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1. Introduction

The matter–radiation interaction is a central problem in quan-
tum optics. The simplest model to deal with this is the Rabi
model [1], which describes the interaction of a two-level atom
with a single mode of the quantized electromagnetic field. Al-
though widely studied over the past few decades, up to now an
exact analytical solution is lacking and only numerical [2,3] and
approximate analytical solutions are available [4,5], despite the
conjecture by Reik and Doucha [6,7] that an exact solution of the
Rabi Hamiltonian in terms of known functions is possible. The
commonest analytical approach to solving the Rabi model is to
make use of the rotating wave approximation (RWA), where the
counter-rotating terms are neglected. In this limit, the Rabi Hamil-
tonian is known as Jaynes–Cummings (JC) Hamiltonian and can be
integrated exactly [8,9]. In spite of the simplicity of the JC model,
the dynamics have turned out to be very rich and complex. In
fact, this model has revealed interesting phenomena related to
the quantum nature of the light, encompassing the granular na-
ture of the electromagnetic field, revealed through the existence
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of nonclassical effects such as revival of the atomic inversion, Rabi
oscillations, squeezing [10,11], and atom–atom or atom–field en-
tanglement [12].

The manipulation of atom–field interaction has been employed
in cavity quantum electrodynamics, as well as in the atomic tele-
portation process, which have contributed to a fast development of
quantum information theory [13]. With the experimental progress
of some systems it was found that the coupling between the sys-
tems may be made very large, and the RWA breaks down so that
only the Rabi model describes the dynamics correctly [14]. In ad-
dition, recent papers have questioned the validity of the RWA
[14,15] and proposed alternative analytical approximate methods
[4,5]. Moreover, it has been shown that the counter-rotating terms
are responsible for several novel quantum-mechanical phenom-
ena [16].

Strict analysis of the validity of the RWA is not usually consid-
ered in concrete applications, and the range of system parameters
where the results are meaningful remains uncertain. Therefore, it is
of great interest to explore approximate solutions of more complex
Hamiltonians that contain the counter-rotating terms for a wide
range of the system parameters, and compare them with the RWA
results. Such studies are useful for determining the limits of va-
lidity of the JC models. In the present work the counter-rotating
terms are explicitly taken into consideration along with a simulta-
neous inclusion of an intensity dependent coupling in the bosonic
part of the interacting Hamiltonian. Further incorporation of two
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laser fields with different amplitudes and frequencies in the quan-
tum regime involving two-photon transitions generates in essence
a highly nonlinear Hamiltonian. The previously uninvestigated re-
sulting two-level model will be tackled through time-dependent
perturbation expansion of the evolution operator. Thus, density
operator matrix elements which are necessary to compute dif-
ferent nonclassical properties arising from an excited state and
its decay to the ground state in the two-level system are to be
computed through first- and second-order of the chronologically
ordered time-dependent perturbation expansion of the interaction
picture evolution operator for the ground and excited states, re-
spectively. Such a generalization is of considerable interest because
of its relevance to the study of the coupling between a single atom
and the radiation field with the atom making k-photon transitions.
To illustrate the applicability of the model numerical simulations
of the normal squeezing variance and entropy squeezing factors
based on the Heisenberg uncertainty principle and Shannon infor-
mation theory derived from entangled states are presented.

2. Atom–cavity interaction generalized model

Let us consider a bosonic system S , with Hilbert space S (S)

which is coupled with a two-level atom, with Hilbert space S (B) .
Let us assume that the complete system is in thermal equilibrium
with a reservoir at temperature β−1. It is important to keep in
mind that the presence of the reservoir only takes the atom (or in
fact, any other two-level system) and the bosonic modes in ther-
mal equilibrium. Let us denote by H S , H B , and H I the Hamilto-
nians of the bosonic field, the two-level atom, and the interaction
between both systems, respectively. The Hamiltonian for the total
system can be written as

H = H S ⊗ I B + I S ⊗ H B + HI ≡ H0 + HI , (2.1)

where I S and I B denote the identities in the Hilbert spaces of the
bosonic field and the atomic system.

The aim of this section is to introduce the necessary formalism
to develop generalized models of two-level systems in which the
counter-rotating terms are not ignored and an intensity dependent
nonlinear coupling is explicitly incorporated in the Hamiltonian. It
is further assumed that the electromagnetic field is associated with
two modes of monocromatic radiation and induces two-photon
transitions. This makes the present model to be strongly nonlin-
ear and therefore only approximate solutions can be developed.
The system dynamics will be explored through the density oper-
ator formalism emerging from the chronologically ordered time-
dependent perturbation Dyson expansion. The complete Hamilto-
nian for such model reads

H = h̄
2∑

j=1

ν ja
†
ja j ⊗ I B + I S ⊗ h̄/2ωσz

+ h̄
2∑

j=1

g j
(

Rk
j + R†k

j

) ⊗ σx ≡ H0 + HI , (2.2)

where ν j and g j are the photon frequency and atom–field cou-
pling constant (vacuum Rabi frequency) for the mode j respec-
tively; a†

j (a j) is the creation (annihilation) bosonic operator for
the mode j, the zero-point energy of the bosonic field was omit-
ted, and a constant term 1/2(ωa + ωb), where ωa and ωb are
the energies of the ground (|a〉) and excited (|b〉) states of the
two-level system, was ignored. As usual, we are using the pseudo-
spin operators σ+ = |b〉〈a|, σ− = |a〉〈b|, σx = |b〉〈a| + |a〉〈b|, and
σz = |b〉〈b| − |a〉〈a| for the two-level atom which satisfy the stan-
dard angular momentum commutation relations corresponding to
spin 1/2 Pauli operators, and therefore, they constitute a basis of
the SU(2) algebra. Thus, these atom-flip operators characterize the
effective two-level system with transition frequency ω = ωb − ωa .
In Eq. (2.2) Rk

j and R†k
j are intensity dependent shifting operators

involving k photons, i.e.,

Rk
j = ak

j

(
a†

ja j
)1/2

, (2.3)

and its Hermitian conjugate

R†k
j = (

a†
ja j

)1/2
a†k

j . (2.4)

In the present generalized model the counter-rotating terms
Rk

jσ
− + R†k

j σ+ , ignored under WRA, are retained in the Hamil-
tonian (2.2). It is convenient to work in the interaction picture
with the Hamiltonian given by

V(t) = U †
0(t)HI U0(t), (2.5)

where U0 is the unitary time evolution operator for the unper-
turbed Hamiltonian and which merely contributes a phase factor
in each atomic subspace. Using the expansion

exp(αA)B exp(−αA) = B + α[A, B] + α2/2![A, [A, B]] + · · · ,
(2.6)

along with the commutation relations[
a†

ja j, Rk
i

] = −kRk
i δi j, (2.7)[

a†
ja j, R†k

i

] = kR†k
i δi j, (2.8)

and consequently noting that

exp
(
iν ja

†
ja jt

)
Rk

j exp
(−iν ja

†
ja jt

) = Rk
j exp(−iν jkt), (2.9)

exp
(
iν ja

†
ja jt

)
R†k

j exp
(−iν ja

†
ja jt

) = R†k
j exp(iν jkt), (2.10)

exp(iωtσz/2)σx exp(−iωtσz/2) =
(

0 exp(iωt)

exp(−iωt) 0

)
,

(2.11)

the interaction picture Hamiltonian (2.5) can be written as

V(t) = h̄

(
0 exp(iωt)

exp(−iωt) 0

) 2∑
j=1

g j
(

Rk
j exp(i� jt) + h.c.

)
,

(2.12)

with the detuning parameter � j for the mode j given by

� j = ω − kν j . (2.13)

These detunings between the cavity mode and the atomic transi-
tion can have an important influence on the nonclassical effects,
as recently reported in the case of a two-level atom coupled to a
single mode of cavity fields [17].

The dynamics of the present model is not stationary and de-
pends on the initial conditions of the system and the cavity field.
Thus, it is assumed that, initially, the field modes are in coherent
states and the atomic system is in the excited state |b〉, that is, the
atomic system and the field are initially in a disentangled state.
It is further assumed that at t = 0, the two modes have the same
photon distribution with density operator

ρ(0) = ∣∣ψ(0)
〉〈
ψ(0)

∣∣
=

∞∑
n1=0

∞∑
n2=0

∞∑
m1=0

∞∑
m2=0

cn1n2(0)c∗
m1m2

(0)|b;m1m2〉〈b;n1n2|

(2.14)
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where

cm1m2(0) = [
ρm1m1(0)ρm2m2(0)

]1/2
. (2.15)

Since in this model system H0 does not commute with H I , the
set of interaction picture Hamiltonians V (t1), V (t2), . . . , taken at
different times t1, t2, . . . , fail to commute. In fact, after some rather
lengthy algebra, the commutator [H(t1), H(t2)] is found to be[

V(t1), V(t2)
]

= 2i
2∑

j=1

g2
j

[
sin

(
ω(t1 − t2)

)
σz

(
R2k

j exp
(
i� j(t1 + t2)

) + h.c.
)

+ sin
(
� j(t1 − t2)

)(
0 exp(iω(t1 − t2))

exp(−iω(t1 − t2)) 0

)

× [
Rk

j, R†k
j

]]

+ 2ig1 g2 sin
(
ω(t1 − t2)

)
σz

[(
Rk

1 Rk
2α(t1, t2) + h.c.

)
+ (

R†k
1 Rk

2β(t1, t2) + h.c.
)]

, (2.16)

with the two-time dependent scalar functions α(t1, t2) and
β(t1, t2) given by

α(t1, t2) = exp
[
i(�2t1 + �1t2)

]
+ exp

[
i(�1t1 + �2t2)

]
, (2.17)

β(t1, t2) = exp
[
i(�2t1 − �1t2)

]
+ exp

[
i(−�1t1 + �2t2)

]
. (2.18)

We deal with off-resonant states (this corresponds obviously to the
nondegenerate case of the two modes of the field), i.e., � j �= 0
( j = 1,2) with �1 �= �2 and with exact resonance of one mode
(i.e., �1 �= 0, �2 = 0). Therefore, perturbation expansion of the
time evolution operator matrix elements truncated to a finite-order
has to be used. The time evolution operator in the interaction pic-
ture reads (Dyson expansion)

UI (t) = F exp

[
− i

h̄

t∫
0

V(t)dt

]
, (2.19)

where F is the time-ordering operator, which is a shorthand no-
tation for the expansion

F exp

[
− i

h̄

t∫
0

V(t)dt

]

= 1 − i

h̄

t∫
0

V(t1)dt1 +
(−i

h̄

)2 t∫
0

dt1

t1∫
0

dt2 V(t1)V(t2)

+
(−i

h̄

)3 t∫
0

dt1

t1∫
0

dt2

t2∫
0

dt3 V(t1)V(t2)V(t3) + · · ·

≡
∞∑

n=0

UIn(t). (2.20)

The different contributions to the interaction picture time evolu-
tion operator up to second-order are given by (U I0 = 1)

UI1(t) =
2∑

g j
(

A j(� j; t)Rk
j + A j(−� j; t)R†k

j

)
, (2.21)
j=1
where the two-signature matrix A j(� j; t) is given by

A j(� j; t) =
(

0 φ j(ω;� j; t)

φ j(−ω;� j; t) 0

)
, (2.22)

with the time-dependent scalar functions φ j(ω;� j; t)

φ j(ω;� j; t) = 1 − exp(i(ω + � j)t)

ω + � j
. (2.23)

The second-order contribution is

UI2(t) =
2∑

i, j=1

gi g j
(

Rk
i Rk

j Ai j(�i;� j; t)

+ Rk
i R†k

j Ai j(�i;−� j; t) + R†k
i Rk

j Ai j(−�i;� j; t)

+ R†k
i R†k

j Ai j(−�i;−� j; t)
)
, (2.24)

where the four-signature matrix Aij(�i;� j; t) reads

Aij(�i;� j; t)

=
(

φi j(ω;�i;� j; t) 0

0 φi j(−ω;�i;� j; t)

)
, (2.25)

with the time-dependent scalar functions φi j(ω;�i;� j; t) given by

φi j(ω;�i;� j; t) = exp(i� jt)

ω − �i

(
exp(iωt)

ω + � j
− exp(i�it)

�i + � j

)

+ 1

(ω + � j)(�i + � j)
, (2.26)

along with the diagonal contributions

φii(ω;±�i;∓�i; t) = exp(i(ω ∓ �i)t)

(ω ∓ �i)
2

− it

ω ∓ �i
. (2.27)

The entangled interaction picture state vector at any time t
emerges from the coherent state |ψ(0)〉 implicit in Eq. (2.14) via
the unitary time-evolution operator U I (t)

∣∣ψI (t)
〉 = ∞∑

n=0

∞∑
m1=0

∞∑
m2=0

cm1m2(0)UIn(t)|b;m1m2〉. (2.28)

Up to this point the developed formalism is completely general,
allowing to investigate k photons transitions within the frame-
work of time-dependent perturbation theory. The present study
will be restricted to two-photon transitions, i.e., k = 2 in Eqs. (2.21)
and (2.24). Different contributions to the time-evolution operator
matrix elements can be evaluated through

ap
i |ni〉 =

√
ni !

(ni − p)! |ni − p〉, (2.29)

a†q
j |n j〉 =

√
(n j + q)!

n j ! |n j + q〉, (2.30)

with i, j = 1, 2 and p � ni . Thus, projection of ψI (t) onto 〈a;n1n2|
allows to write the first-order contribution to the time-evolution
operator matrix element as

〈a;n1n2|UI1(t)|b;m1m2〉 =
∑
i �= j

gi
(

U +
I1;i j(t) + U −

I1;i j(t)
)
, (2.31)

with the signatures

U +
I1;i j(t) = Q mi φ

+
i (−ω; t)δnimi−2δn jm j , (2.32)

and



1484 H. Grinberg / Physics Letters A 374 (2010) 1481–1487
U −
I1;i j(t) = Q mi+2φ

−
i (−ω; t)δn1mi+2δn j,m j , (2.33)

where the notations φ+
i (−ω; t) ≡ φi(−ω;�i; t) and φ−

i (−ω; t) ≡
φi(−ω;−�i; t) have been used and where Q mi = mi(mi − 1)1/2.
With these ingredients the density operator diagonal matrix ele-
ment for the ground state |a〉 and for specific quantum numbers
n1, n2 of the bosonic field is obtained as

ρaa
n1n2

(t) =
∣∣∣∣∑

i �= j

gi

(√
ρ+

i j (t) +
√

ρ−
i j (t)

)∣∣∣∣
2

, (2.34)

where
√

ρ+
i j (t) and

√
ρ−

i j (t) are obtained from Eq. (2.28) us-

ing (2.15) for the initial condition at t = 0, and contracting the
resulting ket |ψI (t)〉 by means of the orthonormality of the photon
states |n1n2〉 = |n1〉 ⊗ |n2〉. This procedure yields√

ρ+
i j (t) = Q ni+2φ

+
i (−ω; t)

√
ρni+2ni+2(0)ρn jn j (0), (2.35)

and√
ρ−

i j (t) = Q ni φ
−
i (−ω; t)

√
ρni−2ni−2(0)ρn jn j (0). (2.36)

Similar arguments show that the nonvanishing zeroth- and second-
order contributions to the time dependent evolution operator ma-
trix element for the excited state |b〉 can be written as

〈b;n1n2|U I0|b;m1m2〉 = δn1m1δn2m2 , (2.37)

and

〈b;n1n2|UI2(t)|b;m1m2〉
=

∑
i �= j

(
U ++

I2;i j(t) + U +−
I2;i j(t) + U −+

I2;i j(t) + U −−
I2;i j(t)

)
, (2.38)

respectively. Here the different signatures are given by

U ++
I2;i j(t) = g2

i Q ni Q ni−2φ
++
ii (ω; t)δnimi−4δn jm j

+ gi g j Q ni Q n j φ
++
i j (ω; t)δnimi−2δn jm j−2, (2.39)

with φ++
i j (ω; t) ≡ φi j(ω;�i;� j; t);

U +−
I2;i j(t) = g2

i Q 2
ni+2φ

+−
ii (ω; t)δnimi δn jm j

+ gi g j Q ni Q n j+2φ
+−
i j (ω; t)δn1mi−2δn jm j+2, (2.40)

with φ+−
i j (ω; t) ≡ φi j(ω;�i;−� j; t);

U −+
I2;i j(t) = g2

i Q 2
ni

φ−+
ii (ω; t)δnimi δn jm j

+ gi g j Q ni+2 Q n j φ
−+
i j (ω; t)δnimi+2δn jm j−2, (2.41)

with φ−+
i j (ω; t) ≡ φi j(ω;−�i;� j; t);

U −−
I2;i j(t) = g2

i Q ni+2 Q ni+4φ
−−
ii (ω; t)δnimi+4δn jm j

+ gi g j Q ni+2 Q n j+2φ
−−
i j (ω; t)δnimi+2δn jm j+2, (2.42)

with φ−−
i j (ω; t) ≡ φi j(ω;−�i;−� j; t). Therefore, the density oper-

ator diagonal matrix element for the excited state |b〉 becomes

ρbb
n1n2

(t) =
∣∣∣∣√ρn1n1(0)ρn2n2(0)

+
∑
i �= j

(√
ρ++

i j (t) +
√

ρ+−
i j (t) +

√
ρ−+

i j (t)

+
√

ρ−−
i j (t)

)∣∣∣∣
2

, (2.43)
with the different signatures of the time dependent density opera-
tors given by√

ρ++
i j (t)

= g2
i Q ni+4 Q ni+2φ

++
ii (ω; t)

√
ρni+4ni+4(0)ρn jn j (0)

+ gi g j Q ni+2 Q n j+2φ
++
i j (ω; t)

√
ρni+2ni+2(0)ρn j+2n j+2(0),

(2.44)√
ρ+−

i j (t)

= g2
i Q 2

ni+2φ
+−
ii (ω; t)

√
ρnini (0)ρn jn j (0)

+ gi g j Q ni+2 Q n j φ
+−
i j (ω; t)

√
ρni+2ni+2(0)ρn j−2n j−2(0),

(2.45)√
ρ−+

i j (t)

= g2
i Q 2

ni
φ−+

ii (ω; t)
√

ρnini (0)ρn jn j (0)

+ gi g j Q ni Q n j+2φ
−+
i j (ω; t)

√
ρni−2ni−2(0)ρn j+2n j+2(0),

(2.46)√
ρ−−

i j (t)

= g2
i Q ni−2 Q ni φ

−−
ii (ω; t)

√
ρni−4ni−4(0)ρn jn j (0)

+ gi g j Q ni Q n j φ
−−
i j (ω; t)

√
ρni−2ni−2(0)ρn j−2n j−2(0),

(2.47)

while the off-diagonal matrix elements ρab
n1n2

(t) satisfy

∣∣ρab
n1n2

(t)
∣∣2 � ρaa

n1n2
(t)ρbb

n1n2
(t), (2.48)

with ρab
n1n2

(t) = ρba∗
n1n2

(t) and the equality holding only for pure
states. Thus, the density operator matrix elements ρaa

n1n2
(t),

ρbb
n1n2

(t), and ρab
n1n2

(t) were generated from the initial condition
at t = 0 via ρn1n2 (0) and from certain time dependent scalar func-
tions arising from the time dependent Dyson expansion of the evo-
lution operator. Various nonclassical effects in the present model
can be generated by choosing different initial states of the field
and the system. As the number of excitations, field plus atom, is a
constant of motion in the JC model, there are only two physically
relevant parameters: detuning � j between the atomic transition
frequency ω and the field mode frequency ν j and atom–field cou-
pling g j . In the present generalized model, however, the number
of excitations is not conserved and all three parameters are of
importance. In the next section the normal and entropy squeezing,
based on the Heisenberg (variance) relation and on the information
quantum entropy will be discussed through numerical simulations
for specific values of these parameters.

3. Variance and Shannon information entropy squeezing

Squeezing phenomenon is one of the most interesting phenom-
ena in the field of quantum optics [18]. It reflects the nonclassical
behavior for the quantum systems. Squeezed light has less noise in
one of the field quadratures than the vacuum level and an excess
of noise in the other quadrature such that the Heisenberg uncer-
tainty principle is satisfied. To discuss the normal squeezing we
use the squeezing factor

Q ij = 1 − 4
〈(
�X (i))2〉

, (3.1)
j
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where 〈(�X (i)
j )2〉 is the variance for the mode i and field quadra-

ture operator j, defined in terms of the creation a†
i (t) and anni-

hilation ai(t) photon operators. These variances satisfy the Heisen-
berg uncertainty principle and therefore, by definition, squeezing is
said to exist whenever the variance 〈(�X (i)

j )2〉 is below the stan-
dard quantum limit. Thus 0 < Q ij � 1 for squeezing. The required
expectation values of the normally-ordered operators involved in
Eq. (3.1) can be computed via density operator traces standard
techniques [11] with the initial state of the field given in terms
of the Poisson distribution

ρnini (0) = 〈ni〉ni e−〈ni〉

ni ! , (3.2)

where 〈ni〉 is the initial mean photon number for the mode i.
Fig. 1 shows the time evolution of the second-order quadra-

ture variance 〈(�X (2)
1 )2〉 computed for two different sets of nu-

merical parameters, assuming that the initial state of the atomic
system is the excited state and the field modes are initially in
coherent states. In Fig. 1(a) the following parameters were used:
ω = 83 cm−1, �1 = 53 cm−1, �2 = 37 cm−1, g1 = 400 cm−1,
g2 = 833 cm−1, 〈n1〉 = 25, 〈n2〉 = 12. In the short time regime it
is observed that the time evolution does bring about noise re-
duction in this quadrature when the counter-rotating terms are
retained (solid line). However, incorporation of the rotating wave
approximation (dashed line) does not produce any evidence of
such reduction over the time scale considered. This is to be ex-
pected since the ratio gi/�i corresponds in this case to the limit
of strong coupling for both modes, where the RWA is not applica-
ble. The persistent behavior of noise reduction in the limit of no
rotating wave approximation is also evident in the limit of exact
resonance of one of the field modes with the transition frequency
of the system. This is evident in Fig. 1(b), where the system param-
eters are ω = 1267 cm−1, �1 = 833 cm−1, �2 = 0, g1 = 3.3 cm−1,
g2 = 600 cm−1, 〈n1〉 = 28, 〈n2〉 = 10. This figure shows a reason-
able amount of squeezing (more than 25%) over the whole range
of the time scale considered. A comparison of Figs. 1(a) and 1(b)
shows that the curves monotonically approach a plateau as it
should for an irreversible process. In both of these cases the system
remains unsqueezed and squeezed, respectively, for all t . Thus, in
off-resonant and nondegenerate states (0 �= �1 �= �2 �= 0) as well
as in states of exact resonance of one mode (�1 �= 0, �2 = 0) it
is then apparent that the value of the coupling constants as well
as the atomic transition and field mode frequencies all play an
important role in determining the behavior of the normal second-
order squeezing. Squeezed states, even those appearing in transient
times, could be of interest for quantum information processing.

For a two-level system, characterized by the Pauli operators
(σx, σy, σz), the Heisenberg uncertainty relation is given by

�σi�σ j �
∣∣〈σk〉

∣∣εi jk (3.3)

where �σ = [〈σ 2〉− 〈σ 〉2]1/2, with the commutation relations σ ∧
σ = 2iσ . Fluctuations in the component σi of the atomic system
are said to be squeezed if σi satisfies the condition

V (σi) = �σi − ∣∣〈σ j〉
∣∣1/2

< 0, i �= j. (3.4)

However, as claimed by Mao-Fa Fang et al. [19] the value of 〈σi〉
is highly dependent on the atomic states used to perform the
average, and may be zero for some states, in which case the uncer-
tainty relation Eq. (3.3) is trivially satisfied (as �σi � 0) and fails
to provide any useful information. For example, for some states
one can have 〈σi〉 = 0, and therefore is not possible to obtain
any information on squeezing from the inequality (3.3). Actually,
these states may be considered to be maximally squeezed states
(a)

(b)

Fig. 1. Time evolution of the normal squeezing factor Q ij of a two-level atom inter-
acting with a bimodal cavity. The atom is initially in the excited state and the field
in the coherent state. The value of the different parameters is given in the text.
(a) Without RWA and with RWA; (b) without RWA.

of the atomic system from the entropy point of view. To over-
come the limitations of the Heisenberg uncertainty relation quan-
tum entropy theory based on Shannon information theory must be
used [19,20].

In an even N-dimensional Hilbert space, the investigation of the
optimal entropic uncertainty relation for sets of N + 1 complemen-
tary observables with nondegenerate eigenvalues can be described
by the inequality [21,22]

N+1∑
i=1

H(σi) � N

2
ln

(
N

2

)
+

(
1 + N

2

)
ln

(
1 + N

2

)
, (3.5)

where H(σi) represents the Shannon information entropy associ-
ated to the observable σi

H(σi) = −Trρ(σi) lnρ(σi), (3.6)

and ρ(σi) is the reduced density operator associated to the atomic
distribution, obtained by taking the trace of the density matrix
over the bosonic field. For a pure disentangled state H(σi) = 0.

Since the uncertainty relation of the entropy can be used as a
general criterion for the squeezing in the entropy of an atom, for a
two-level atom where N = 2, we have 0 � H(σi) � ln 2, and hence
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(a)

(b)

Fig. 2. Time evolution of the variance entropy squeezing factors of a two-level atom
interacting with a bimodal cavity without RWA. The atom is initially in the excited
state and the field in a coherent state. The value of the different parameters is given
in the text. (a) Variance squeezing factor based on the Heisenberg uncertainty rela-
tion V (σi); (b) entropy squeezing factor based on the information entropy E(σi).

it follows that the information entropies of the operators σx, σy ,
and σz will satisfy the inequality

δH(σx)δH(σy)δH(σz) � 4, (3.7)

where it was defined δH(σi) = exp[H(σi)]. δH(σi) = 1 corresponds
to the atom being in a pure state and δH(σi) = 2 corresponds to
the atom being in a completely mixed state. In fact, the Hamil-
tonian given by Eq. (2.2) leads to the entanglement between the
two-mode entangled coherent field and the atom, so that the
states of the two-mode entangled coherent field may evolve into a
mixed state. In this case, the degree of entanglement between the
two-mode field and the atomic system can be measured by the
quantum relative entropy of the entanglement. Thus, fluctuations
in the component σi of the atomic dipole are said to be squeezed
in entropy if the information entropy H(σi) satisfies the condition

E(σi) = δH(σi) − 2√
δH(σ j)

< 0, i �= j. (3.8)

The time evolution of the squeezing factors, V (σx), V (σy),
E(σx), and E(σy) are shown in Fig. 2. In this figure the val-
ues of the different parameters for the first and second quadra-
tures of the variance and entropy squeezing are ω = 600 cm−1,
�1 = 500 cm−1, �2 = 0, g1 = 1.3 cm−1, g2 = 0.8 cm−1, with the
atom initially in the excited state and the field in a coherent state
with average photon numbers 〈n1〉 = 15, 〈n2〉 = 9. It is seen that at
t � 0.4 ps squeezing occurs several times in the second quadra-
ture of the entropy squeezing E(σy), but it is absent from the
first quadrature E(σx). For the variance squeezing the situation is
similar where the squeezing occurs twice in V (σx) at times less
than 0.6 ps and several times from the quadrature V (σy) over the
whole range of the time scale considered. It is also noted that the
period of the oscillations in both quadratures of the entropy and
variance squeezing is very similar, with a regular pattern above
0.8 ps, where squeezing is only observed for the second quadrature
of the entropy and variance squeezing. In addition, rapid fluctua-
tions occurring at t < 0.6 ps are observed in the first quadrature
of variance squeezing, with some interferences between the pat-
terns pronounced in E(σx) and V (σx). However, we realize that
for t > 0.8 ps there is a decreasing in the variance and entropy
squeezing amount in the second quadrature, with regular fluctua-
tions in both quadratures. On the other hand, a reduction in the
amplitudes in both quadratures of squeezing factors V (σx) and
E(σx) is clearly observed. In other words, the time evolution of
the degree of entanglement between the two-mode field and the
atomic system carries out a damping oscillation, which means that
the atom and two-mode field combined system cannot recover
its initial maximal entangled state periodically. In the long time
regime this clearly corresponds to an irreversible phenomenon due
to the decoherence resulting from the energy exchange between
the atom and the field modes during the interaction process. In
the vicinity of t � 0.8 ps a ghost is observed in the variance and
entropy squeezing factors in the form of a sudden small variation
in the entropy. This dip indicates a competition between the irre-
versible effects of chaos and reversible effects.

Having discussed the general behavior of the variance and en-
tropy squeezing it should be addressed some particular points. For
example, E(σx) in Fig. 2(b) exhibits an almost optimal entropy
squeezing E(σx) � −0.34 < 0 at the time 0.1 ps, just 0.07 units
above the optimal entropy squeezing factor,2 i.e., at this time the
atom has achieved an almost pure state with a small entangle-
ment (Trρ2(t) � 0.97 at t = 0.1 ps). This state is just an eigenstate
of the atomic operator σx . By contrast, at t = 0.1 ps the second
quadrature σy has an entropy squeezing factor E(σy) � 0.586 > 0
footnote 2 and therefore this state evolves towards a completely
mixed entanglement state. This shows that the operator σx exhibits
an almost optimal entropy squeezing, while no entropy squeez-
ing occurs in the operator σy . In fact, if the atom was exactly in
an eigenstate of σx , we would have �σx = 0, its smallest possi-
ble value. However, V (σx), as it can be seen in Fig. 2(a), does not
exhibit any variance squeezing, since the atomic inversion satisfies
〈σz〉 = 0 at that time, and the value of V (σx) has no particular sig-
nificance. In this case, the information provided by the Heisenberg
uncertainty relation (3.3) is not helpful. A similar analysis can be
made for the other two maxima (peaked at E(σy) � 0.586) and the
concomitant two minima observed for the second and first quadra-
ture entropy squeezing factors respectively.

4. Final remarks

In this Letter a previously uninvestigated highly nonlinear
model consisting of a two-level atom interacting with a bimodal
cavity field via two-photon transitions was implemented. The pro-

2 Using Eqs. (3.6) and (3.7), the information entropies of the atomic operators σx ,
σy , σz are obtained as H(σx) = 0, H(σy) = H(σz) = ln 2. Correspondingly, we find
δH(σx) = 1 and δH(σy) = δH(σz) = 2. Using these results we calculate the entropy
squeezing factors E(σx) � −0.414 < 0 and E(σy) � 0.586 > 0 for the disentangled
and entangled states respectively.
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cedure, based on the Dyson expansion of the time evolution op-
erator matrix elements for the initial (excited) and ground states,
retains the counter-rotating terms in the Hamiltonian along with
an intensity dependent nonlinear coupling, which renders the
present method to be a novel procedure allowing to further inves-
tigate nonclassical effects in two-level systems. This is especially
relevant in the strong coupling regime, where other approaches
such as the RWA fail to give reasonable results or tend to be
cumbersome. The method developed is purely analytical, but once
the time evolved density matrix elements are obtained, all var-
ious physical quantities are easily numerically obtainable. Thus,
the normal and entropy squeezing, based on the Heisenberg (vari-
ance) and on the entropic uncertainty relations were discussed.
The results obtained show that the Shannon information entropy
satisfactorily explains the entanglement phenomenon in terms of
a measure of the quantum uncertainty of atomic operators and
seem to confirm the idea that the concept of entropic squeezing
is preferable to that of variance squeezing based on the Heisen-
berg uncertainty principle containing only second-order statistical
moments, in agreement with previous findings [19,23]. The model
may be meaningful to explore the dynamics of nonclassical ef-
fects in more general models, such as two-mode Raman coupled
model [24] and resonance fluorescence, e.g., squeezing of a two-
level atom resonantly driven by a laser field [19]. Work along these
lines is in progress and will be reported at a later time.
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