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Abstract In this work we analyze how the spectrum of pri-
mordial scalar perturbations is modified, within the emergent
universe scenario, when a particular version of the Continu-
ous Spontaneous Localization (CSL) model is incorporated
as the generating mechanism of initial perturbations, provid-
ing also an explanation to the quantum-to-classical transition
of such perturbations. On the other hand, a phase of super-
inflation, prior to slow-roll inflation, is a characteristic fea-
ture of the emergent universe hypothesis. In recent works, it
was shown that the super-inflation phase could generically
induce a suppression of the temperature anisotropies of the
CMB at large angular scales. We study here under what con-
ditions the CSL maintains or modifies these characteristics of
the emergent universe and their compatibility with the CMB
observations.

1 Introduction

The success of the standard ΛCDM cosmological model in
explaining the many accurate astronomical observations we
have today (e.g. [1–5]) includes inflation, a phase of accel-
erated expansion during the very early epoch of the universe
[6–17].

There are renowned merits attributed to the inflationary
paradigm. In addition to solving the horizon problem, pre-
dictions from the simplest slow-roll inflationary model, such
as a spatially flat geometry characterizing the universe and
a quantum origin of the spectrum of primordial perturba-
tions (i.e. a nearly scale-invariant power law), are some of
them. Moreover, the predictions are extremely consistent
with recent observations from the cosmic microwave back-
ground (CMB) radiation [18]. However, the exploration of
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some alternatives seems to be interesting, in the light of small
features in the CMB power spectra that remain unexplained
and also open discussions in some recent works, which we
mention below.

Some studies have drawn attention to the lack of large-
angle correlations and a weak power in the low-� multipole
moments of the angular power spectrum, in the observed
CMB temperature anisotropies with respect to that predicted
within the standard ΛCDM model. This was first mentioned
in the COBE results [19] and later confirmed in subse-
quent generations of satellites [20–27]. This feature on the
largest angular scales was analyzed, with some controver-
sies included, by several authors (see for instance [28–33]).
As is well known, the largest observable angular scales con-
tain direct information on primordial physical processes that
occurred during the inflationary era (or prior to it), and could
only have undergone modifications by the physics involved in
the relatively recent past, e.g. through the late-time integrated
Sachs–Wolfe effect. In fact, several authors have shown that
some of the observed CMB anomalies could be explained
in this way, e.g. [34,35]. However, there is still no verdict
on whether it is just a statistical fluke or if there really is
something new and interesting behind it. Today it constitutes
one of the persistent large-angle anomalies in the CMB data
that makes up the list of current challenges of the standard
ΛCDM model [36,37]. In search of a convincing explana-
tion, new theoretical ideas have been considered from dif-
ferent approaches. The results for the suppression of the low
multipoles in the CMB spectrum can give us clues towards
new physics that determined the initial conditions for slow-
roll inflation or even tell us something about an earlier phase
before slow-roll inflation [38–60].

As mentioned above, the prediction that our current uni-
verse is spatially flat is one of those that is often mentioned in
relation to inflationary models, and the data seem to indicate
that indeed the observed universe is very close to flat. How-
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ever, it does not imply that the spatial sections are exactly flat.
Cosmological models in the context of non-flat cases have
also been explored with interesting results, see e.g. [61–77].
Recently, in light of the analysis of some observational data,
the debate about what is the spatial curvature of the universe
has resurfaced, typically quantified via its fractional contri-
bution to the cosmic energy budget today parameterized by
ΩK [77–94]. This parameter has an important role in deter-
mining the evolution of the universe and is closely related
with the early universe physics, because if the spatial curva-
ture is positive, then the curvature term will always dominate
at early enough times in a slow-rolling inflationary epoch.
And indeed, some of these recent analyzes suggest that a
small positive spatial curvature could be present favoring,
perhaps, the case of a closed universe. It is also interesting to
mention that the question of spatial curvature participates in
the so-called “H0 tension” between sets of early time probes
and a number of late time observational data (see e.g. [95–
98]). Additionally, spatial curvature also affects the search for
the nature of dark energy, an energy component to explain
the current stage of accelerated expansion and that would
constitute around 70% of the energy budget of the universe
according to the ΛCDM model [88,99–102]. In particular, it
is known that by assuming flatness, when in fact ΩK �= 0,
would induce critically large errors in reconstructing the dark
energy equation of state, showing that including curvature as
a free parameter is imperative in any future analyses that
attempts to determine whether dark energy is a cosmologi-
cal constant or is something more exotic. And, on the other
hand, closed universe models can generally relax the Hub-
ble tension between supernovae observations and the CMB.
However, at this stage, there is no conclusive evidence for a
positive curvature, but this is at least an attractive possibility
supported by the data that warrants further exploration.

An important feature that was highlighted in [55], and
of particular interest for the present work, is that a phase
of super-inflation (i.e. a period where the Hubble parame-
ter increases with time) prior to slow-roll inflation could be
related to the suppression of power in the low CMB mul-
tipoles. Furthermore, any mechanism that attempts to solve
the cosmological singularity problem, within a semiclassical
spacetime description, will naturally contain such a phase.

Starting with the very known pioneering works on singu-
larity theorems by Penrose and Hawking [103–105], other
authors have made contributions extending their cosmolog-
ical applications, including the case of inflationary models
[106–114]. To evade these singularity theorems, some works
have studied and developed alternatives in the context of
bouncing models, see e.g. [115–127]. Another alternative
that manages to escape these theorems is the recently devel-
oped framework of the emergent universe [128]. The idea
of an emergent universe is not new, it can be traced back to
seminal works of Einstein and Eddington [129,130].

The emergent universe (EU) of [128,131] is one in which
a spatially closed universe (based on General Relativity and
dominated by a scalar field minimally coupled to gravity)
emerges from an initially past-eternal Einstein static state
(with a finite initial size), enters a phase of super-inflation
and then evolves towards slow-roll inflation to finally give
rise to the standard hot-Big Bang. Because of how it is built,
there is neither a horizon problem nor singularity. This model
has been studied in recent years through different approaches
and variants, establishing its stability conditions, analyzing
fine-tuning issues, its viability both theoretically and obser-
vationally and making it clear which questions are still open;
see, for instance [132–166,168–170]. Among the alternative
scenarios of the early universe [171,172], a recent realiza-
tion of an emergent universe is the so-called string gas cos-
mology [173–176]. In this model the universe begins in a
long hot and almost static phase, dominated by a thermal
gas of closed fundamental strings. Recently, some conjec-
tures such as Swampland [177] and Trans-Planckian Cen-
sorship (TCC) [178] have put very strong constraints on
possible inflationary models [179–182]. However, alterna-
tive cosmologies such as bouncing and emergent models are
consistent with these conjectures and trivially satisfied. A
good understanding of the emerging phase is still missing,
but there are some promising approaches [183].

The next point to consider is the fact that any model that
claims to provide a mechanism for the generation of the seeds
of cosmic structure, must be able to give a convincing answer
to the following issue. In the early stages at the beginning of
the universe (and well after the Planck era has ended), the
spacetime is assumed to be spatially isotropic and homoge-
neous. In addition, a standard assumption is that the perturba-
tions of matter fields (e.g. the inflaton field) were in a quan-
tum vacuum state also perfectly symmetric (the symmetry
being spatial isotropy and homogeneity), usually described
by the so-called Bunch–Davies vacuum. Then, an important
puzzle arises, namely to explain the transition from a per-
fect symmetric state portraying the early universe to the non-
symmetric state that characterizes the current universe, which
cannot be attributed to quantum unitary evolution. The stan-
dard approach to address that issue is based on the study of the
role of quantum fluctuations during, for instance, the infla-
tionary epoch. However, since the evolution of any quantum
state, according to standard quantum theory, is always dic-
tated by the Schrödinger equation (which does not break any
initial symmetry of the system or destroy quantum superposi-
tions), the traditional early universe paradigm is incomplete
in that sense. In other words, the solely existence of vac-
uum fluctuations is in no way sufficient to claim that there
are actual inhomogeneities of any kind present in the uni-
verse. The aforementioned puzzle is usually referred in the
literature as the quantum-to-classical transition of the pri-
mordial perturbations. In fact, this subject is closely related
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to what is known as the measurement problem in quantum
physics [184–191], and is notoriously exposed in the case
of the quantum description of the primordial universe [192–
195]. This is because measuring devices and observers who
decide when and how to perform some kind of measurements
cannot be fundamental notions in a theory which seeks to
describe the early universe where neither existed [196]. Cos-
mologists have tried to account for the quantum-to-classical
transition by different types of arguments. A recent critique
of different efforts at explaining this subject can be found in
[197].1

In order to classify the possible alternatives to address
the issue described above, in [186] the measurement prob-
lem was written in a elegant manner showing that there are
three statements that are mutually inconsistent. In short: (A)
the physical description provided by the quantum state is
complete, (B) quantum states always evolve according to the
Schrödinger equation, and (C) measurements always have
definite results.

If statement (A) is denied, then the quantum state does not
contain all the information necessary for the description of a
quantum system. In this way, the addition of hidden variables
and the equations that determine their evolution is required.
The best known proposal for this case is the de Broglie–Bohm
model [199]. Some applications to the cosmological case can
be found in [200–204].

Works based on decoherence [205–208] led to a partial
understanding of the issue. Nevertheless, this argument by
itself (i.e. without any extra assumptions) cannot address the
fact that a single (classical) outcome emerges from the quan-
tum theory. In other words, decoherence alone cannot solve
the quantum measurement problem [209–211]. Other cos-
mologists seem to adopt the Everett “many-worlds” inter-
pretation of quantum mechanics [212] plus the decoherence
process when confronted with the quantum-to-classical tran-
sition in the inflationary universe, e.g. [213]. Regarding this
point, we would like to refer the reader to [194,214,215]
where arguments against decoherence and the Everett inter-
pretation are also presented. This proposal and the Everettian
interpretations are some of the approaches that somehow dis-
card statement (C).

The last remaining choice is to negate statement (B). This
path leads to non-standard quantum theories, i.e. theories
where the collapse of the wave function is self-induced by
some novel mechanism. Known as objective collapse theo-
ries, from the mid-1970s several authors began to develop
modifications to the Schrödinger equation, with the aim to
alter the evolution of the wave function. In this way, the col-
lapse of the wave function would occur without any reference
to external observers or devices present that should perform

1 The reader interested in a pedagogical review on this subject, can find
it in [198].

some sort of measurements [216–221]. One virtue of collapse
models is that they have shown in recent years to have the
attractive feature of connecting plausible resolutions of other
open problems in a single unified picture [222]. Reviews on
these sort of theories can be found, for instance, in [223,224].

In the present work, we will approach the emergent uni-
verse from the perspective of the Continuous Spontaneous
Localization (CSL) model [216,218], which will be incor-
porated into the situation at hand as a mechanism to break
the original symmetries of the quantum vacuum state of the
field driving the expansion of the early universe, and gener-
ating the primordial cosmological perturbations. In this man-
ner, the CSL model naturally provides an explanation of the
quantum-to-classical transition of such perturbations. The
incorporation of objective collapse schemes and theories in
the cosmological context has been studied since 2006 [193].
This has led to numerous investigations in recent years with
varied proposals, particularly in the framework of semiclas-
sical gravity (but also with exploratory works in the frame-
work of standard quantization), with very encouraging results
[194,195,225–245]. Other authors have investigated similar
ideas and some of these works can be seen, for instance, in
[246–250]. The debate about the particular details involving
the implementation of the CSL theory into the cosmological
context is still open. In fact, there is an extensive landscape
of possibilities, which constitutes an active line of research
at the moment [251–257].

In particular, a relevant aspect to examine is the following:
when one decides to combine quantum field theory (QFT)
with gravitation, one must choose the setting within which
such a link is to be made. At the time of writing there is no
complete and finished program merging successfully both
theories, so a couple of options arise. In Ref. [253] some
of these approaches were analyzed, evaluating their pros
and cons. There, it was argued that the semiclassical gravity
framework appears favored from a theoretical and conceptual
point of view when one wants to incorporate collapse models.
Therefore, our present analysis will be based on the semiclas-
sical gravity (SCG) framework, in which gravity is treated
classically and the matter fields are treated quantum mechan-
ically [193,226,228,236,237,258]. This approach accepts
that gravity is quantum mechanical at the fundamental level,
but considers that the characterization of gravity in terms of
the metric is only meaningful when the spacetime can be
considered classical. Namely, we will be dealing with the
description of an epoch well after the full quantum grav-
ity regime has ended (i.e. from when the emergent universe
begins to evolve), where the energy scales involved allow
one to suppose valid the consideration of the metric as clas-
sical and well described by semiclassical gravity equations.
Therefore, semiclassical gravity can be treated as an effective
description of quantum matter fields inhabiting a classical
spacetime. While this approach has received some criticisms
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[259,260], those arguments have been refuted [261–268]. In
the particular case of CSL theory, its first implementation into
the primordial universe, based on the SCG framework, was
done in [228], and some of us have continued to explore its
consequences. For example, in [239,241,242] it was shown
that a strong suppression of primordial B-modes in the CMB
is predicted generically. In addition, within that same frame-
work, observational constraints were analyzed in [238], and
in [232] it was found that the condition for eternal inflation
can be bypassed. In the next section, some additional moti-
vations for this choice in the present case of analysis will
become apparent.

To finish this Introduction, let us mention that in some pre-
vious works [230,234,235], where a spontaneous collapse of
the wave function was implemented during a phase of slow-
roll inflation, certain features on the low multipoles of the
CMB were analyzed as consequence of the collapse. On the
other hand, recently in [164] the emergent universe model,
originally put forward in [128,131], was analyzed and it was
shown that the super-inflation phase (a characteristic shared
by all emergent universe models) could be responsible for
part of the anomaly in the low multipoles of the CMB; in par-
ticular, for the observed lack of power at large angular scales.
Motivated by these results, and under the same assumptions
of [164], here we calculate the primordial power spectrum
of scalar perturbations, but incorporating a particular version
of the CSL model for the situation at hand. We will analyze
whether the super-inflation phase in the framework of the
emergent universe plus CSL continues (or not) to produce
the power suppression in the low multipoles. Lastly, we will
study under what conditions the CSL maintains or modifies
such characteristics and their compatibility with the CMB
observations.

Our manuscript is divided as follows. We start in Sect. 2
presenting the theoretical framework of the emergent uni-
verse plus the CSL proposal; we also obtain the predicted
scalar power spectrum. Next, in Sect. 3 we present and dis-
cuss our results; there, we also perform a further exploration
of the corresponding parameter space. Finally, in Sect. 4, we
present our conclusions. Regarding conventions and nota-
tion, we use a (−,+,+,+) signature for the spacetime met-
ric and units where c = 1 = h̄.

2 Emergent universe in the CSL framework

In this section, we present the implementation of the CSL
model into the emergent universe (EU) model.

2.1 Theoretical background

As we mentioned in the Introduction, many models of the
emergent universe have been studied in recent years. Since

we will be closely following the results of Ref. [164], here
we will do our analysis under the same assumptions consid-
ered there, which in turn are based on [128]. In particular, we
assume the action of General Relativity with a scalar field φ,
which represents the dominant matter driving the universe
early expansion, minimally coupled to gravity, with canoni-
cal kinetic term. The scalar potential employed (inspired by
R2-inflation) takes the form V (φ) = (4πG)−1(eCφ − 1)2 as
the one reconstructed in [131] (using techniques developed
in [65]). In obtaining that potential, the evolution of the scalar
factor a(t) � a0 + A eH0t was taken into account; where,
a0 > 0 is the (initial) radius of the Einstein static universe,
C , A are positive constants, and H0 is the Hubble parameter
at the onset of slow-roll inflation.2

In the EU model, after leaving its initial static state, the
universe enters a slow-rolling regime (at a few e-foldings
after leaving its initial static state) where the scale factor
grows sufficiently quickly to mitigate neglecting the curva-
ture effects. This period of a de Sitter type of inflation comes
naturally to an end (as the scalar field starts oscillating around
the minimum of the potential), it is then followed by a re-
heating phase, and finally continues to the standard hot Big
Bang expansion. In Ref. [168], it was shown that the tem-
poral evolution, given by Friedmann equation along with the
scalar field Klein–Gordon equation, leads the system towards
an attractor where H tends to a constant and φ̇2 → 0; this is,
the system evolves from an Einstein static state to a de Sitter
type of expansion.

The dynamics of this model is such that, prior to the
traditional slow-roll inflation, there is a phase of super-
inflation where the Hubble parameter increases with time,
i.e. Ḣ > 0. The mechanism which generates this superinfla-
tionary period depends on the particular model under consid-
eration, but it is a generic characteristic of the EU scenario.
For example, in the models of Refs. [128,131], it is consid-
ered a FLRW closed universe where the spatial curvature is
responsible for the superinflationary period. However, let us
note that we could have chosen another model from those
mentioned in the Introduction, provided that the evolution of
the background (given by the mentioned scale factor a(t))
produces the phases of super-inflation and slow-roll infla-
tion, in which the generation of curvature perturbations is
analyzed here.

As discussed in depth in [131], even though the tradi-
tional emergent universe is with positive spatial curvature,
it is quickly negligible in a few e-foldings and furthermore
slow-roll inflation can always be made to end for some neg-
ative value of φ. On the other hand, it is also possible to find
the (finite) N number of e-foldings for the total slow-roll
phase within the emergent universe. Analogously to [164],

2 The type of potential V is as the one shown in Figs. 1 of Refs. [131,
164].

123



Eur. Phys. J. C (2021) 81 :1049 Page 5 of 16 1049

we will now make a first approach to the problem at hand
and therefore we will neglect the contributions of the space
curvature to the primordial perturbation.3

We follow the standard procedure and separate the scalar
field and the metric into a homogeneous background plus
small perturbations, i.e. gμν = g(0)

μν +δgμν and φ = φ0 +δφ.
We will now fix the gauge of the perturbations, and work
in the so called longitudinal (or Newtonian) gauge. In this
gauge, at first order in the scalar metric perturbations, and
assuming no anisotropic stress components, the correspond-
ing line element is

ds2 = a2(η)[−(1 + 2Ψ )dη2 + (1 − 2Ψ )δi, j dx
i dx j ]. (1)

In these coordinates, the scale factor can be modeled by

a(η) = a0

1 − ea0H0η
. (2)

We defineH ≡ a′/a; the prime over variables denotes deriva-
tive with respect to conformal time η.

The metric degrees of freedom will remain classical
because of the semiclassical gravity approach, these include
the background and the perturbation Ψ . In the matter fields
sector, the background scalar field φ0 will be treated also in
a classical fashion; however, the perturbed part δφ will be
subjected to quantization. Taking into account that the CSL
theory modifies the Schrödinger equation, it will be conve-
nient to carry out the quantization in the Schrödinger picture.
Therefore, we focus on finding the total Hamiltonian of the
system.

We introduce the (re-scaled) field variable y = aδφ.
Expanding the action of the system (i.e. a single scalar field
minimally coupled to gravity) up to second order in the per-
turbations, one can find the action associated to y. In this
way, the second order action is S(2) = ∫

d4xL(2), where

L(2)
y = 1

2

[

y′2 − (∇ y)2 + a′′

a
y2

]

. (3)

We define the canonical momentum p(x, η) ≡ ∂L(2)
y /∂y =

y′, in this way, the Hamiltonian density is given by

H(2)
y = p2

2
+ (∇ y)2

2
− y2

2

a′′

a
. (4)

We now promote the fields y and p to quantum operators
satisfying the following equal time commutator relation

[ŷ(x, η), p̂(y, η)] = iδ(x − y). (5)

3 See, for instance, Appendix A of Ref. [164] for details about this
point.

Our next step is to decompose the field and the conjugated
momentum in Fourier modes. This is justified by the fact
that we work with a linear theory and, hence, all the modes
evolve independently. In Fourier space, the total Hamiltonian
corresponding to Eq. (4) takes the form

Ĥ =
∫

R3+
d3k

[

p̂∗
k p̂k + ŷ∗

k ŷk

(

k2 − a′′

a

)]

. (6)

Furthermore, it will be convenient to work with real variables.
In this way, we separate the canonical variables into their real
and imaginary parts, i.e.

ŷk ≡ 1√
2
(ŷR

k + i ŷI
k), p̂k ≡ 1√

2
( p̂R

k + i p̂I
k). (7)

The quantum commutator in Eq. (5), implies

[ŷsk, p̂s
′
q ] = iδ(k − q)δss′ (8)

where s = R,I and δss′ is Kronecker’s delta. Using this sepa-
ration the Hamiltonian becomes Ĥ = ∫

R3+ d3k(ĤR
k + Ĥ I

k),
with the following definitions

Ĥ R,I
k ≡ ( p̂R,I

k )2

2
+ (ŷ R,I

k )2

2

(

k2 − a′′

a

)

. (9)

In order to apply the CSL model into the EU scenario, we
will follow the approach first introduced in [228] for the infla-
tionary regime. There, it was found that with an appropriate
selection of the field collapse operators and using the corre-
sponding CSL evolution law, it is possible to attain a “col-
lapse” in the relevant operators corresponding to the Fourier
components of the field. Furthermore, we will assume linear-
ity in the collapse generating operator, therefore, the reduc-
tion mechanism will act on each mode of the field indepen-
dently, i.e. there will be no mode mixing because of the CSL
process.

In view of the above, the evolution of the state vector
characterizing each mode of the quantum field as given by
the CSL theory is:

|ΦR,I
k , η〉 = T̂ exp

{

−
∫ η

τ

dη′
[

i ĤR,I
k

+ 1

4λk
(WR,I

k (η) − 2λk ŷ
R,I
k )2

]}

|ΦR,I
k , τ 〉 (10)

where T̂ is the time-ordering operator, and τ denotes the
conformal time at the beginning of the EU regime. Note that
the stochastic field Wk = WR

k + iW I
k depends on k and the

conformal time. In other words, it is reasonable to introduce
a stochastic function for each independent degree of free-
dom given that we are applying the CSL collapse dynam-
ics to each mode of the field. Consequently, the stochastic
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field Wk(η) might be regarded as a Fourier transform on a
stochastic spacetime field W(x, η). The probability for the
stochastic field is given by the second main CSL equation:
the Probability Rule, i.e.

P(WR,I
k )dWR,I

k = 〈ΦR,I
k , η|ΦR,I

k , η〉
η−dη∏

η′=τ

dWk(η
′)R,I

√
2πλk/dη

. (11)

As can be seen from the CSL evolution equation (10), we
have chosen the field variable ŷR,I

k as the collapse generating
operator. Technically, this means that the CSL process will
drive the initial state vector towards an eigenstate of ŷR,I

k . The
motivation for this choice is based on the fact that when one
implements the SCG formulation into cosmological pertur-
bation theory, one obtains, at linear order in Fourier space,
the following relation:

Ψk + H−1Ψ ′
k =

√
μ

2

〈ŷk〉
aMP

(12)

where μ ≡ φ
′2
0 /(2H2M2

P ). We observe in the above expres-
sion that the quantum expectation value 〈ŷk〉 acts as a source
for the curvature perturbation. This might be interpreted as
indicating that the collapse is tied with some aspect of the
quantum matter that “gravitates” (i.e. that would character-
ize the interaction between gravitation and matter degrees
of freedom). Moreover, this view is, in principle, consistent
with the proposals by R. Penrose and L. Diosi suggesting
that gravity might play a fundamental role in the so called
collapse of the wave function [219,221].

We denote by Φ[y, η] the wave functional characteriz-
ing the quantum state of the field. In Fourier space, the
wave functional can be factorized into mode components
Φ[yk, η] = ΠkΦ

R
k [yR

k , η] × ΦI
k[yI

k, η].
It is known that the ground state of the Hamiltonian (9),

characterized by a wave functional Φ
R,I
0 [yR,I, η], is a Gaus-

sian. Also, the Hamiltonian (9) and the CSL evolution equa-
tion (10) are quadratic in both ŷR,I

k and p̂R,I
k ; consequently,

the wave functional at any time can be written in the form:

ΦR,I[yR,I
k , η]

= exp[−Ak(η)(yR,I
k )2 + BR,I

k (η)yR,I
k + CR,I

k (η)]. (13)

The initial state of the field |ΦR,I
k , τ 〉 will be the chosen as the

standard Bunch–Davies (BD) vacuum. The corresponding
wave functional for the BD vacuum is characterized by the
initial conditions

Ak(τ ) = k

2
, BR,I

k (τ ) = 0, CR,I
k (τ ) = 0. (14)

2.2 Power spectrum

After having introduced the theoretical basis of our model,
here we focus on deriving a prediction for the primordial
spectrum, which is the observational quantity of interest.
The standard expression of the primordial spectrum, asso-
ciated to the curvature perturbation, is normally expressed
in the so-called comoving gauge, while our main equations
were obtained in the longitudinal gauge. For a single scalar
field, the relation between the curvature perturbation in the
comoving gauge R and in the longitudinal gauge Ψ is given
by [10,11,213]

R = Ψ

(

1 + 1

μ

)

+ H−1

μ
Ψ ′. (15)

Let us note that, in cosmic time t coordinates, μ can be
expressed as μ = φ̇2

0/(2M2
P H

2). Given that the system has
an attractor point such that H → constant and φ̇2

0 tends to
an infinitesimal small number, then it follows that μ → 0.
Therefore, in Fourier space, Eq. (15) implies

Rk � 1

μ

(
Ψk + H−1Ψ ′

k

)
= 〈ŷk〉

aMP
√

2μ
(16)

where in the last equality we have used our main equation
(12).

The scalar power spectrum associated to Rk is defined as

RkR∗
q ≡ 2π2

k3 Ps(k)δ(k − q) (17)

where Ps(k) is the dimensionless power spectrum. The bar
appearing in (17) denotes an ensemble average over possible
realizations of the stochastic field Rk. In the CSL model,
each realization will be associated to a particular realization
of the stochastic process characterizing the collapse. We can
use approximation (16) to compute the spectrum associated
to Rk, i.e.

RkR∗
q = H2

a2φ′2
0

〈ŷk〉〈ŷq〉∗. (18)

From definition (17) and Eq. (18), we can identify an
equivalent scalar power spectrum as:

Ps(k)δ(k − q) = k3H2

2π2a2φ′2
0

〈ŷk〉〈ŷq〉∗. (19)

In terms of the Real and Imaginary parts of ŷk, the ensemble
average in (19) is

〈ŷk〉〈ŷq〉∗ = (〈ŷR
k 〉2 + 〈ŷI

k〉2)δ(k − q). (20)
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Furthermore, 〈ŷR
k 〉2 = 〈ŷI

k〉2, thus we will omit the indexes
R,I from now on.

Using the main equations of the CSL model, Eqs. (10) and
(11) one obtains:

〈ŷk〉2 = 〈ŷ2
k〉 − 1

Re[Ak(η)] . (21)

Substituting Eqs. (20) and (21) into Eq. (19), we find that the
power spectrum can be expressed as:

Ps(k) = k3H2

2π2a2φ′2
0

(

〈ŷ2
k〉 − 1

4Re[Ak(η)]
)

. (22)

We observe that the prediction for the power spectrum

depends on the terms 〈ŷ2
k〉 and (Re[Ak(η)])−1, which can

be obtained from the CSL equations.
The quantity (Re[Ak(η)])−1 represents the variance of the

field variable, which in turn is related to the width of the wave
functional (13). The evolution equation for this quantity can
be found by taking the time derivative of (10), and apply-
ing the resulting operator to the wave functional (13). Then,
regrouping terms of order y2, y1 and y0, the evolution equa-
tions corresponding to these terms become decoupled. In par-
ticular, the evolution equation associated to y2 only contains
Ak(η), so it decouples from the other variables Bk(η) and
Ck(η). The evolution equation is then

A′
k = −2i A2

k + i

2

(

k2 − a′′

a

)

+ λk . (23)

Performing the change of variable Ak ≡ f ′/(2i f ), Eq. (23)
can be expressed as

f ′′ +
(

q2 − a′′

a

)

f = 0 (24)

where:

q2 ≡ k2
(

1 − 2i
λk

k2

)

. (25)

The solution to Eq. (24), which satisfies the BD initial con-
dition corresponding to Ak(τ ) = k/2, is

f = e−iqη

√
2k(1 − ea0H0η)

2F1(q−, q+, b; ea0H0η) (26)

where 2F1 is the hypergeometric function, and

q± ≡ −1 − iq

a0H0
±

[

1 −
(

q

a0H0

)2
]1/2

(27)

b ≡ 1 − 2iq

a0H0
. (28)

With solution f , one can return to the original variable Ak

and obtain the sought quantity (Re[Ak(η)])−1. As a matter
of fact, one has

Re[Ak(η)] = W

| f |24i
(29)

where W ≡ f ′ f ∗ − f ′∗ f is the corresponding Wronskian.
Note that if λk = 0, then W = i for all η, and q = k.

The other important term in the power spectrum is 〈ŷ2
k〉. In

order to find this quantity, it will be useful to define the follow-

ing objects: Q ≡ 〈ŷ2
k〉, R ≡ 〈 p̂2

k〉 and S ≡ 〈 p̂k ŷk + ŷk p̂k〉.
The evolution equations for Q, R and S obtained from the
CSL equations are:

Q′ = S, R′ = −wk(η)S + λk, S′ = 2R − 2Qwk(η) (30)

with wk(η) ≡ k2 −a′′/a. Therefore, we have a linear system
of coupled differential equations, whose general solution is a
particular solution to the system plus a solution to the homo-
geneous equation (with λk = 0). In this way, the solution can
be written as:

Q(η) = C1y
2
1 + C2y

2
2 + C3y1y2 + Qp (31)

where the constantsC1,C2 andC3 are found by imposing the
initial conditions corresponding to the Bunch–Davies vac-
uum state: Q(τ ) = 1/2k, R(τ ) = k/2, S(τ ) = 0. The func-
tions y1 and y2 are two linearly independent solutions of
y′′ = −wk y, and the function Qp is a particular solution of

Q′′′
p + 4wk Q

′
p + 2w′

k Q p = 2λk . (32)

The exact solutions y1 and y2 are

y1(η) = e−ikη

√
2k(1 − ea0H0η)

2F1(k−, k+, b; ea0H0η) (33)

and y2 = y∗
1 , also k± and b are defined in the same manner

as in (27), (28) but replacing q → k.
On the other hand, the exact solution of Eq. (32) is difficult

to find, but we can find approximate solutions in the regimes
of interest. In particular, we are interested in the static regime,
which corresponds also to the regime where the BD initial
conditions are imposed. The other regime involved is the
de Sitter phase, where the power spectrum is evaluated for
the purpose of comparing it with the standard prediction.
Therefore, in the static regime wk � k2 while in the de Sitter
phase wk � k2 − 2/η2. It is remarkable that, in these two
regimes, Qp can be approximated by the same solution, i.e.

Qp(η) � λkη

2k2 . (34)
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Thus, the constants obtained from imposing the initial con-
ditions are,

C1 = −iλk
4k2 e2ikτ , C2 = C∗

1 , C3 = 1 − λkτ

k
. (35)

Now that we have all the elements needed for obtaining the
power spectrum (22), it is straightforward to check first that
if λk = 0 then Ps = 0, because Q(η) = (4Re[Ak(η)])−1

exactly in that case. This result is also consistent with our
view in which, if there is no collapse, then the metric per-
turbations are zero, i.e. there are no inhomogeneities in the
spacetime.

On the other hand, considering the modes in the super-
Hubble limit (−kη → 0), the power spectrum (22) can be
approximated by

Ps(k) = Asχ
2|F(χ)|2C(k) (36)

where

As ≡ H4
0

4π2φ̇2
0

(37)

χ ≡ k

a0H0
(38)

F(χ) ≡ 2Γ (1 − 2iχ)

Γ (2 − iχ − √
1 − χ2)Γ (2 − iχ + √

1 − χ2)

(39)

C(k) � 1 + λk |τ |
k

+ λk

k2 sin 2δ (40)

δ ≡ arctan

(
ImF

ReF

)

− χa0|τ |. (41)

Note that in the definition of the amplitude As , we have
used that the quantity H2/φ′2

0 = H2/φ̇2
0 tends to a constant,

given the existence of the aforementioned attractor point for
the dynamical background variables in the limit −kη → 0.

Thus, we have found the main prediction of this section,
namely the primordial scalar power spectrum originated by
the CSL mechanism within the EU model.

3 Results

In this section, we shall proceed to examine the observational
effects of implementing the CSL model in the EU scenario.
It will be useful to set as a reference model the one described
in [164], we will refer to it as the original model.

Furthermore, as also argued in [164], we can generalize
the power spectrum obtained in order to include the small
scale dependence normally associated with the scalar spec-
tral index ns . Thus, for the present section we will use the fol-
lowing expression for the primordial power spectrum (PPS):

Ps(k) = Asχ
2|F(χ)|2C(k)

(
k

kP

)ns−1

(42)

where kP is a pivot scale, which is traditionally set as kP =
0.05 Mpc−1

The next step in our analysis is to introduce a parameter-
ization of λk , in order to explore the possible observational
features of our model. We propose the linear parameteriza-
tion in k given by

λk = λ0 (k + B) (43)

with λ0 acting as a proportionality constant plus a param-
eter B ≥ 0. In fact, if B = 0, we recover a very similar
expression for the PPS as the one obtained in the original
model. In this way, B quantifies small deviations from the
original model reflecting the inclusion of the CSL model.
A very similar parameterization was also implemented in
a recent work involving the CSL proposal during inflation
[245]. Also, we will fix the value of the proportionality con-
stant as λ0 = 10−14 s−1. This choice is motivated by the
fact that such a value is within the range allowed by labora-
tory experiments testing non-relativistic versions of the CSL
model [269], where λ0 corresponds to the CSL parameter for
these kind of models. In the units used in the present paper,
the former choice is equivalent to λ0 = 1.029 Mpc−1. Given
that k has also units of Mpc−1, the constant B has units of
Mpc−1 too. For ease of notation, from now on we will neglect
the units of these quantities with the understanding that the
corresponding units have been well established.

At this point, we would like to discuss the following issue.
Numerical calculations set a restriction for implementing the
exact formula (42). That is, as long as the value of k increases,
the Gamma functions become exponentially small beyond
the capability of machine representation. This demands a
cutoff value kmax , which in principle we set it to 0.015, to be
consistent with the value chosen in the original model [164].
On the other hand, we can also approximate expression (42),
obtaining

Ps(k) � As
χ2

(1 + χ)2

λkτ

k

(
k

kP

)ns−1

. (44)

The advantage of this approximation is that no numerical
restrictions are imposed, hence it can be used in the numerical
calculations up to the end of the observable window k = 1.

Consequently, we have two options for performing the
analysis. The first one is to use the exact expression for the
PPS (42) up to kmax , and then perform an analytic continua-
tion such that it approaches smoothly to the standard expres-
sion corresponding to the canonical model, i.e. to the PPS of
the standard cosmological model. The second option we can
consider is to use the approximate formula (44) for the whole
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Fig. 1 Primordial power spectrum for the EU model including the CSL
proposal. Here we set a0H0 = 2 × 10−4 from [164] and consider dif-
ferent values of the B parameter (units in Mpc−1). Solid line represents
the exact formula, while dashed line corresponds to the approximate
expression. The canonical model is also plotted as a reference. The
PPS which results from the CSL model tends to the canonical model
for some scale between 0.01 < k < 0.1. The green lines correspond to
B = 0, which is essentially the original model

k range. Both alternatives can be seen in Fig. 1, which shows
the PPS for different values of the B parameter comparing
both the exact and approximate expressions. After an exhaus-
tive exploration, we find that the values 10−3 and 10−4 are
representative to show the behavior of the power spectrum
curve. For each case, both calculations, exact (solid line) and
approximate (dashed line), are shown.

Moreover, we will include in each figure a plot called
canonical model, which is used as a second reference (in
addition to the original model). As its name suggests, the
canonical model corresponds to the standard ΛCDM cos-
mological model, with the cosmological parameters deter-
mined by latest data from Planck collaboration [3]. In partic-
ular, we focus on the angular spectrum corresponding to the
temperature and E-mode polarization auto-correlation and
cross correlation functions. These data leads to the follow-
ing set of parameters at the 68% confidence level: Ωbh2 =
0.02236, Ωch2 = 0.1202, Htoday = 67.27 km s−1 Mpc−1,
As = 2.101 × 10−9, ns = 0.9649, τd = 0.0544 (called the
optical depth parameter), and considering no running of the
scalar spectral index.

The canonical model plot will be useful not only as a
guide to quickly spot the novel features introduced by our
model, but also to confirm the fact that, for given a value of
a0H0, a certain scale kmax can be found where the PPS meets
naturally the standard ΛCDM model. This was the spirit in
which the value of kmax = 0.015 was adopted, as mentioned
above.

The next step is to analyze the effects of varying the model
parameters in the angular power spectrum. To accomplish
this, we perform the corresponding modifications in the Code

Fig. 2 Angular power spectrum of the temperature anisotropy auto-
correlation function. The canonical model is represented in orange. The
solid and dashed lines correspond to the exact and approximated expres-
sions for the PPS obtained from the CSL model, respectively. Here we
considered a0H0 = 2 × 10−4, and three values for B = 0, 10−4, 10−3.
The plot depicts the behaviour of our model’s predictions, progres-
sively separating from the original model (B = 0) and approaching to
the canonical model either from above or below. The effect is mainly
observed at the lowest multipoles, while larger multipoles are unaf-
fected. Planck’s data and error bars are shown in order to provide some
intuition of the effects the model might bring in when fitting observa-
tional data

for Anisotropies in the Microwave Background (CAMB)
software [270]. Figure 2 depicts the resulting angular spec-
trum for different values of B.

In order to have a better visualization on the impact our
model may have on observational signatures, we show the
best-fit ΛCDM prediction for the angular spectrum and the
corresponding Planck data4 together with their error bars
(shown in blue). The effect of varying B is mainly seen in
the low multipoles (l < 50). If B tends to zero, the CSL
spectrum approaches to the one of the original model, and at
the same time, it separates from the canonical model at the
bottom of the graph. On the contrary, if B is increased, the
CSL spectrum splits from the canonical model at the top part
of the plot corresponding to the lowest multipoles.

The previous analysis indicates that our model has the
potential to exhibit different features in the low-l range,
approaching the ΛCDM angular spectrum from upwards or
below, and having the original model as the lower limit. In
other words, including the CSL mechanism in the EU model
could result not only in a suppression of the temperature
anisotropies of the CMB at large angular scales, but also in
an excess.

4 These data points correspond to R3.01 baseline Planck TT, TE,
EE+lowE+lensing for multipoles between 2 < l < 2508. Considering
lensing effects in our calculations did not show any difference in the
result. Therefore, we consider that these data are adequate for making
comparisons with our model.
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Fig. 3 Exploring a wide range of B values clearly shows that not any
value would fit observational data (even when our model mostly affects
the lowest multipoles, which are masked by the cosmic variance). Dif-
ferent B values of order 10−3 are tested, fixing a0H0 = 2 × 10−4.
The solid line represents the prediction from the CSL model (exact for-
mula). The dashed black line depicts the prediction from the canonical
model. Increasing the value of B shows a progressive departure from
the standard prediction and the data. This implies an excess in the CMB
angular power spectrum anisotropies

3.1 Further parameter space exploration

From the previous discussion, it is clear that the implemen-
tation of the CSL model into the EU scenario could be in
good agreement with observational data. However, it is also
important to check whether one can, in principle, truly dis-
tinguish the predictions between the canonical model and the
one proposed in this work. Recall that we have introduced a
new parameter B, while the combination a0H0 comes from
the original model. Therefore, we are interested in testing the
robustness of B and a0H0 in the predicted angular spectrum.
In other words, we will vary B and a0H0 enough to see how
much our predicted spectrum deviates from the standard one.

At first glance, one could argue that any well fitted value
of B would make the model consistent with observations,
because any new features introduced in the spectrum could
remain masked under the so called cosmic variance. How-
ever, exploring a wide range of the B parameter space, shows
that, even though highest multipoles are unaffected, the first
acoustic peak is half missed for increasing values of B, see
Fig. 3. This suggests that B has an upper limit and its value
can be constrained with observational data; therefore, the
model has predictability.

Up to this point, we have worked with the same fixed
value of a0H0 as the one considered in the original model
[164]. Henceforth, it is interesting to explore the possibility
to regard the combination a0H0 as a free parameter. In Fig.
4, we vary a0H0 along four orders of magnitude. Increasing
a0H0, implies a strong suppression in the angular power spec-
trum. This fact indicates that not any value of a0H0 would

Fig. 4 Four different orders of magnitude corresponding to a0H0 are
explored, with fixed B = 10−4 (which has shown good compatibility
with data). The highest values show a strong suppression in the angular
power spectrum not compatible with observational data. This indicates
that a0H0 plays the role of a free parameter and could be estimated with
statistical analysis. Dashed black line represents the canonical model.
Planck’s data are shown in blue points along with their error bars

make the model consistent with the data. Furthermore, it also
indicates that the suppression observed in the original model
could be in part explained by a particular combination of the
cosmological parameters that has been chosen there.

The final issue we want to address is: given a particu-
lar value of a0H0 that is not compatible with observational
data, could it be compensated in some way by varying the B
parameter introduced by the CSL model? Figure 5 encom-
passes this question by plotting different values of B for a
fixed a0H0 = 2 × 10−2 (which has been previously seen not
compatible with observational data). Even though the varia-
tion of B introduces new features and the model predictions
might approach to Planck’s data at one end, other sectors
of the data are highly missed. Consequently, we can safely
state that the B parameter cannot compensate the suppression
induced by a non-favoured value of a0H0.

4 Conclusions

In recent years, the emergent universe (EU) has been studied
from different perspectives as a viable cosmological model,
which could not only avoid the horizon problem and the
initial singularity of the standard approach, but could also
account for some anomalies in the observations of the CMB
at large angular scales.

Motivated by the recent results of [164], where it was
shown that a phase of super-inflation prior to that of standard
slow-roll inflation (originated in the context of the emergent
universe presented in [128,131]) could explain the power
suppression observed in the low multipoles of the CMB,
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Fig. 5 Different values for the B parameter are explored considering
a0H0 = 2 × 10−2 which has proven no good fit with data. The plot
shows that B is a free parameter which can be constrained and is well
restricted by the data, but does not compensate the suppression given by
the choice of a0H0. For higher B values, not only the lowest multipoles
are missed, but also the first acoustic peak fails to be matched. In fact,
this constitutes a promising result for accurate parameter estimation
with observational data under statistical analysis. The canonical model
is shown in point-dashed black line for reference

we decided to explore in this work the same emergent uni-
verse but within the framework of a particular objective col-
lapse theory, known as Continuous Spontaneous Localization
(CSL). The CSL theory has been studied with encouraging
results in cosmological applications for several years, as a
mechanism to break the original symmetries of the quan-
tum vacuum state of the fields, generating the primordial
cosmological perturbations and giving an explanation to the
quantum-to-classical transition of such perturbations.

We obtained a prediction for the primordial power spec-
trum. The computed spectrum can be consistent with CMB
observational data, if a particular parameterization for the
collapse rate λk is assumed. The parametrization we consid-
ered was also proposed and analyzed in previous works but
in the framework of standard inflation. Such a parameteriza-
tion introduces an extra free parameter B, in addition to the
parameter a0H0 of the emergent model studied in [164]. We
also found that the predictions and results of such a work can
be recovered, when B = 0 is chosen.

From the analysis in Sect. 3, we have found that imple-
menting the CSL collapse proposal to the emergent universe
scenario introduces extra modifications at the lowest multi-
poles. Specifically, through the CSL-parameter B, the angu-
lar spectrum in the low multipoles sector, exhibits a sup-
pression or an increment. This is a different feature from
what is generically produced in models with a super-inflation
phase which only decrease the curve spectrum at large angu-
lar scales. On the other hand, in the model proposed in this
work, whether there is an excess or suppression, will be deter-
mined by a combination of the parameters derived from the
original model and the novel one introduced by the collapse

rate parameterization. This fact enables our model to intro-
duce some new features in the angular spectrum, particularly
in the sector of interest where the so-called low-l anomaly is
located.

On the other hand, increasing the value of the combina-
tion a0H0 produces a suppression in the lowest multipoles.
We have also seen that the variation of the B parameter pro-
duces opposite (and similar) effects to a0H0. Nevertheless,
a suppression of the angular spectrum given by a0H0 cannot
be compensated with an increase of B .

One important aspect of our model is that the primordial
power spectrum obtained smoothly approaches to the one
from the standard ΛCDM model within the observational
range of interest. This characteristic constitutes a natural
modification of the (temperature) angular spectrum, affect-
ing mainly the lowest multipoles without altering the highest
ones (which are already constrained by observations to a high
degree of accuracy).

Exploration of the free parameters shows that not any
value will make the proposed model consistent with obser-
vational data. This suggests that there are good opportuni-
ties of effectively constraining the parameter space with the
full machinery of statistical analysis based on Monte Carlo–
Markov chains for cosmology. Such a scenario gives good
predictability to the CSL collapse proposal in the emergent
universe model. In fact, we expect that the extra free param-
eter B should take a small value (between 10−3 and 10−4)
but not centered at B = 0, which clearly distinguishes our
proposal from the one explored in [164].
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