al. (2018b).
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Example 3 (Mean of an outcome missing not at random) Suppose O = (DY,D, Z) where D is
binary, Y is an outcome which is observed if and only if D = 1 and Z is a vector of always observed
covariates. If we make the untestable assumption that the density p (y|D = 0, Z) is a known exponential
tilt of the density p (y|D = 1, Z) , i.e.

p (y|D = 0, Z) = p (y|D = 1, Z) exp (δy) /E {exp (δY ) |D = 1, Z} (5)

where δ is a given constant, then under P = Pη the mean of Y is χ (η) = Eη {DY + (1−D) a (Z)}
assuming a (Z) ≡ Eη {DY exp (δY ) |Z} /Eη {D exp (δY ) |Z} exists. Estimation of χ (η) under differ-
ent fixed values of δ has been proposed in the literature as a way of conducting sensitivity analysis
to departures from the missing at random assumption (Scharfstein et al., 1999). Under the sole re-
striction (5) the law P of the observed data O is unrestricted, and hence the model for P is non-
parametric. If a (Z) ∈ L2 (Pη,Z) and Eη {D exp (δY ) |Z} > 0, then the parameter ψ (η) ≡ Eη {m1 (O, a)}
with m1 (O, h) ≡ (1−D)h has the mixed bias property because it satisfies the conditions of Proposi-
tion 3 with q (O) = DY exp (δY ) , Sab = −D exp (δY ) and Riesz representer R1 (Z) = Eη (1−D|Z)
and b (Z) ≡ −Eη (1−D|Z) /Eη {D exp (δY ) |Z} . Thus, χ (η) also satisfies the mixed bias property
with Sab, a and b as defined . The influence function of χ (η) was derived in Robins and Rotnitzky
(2001) and was shown to be in the Robins et al. (2008) class in that paper. In the Appendix we show
that when δ 6= 0, there exists no linear and continuous map h∗ ∈ L2

(
Pη,(Z)

)
→ Eη {m∗

1 (O, h
∗)} ,

such that ψ (η) = Eη {m∗
1 (O, a

∗)} for a∗ (Z) = Eη {q (O) |Z} and q (O) some statistic. We also
show that there exists no linear and continuous map h∗ ∈ L2

(
Pη,(D,Z)

)
→ Eη {m∗

1 (O, h
∗)} , such that

ψ (η) = Eη {m∗
1 (O, a

∗)} for a∗ (D,Z) = Eη {q (O) |D,Z} and q (O) some statistic. This shows that
ψ (η) , and consequently χ (η) , is not in the class studied in Chernozhukov et al. (2018b).

The next example gives a parameter that is in the class of Chernozhukov et al. (2018b) but not in
the class of Robins et al. (2008)

Example 4 (Causal effect of a treatment taking values on a continuum) Let O = (Y,D, L) ,
Z = (D,L) ,where Y and D are real valued, D is a treatment variable taking any value in [0, 1]
and L is a covariate vector. Furthermore, let Yd denote the counterfactual outcome under treat-
ment D = d. Assume that Eη (Yd|L) = Eη (Y |D = d, L). The parameter χ (η) ≡ Eη {m1 (O, a)}
with a (D,L) ≡ Eη (Y |D,L) , m1 (O, a) ≡

∫ 1

0
a (u, L)w (u) du where w (·) is a given scalar function

satisfying
∫ 1

0
w (u) du = 0 agrees with the treatment effect contrast

∫ 1

0
Eη (Yu)w (u) du. The map h ∈

L2

(
Pη,(D,Z)

)
→ Eη {m1 (O, h)} wherem1 (O, h) ≡

∫ 1

0
h (u, L)w (u) du is continuous if Eη

{
{w (D) /f (D|L)}2

}
<

∞ with Riesz representer R1 (Z) = w (D) /f (D|L) . In such case, the parameter χ (η) is in the class
studied in Chernozhukov et al. (2018b). Thus, by Proposition 3 it has the mixed bias property with
Sab = −1, a as defined, and b (Z) = R1 (Z) = w (D) /f (D|L). However, in the Appendix we show that
χ (η) is not in the class of Robins et al. (2008).

The next example gives a parameter that is in neither the class of Chernozhukov et al. (2018b) nor
in the class of Robins et al. (2008)
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Example 5 The following toy example illustrates that there exist parameters χ (η) that have the mixed
bias property but that are in neither the class of Chernozhukov et al. (2018b) nor in the class of
Robins et al. (2008). Let O = (Y1, Y2, Z) for Y1 and Y2 continuous random variables, Y2 > 0 and Z a

scalar vector taking any values in [0, 1]. The parameter χ (η) ≡
∫ 1

0
a (z) dz where a (Z) ≡ Eη (Y1|Z) /Eη (Y2|Z)

can be written as χ (η) = Eη {m1 (O, a)} where for any h (z) , m1 (O, h) ≡
∫ 1

0
h (z) dz does not depend

on O. The map h ∈ L2 (Pη,Z) → Eη {m1 (O, h)} is linear. It is continuous if Eη

{
f (Z)−2} < ∞ and

has Riesz representer R1 (Z) = f (Z)−1 . In such case, by proposition 3, χ (η) satisfies the mixed bias
property with Sab = −Y2, a as defined and b (Z) = {f (Z)Eη (Y2|Z)}−1 . However, it can be shown that
the parameter is in neither the class studied in Chernozhukov et al. (2018b) nor in the class proposed in
Robins et al. (2008)

5 Final remarks

In § 1 we have argued that parameters with the mixed bias property admit estimators with the ‘rate
double robustness’ property. However, the class of parameters with the mixed bias property does not
exhaust all parameters that admit rate doubly robust estimators. For instance, consider ψ (η) = g {χ (η)}
for a non-linear continuously differentiable function g and a parameter χ (η) with the mixed bias property.
By Theorem 1, the influence function of χ (η) is of the form (4) . However, the influence function of ψ (η)
is ψ1

η = g′ {χ (η)}χ1
η which is not of the form (4) . Thus, by Theorem 2 ψ (η) does not have the mixed

bias property. Yet, if χ̃ is the rate doubly robust, cross-fitted, one step estimator of § 1, then by the
delta method, ψ̃ = g (χ̃) is a rate doubly robust estimator of ψ (η) . A characterization of the class of all
parameters that admit rate doubly robust estimators remains an open question.
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6 Supplementary Material

6.1 Examples

Example 6 (Population average treatment effect) Suppose that O = (Y,D, Z) where D is a bi-
nary treatment indicator, Y is an outcome and Z is a baseline covariate vector. Under the assumption of
unconfoundedness given Z, the population average treatment effect contrast is ATE (η) ≡ χ1 (η)−χ2 (η)
where χ1 (η) ≡ Eη {a1 (Z)} and χ2 (η) ≡ Eη {a2 (Z)} with a1 (Z) ≡ Eη (DY |Z) /Eη (D|Z) and a2 (Z) ≡
Eη {(1−D)Y |Z} /Eη {(1−D) |Z}. Regarding 1−D as another missing data indicator, example (1) im-
plies that ATE (η) is a difference of two parameters, χ1 (η) and χ2 (η) , each in the class of Robins et al.
(2008) and of Chernozhukov et al. (2018b).

Example 7 (Mean of outcome missing at random in the non-respondents) With the notation
and assumptions of Example 1, Eη {(1−D) a (Z)} /Eη (1−D) where again, a (Z) ≡ Eη (DY |Z) /Eη (D|Z) ,
is equal to the mean of Y among the non-respondents, i.e. in the population with D = 0. If a (Z) ∈
L2 (Pη,Z) and Eη (D|Z) > 0, then the parameter χ (η) ≡ Eη {(1−D) a (Z)} satisfies the conditions of
Proposition 3 with m1 (O, h) ≡ (1−D)h and S0 = 0. The map h ∈ L2 (Pη,Z) → Eη {m1 (O, h)} is
continuous with Riesz representer R1 (Z) = Eη {(1−D) |Z} , and a (Z) = −Eη {q (O) |Z} /Eη (Sab|Z)
for Sab = −D and q (O) = DY. Consequently, χ (η) has the mixed bias property for a (Z) as de-
fined and b (Z) = Eη {(1−D) |Z} /Eη (D|Z) . Since m1 (O, a) = (1−D) a, Proposition 2 implies
that χ (η) is in the class of parameters considered by Robins et al. (2008). As in example 1, the pa-
rameter χ (η) is also in the class of Chernozhukov et al. (2018b), for the different ‘covariate’ Z∗ ≡
(D,Z) and a∗ (Z∗) ≡ Eη (DY |Z∗) since we can re-express χ (η) as χ (η) = Eη {m∗

1 (O, a
∗)} where for

any h∗ (D,Z) , m∗
1 (O, h

∗) ≡ (1−D)h∗ (D = 1, Z) . The map h∗ ∈ L2

(
Pη,(D,Z)

)
→ Eη {m∗

1 (O, h
∗)}

is linear and it is continuous when Eη

{
Pη (D = 1|Z)−1} < ∞ and has Riesz representer R∗

1 (Z
∗) =

DEη {(1−D) |Z} /Eη (D|Z) . Thus, under the latter condition, the parameter falls in the class of Chernozhukov et al.
(2018b). Because a∗ (Z∗) is a conditional expectation given Z∗, Proposition 3 implies that χ (η) has the
mixed bias property for a∗ (Z∗) as defined, S∗

ab = 1 and b∗ (Z∗) = DEη {(1−D) |Z} /Eη (D|Z) .

Example 8 (Treatment effect on the treated) With the notation and assumptions of Example 6
of the main text, the parameter ATT (η) ≡ E (Y |D = 1)−χ (η) /Eη (D) where χ (η) ≡ Eη {Da (Z)} and
a (Z) defined as Eη {(1−D)Y |Z} /Eη {(1−D) |Z} the parameter ATT (η) is the average treatment
effect on the treated. Once again, regarding 1−D as another missing data indicator, Example 7 implies
that ATT (η) is a continuous function of a parameter χ (η) in the class of Robins et al. (2008) and of
Chernozhukov et al. (2018b), and other parameters E (Y |D = 1) and Eη (D) whose estimation does not
require the estimation of high dimensional nuisance parameters

Example 9 (Average policy effect of a counterfactual change of covariate values) Let χ (η) ≡
ψ (η) − Eη (Y ) where ψ (η) = Eη {a (t (D) , L)} with a (D,L) ≡ Eη (Y |D,L) . Then, with the notation
and assumptions of example 4 of the main text, χ (η) is the average policy effect of a counterfactual
change d → t (d) of treatment values (Stock (1989)). Note that ψ (η) = Eη {m1 (O, a)} where for
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any h (D,L) m1 (O, h) = h {t (D) , L} . The functional h ∈ L2

(
Pη,(D,Z)

)
→ Eη {m1 (O, h)} is con-

tinuous if Eη

[
{ft (D|L) /f (D|L)}2

]
< ∞ where ft (D|L) is the density of t (D) given L. The Riesz

representer of the map is R1 (Z) = ft (D|L) /f (D|L) . In such case, ψ (η) is in the class studied in
Chernozhukov et al. (2018b), and thus χ (η) has the mixed bias property, with with Sab = −1, a (Z) as
defined, and b (Z) = R1 (Z) = ft (D|L) /f (D|L) . However, it can be shown that χ (η) is not in the class
of Robins et al. (2008).

6.2 Regularity conditions

We now state the regularity conditions invoked in several of the propositions and theorems in the main
text. These are mild conditions that are satisfied in all the examples provided in the main text and in
this Appendix.

Condition 1 There exists a dense set Ha of L2 (Pη,Z) such that Ha ∩ A 6= ∅, and for each η and each
h ∈ Ha, there exists ε (η, h) > 0 such that a + th ∈ A if |t| < ε (η, h) where a (Z) ≡ a (Z; η) . The
same holds replacing a with b and A with B. Furthermore Eη {|Sabb (Z) h (Z)|} < ∞ for h ∈ Ha and
Eη {|Saba (Z) h (Z)|} <∞ for h ∈ Hb. Moreover for all η, Eη [|Saba

′b′|] <∞ for all a′ ∈ A and b′ ∈ B.

Condition 2 χ (η) satisfies the mixed bias property and there exists b′ ∈ B such that for all η, (i)
b′ (Z) 6= 0 a.s.(Pη,Z) , and (ii) for the map m2 defined in the proof of Theorem 1, Eη {m2 (O, b́) |Z} +
Eη (Sab|Z) b́ (Z) a (Z) is in L2 (Pη,Z) and m2 (O, b)−m2 (O, b́) /b́ (Z) is in L2 (Pη).

6.3 Proofs

Proof: [of Proposition 1] Let η′ be such that a′ = a and b′ = b. Without loss of generality consider a
local variation independent parameterization η = (a, b, τ) and a regular parametric submodel t → ηt =
(at, bt, τt) . Then,

d

dt
χ (ηt)

∣∣∣∣
t=0

=
d

dt
χ (at, b, τ)

∣∣∣∣
t=0

+
d

dt
χ (a, bt, τ)

∣∣∣∣
t=0

+
d

dt
χ (a, b, τt)

∣∣∣∣
t=0

By (2) ,
χ (at, b, τ) = E(at,b,τ)

{
χ (η′) + χ1

η′

}

χ (a, bt, τ) = E(a,bt,τ)

{
χ (η′) + χ1

η′

}

and
χ (a, b, τt) = E(a,b,τt)

{
χ (η′) + χ1

η′

}
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Then,

d

dt
χ (ηt)

∣∣∣∣
t=0

=
d

dt
E(at,b,τ)

{
χ (η′) + χ1

η′

}∣∣∣∣
t=0

+
d

dt
E(a,bt,τ)

{
χ (η′) + χ1

η′

}∣∣∣∣
t=0

+
d

dt
E(a,b,τt)

{
χ (η′) + χ1

η′

}∣∣∣∣
t=0

=
d

dt
Eηt

{
χ (η′) + χ1

η′

}∣∣∣∣
t=0

= Eη

[{
χ (η′) + χ1

η′

}
g
]

Consequently,

χ1
η = χ (η′) + χ1

η′ − Eη

{
χ (η′) + χ1

η′

}

= χ (η′) + χ1
η′ − χ (η)

Thus, χ1
η + χ (η) = χ (η′) + χ1

η′ which proves the proposition. �

Proof: [of Theorem 1] Fix a∗ ∈ A and b∗ ∈ B and define

S∗
0 ≡

(
χ+ χ1

)
(a∗,b∗)

− Saba
∗b∗

m∗
1 (O, a) ≡

{(
χ+ χ1

)
(a,b∗)

− Sabab
∗
}
− S∗

0

m∗
2 (O, b) ≡

{(
χ+ χ1

)
(a∗,b)

− Saba
∗b
}
− S∗

0

For any h ∈ A we have

Eη [m
∗
1 (O, h)] = Eη

{(
χ + χ1

)
(h,b∗)

− Sabhb
∗ − S∗

0

}

= Eη

{(
χ + χ1

)
(h,b∗)

− Sabhb
∗
}
− Eη

{(
χ+ χ1

)
(a∗,b∗)

− Saba
∗b∗

}

= Eη

{(
χ + χ1

)
(h,b∗)

− χ (η)− Sabhb
∗
}
− Eη

{(
χ+ χ1

)
(a∗,b∗)

− χ (η)− Saba
∗b∗

}

= Eη (−Sabhb
∗) + Eη {Sab (a− h) (b− b∗)} − Eη {Sab (a− a∗) (b− b∗)}+ Eη (Saba

∗b∗)

= Eη {Sab (a− h) b} − Eη {Sab (a− a∗) b}
= −Eη (Sabhb) + Eη (Saba

∗b) (6)

Likewise, by symmetry we have established that

Eη {m∗
2 (O, h)} = −Eη (Sabha) + Eη (Sabab

∗)
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We will next show that

χ1
η = Sabab+m∗

1 (O, a) +m∗
2 (O, b) + S∗

0 − χ (η) (7)

To do so, it suffices to show that
(I) Eη {Sabab+m∗

1 (O, a) +m∗
2 (O, b) + S∗

0} = χ (η) and
(II) d

dt
Eη {Sabatbt +m∗

1 (O, at) +m∗
2 (O, bt) + S0}

∣∣
t=0

= 0 for any regular submodel t→ Pηt

To show (I) we write

Eη {m∗
1 (O, a) +m∗

2 (O, b) + S∗
0}

= Eη

{(
χ + χ1

)
(a,b∗)

− Sabab
∗ +

(
χ+ χ1

)
(a∗,b)

− Saba
∗b− S0

}

= Eη

[(
χ+ χ1

)
(a,b∗)

− χ (η)− Sabab
∗ +

(
χ + χ1

)
(a∗,b)

− χ (η)− Saba
∗b− {S0 − χ (η)}

]
+ χ (η)

= Eη (−Sabab
∗ − Saba

∗b)−Eη {S0 − χ (η)}+ χ (η)

= Eη (−Sabab
∗ − Saba

∗b)−Eη

{(
χ+ χ1

)
(a∗,b∗)

− χ (η)− Saba
∗b∗

}
+ χ (η)

= Eη (−Sabab
∗ − Saba

∗b)−Eη {Sab (a− a∗) (b− b∗)}+ Eη (Saba
∗b∗) + χ (η)

= −Eη (Sabab) + χ (η)

which shows (I)
To show (II) we note that by (6)

Eη {Sabatb+m∗
1 (O, at)} = Eη (Saba

∗b)

and the right hand side does not depend on at. Likewise,

Eη {Sababt +m∗
2 (O, bt)} = Eη (Sabab

∗)

Thus,

d

dt
Eη {Sabatbt +m∗

1 (O, at) +m∗
2 (O, bt) + S∗

0}
∣∣∣∣
t=0

=
d

dt
Eη {Sabatb+m∗

1 (O, at)}
∣∣∣∣
t=0

+
d

dt
Eη {Sababt +m∗

2 (O, bt)}
∣∣∣∣
t=0

= 0

This shows part (II) and thus concludes the proof of (7) .
Next, take a† ∈ Ha ∩A and b† ∈ Hb ∩B which we know exist by Condition R.1. Also, by Condition

R.1 we know that a∗∗ ≡ a∗ + εa† ∈ A and b∗∗ ≡ b∗ + εb† ∈ B for an ε > 0 sufficiently small. Now, define
S∗∗
0 , m

∗∗
1 (O, a) and m∗∗

2 (O, b) like S∗
0 , m

∗
1 (O, a) and m

∗
2 (O, b) but using a

∗∗ and b∗∗ instead of a∗ and b∗.
Then,

χ1
η = Sabab+m∗∗

1 (O, a) +m∗∗
2 (O, b) + S∗∗

0 − χ (η) .
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So, combining this equality with (7) we conclude that

m∗∗
1 (O, a) +m∗∗

2 (O, b) + S∗∗
0 = m∗

1 (O, a) +m∗
2 (O, b) + S∗

0 .

Thus,
m∗∗

1 (O, a)−m∗
1 (O, a) = m∗

2 (O, b)−m∗∗
2 (O, b) + S∗

0 − S∗∗
0 .

The right hand side depends on b and the data O, but the left hand side depends on a and the data O.
Thus, we conclude that m∗∗

1 (O, a)−m∗
1 (O, a) is a statistic Q†

1 that does not depend on η.
Now, by (6) ,

Eη

(
Q†

1

)
= Eη {m∗∗

1 (O, a)} − Eη {m∗
1 (O, a)}

= {−Eη (Sabab) + Eη (Saba
∗∗b)} − {−Eη (Sabab) + Eη (Saba

∗b)}
= Eη {Sab (a

∗∗ − a∗) b}
= εEη

(
Saba

†b
)

Next, let S†
0, m

†
1 (O, a) and m†

2 (O, b) be defined like S∗
0 , m

∗
1 (O, a) and m∗

2 (O, b) but using a† and b†

instead of a∗ and b∗. By (6) applied to m†
1 (O, a) and a

† instead of m∗
1 (O, a) and a

∗ we have that

Eη

{
m†

1 (O, h)
}

= −Eη (Sabhb) + Eη

(
Saba

†b
)

= −Eη (Sabhb) + Eη

(
Q†

1

)
/ε.

Consequently,
m1 (O, h) ≡ m†

1 (O, h)−Q†
1/ε

satisfies
Eη {m1 (O, h)} = −Eη (Sabhb) for all h ∈ A. (8)

and therefore the map h ∈ A → Eη {m1 (O, h)} is linear. In fact, for any h1, h2 ∈ A and constants α1

and α2 such that α1h1 + α2h2 ∈ A, we know that

Eη {m1 (O, α1h1 + α2h2)} = α1Eη {m1 (O, h1)}+ α2Eη {m1 (O, h2)}

is true for all η. Then, for all η′

Eη′ [m1 (O, α1h1 + α2h2)− {α1m1 (O, h1) + α2m1 (O, h2)}] = 0

By assumption the random variable r (O) ≡ m1 (O, α1h1 + α2h2)− {α1m1 (O, h1) + α2m1 (O, h2)} is in
L2 (Pη) . The linearity a.s.(Pη) of the map h ∈ A → m1 (O, h) follows from Lemma 1 below which implies
that r (O) = 0 a.s.(Pη) .

Likewise, we can show that there exists Q†
2 and m2 (O, h) ≡ m†

2 (O, h) − Q†
2/ε such that h ∈ B →

Eη {m2 (O, h)} = −Eη (Sabah) and the map h ∈ B →m2 (O, h) is linear. Finally, define S0 = S†
0+Q

†
1/ε+

Q†
2/ε and conclude from χ1

η = Sabab+m†
1 (O, a) +m†

2 (O, b) + S†
0 − χ (η) that

χ1
η = Sabab+m1 (O, a) +m2 (O, b) + S0 − χ (η) .
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In addition, from (8) and its analogous for b, we have that

Eη {Sabab+m1 (O, a)} = 0

and
Eη {Sabab+m2 (O, b)} = 0.

Consequently,

χ (η) = Eη {m1 (O, a)}+ Eη (S0)

= Eη {m2 (O, b)}+ Eη (S0)

thus showing (3) holds. This concludes the proof of the Theorem. �

Lemma 1 Suppose that r (O) is in L2 (Pη) and that for all ή, Eή {r (O)} = 0. Then r (O) = 0 a.s.(Pη) .

Proof: [of Lemma 1] Suppose first that r (O) is bounded. Then consider the submodel t → pt (O) =
pη (O) {1 + tr (O)} . Note that for t sufficiently small, pt > 0 (by the boundedness of r (O)) and pt
integrates to 1 because Eή {r (O)} = 0. Then score of the submodel is r (O) . Then, since by assumption
the mean Et {r (O)} of r (O) under pt satisfies Ept {r (O)} = 0 for all t, we have

0 =
d

dt
Et {r (O)}

∣∣∣∣
t=0

= Eη

{
r (O)2

}

Consequently r (O) = 0 a.s.(Pη) . Next, given an arbitrary r (O) in L2 (Pη) such that Eή {r (O)} = 0
for all ή, consider define rn (O) ≡ r (O) I(−n,n) {r (O)} −Eη

{
r (O) I(−n,n) (r (O))

}
. Then rn (O) satisfies

Eη {rn (O)} = 0 and is bounded. So, rn (O) = 0 a.s.(Pη) . However, rn (O) converges in L2 (Pη) to r (O)
so r (O) = 0 a.s.(Pη) . �

Proof: [of Theorem 2] For any fixed h ∈ Ha, and a given η = (a, b, τ) consider a parametric submodel
t → Pηt where ηt = (at, b, τ) with at = a + th and |t| < ε (η, h) as in Condition 1. Then, since χ1

η is an
influence function of the form (4) we have

0 =
d

dt
Eη {Sabatb+m1 (O, at) +m2 (O, b) + S0}|t=0

=
d

dt
Eη {Sab (a + th) b+m1 (O, a) + tm1 (O, h)}|t=0

= Eη {Sabhb+m1 (O, h)} .

The continuity of the maps h ∈ L2 (Pη,Z) → Eη {m1 (O, h)} and h ∈ L2 (Pη,Z) → Eη {Sabh (Z) b (Z)}
implies that the map h ∈ L2 (Pη,Z) → Eη {Sabhb+m1 (O, h)} is continuous. Then, since we have just
shown that this map evaluates to 0 at a dense set of L2 (Pη,Z) , it must equal to 0 for all h ∈ L2 (Pη,Z) .
Reasoning analogously, we arrive at the conclusion that

Eη {Sabha+m2 (O, h)} = 0 (9)
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for all h ∈ L2 (Pη,Z) , thus showing part (ii) of the Theorem. Next, suppose that a′ − a ∈ L2 (Pη,Z) and
b′ − b ∈ L2 (Pη,Z) . Then, applying part (ii) we have that Eη [Sab (a

′ − a) b+m1 {O, (a′ − a)}] = 0 and
Eη [Sab (b

′ − b) a +m2 {O, (b′ − b)}] = 0. Consequently,

Eη

{
χ (η′) + χ1

η′

}
− χ (η) = Eη

{
χ (η′) + χ1

η′

}
− Eη

{
χ (η) + χ1

η

}

= Eη {Saba
′b′ +m1 (O, a

′) +m2 (O, b
′)} −

Eη {Sabab+m1 (O, a) +m2 (O, b)}
= Eη {Saba

′b′ +m1 (O, a
′) +m2 (O, b

′)}
−Eη {Sabab+m1 (O, a) +m2 (O, b)}
−Eη {Sab (a

′ − a) b+m1 (O, (a
′ − a))}

−Eη {Sab (b
′ − b) a+m2 (O, (b

′ − b))}
= Eη {Sab (a− a′) (b− b′)}

thus showing part (i) of the Theorem.
Turn now to the proof of part (iii). Equation (9) implies that for all h ∈ L2 (Pη,Z) ,

0 = Eη (Sabha+R2h) .

Thus, if h∗ (Z) ≡ Eη (Sab|Z) a (Z) + R2 (Z) is in L2 (Pη,Z) , then specializing at h = h∗ the preceding
identity we conclude that a.s.(Pη,Z)

Eη (Saba +R2|Z) = 0

or equivalently a (Z) = −R2 (Z) /Eη (Sab|Z) if Eη (Sab|Z) 6= 0 a.s.(Pη,Z). The assertion for b (Z) is
proved analogously.

Next, we prove part (iv). If b is in L2 (Pη,Z) , then specializing (9) at h = b we obtain

χ (η) = Eη {Sabab+m1 (O, a) +m2 (O, b) + S0} (10)

= Eη {m1 (O, a) + S0} .

On the other hand, if b /∈ L2 (Pη,Z) but (1 + t) b ∈ B for 0 < t < ε then, given η = (a, b, τ) consider the
parametric submodel t → Pηt where ηt = (a, bt, τ) with bt = b + tb and 0 < t < ε. Then, by χ1

η of the

form (4) being an influence function and with d
dt+

denoting the right derivative, we have

0 =
d

dt+
Eη {Sababt +m1 (O, a) +m2 (O, bt) + S0}|t=0

=
d

dt+
Eη {Saba (b+ tb) +m2 (O, b) + tm2 (O, b)}|t=0

= Eη {Sabab+m2 (O, b)} .

So, applying again (10) we arrive at χ (η) = Eη {m1 (O, a) + S0} . The same reasoning, but now taking
left derivatives, yields to the same conclusion if (1 + t) b ∈ B for −ε < t < 0. This shows (iv.b). Part
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(iv.a) is proved analogously. Finally, part (iv.c) follows from

χ (η) = Eη {Sabab+m1 (O, a) +m2 (O, b) + S0}
= Eη {Sabab+m1 (O, a) +m2 (O, b) + Sabab+ S0 − Sabab}
= Eη {S0 − Sabab} .

Turn now to the proof of part (v). By part (iii) we have that a.s.(Pη,Z)

a (Z) = − R2 (Z)

Eη (Sab|Z)
and b (Z) = − R1 (Z)

Eη (Sab|Z)

Next, for any h ∈ L2 (Pη,Z) , write

Eη

{
Sab

h2

2
+m1 (O, h)

}

= Eη

{
Eη (Sab|Z)

h (Z)2

2
+R1 (Z)h (Z)

}

= Eη

[
Eη (Sab|Z)

2

[
h (Z)2 + 2

R1 (Z)

Eη (Sab|Z)
h (Z) +

{ R1 (Z)

Eη (Sab|Z)

}2
]]

−Eη

[
Eη (Sab|Z)

2

{ R1 (Z)

Eη (Sab|Z)

}2
]

= Eη

[
Eη (Sab|Z)

2

{
h (Z) +

R1 (Z)

Eη (Sab|Z)

}2
]
−Eη

[
Eη (Sab|Z)

2

{ R1 (Z)

Eη (Sab|Z)

}2
]
.

So

arg min
h∈L2(Pη,Z)

Eη

{
Sab

h2

2
+m1 (O, h)

}
= arg min

h∈L2(Pη,Z)
Eη

{
Eη (Sab|Z)

2

[
h (Z) +

R1 (Z)

Eη (Sab|Z)

]2}

= − R1 (Z)

Eη (Sab|Z)
= b (Z) .

The assertion for the minimization leading to a (Z) is proved analogously. �

Proof: [of Proposition 2] With the definition of m2 given in the proof of Theorem 1 we have that
Eη {m2 (O, h)} = −Eη {Sabha} for all h ∈ B. Fix b′ ∈ B such that b′ (Z) 6= 0 a.s.(Pη,Z) . Then,

Eή1 [Eη2 {m2 (O, b
′) |Z}+ Eη2 (Sab|Z) b′ (Z) a (Z)] = 0 for all ή1.

Since by assumption a does not depend on ή1, then sη2 (Z) ≡ Eη2 {m2 (O, b
′) |Z}+Eη2 (Sab|Z) b′ (Z) a (Z)

is a fixed function of Z (i.e. independent of ή1) with mean zero under any marginal law of Z. Hence,
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since by condition 2, sη2 (Z) is in L2 (Pη,Z) , then by Lemma 1, sη2 (Z) = 0 a.s.(Pη,Z) , from where we
conclude that a (Z) = −Eη2 {q (O) |Z} /Eη2 (Sab|Z) for q (O) ≡ m2 (O, b

′) |/b′ (Z) .
Next, write for any η

0 = Eη {Sabab+m2 (O, b)}

= Eη

[
Sab

{−Eη [q (O) |Z]
Eη [Sab|Z]

}
b+m2 (O, b)

]

= Eη {−q (O) b+m2 (O, b)}

and since in the last display −q (O) b+m2 (O, b) is a statistic independent of η, which, by condition 2,
is in L2 (Pη,Z) and the display holds for all η then −q (O) b+m2 (O, b) = 0 a.s.(Pη) for all η. This shows
that m2 (O, h) = q (O)h. �

Proof: [of Proposition 3] For a regular parametric submodel t → ηt with score g at t = 0 (with
ηt=0 = η),

d

dt
χ (ηt)

∣∣∣∣
t=0

=
d

dt
Eηt {m1 (O, at)}+ Eηt (S0)

∣∣∣∣
t=0

= Eη {m1 (O, a) g}+
d

dt
Eη {m1 (O, at)}

∣∣∣∣
t=0

+ Eη (S0g) .

But,

d

dt
Eη {m1 (O, at)}

∣∣∣∣
t=0

=
d

dt
Eη {R1 (Z) at}

∣∣∣∣
t=0

= −Eη

[
R1 (Z)

d

dt

{
Eηt [q (O) |Z]
Eηt [Sab|Z]

}∣∣∣∣
t=0

]

= −Eη

[
R1 (Z)

[
Eη [{q (O)−Eη {q (O) |Z}} g|Z]

Eη (Sab|Z)
−Eη {q (O) |Z}

Eη [{Sab −Eη (Sab|Z)} g|Z]
Eη (Sab|Z)2

]]

= Eη

[
− R1 (Z)

Eη (Sab|Z)

[
Eη {q (O)− Eη {q (O) |Z}} −Eη [q (O) |Z]

Eη {Sab − Eη (Sab|Z)}
Eη (Sab|Z)

]
g

]

= Eη

[
− R1 (Z)

Eη (Sab|Z)

{
q (O)− Eη {q (O) |Z}

Eη (Sab|Z)
Sab

}
g

]

= Eη [b (Z) {q (O) + a (Z)Sab} g]

where

b (Z) ≡ − R1 (Z)

Eη (Sab|Z)
.
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Thus,

χ1
η = m1 (O, a) + b (Z) {q (O) + a (Z)Sab}+ S0

−Eη [m1 (O, a) + b (Z) {q (O) + a (Z)Sab}+ S0]

= Sabab+m1 (O, a) + q (O) b+ S0

−χ (η)− Eη [b (Z) {q (O) + a (Z)Sab}]

But,

Eη [b (Z) {q (O) + a (Z)Sab}] = Eη [b (Z) [Eη {q (O) |Z}+ a (Z)Eη (Sab|Z)]]
= 0

where the last identity follows by definition of a (Z) . The last assertion of the Theorem follows by
Theorem 2. �

Proof: Here we prove that the parameter ψ (η) in Example 3 is not in the class studied in Chernozhukov et al.
(2018b).

Let O = (DY,D, Z) . Notice that given D = 0, O depends only on Z. Let

ψ (η) ≡ Eη

[
(1−D)

Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z}

]
= Eη {(1−D) a(Z)}

where a (Z) ≡ Eη {DY exp (δY ) |Z} /Eη {D exp (δY ) |Z} for δ 6= 0. Suppose that there exists m∗
1 (O, ·)

such that for each η, the map h ∈ L2

(
Pη,(D,Z)

)
→ Eη {m∗

1 (O, h)} is continuous and linear and such that

σ (η) = Eη {m∗
1 (O, a

∗)}+ Eη (S
∗
0)

where a∗ (D,Z) = Eη {q (O)|D,Z} for some statistic q (O).
Without loss of generality we can assume that q (O) = Dq∗ (Y, Z). To see this write q (O) =

Dq∗ (Y, Z) + (1−D) q∗∗ (Z) . Then,

a∗ (D,Z) = Eη {q (O)|D,Z}
= a∗1 (D,Z) + a∗0 (D,Z)

where a∗1 (D,Z) ≡ Eη {Dq∗ (Y, Z)|D,Z} and a∗0 (D,Z) ≡ (1−D) q∗∗ (Z). Then, by the assumed linear-
ity of the map h ∈ L2

(
Pη,(D,Z)

)
→ Eη {m∗

1 (O, h)} we can now write

Eη {m∗
1 (O, a

∗)}+ Eη (S
∗
0) = Eη {m∗

1 (O, a
∗
1)}+ Eη {m∗

1 (O, a
∗
0)}+ Eη (S

∗
0)

= Eη {m∗
1 (O, a

∗
1)}+ Eη (S

∗∗
0 )

where S∗∗
0 = m∗

1 (O, a
∗
0) + S∗

0 is a statistic because a∗0 (D,Z) does not depend on η.
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So, from now on we will assume a∗ (D,Z) ≡ Eη {q (O)|D,Z} where q (O) = Dq∗ (Y, Z) for some q∗.
Note that q (Y, Z) depends on Y, for otherwise a∗ (D,Z) would not depend on η.

Because σ (η) is the same functional as ψ (η) then their unique influence functions σ1
η and ψ1

η must
agree. We shall compute next the influence function ψ1

η of ψ (η). For any path t→ ηt through ηt=0 = η
with score g we have

d

dt
Eηt

[
(1−D)

Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z}

]∣∣∣∣
t=0

= Eη

[[
(1−D)

Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z} − ψ (η)

]
g

]
+ Eη

[
Eη (1−D|Z)

d
dt
Eηt {DY exp (δY ) |Z}|t=0

Eη {D exp (δY ) |Z}

]

+Eη

[
Eη {1−D|Z}Eη {DY exp (δY ) |Z} d

dt

1

Eηt {D exp (δY ) |Z}

∣∣∣∣
t=0

]

= Eη

[{
(1−D)

Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z} − ψ (η)

}
g

]

+Eη

[
Eη (1−D|Z) [DY exp (δY )− Eη {DY exp (δY ) |Z}]

Eη {D exp (δY ) |Z} g

]

+Eη

[
Eη {1−D|Z}Eη {DY exp (δY ) |Z} [D exp (δY )−Eη {D exp (δY ) |Z}]

Eη {D exp (δY ) |Z}2
g

]
.

So, we conclude that

ψ1
η = (1−D)

Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z} − ψ (η) + Eη (1−D|Z) [DY exp (δY )−Eη {DY exp (δY ) |Z}]

Eη {D exp (δY ) |Z}

−Eη (1−D|Z)Eη {DY exp (δY ) |Z} [D exp (δY )− Eη {D exp (δY ) |Z}]
Eη {D exp (δY ) |Z}2

= (1−D)
Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z} +DY exp (δY )

Eη (1−D|Z)
Eη {D exp (δY ) |Z}

−D exp (δY )
Eη (1−D|Z)Eη {DY exp (δY ) |Z}

Eη {D exp (δY ) |Z}2
− ψ (η) .

On the other hand, lettingR∗
η (D,Z) be the Riesz representer of the map h ∈ L2

(
Pη,(D,Z)

)
→ Eη {m∗

1 (O, h)} ,
we have

d

dt
Eηt

{
m∗

1

(
O, a∗ηt

)}
+ Eηt (S

∗
0)

∣∣∣∣
t=0

= Eη [[m
∗
1 (O, a

∗)− Eη {m∗
1 (O, a

∗)}] g] + d

dt
Eη

[
R∗

η (D,Z)Eηt {q (O)|D,Z}
]∣∣∣∣

t=0

+ Eη [{S∗
0 − Eη (S

∗
0)} g]

= Eη {m∗
1 (O, a

∗) g}+ Eη

[
R∗

η (D,Z) [q (O)−Eη {q (O)|D,Z}] g
]
+ Eη (S

∗
0g)− σ (η)
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from where we conclude that

σ1
η = m∗

1 (O, a
∗) +R∗

η (D,Z) [q (O)− Eη {q (O)|D,Z}] + S∗
0 − σ(η).

The uniqueness of influence functions σ1
η and ψ1

η implies that

(1−D)
Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z} +DY exp (δY )

Eη {1−D|Z}
Eη {D exp (δY ) |Z} (11)

−D exp (δY )
Eη {1−D|Z}Eη {DY exp (δY ) |Z}

Eη {D exp (δY ) |Z}2
(12)

= m∗
1 (O, a

∗) +R∗
η (D,Z) {q (O)− Eη [q (O)|D,Z]}+ S∗

0

Now, taking η and η′ that agree on the law of Y,D|Z, but disagree on the marginal of Z, the left hand
side agree on these two laws as well as a∗ so, subtracting one from the other we obtain

0 =
{
R∗

η (D,Z)−R∗
η′ (D,Z)

}
[q (O)−Eη {q (O)|D,Z}]

=
{
R∗

η (D = 1, Z)−R∗
η′ (D = 1, Z)

}
D [q∗ (Y, Z)−Eη {q∗ (Y, Z)|D = 1, Z}]

Since q∗ (Y, Z) depends on Y then R∗
η (D = 1, Z)−R∗

η′ (D = 1, Z) must be equal to 0. So, we conclude
that R∗

η (D = 1, Z) depends on η only through the law of Y,D|Z.
Next, for any h (D,Z) = Du (Z) , we have

Eη [Eη {m∗
1 (O, h) |Z}] = Eη

[
Eη

{
R∗

η (D = 1, Z)Du (Z)
∣∣Z

}]
for all η.

So, since R∗
η (D = 1, Z) does not depend on the marginal law of Z, we conclude that

Eη {m∗
1 (O, h) |Z} = Eη

{
R∗

η (D = 1, Z)Du (Z)
∣∣Z

}

or equivalently

Eη {m∗
1 (O, h) |D = 0, Z}Eη (1−D|Z) + Eη {m∗

1 (O, h) |D = 1, Z}Eη (D|Z) =
R∗

η (D = 1, Z)u (Z)Eη (D|Z) .

Suppose that z∗ is such that u (z∗) = 0. Then,

m∗
1 {(0, 0, z∗) , h}+ [Eη {m∗

1 (O, h) |D = 1, Z = z∗} −m∗
1 {(0, 0, z∗) , h}]Eη (D|Z = z∗) = 0

where to arrive at the left hand side we have used the fact that Eη {m∗
1 (O, h) |D = 0, Z} = m∗

1 {(0, 0, Z) , h}.
Now, since Eη {m∗

1 (O, h) |D = 1, Z = z∗} does not depend on the law ofD|Z, then letting Eη (D|Z = z∗) →
0 we conclude that m∗

1 {(0, 0, z∗) , h} = 0 and consequently also Eη {m∗
1 (O, h) |D = 1, Z = z∗} = 0.

Next, for any Z = z such that u (z) 6= 0 we write

1

Eη (D|Z = z)

m∗
1 {(0, 0, z) , h}

u (z)
+

[Eη {m∗
1 (O, h) |D = 1, Z = z} −m∗

1 {(0, 0, z) , h}]
u (z)

= R∗
η (D = 1, z)
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and since R∗
η (D = 1, z) does not depend on u, then taking any other u∗ with u∗ (z) 6= 0, we have

0 =
1

Eη (D|Z = z)

[
m∗

1 {(0, 0, z) , h}
u (z)

− m∗
1 {(0, 0, z) , h∗}

u∗ (z)

]

+

[
[Eη {m∗

1 (O, h) |D = 1, Z = z} −m∗
1 {(0, 0, z) , h}]

u (z)

]

−
[
[Eη {m∗

1 (O, h
∗) |D = 1, Z = z} −m∗

1 {(0, 0, z) , h∗}]
u∗ (z)

]
.

Once again, since none of the terms in squared brackets depend on the law of D|Z, the right hand side
is a linear function of α ≡ 1/Eη (D|Z = z) which can take any value in (1,∞) , but the left hand side
is identically equal to 0. Therefore,

m∗
1 {(0, 0, z) , h}

u (z)
− m∗

1 {(0, 0, z) , h∗}
u∗ (z)

= 0.

So, we conclude that there exists a function c (z) independent of η such that for all h (D,Z) = Du (Z)

m∗
1 {(0, 0, z) , h} = c (z) u (z) (13)

Next, return to the equations (11) and (12) and evaluate them at D = 0, to obtain

Eη {Y exp (δY ) |D = 1, Z}
Eη {exp (δY ) |D = 1, Z} = m∗

1 (0, 0, Z, a
∗) + t (Z)

where t (Z) is equal to S∗
0 (0, 0, Z) , i.e. to S∗

0 evaluated at D = 0. Next, recalling that a∗ (D,Z) =
DE [q∗ (Y, Z) |D = 1, Z] and invoking (13) we conclude that

Eη {Y exp (δY ) |D = 1, Z}
Eη {exp (δY ) |D = 1, Z} = c (Z)Eη {q∗ (Y, Z) |D = 1, Z}+ t (Z)

where c (z) and t (z) are functions of z that do not depend on η. We will now show that the last equality
cannot hold for all η if δ 6= 0. To do so, we re-write the last identity as

Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z} = c (Z)

Eη {Dq∗ (Y, Z) |Z}
Eη (D|Z) + t (Z) . (14)

If this identity holds for all η, then taking expectations on both sides we have that for all η

Eη

[
Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z}

]
= Eη

[
c (Z)

Eη {Dq∗ (Y, Z) |Z}
Eη (D|Z)

]
+ Eη {t (Z)} (15)

or equivalently, for all η

Eη

[
DY exp (δY )

Eη {D exp (δY ) |Z}

]
= Eη

{
c (Z)

Dq∗ (Y, Z)

Eη (D|Z)

}
+ Eη {t (Z)} .
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Since the functionals on the left and right hand-sides are identical, their influence functions must agree.
Then, taking an arbitrary submodel t→ ηt with score g at ηt=0 = η we have

d

dt
Eηt

[
DY exp (δY )

Eηt {D exp (δY ) |Z}

]∣∣∣∣
t=0

=
d

dt
Eηt

{
c (Z)

Dq∗ (Y, Z)

Eηt (D|Z)

}∣∣∣∣
t=0

+
d

dt
Eηt {t (Z)}

∣∣∣∣
t=0

from where we conclude that

Eη

[[
DY exp (δY )

Eη {D exp (δY ) |Z} − Eη

[
DY exp (δY )

Eη {D exp (δY ) |Z}

]]
g

]

−Eη

[
Eη {DY exp (δY ) |Z} [D exp (δY )− Eη {D exp (δY ) |Z}]

Eη [D exp (δY ) |Z]2
g

]

= Eη

[[
c (Z)

Dq∗ (Y, Z)

Eη (D|Z) − Eη

{
c (Z)

Dq∗ (Y, Z)

Eη (D|Z)

}]
g

]

−Eη

[
c (Z)

Eη {Dq∗ (Y, Z)|Z}
Eη (D|Z)2

{D − Eη (D|Z)} g
]
+ Eη [t (Z)−Eη {t (Z)} g]

Consequently,

[
DY exp (δY )

Eη {D exp (δY ) |Z} −Eη

[
DY exp (δY )

Eη {D exp (δY ) |Z}

]]

−Eη {DY exp (δY ) |Z} [D exp (δY )−Eη {D exp (δY ) |Z}]
Eη {D exp (δY ) |Z}2

= c (Z)
Dq∗ (Y, Z)

Eη (D|Z) −Eη

{
c (Z)

Dq∗ (Y, Z)

Eη (D|Z)

}
− c (Z)

Eη {Dq∗ (Y, Z)|Z}
Eη (D|Z)2

{D − Eη [D|Z]}+

t (Z)− Eη {t (Z)} .

Invoking the equalities (14) and (15) , the last identity is the same as

1

Eη {D exp (δY ) |Z}DY exp (δY )− Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z}2

D exp (δY )

= c (Z)
1

Eη (D|Z)Dq
∗ (Y, Z)−Dc (Z)

Eη {Dq∗ (Y, Z)|Z}
Eη (D|Z)2

or equivalently

1

Eη {exp (δY ) |D = 1, Z}Eη (D|Z)DY exp (δY )− Eη {DY exp (δY ) |Z}
Eη {exp (δY ) |D = 1, Z}2Eη (D|Z)2

D exp (δY )

= c (Z)
1

Eη (D|Z)Dq
∗ (Y, Z)−Dc (Z)

Eη {Dq∗ (Y, Z)|Z}
Eη (D|Z)2

.
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The last equality is equivalent to

D exp (δY )

Eη {exp (δY ) |D = 1, Z}

[
Y − Eη {Y exp (δY ) |D = 1, Z}

Eη {exp (δY ) |D = 1, Z}

]
= Dc (Z) [q∗ (Y, Z)− Eη {q∗ (Y, Z)|D = 1, Z}]

The last equation cannot hold for all η. To see this, evaluate the left and right and sides at y and y∗

with y 6= y∗, and subtract one from the other, to obtain

D exp (δy)

Eη {exp (δY ) |D = 1, Z}

[
y − Eη {Y exp (δY ) |D = 1, Z}

Eη {exp (δY ) |D = 1, Z}

]

− D exp (δy∗)

Eη {exp (δY ) |D = 1, Z}

[
y∗ − Eη {Y exp (δY ) |D = 1, Z}

Eη {exp (δY ) |D = 1, Z}

]
(16)

= Dc (Z) {q∗ (y, Z)− q∗ (y∗, Z)}

The left hand side depends on η whereas the right hand side does not. We will show that this cannot
occur when δ 6= 0. To do so, let η and η′ correspond to two arbitrary distinct laws. Then evaluating the
left hand side at η and at η′ and subtracting one from the other, we obtain

D

[
1

Eη {exp (δY ) |D = 1, Z} − 1

Eη′ {exp (δY ) |D = 1, Z}

]
exp (δy) y −

D exp (δy)

[
Eη {Y exp (δY ) |D = 1, Z}
Eη {exp (δY ) |D = 1, Z}2

− Eη′ {Y exp (δY ) |D = 1, Z}
Eη′ {exp (δY ) |D = 1, Z}2

]
−

D

[
1

Eη {exp (δY ) |D = 1, Z} − 1

Eη′ {exp (δY ) |D = 1, Z}

]
exp (δy∗) y∗ −

D exp (δy∗)

[
Eη {Y exp (δY ) |D = 1, Z}
Eη {exp (δY ) |D = 1, Z}2

− Eη′ {Y exp (δY ) |D = 1, Z}
Eη′ {exp (δY ) |D = 1, Z}2

]
= 0

This holds for all y and y∗. Then, regarding y∗, η and η′ as fixed and y as a free variable the preceding
display is of the form

k1 (D, z) exp (δy) y − k2 (D, z) exp (δy) + k3 (D, z) = 0.

Next, since exp (δy) y and exp (δy) are not the same function of y, then the preceding identity can only
hold if kj (D, z) = 0 for j = 1, 2, 3. In particular, the equality kj (D, z) = 0 implies that

Eη {exp (δY ) |D = 1, Z} = Eη′ {exp (δY ) |D = 1, Z} .

But since η and η′ are arbitrary, this implies that Eη {exp (δY ) |D = 1, Z} does not depend on η. This
is a contradiction when δ 6= 0 because it would imply that exp (δY ) = c′ (Z) for some function c′. This
shows that σ (η) cannot be equal to ψ (η) .
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Next, we will show that ψ (η) cannot be equal to any parameter of the form

κ (η) ≡ Eη {m∗
1 (O, a

∗)}+ Eη (S
∗
0)

where a∗ (Z) = Eη {q (O)|Z} for some statistic q (O) , the map h ∈ L2 (Pη,Z) → Eη {m∗
1 (O, h)} is

continuous and linear for each η and S∗
0 is a statistic. To proceed, just as before, we start by arguing

that if the parameter κ (η) is the same as ψ (η) then their unique influence functions must agree. We
have already computed the influence function ψ1

η of ψ (η) .
On the other hand, it is easy to see that the influence function κ1η of κ (η) is

κ1η = m∗
1 (O, a

∗) +R∗
η (Z) {q (O)− Eη {q (O)|Z}}+ S∗

0 − κ (η)

where R∗
η (Z) is the Riesz representer of the map h ∈ L2 (Pη,Z) → Eη {m∗

1 (O, h)} . Consequently,
equating κ1η with ψ1

η we obtain

(1−D)
Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z} +DY exp (δY )

Eη (1−D|Z)
Eη {D exp (δY ) |Z} − (17)

D exp (δY )
Eη (1−D|Z)Eη {DY exp (δY ) |Z}

Eη {D exp (δY ) |Z}2
(18)

= m∗
1 (O, a

∗) +R∗
η (Z) [q (O)− Eη {q (O)|Z}] + S∗

0 .

Now, taking η and η′ that agree on the law of Y,D|Z, but disagree on the marginal of Z, the left hand
side agree on these two laws as well as a∗ so, subtracting one from the other we obtain

0 =
{
R∗

η (Z)−R∗
η′ (Z)

}
[q (O)−Eη {q (O)|Z}] .

Since q (O) depends on (D, Y ) then
{
R∗

η (Z)−R∗
η′ (Z)

}
must be equal to 0. So, we conclude that R∗

η (Z)
depends on η only through the law of Y,D|Z.

Next, for any h (Z) , we have

Eη [Eη {m∗
1 (O, h) |Z}] = Eη

{
R∗

η (Z)h (Z)
}

for all η.

So, since R∗
η (Z) does not depend on the marginal law of Z, we conclude that

Eη {m∗
1 (O, h) |Z} = R∗

η (Z) h (Z) .

The last equality is the same as

m∗
1 (0, 0, Z, h)Eη (1−D|Z) + Eη {m∗

1 (O, h) |D = 1, Z}Eη (D|Z) = R∗
η (Z) h (Z)

or equivalently

m∗
1 (0, 0, Z, h) + [Eη {m∗

1 (O, h) |D = 1, Z} −m∗
1 (0, 0, Z, h)]Eη (D|Z) = R∗

η (Z)h (Z)
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If z∗ is such that h (z∗) = 0, then

m∗
1 (0, 0, z

∗, h) + [Eη {m∗
1 (O, h) |D = 1, Z = z∗} −m∗

1 (0, 0, z
∗, h)]Eη (D|Z = z∗) = 0

and since Eη {m∗
1 (O, h) |D = 1, Z = z∗} does not depend on the law of D|Z, then since Eη (D|Z = z∗)

can take any value in (0, 1) , we conclude that m∗
1 (0, 0, z

∗, h) = 0.
On the other hand, for z such that h (z) 6= 0, we have

m∗
1 (0, 0, z, h)

h (z)
+

[Eη {m∗
1 (O, h) |D = 1, Z = z} −m∗

1 (0, 0, z, h)]

h (z)
Eη (D|Z = z) = R∗

η (Z = z)

Consequently, for any other h∗ such that h (z∗) 6= 0, we have

0 =

{
m∗

1 (0, 0, z, h)

h (z)
− m∗

1 (0, 0, z, h
∗)

h∗ (z)

}
+

[Eη {m∗
1 (O, h) |D = 1, Z = z} −m∗

1 (0, 0, z, h)]

h (z)
Eη (D|Z = z)−

[Eη {m∗
1 (O, h

∗) |D = 1, Z = z} −m∗
1 (0, 0, z, h

∗)]

h∗ (z)
Eη (D|Z = z) .

Once again, since Eη {m∗
1 (O, h

∗) |D = 1, Z = z} and Eη {m∗
1 (O, h) |D = 1, Z = z} do not depend on the

law of D|Z, and since Eη (D|Z = z) can take any value in (0, 1) we conclude that

m∗
1 (0, 0, Z, h)

h (Z)
− m∗

1 (0, 0, Z, h
∗)

h∗ (Z)
= 0

Consequently, there exists a function c (Z) such that for all h

m∗
1 (0, 0, Z, h) = c (Z) h (Z) . (19)

Now, evaluating (17) and (18) at D = 0

Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z} = m∗

1 (0, 0, Z, a
∗) +R∗

η (Z) [q (0, 0, Z)− Eη {q (0, 0, Z)|Z}]︸ ︷︷ ︸
=0

+ S∗
0 (0, 0, Z) .

So, with t (Z) ≡ S∗
0 (0, 0, Z) and with a∗ (Z) = Eη {q (O)|Z} substituted for h in (19) we arrive at the

conclusion that the following equality must hold for all η

Eη {DY exp (δY ) |Z}
Eη {D exp (δY ) |Z} = c (Z)Eη {q (O)|Z}+ t (Z) .

Therefore,

Eη

[
DY exp (δY )

Eη {D exp (δY ) |Z}

]
= Eη {c (Z) q (O) + t (Z)} .
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Again equating the influence functions of the functionals on the right and left hand sides we conclude
that

DY exp (δY )

Eη {D exp (δY ) |Z} − Eη {Y D exp (δY ) |Z}
Eη {D exp (δY ) |Z}2

[D exp (δY )− Eη {D exp (δY ) |Z}] = c (Z) q (O) + t (Z)

which leads to a contradiction when δ 6= 0. To arrive at the contradiction we would reason just as we
did to show that the equality (16) leads to a contradiction. �

Proof: Here we prove that the parameter in Example 4, is in the class of Chernozhukov et al. (2018b)
but not in the class of Robins et al. (2008).

Let

χ (η) ≡ Eη

{∫ 1

0

Eη (Y |D = u, L)w (u) du

}
.

Its influence function is

χ1
η =

∫ 1

0

Eη (Y |D = u, L)w (u) du+
w (D)

fη (D|L) {Y − Eη (Y |D,L)} − χ (η) .

Suppose the parameter χ (η) is in the class of Robins et al. (2008) for some functions a∗ (D,L) and
b∗ (D,L) which are non-constant in D and in L. Then, there would exist statistics Sab, Sa, Sb and S0

such that

a∗ (D,L) = − Eη (Sb|D,L)
Eη (Sab|D,L)

, b∗ (D,L) = −− Eη (Sa|D,L)
Eη (Sab|D,L)

and such that

χ1
η = Saba

∗ (D,L) b∗ (D,L) + Saa
∗ (D,L) + Sbb

∗ (D,L) + S0 − χ (η) .

Then, equating the influence functions we arrive at

∫ 1

0

Eη (Y |D = u, L)w (u) du+
w (D)

fη (D|L) {Y −Eη (Y |D,L)}

= Saba
∗ (D,L) b∗ (D,L) + Saa

∗ (D,L) + Sbb
∗ (D,L) + S0

The right hand side does not depend on fη (D|L) . On the other hand, in the left hand side

∫ 1

0

Eη (Y |D = u, L)w (u) du

does not depend on fη (D|L) but w(D)
fη(D|L)

{Y − Eη (Y |D,L)} depends on fη (D|L). This is a contradiction.
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Now, suppose that we re-define Z = L, so that we now partition O into (Y,D) and Z = L. If the
parameter χ (η) was in the class of Robins et al. (2008) for some functions a∗ (L) and b∗ (L) which are
non-constant in L, then, there would exist statistics Sab, Sa, Sb and S0 such that

a∗ (L) = − Eη (Sb|L)
Eη (Sab|L)

, b∗ (L) = −− Eη (Sa|L)
Eη (Sab|L)

and such that
χ1
η = Saba

∗ (L) b∗ (L) + Saa
∗ (L) + Sbb

∗ (L) + S0 − χ (η) .

Then equating the influence functions we would arrive at

∫ 1

0

Eη (Y |D = u, L)w (u) du+
w (D)

fη (D|L) {Y − Eη (Y |D,L)} = Saba
∗ (L) b∗ (L)+Saa

∗ (L)+Sbb
∗ (L)+S0.

This is also a contradiction because, for each fixed D = d, L = l the right hand side depends on the
value of fη (d|l) , i.e. on fη (D|L) evaluated at D = d, L = l, but the right hand side does not, since for
a given law of Y |D,L, one can always modify fη (D|L) at a point D = d, L = l and still obtain the same
values of Eη (Sb|L = l) , Eη (Sa|L = l) and Eη (Sab|L = l) . �

References

Ayyagari, R. (2010). Applications of influence functions to semiparametric regression models. PhD
thesis, Harvard University.

Chernozhukov, V., Escanciano, J. C., Ichimura, H., Newey, W. K., and Robins, J. M. (2016). Locally
Robust Semiparametric Estimation. arXiv e-prints, page arXiv:1608.00033.

Chernozhukov, V., Newey, W., and Robins, J. (2018a). Double/De-Biased Machine Learning Using
Regularized Riesz Representers. arXiv e-prints, page arXiv:1802.08667.

Chernozhukov, V., Newey, W. K., and Singh, R. (2018b). Learning L2 Continuous Regression Func-
tionals via Regularized Riesz Representers. arXiv e-prints, page arXiv:1809.05224.

Christmann, A. and Steinwart, I. (2008). Support vector machines. Springer.

Hirshberg, D. A. and Wager, S. (2017). Augmented Minimax Linear Estimation. arXiv e-prints, page
arXiv:1712.00038.

Newey, W. K., Hsieh, F., and Robins, J. (1998). Undersmoothing and bias corrected functional estima-
tion.

Newey, W. K., Hsieh, F., and Robins, J. M. (2004). Twicing kernels and a small bias property of
semiparametric estimators. Econometrica, 72(3):947–962.

28



Robins, J., Li, L., Tchetgen, E., and van der Vaart, A. (2008). Higher order influence functions and
minimax estimation of nonlinear functionals, volume Volume 2 of Collections, pages 335–421. Institute
of Mathematical Statistics, Beachwood, Ohio, USA.

Robins, J. M., Li, L., Mukherjee, R., Tchetgen, E. T., and van der Vaart, A. (2017). Minimax estimation
of a functional on a structured high-dimensional model. Ann. Statist., 45(5):1951–1987.

Robins, J. M. and Rotnitzky, A. (2001). Comment on the bickel and kwon article,“inference for semi-
parametric models: Some questions and an answer”. Statistica Sinica, 11(4):920–936.

Scharfstein, D. O., Rotnitzky, A., and Robins, J. M. (1999). Adjusting for nonignorable drop-out using
semiparametric nonresponse models. Journal of the American Statistical Association, 94(448):1096–
1120.

Schick, A. (1986). On asymptotically efficient estimation in semiparametric models. The Annals of
Statistics, 14(3):1139–1151.

Smucler, E., Rotnitzky, A., and Robins, J. M. (2019). A unifying approach for doubly-robust ℓ1 regu-
larized estimation of causal contrasts. arXiv e-prints, page arXiv:1904.03737.

Stock, J. H. (1989). Nonparametric policy analysis. Journal of the American Statistical Association,
84(406):567–575.

Van der Vaart, A. W. (2000). Asymptotic statistics, volume 3. Cambridge university press.

Zheng, W. and van der Laan, M. J. (2011). Cross-validated targeted minimum-loss-based estimation.
In Targeted Learning, pages 459–474. Springer.

29


	1 Introduction
	2 Characterization of the influence functions with the mixed bias property
	3 Characterization of the nuisance functions
	4 Examples
	5 Final remarks
	6 Supplementary Material
	6.1 Examples
	6.2 Regularity conditions
	6.3 Proofs


