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Simulating Bell inequality violations with
classical optics encoded qubits
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We present here a classical optics device based on an imaging architecture as an analogy of a quantum system
where the violation of the Bell inequality can be evidenced. Quantum states are encoded using an electromag-
netic wave modulated in amplitude and phase. Unitary operations involved in the measurement of the observ-
ables are simulated with the use of a coherent optical processor. The images obtained in the output of the
process contain all the information about the possible outcomes of the joint measurement. By measuring the
intensity distribution in the image plane we evaluate the mean values of the simulated observables. The ob-
tained experimental results show how some correlations of Clauser–Horne–Shimony–Holt-type exceed the up-
per bound imposed by the local realism hypothesis as a consequence of the joint effect of entanglement and
two-particle interference. © 2010 Optical Society of America
OCIS codes: 000.1600, 200.3050, 270.5585.
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. INTRODUCTION
n this paper we present a classical wave optics analogy of
ome well known quantum experiments involving Bell in-
quality violations. The optical simulation of quantum
ystems is based on the wave features of quantum me-
hanics. The main idea is to exploit the wave nature of the
lectromagnetic field in order to represent the quantum
tate of one or more particles. In this representation, the
robability amplitude of the occurrence of each state of a
asis is associated with the complex amplitude of the elec-
romagnetic field, and temporal evolutions are simulated
y means of the propagation of the field through an opti-
al system. Quantum phenomena can be understood as a
onsequence of the wave nature of the evolution of quan-
um states. In this sense, the wave character of the elec-
romagnetic field allows us to simulate, in a pictorial way,
he behavior of the quantum world that usually contra-
icts common sense. Moreover, the classical electromag-
etic field works as an ontological representation of the
ave function and it is a useful tool to visualize the struc-

ure of problems that are usually complex and counterin-
uitive. This kind of analogy between quantum mechanics
nd optics has been explored in different ways. In pioneer
orks, polarizations and paths of single photons [1] or

lassical electromagnetic waves [2,3] were used for encod-
ng qubits. In several later works, qubits were encoded in
he spatial modulation of the transverse amplitude of an
lectromagnetic field [4–8], in the transverse modes of the
ptical field propagating in multimode waveguides [9], or
n the polarization of two classical fields with different
requencies [10]. In all cited works it was proven that, in
ddition to potential applications, the study of this kind of
imulations of quantum systems may help one to eluci-
ate the fundamental differences between classical wave
nd quantum systems. Particularly, the exploration of
0740-3224/10/040779-8/$15.00 © 2
lassical wave analogies of quantum nonlocality is inter-
sting not only from an academic point of view but also to
ield new insights into fundamental features of quantum
echanics.
Violation tests of Bell inequalities have become a fun-

amental tool for experimentally proving the presence of
ntanglement correlations in quantum systems of general
nterest in areas of quantum information, quantum com-
utation, and foundations of quantum mechanics. In a
eminal paper [11] Einstein, Podolsky, and Rosen (EPR)
stablished their argument of the so-called local realism
ypothesis. According to it, if we accept that certain prop-
rties of a measured system are present prior to and in-
ependent of the observation, then quantum mechanics is
ot a complete theory of nature. Almost 20 years later,
ell [12] showed that, for systems composed of two spin
/2 particles, measurements of some correlated quantities
hould yield different results in the quantum mechanical
ase to those expected if we accept the local realism crite-
ion of EPR. Many experiments confirmed the quantum
redictions using Bell-like systems as entangled photons
n polarization degrees of freedom [13–20], entangled pho-
ons in position-momentum degrees of freedom [21], and
ntangled atoms [22]. More recently, a novel simulation of
ell inequality violations using nuclear magnetic reso-
ance (NMR) techniques was reported [23]. In [24] we can
nd a complete review on Bell inequality violations and
elated problems as hidden variable theories.

In this paper we will show a classical optics analogy of
ell inequality violations. It can be simulated using an

maging architecture similar to those used in optical pro-
essing. In our scheme, qubits are represented as images
nd unitary evolution is simulated by means of coherent
ptical processors. The paper is organized as follows: in
ection 2 we give a brief review of the basic general con-
010 Optical Society of America
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epts of Bell inequality violations. In Sections 3 and 4 we
resent some considerations about optical simulations of
uantum information processing by means of imaging ar-
hitectures. In Section 5, we present the optical setup for
he particular case of the simulation of the Bell inequality
iolations. In Section 6 we present experimental results.
inally we summarize our conclusions in Section 7.

. BELL INEQUALITIES
e will use in this paper the following notation: a state of

he two-dimensional Hilbert space (or the qubit space) is
enoted as a complex linear combination of the two states
f the computational basis ��0� , �1��. A separable state of
he 22-dimensional space of a composed system of two qu-
its is denoted as the product ���A��A � ���B��B, where

��j��j=�j�0�j+�j�1�j (with j=A ,B) is the quantum state as-
ociated with the qubit A or B, respectively. In what fol-
ows we briefly describe the Clauser–Horne–Shimony–
olt (CHSH) approach to Bell-type experiments [25]. Let
s suppose that two spacelike separated observers (Alice
nd Bob) share an ensemble of entangled states ���AB

��0�A � �0�B+ �1�A � �1�B� /�2 (subindices A and B denote
he observers or, equivalently, the qubits they will each
easure). Let us consider two pairs of local physical ob-

ervables: A and A� for Alice, and B and B� for Bob. As
sual, we will define these observables as

A = �̂ · �� A, A� = �̂� · �� A, B = �̂ · �� B, B� = �̂� · �� B,

�1�

here �̂ , �̂� , �̂ , �̂� are unit vectors and �� A and �� B are vec-
ors whose components are the Pauli matrices operating
n the local subspaces associated with Alice and Bob, re-
pectively.

If Alice and Bob make a random choice of one observ-
ble of their pair and then perform a simultaneous mea-
urement, they have the following four possible nonlocal
ombinations: A � B, A � B�, A� � B, and A� � B�. After sev-
ral repetitions of the experiment, they can calculate the
xpected value of the quantity O=A � B+A � B�+A� � B�
A� � B. Since Pauli matrices do not commute, quantum
echanics asserts that the four nonlocal observables in

ach term of O are not compatible and therefore cannot be
imultaneously measured. Moreover, the Bohr principle of
omplementarity [26] claims that we are forbidden to con-
ider simultaneously the possible outcomes of mutually
xclusive experiments. However, according to the local re-
lism hypothesis, there exist local hidden parameters
hich completely determine the outcomes of the chosen
easurement. Moreover, these parameters also deter-
ine the outcomes that we would have if we have mea-

ured an observable which is incompatible with that ac-
ually measured. We have no control on hidden
arameters and so there are some degrees of freedom that
re not precisely known. In the case of the Bell experi-
ent, each hidden parameter assigns well defined out-

omes of �1 to each local measurement. It has been dem-
nstrated that under such a condition the expected value
f the nonlocal quantity O satisfies the CHSH form of the
ell inequality [25],
��O�� = ��A � B� + �A � B�� + �A� � B�� − �A� � B�� � 2.

�2�

e will inspect the particular case ��̂=��̂= ẑ so that
�=B�	C. With this assumption, �A� � B��= �C � C�= ẑ · ẑ
+1 for the state we have chosen, and the left of the Bell

nequality (2) becomes

�O� = �A � B� + �A � C� − �C � B� � 1. �3�

he equation above must be satisfied for arbitrarily cho-
en observables A and B with C=�z. Without loss of gen-
rality and for practical reasons, we will set the following
hree observables:

A = �x, B = sin � �x + cos � �z, C = �z. �4�

dditionally, in order to emphasize the role of two-
article interference effects in the mechanism of Bell in-
quality violations, we will analyze both the case of maxi-
ally entangled states and the case of mixed states. Let
s consider the expectation value of the quantity O with
espect to the mixed state whose density matrix is the
onvex sum of the pure entangled state �pure= ���AB���AB
nd the maximally mixed state: �mixed= 1

2 
��0�A
� �0�B���0�A � �0�B�+ ��1�A � �1�B���1�A � �1�B��. Therefore the
tate can be written as

� = q�pure + �1 − q��mixed =
1

2�
1 0 0 q

0 0 0 0

0 0 0 0

q 0 0 1
 , �5�

here the matrix representation is given in the computa-
ional basis ��0�A , �1�A� � ��0�B , �1�B� and q� 
0,1�. The
tate of Eq. (5) is a pure state for q=1 and becomes mixed
f 0�q	1 owing to the loss of the off-diagonal coherence
omponents of the density matrix. The maximally mixed
tate corresponds to q=0. Evaluating the expected value
f the quantity O with respect to state (5) and setting the
bservables defined in Eq. (4) we have

�O���� = tr
�A � B��� + tr
�A � C��� − tr
�C � B���

= q sin � − cos �. �6�

his last result contradicts the Bell inequality (3) if
c�q�	�	
, where �c�q� is the solution of the equation q
�1+cos �� /sin � that always exists in the interval 0	�

 for all 0	q�1. The maximal violation occurs for
=1 and corresponds to the Bell state which is pure and
aximally entangled. On the contrary, there is no quan-

um correlations in the case of the maximally mixed state
=0 and therefore the Bell inequality is not violated. In
he next sections we will describe the problem underlined
bove with elements of classical optics.

. ENCODING QUBITS IN OPTICAL SCENES
e use a method which is extensively discussed in the lit-

rature [2,3,5] based on the representation of qubits as
osition C-bits. According to this method in the input
cene we encode the logical values �0� and �1� of a single
ubit in two slices located in the left and right halves of
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he full plane, respectively. Let �xo ,yo� be the coordinates
f the input plane. As the representation is one-
imensional, we have translational symmetry with re-
pect to the yo axis, and we can consider only the xo coor-
inate. According to the wave function formalism, the
ptical analogy suggests the following notation:

�xo�0� 	 Rect�xo + a

b �, �xo�xo� 	 Rect�xo − a

b � , �7�

here Rect�x� is a unit rectangle function that takes the
alues of 1 if �x��1/2 and 0 in the other case. Equation (7)
escribes unit amplitude transmittance in a rectangle of
idth b centered at x= ±a �b�a� where the computa-

ional state �0� is associated with the left rectangle and
he computational state �1� is associated with the right
ectangle as it is shown in Fig. 1(a). To encode the more
eneral state of two qubits, the modulation of the complex
mplitude of the field in both slices is needed as we can
ee in Fig. 1(b). The optical analogy of the quantum mea-
urement process is very simple. In fact, if the state ���
��0�+��1� is represented, the relative intensities of the
lices will be precisely ���2 and ���2 and, after renormal-
zation ���2+ ���2=1, they can be interpreted as the prob-
bilities associated with the measurement outcomes of +1
nd 1 in a projective measurement in the computational
asis. A quantum measurement is equivalent to keeping
he left slice with probability ���2 or the right slice with
robability ���2. Moreover, the expected value of �z on the
tate represented can be calculated by extracting infor-
ation from the image presented in Fig. 1(b) as ��z�
tr��z�������= ����2− ���2� / ����2+ ���2�. The scheme de-
cribed above is easily generalizable to represent two or
ore qubits. We can see in Fig. 2 the convention we will

se to accomplish this. We denote A as the qubit encoded
n the up-down direction and B as the qubit encoded in
he left-right direction. In this case the representation of
he two qubit basis will be a two-dimensional extension of
q. (7).

. Pure and Mixed States: The Optical Approach
e will briefly introduce here how we can extend our

imulation to the case of mixed states. A mixed state with
ensity matrix �=�ipi��i���i�, where pi�0 and �ipi=1,
onsists of a set of pure states ���i� , i=1,2, . . . ,n�, each ap-
earing with its respective probability pi. The strategy we
se to simulate and measure mixed states is as follows:
rst we represent an image in the input plane that simu-

ates the member of the ensemble ��i�, which is a pure

ig. 1. Optical representation of the single qubit state. (a) Op-
ical representation of the states of the computational basis. (b)
he input scene associated with the optical single qubit. The
tate ��0�+��1� is represented by the “left” or “right” slices where
he constants � and � are the complex amplitudes of the electro-
agnetic field in each slice.
tate. Then we calculate the expected value of �z, ��z�, as
e have discussed in Section 3, then we multiply the re-

ult by pi, and finally we sum up all the results. In this
ay, since tr��z��=�ipi tr��z��i���i�� the same values as
aving a statistical ensemble will be obtained. It is worth
entioning that following this procedure another analogy

an be achieved using a temporal succession of images
ith a duration Ti. If the total time of the experiment is
, then we select the times so that Ti /T=pi. In this case,
ne has to integrate the output images in the time T of
he experiment. This could be realized using an optical el-
ment capable of modulating the light field in the input
lane in a dynamical way. For practical reasons, we used
he first strategy throughout our work.

. THE OPTICAL U„2… OPERATOR
he key of our work is the possibility of simulating uni-

ary operations acting on a single qubit space. In what fol-
ows we denote the field amplitude as depending on a
ingle relevant coordinate due to the one-dimensional
haracter of the optical simulation of local U�2� operators.
he simulation of U�2� operators acting on single qubit
tates works as follows. The quantum state is encoded in
n input scene located in the previous focal plane of a
pherical lens of focal distance f. For collimated illumina-
ion, this lens allows one to obtain on its back focal plane
he Fourier transform of the input scene, which corre-
ponds to a field distribution whose relevant coordinate is
F. The relationship between the spatial frequency vari-
ble fx and the position coordinate xF on the Fourier plane
s fx=xF /�f, where � is the wavelength of the light field. In
he Fourier plane, a spatial filter of complex transmit-
ance H�fx� is placed. A second spherical lens of focal dis-
ance f is placed so that its previous focal plane lies in the
ourier plane. This lens allows one to obtain the inverse
ourier transform of the product between the Fourier

ransform of the input transmittance and the function
�fx�. The field amplitude in the output plane is the con-

olution between the input complex amplitude and the so-
alled impulse response of the system that is defined as
he inverse Fourier transform of the function H�fx� [27].
n our case, spatial filtering in the Fourier plane is per-
ormed by an almenary phase grating which is a square
ave phase modulation of amplitude 0	�	2
 and spa-

ial period 2p. We denote the width of each square pulse
s p and the position of the center of the pulse in the fre-
uency domain as fc. The complex transmittance of the fil-
er is

ig. 2. Schematic picture of the representation of two qubit
tates by using optical scenes. (a) Spatial organization of the in-
ut plane in order to emulate two qubit states. (b) Optical repre-
entation of the �0�A � �0�B state. (c) Optical representation of the
eneral pure two qubit state. Gray level scale corresponds to dif-
erent amplitudes and phase modulations of the classical
avefront.
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H�fx� = �ei�, if �fx − fc� 	 p/2

1, in other case,� �8�

here the function above is defined in fx� 
−p ,p� and is
xtended by periodicity for all fx�R. The complex trans-
ittance defined in Eq. (8) could be expanded in terms of

ure harmonic components so that the function H�fx� is
ritten as H�fx�=�n�ZCn exp�i�
n /p�fx�. Taking into ac-

ount only the three central diffracted orders (coefficients
0 and C±1), the inverse Fourier transform of the equa-

ion above is

h�x� =�
−�

+�

H�fx�exp�i2
fxx�dfx

= cos
�

2
��x� +

2



sin

�

2
ei�−

��x +
1

2p�
+

2



sin

�

2
ei�+

��x −
1

2p� , �9�

here we have defined the phase constants �±


 /2± �
 /p�fc. Let us suppose now that in the input scene
e represent a complex linear combination of the two

omputational states �xo ��in�=��xo �0�+��xo �1� according
o Eq. (7). The output signal �xi ��out� will be equal to
h��in��xi� corresponding to the convolution between the
nput signal and the impulse response of the system de-
ned in Eq. (9) evaluated in the coordinate xi of the image
lane. The result gives six terms that are the three prin-
ipal diffracted orders of the two slices that represent the
omputational states. Under certain conditions that can
e experimentally controlled, the expression can be sim-
lified. In fact, if we choose a grating whose spatial fre-
uency satisfies the relationship 2p=1/2a with respect to
he spatial separation 2a of the slices, the separation of
he diffracted orders in the final plane will be equal to the
istance of the two slices, allowing the interference be-
ween them as it is suggested in Fig. 3. All diffracted or-
ers located out of the computational regions are not reg-
stered.

The input-output relation of the process in matrix form,
sing the identifications of Eq. (7) is expressed in the rep-
esentation of the computational basis as

ig. 3. Schematic picture of the optically simulated U�2� opera-
ion. Complex amplitudes � and � are mapping onto �� and �� by
eans of a 4f coherent optical processor with an almenary phase

rating in the Fourier plane.
��

�
� → ���

��
� = � cos

�

2

2



sin

�

2
ei�−

2



sin

�

2
ei�+

cos
�

2
��

�
� , �10�

here � and �± are real-valued. The process is schema-
ized in Fig. 3. The similarity between the general expres-
ions of U�2� operators and the two-parameter family of
inear operators of Eq. (10) becomes evident. For instance,
f we want to measure the observable �x, we must apply
he Hadamard operator H [28] and then perform the mea-
urement in the computational basis. This can be done by
etting tan�� /2�=2/
 and fc=−p /2. The Hadamard-like
perator �2H�z obtained in this way can be transformed
n the proper Hadamard operator by placing a phase plate
z in the front of the first lens since �i

2=1∀ i after renor-
alization. Measurement of Hermitian observables de-
ned in the Hilbert space of the two level quantum sys-
em can be simulated in the same way. In Table 1 we show
he unitary change of basis associated with each observ-
ble of Eq. (4) and the corresponding values of the param-
ters � and fc. A phase shift �z in front of the first lens
ust be eventually included.

. OPTICAL IMPLEMENTATION OF THE
NALOGY

he experiment reported in this section, works as a clas-
ical optics analogy of the Bell experiment. We will test
ur setup in two cases which correspond to the two states
=1 and 0 described in Eq. (5). In the first case �q=1� Al-

ce and Bob will share an entangled pair. For simulating
his, we encode the maximally entangled state ���AB

��0�A � �0�B+ �1�A � �1�B� /�2 by uniform illumination of
he top-left and the down-right quarters of the full input
lane [Fig. 4(a)]. In the second case �q=0� the input state
ill be the statistical mixture represented by the density
atrix �mixed= 1

2 
��0�A � �0�B���0�A � �0�B�+ ��1�A � �1�B���1�A
� �1�B�� whose optical analogy is the uniform illumination
f the top-left or the down-right quarters of the full input
lane, each with a probability of 1/2. This is an incoherent
uperposition of the computational states and it should
ot have any quantum correlation [Fig. 4(b)].
The complete optical setup is schematized in Fig. 5. An

rgon laser source ��=477 nm� is filtered and then colli-
ated with lens L0. The collimated beam impinges onto

he binary mask Pi which represents the two qubit state
hat Alice and Bob use during the experiment. The input
cene is placed in the previous focal plane of the lens L1
focal length of 26 cm) that allows one to obtain the Fou-
ier transform of the input in its back focal plane or Fou-

Table 1. Hermitian Observables, Unitary Change
of Basis, and Parameters of the Optical Simulation

ermitian Unitary � fc Phas

x H 2 arctan�2/
� −p /2 �z

in � �x+cos � �z e−i��y/2�z 2 arctan��2/
�tan�� /2�� −p /2 �z

z 1 — — —
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ier plane. In the Fourier plane, we place the spatial filter
or simulating two local unitary operators. According to
revious discussions, this can be done with the composi-
ion of two orthogonal almenary phase gratings as shown
n Fig. 6. Horizontal phase grating with phase modulation
arameter �A produces diffracted orders in the “up-down”
irection from where Alice’s qubit is encoded. Vertical
hase grating with parameter �B produces diffracted or-
ers in the “left-right” direction associated with Bob’s sub-
ystem. The two-dimensional almenary phase grating,
hose phase modulation goes from 0 to �A+�B �mod 2
�
as programmed in a spatial light modulator (SLM). This
evice consists of a Sony liquid crystal display television
LCTV) that combined with two polarizers (P1 and P2)
nd two quarter wave plates (QWP1 and QWP2) acts as a
ostly phase modulator [29]. The LCTV (model
CX012BL) was extracted from a commercial video-
rojector and is a video graphics array (VGA) resolution
anel �640�480 pixels� with square pixels of 34 �m size
eparated by a distance of 41.3 �m. The process is com-
leted with the lens L2 (focal length of 26 cm) that allows
ne to obtain the inverse Fourier transform. The final im-
ge in the output plane Po is captured by a video camera
charge-coupled device (CCD)]. The video camera is a
ony CCD model “Iris, Black and White” 640
480 pixels.
According to Table 1, an additional phase plate that in-

roduces a 
 phase shift in the left-bottom and in the
ight-top quarters of the input wavefront must be in-
luded. Therefore, this phase plate does not affect the il-
uminated zone of the input plane and we can ignore it.

oreover, in the final image, we must take into account
he inversion of the coordinates system whose senses are
ndicated with arrows on the Pi and Po input and output
lanes, respectively, in Fig. 5. The protocol of the full ex-
eriment is depicted in Fig. 6 and can be described as fol-

ig. 4. Optical representation (a) of the maximally entangled
tate, ��0�A � �0�B+ �1�A � �1�B� /�2, and (b) of the maximally mixed
tate, 1

2 
��0�A � �0�B���0�A � �0�B�+ ��1�A � �1�B���1�A � �1�B��, as optical
cenes.

ig. 5. Experimental setup for simulating the Bell experiment
s an imaging system.
ows: each local operation is simulated by using one of the
wo orthogonal almenary phase gratings. The horizontal
odulation from 0 to �A simulates unitary operations on

he Alice up-down encoded qubit, while the vertical modu-
ation from 0 to �B works equally for the Bob left-right en-
oded qubit (Fig. 7). The Alice measurement is fixed to �x
or �z) and, therefore, eventually she only applies a Had-
mard operator before projecting her qubit on the compu-
ational basis. The Bob measurement is varying as
in � �x+cos � �z for 0���2
 and the phase modulation
B���=2 arctan��2/
�tan�� /2�� (see Table 1) has to be
ariable. In both cases the amplitude of the phase modu-
ation is controlled directly by the SLM. Measurement of
z is performed by orthogonal projection on the computa-
ional basis and no phase modulation is needed. The out-
ut scenes corresponding to the three pairs of local mea-
urements (one fixed A � C and two varying A � B and C

� B) are registered by the CCD and recorded for its pos-
erior analysis. The analysis method and the correspond-
ng results will be shown in the next section.

. BELL INEQUALITIES: EXPERIMENTAL
ESULTS
nce the output scenes corresponding to each measure-
ent are obtained, the mean value of the observable �O�

an be easily evaluated. Unitary changes of basis reduce

Fig. 6. Detail of the protocol of the full experiment.

ig. 7. Measuring a two qubit system in computational basis
rom the output distribution intensities.
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he problem of the measurement of an arbitrary observ-
ble into the problem of measuring �z � �z. This is a pro-
ective measurement in the computational basis
�0�A , �1�A� � ��0�B , �1�B�. The results of a projective mea-
urement in the computational basis can be easily inter-
reted in terms of the distributed intensities of the output
eld obtained in our experiment. The underlying process

n the analysis of the output images is depicted in Fig. 7.
n what follows P�Ai ,Bj� with i , j= ±1 is the joint probabil-
ty of, after a projective measurement in computational
asis, A= i and B= j, i.e., the measurement outcomes ob-
ained by Alice and Bob were i and j, respectively. Accord-
ng to the elementary probability theory, this quantity can
e evaluated as P�Ai ,Bj�=P�Bj /Ai�P�Ai�, where P�Bj /Ai� is
he conditional probability of B= j knowing that the result
= i was obtained, and P�Ai� is the probability that the re-

ult A= i was obtained, independent of Bob.
Let us suppose that Alice performs the measurement of

er qubit. As we have discussed above, it means that she
as to keep the up or the down half of the full plane with
ifferent probabilities. The statistical properties of Alice’s
easurement are described by the marginal probabilities

educed from the joint distribution integrated over the
egree of freedom associated with Bob. In the formalism
f quantum mechanics, the marginal distribution of Alice
s defined by the reduced density matrix trB��AB�. From
he optical point of view, the partial trace over Bob’s sub-
ystem means that the accessible information available
or Alice is related to the field distribution in the up-down
irection, independent to the field distribution in the left-
ight direction from where the information available for
ob is encoded. So, the two possible post-measurement
tates of the full system with their respective probabili-
ies will be �0�A � ��00�0�B+�01�1�B� /���00�2+ ��01�2 with
robability P�A+�= ���00�2+ ��01�2� / ���00�2+ ��01�2+ ��10�2
��11�2�, which means that Alice measurement outcome
as +1 and her pseudorandom choice was the top half of

he scene, or �1�A � ��10�0�B+�11�1�B� /���10�2+ ��11�2 with
robability P�A−�= ���10�2+ ��11�2� / ���00�2+ ��01�2+ ��10�2
��11�2�, which means that the outcome was 1 and her
hoice was the bottom half of the scene.

Now is Bob’s turn. The post-measurement state of the
ull system after the Bob measurement will be condi-
ioned for the result previously obtained by Alice. The
our possible post-measurement states are naturally the
our computational states. For instance, the post-
easurement state �0�A � �0�B can be obtained with prob-

bility P�B+/A+�= ��00�2 / ���00�2+ ��01�2� with the previous
nowledge that the post-measurement state obtained by
lice was �0�A � ��00�0�B+�01�1�B� /���00�2+ ��01�2. At this
oint the nonlocal aspects of the joint measurement be-
ome evident. In this last case, the full process is a joint
rojective measurement of the output state in the compu-
ational basis from where the result A=+1, B=+1 is ob-
ained. The corresponding post-measurement state will
e �0�A � �0�B with probability P�A+,B+�=P�B+/A+�P�A+�
��00�2 / ���00�2+ ��01�2+ ��10�2+ ��11�2�. The remaining three
omputational states can be equally obtained as post-
easurement states with probabilities depending on the

ntensity distribution ��mn�2, with m ,n=0,1. Therefore,
he expected value of �z � �z in terms of the output inten-
ity distribution is
��z � �z� = P�A+,B+� + P�A−,B−� − P�A+,B−� − P�A−,B+�

=
��00�2 + ��11�2 − ��01�2 − ��10�2

��00�2 + ��01�2 + ��10�2 + ��11�2
. �11�

t should be pointed out that the Alice and Bob measure-
ents involve only local operations. So the result of the

revious analysis does not depend on the chronological or-
er of the measurements since local operators commute
ith each other. This is important since Alice and Bob
easure simultaneously according to the EPR locality hy-

othesis.
Calculations involved in Eq. (11) are performed directly

rom the relative output intensities associated with the
omputational states in the output image. The experi-
ent consists of performing a sampling on the phase
odulation of the vertical grating with 0��B	2
 and,

or each value of �B, evaluating the quantity
O�= �A � B�+ �A � C�− �C � B� in the function of
=2 arctan��
 /2�tan��B /2�� by inspecting the output im-
ges. The experimental results for �O� versus � are plot-
ed together with the theoretical expected result q sin �
cos �. Theoretical and experimental curves are com-
ared with 1 in order to explore possible violations of the
nequality q sin �−cos ��1. Experimental results are
ummarized in Fig. 8.

In Fig. 8(a) �O� versus � is plotted in the full range �

0,2
� for the maximally entangled state q=1 and for

he mixed state q=0. As we can appreciate, although the
xperimental points differ slightly from the theoretical
urves, a good qualitative agreement is obtained. It has to
e mentioned that the SLM was used in the maximal res-
lution of two pixels per spatial period of the grating.
ince the properties of phase modulation of the SLM in
igh resolution are far from optimal, some differences be-
ween experimental points and the theoretical curve ap-
ear, mainly in the range �� 

 ,2
� in Fig. 8(a). Such dif-
erences are more significant in the case q=1 from where
hey are amplified by interference effects. The maximal
iolation of the Bell inequality occurs for q=1 and there is
o violation for q=0 as expected. In Fig. 8(b) experimental
nd theoretical results corresponding to mixed states
ith density matrix defined in Eq. (7) are shown for q
1, 2/3, 1/3, and 0. In this case the plot is shown not in

he full range but in the zone of violation of the Bell in-
quality. The experimental results of the simulation are
lso in good agreement with the theory, within the experi-
ental error. The lost of coherence of the state, when the

arameter goes from the maximally entangled to the
aximally mixed state, becomes evident in the transition

rom maximal violation to no violation.

. CONCLUSIONS
e have implemented an optical setup to classically

imulate Bell inequality violations. We have shown how a
onventional optical processing architecture can be used
o optically simulate a Bell-type experiment scenario. The
imulation begins with the optical representation of the
uantum state of two qubits as an image organized in
our quarters according to the statement in Section 3. In
his representation, pure and mixed states can be emu-
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ated. The encoded information is organized as a bipartite
wo level system. One part, conventionally called “Alice”
as available dichotomic information related to the field
istribution in the up-down direction of the scene. The
econd, “Bob” is associated with the orthogonal left-right
irection. Quantum nonlocality arises from the assump-
ion that the information available for one of the observ-
rs is unavailable for the other, and vice versa. Then, we
rocess the input image with a 4f coherent optical proces-
or with a phase grating in the Fourier plane. The optical
rocessor is designed in order to ensure that the complex
mplitude of the electromagnetic field is modified from
he input to the output scene simulating a unitary evolu-
ion of the state. The simulated unitary evolution allows
ne to measure tensor products of local observables. Mean
alues of such quantities are experimentally evaluated
rom the intensity distribution of the field in the output
mage. We show that, depending on the encoded input
tate, correlated quantities calculated from the expected
alues of the observables violate a Clauser–Horne–
himony–Holt Bell-type inequality.
In order to emphasize the role of interference effects in

he Bell inequality violations, we test our setup in two dif-
erent cases: in the first, the maximally entangled state
�0�A � �0�B+ �1�A � �1�B� /�2 encoded in the input scene
hows maximal violation; meanwhile, in the second, an
ncoherent superposition of �0�A � �0�B or �1�A � �1�B does
ot violate the Bell inequality mainly due to the absence
f interference effects. Parametrical lost of coherence
rom maximally entangled to maximally mixed states has
een simulated by means of an optical representation of a
onvex mixing of both types of states. In all cases, the ex-
erimental results of the simulations are in good agree-
ent with the theoretical predictions based on quantum
echanics.
Summarizing, we have shown what we believe to be a

ovel classical optics simulation of the famous experiment
f nonlocality testing proposed by Bell [12]. From a con-
eptual point of view we can say that, in principle, classi-
al wave optics simulation of quantum information pro-
essing is completely equivalent to an analogical
lectronic computer which reproduces the interference ef-
ects that arise in real quantum systems. Since this kind

.

.

.

.

.

.

.
. . . . .

ig. 8. Experimental results. (a) Theoretical predictions and exp
� 
0,2
� for the maximally entangled state q=1 and for the mi
ions corresponding to mixed states with density matrix defined in
f devices is decoherence free but nonscalable, they could
e useful as testing tools for quantum information proto-
ols in low dimensional Hilbert spaces. In addition, the
nowledge and the optimization of these techniques could
e adaptable to real quantum processes as those involving
ntangled photons, enhancing their potential applications
o quantum information processing. Particularly, this
imulation clearly illustrates how the mechanism of Bell
nequality violations needs two resources: quantum en-
anglement and two-particle interference. It nicely dem-
nstrates also that classical optics is a useful tool for a
eeper understanding of some fundamental aspects of
uantum mechanics. In the future, we plan to extend the
esults obtained in this work to the simulation of systems
ith multiparticle entanglement.
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