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Abstract

In this paper, we study the class of PVPG graphs, this is a sub-

class of VPG graphs such that all the representing paths are between

two parallel lines of the grid and have their endpoints on these lines.

We prove that PVPG = Co-comparability. Moreover, we present

some minimal forbidden induced subgraphs for the class ofB1-PVPG

graphs.

1 Introduction

A VPG representation of a graph G is a collection of paths of the two-

dimensional grid where the paths represent the vertices of G in such a way

that two vertices of G are adjacent in G if and only if the corresponding

paths share at least one vertex of the grid. A graph which has a VPG

representation is called a VPG graph. The recognition problem is NP-

complete for VPG graphs [1]. For applications of VPG graphs see [6, 2, 5].

A graph G is a Comparability graph if there exists a poset P with the

same vertex set as G such that two vertices are comparable in P if and
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only if they are adjacent in G. Or equivalently, if it is possible to orient

the edges of G in such a way that the resultant digraph has the transitivity

property: if edges u→ v and v → w exist, then so does the edge u→ w.

We say that G is a Co-comparability graph when G (the complement of

G) is a Comparability graph.

In [4], the authors show that the class of Co-comparability graph is

a subclass of VPG graphs. In this work we present the PVPG graphs

defined by the property of admitting a VPG representation in which all

paths are between, and have their endpoints on, two given parallel lines

of the grid. We prove that this subclass of VPG is exactly the class of Co-

comparability graphs. We study characteristics of PVPG representation

that we believe will be fundamental tools for the development of future

work. A Bk-PVPG representation is a PVPG representation in which

each path in the representation has at most k bends. We present some

minimal forbidden induced subgraphs for a graph to admit a B1-PVPG

representation. Finally we posed some open problems.

Definitions not included in this work due to space limitations, can be

found in [3].

2 PVPG graphs

First we introduce formally the class of PVPG graphs.

Definition 2.1. A PVPG representation of a graph G, is a VPG repre-

sentation in which all paths run between, and have their end vertices on,

two parallel lines of the grid (see examples in each Figure of this work).

A PVPG graph is a graph which has a PVPG representation.

Next we prove that PVPG graphs are exactly Co-comparability graphs.

Theorem 2.1. PVPG = Co-comparability.

Proof. Let G be a PVPG graph and let ⟨P,G⟩ be a PVPG representation

of G. We have to see that G is a Co-comparability graph. It is equivalent
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Figure 1: Transitive orientation of G.

to see that G is a Comparability graph, that is, G has a transitive orien-

tation of its edges. Let u, v ∈ V (G). If uv ∈ E(G), then uv /∈ E(G). Thus

we have that, in ⟨P,G⟩, Pu is totally to the left of Pv (or vice versa). We

are going to give a transitive orientation of the edges of G in the following

way: if uv ∈ E(G) such that Pu is totally to the left of Pv, we orient the

edge uv as u→ v (if Pu is totally to the right of Pv we orient the edge uv

as u← v). Hence, G is a comparability graph and the proof follows. See

an example in Figure 1.

Now, let G be a Co-comparability graph, thus G is the comparability

graph of some poset P, which in turn is the intersection of some linear

orders. Using them, its is possible to build a PVPG representation of G as

shown in the example in Figure 2. For more details on this construction,

refer to [4]. ■

Corollary 2.1. PVPG ⊆ C5-free ∩ AT -free.

Proof. It is well known that Co-comparability⊆ C5-free ∩AT -free. Hence,

using Theorem 2.1, the proof follows. ■

A Bk-VPG representation is a VPG representation using paths with at

most k bends. The bend number of a V PG graph G, denoted by b(G), is
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Figure 2: Every co-comparability graph is PVPG.

the minimum integer k for which G has a Bk-VPG representation. In an

analogous way, we define the parallel bend number.

Definition 2.2. A Bk-PVPG representation is a PVPG representation

using paths with at most k bends. The parallel bend number of a PV PG

graph G, denoted by bp(G), is the minimum integer k for which G has a

Bk-PVPG representation. We call Bk-PVPG to the class of PVPG graphs

that have parallel bending number at most k.

Remark 2.1. 1. b(G) ≤ bp(G) (any PVPG representation is a VPG

representation).

2. In general b(G) ̸= bp(G) (for example b(K3,3) = 1 but bp(K3,3) = 2).

3. bp(G) can be arbitrarily large ( Co-comparability graphs with arbi-

trarily large bend number are shown in [4]).

Let (Pv)v∈V be a B1-PVPG representation of G. We will write Pv <<

Pw meaning that the vertical part of Pv is to the left of the vertical part
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of Pw. We say that v is a left (right) extreme vertex of G if Pv << Pw

(Pw << Pv) for any other vertex w of G. Extreme will mean left or right

extreme. We say that w is between v and u when either Pv << Pw << Pu

or Pu << Pw << Pv.

The following four lemmas will be used to find four minimal forbidden

induced subgraphs for the class B1-PVPG. Some proof are omitted due

to space limitations.

Lemma 2.1. Let G be the complete bipartite graph K1,4 with partition

{x} ∪ {1, 2, 3, 4} of its vertex set. In any B1-PVPG representation of G,

if P1 << P2 << P3 << P4 then x is not between 2 and 3. ■

Lemma 2.2. If x is adjacent to y and Px << Pv1 << ... << Pvk << Py,

then there exists r, 0 ≤ r ≤ k, such that x is adjacent to the first r vertices

of the sequence v1, v2, ...vk and y is adjacent to the last k − r vertices. ■

Corollary 2.2. If x is adjacent to y and z is neither adjacent to x nor

to y, then z is not between x and y. ■

Lemma 2.3. Let G be the complete bipartite graph K2,3 with partition

{x} ∪ {1, 2, 3, 4} of its vertex set. In any B1-PVPG representation of G

one of the following conditions holds: (i) x or y is an extreme vertex of

G and at least two of the vertices 1, 2, 3 is between x and y; (ii) P1 <<

Px << P3 << Py << P2.

Proof. Suppose neither x nor y is extreme, then w.l.o.g. we can assume

P1 << Px << Py << P2. If P3 << P1, by Lemma 2.2, using that 3 is

adjacent to y and that y is non-adjacent to x, we have the contradiction 3

adjacent to 1. Hence, either x and y are not extreme and Px << P3 <<

Py, or x (or y) is an extreme vertex of G. If x or y is extreme, then w.l.o.g.

we can assume that x is an extreme vertex of G. Suppose that only one

of the vertices 1, 2, 3 is between x and y, w.l.o.g. we can assume that

Px << P1 << Py << P2 << P3. But, using that x is adjacent to 3, x is

non-adjacent to y and 3 is non-adjacent to 2, this contradicts Lemma 2.2.

Hence, at least two of the vertices 1, 2, 3 is between x and y. The cases
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Figure 3: A B1-PVPG representation of K2,3.

P1 << P3 << Px, Py << P3 << P2 and P2 << P3 follows similarly. If

Px << P3 << Py, then the model P1 << Px << P3 << Py << P2 given

in Figure 3 is a B1-PVPG representation of G. ■

Lemma 2.4. Let G be a chordless path P5 with vertices [x, u, y, v, z]. In

any B1-PVPG representation of G the vertex y is between x and z. ■

In what follows we present four minimal forbidden induced subgraphs

for the class of B1-PVPG graphs.

Theorem 2.2. The complete bipartite graph K3,3 is not B1-PVPG.

Proof. Let {a, b, c}∪{1, 2, 3} be the partition of K3,3. Assume there exists

a B1-PVPG representation of this graph.

Case (1): By Lemma 2.3, w.l.o.g, we can assume Pa << P1 << P2 <<

P3 and P1 << Pb, using the K2,3 induced by {a, b, 1, 2, 3}. Now, applying
the result of Lemma 2.3 to the K2,3 with partition induced by {a, c, 1, 2, 3}
we have that P1 << Pc. Now, again by Lemma 2.3, using the K2,3 with

partition {b, c, 1, 2, 3} we have, w.l.o.g, Pa << P1 << P2 << P3 << Pc

and P1 << Pb << P3. If P1 << Pb << P2, we get a contradiction to the

result in Lemma 2.2, using a adjacent to 3. If P2 << Pb << P3, we get a

contradiction to the result in Lemma 2.2, using 1 adjacent to c.

Case (2): P1 << Pa << P3 << Pb << P2. By Lemma 2.1, Pa <<

Pc << P3. This contradicts Lemma 2.2, because a is adjacent to 2 but a

is non-adjacent to c and 2 is non-adjacent to 3. ■

For a vertex v, we let N(v) denote the set of vertices adjacent to v, and

N[v]=N(v)∪ {v}.
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Theorem 2.3. Let G be the bipartite graph with partition {a, b, c} ∪
{1, 2, 3, 4}; and adjacency N(a) = {1, 2, 3}, N(b) = {1, 2, 3, 4} and N(c) =

{2, 3, 4}. Then, G is not B1-PVPG.

Proof. Applying Lemma 2.4 to the path [a, 1, b, 4, c], we have that Pb is

between Pa and Pc. Say, w.l.o.g, that Pa << Pb << Pc.

Case (1): By Case (i) of Lemma 2.3, using a, b and 1, 2, 3, we have that

between a and b there are two of the vertices 1, 2, 3. Again, by Case (i) of

Lemma 2.3, using b, c and 2, 3, 4, we have that between b and c there are

two of the vertices 2, 3, 4, but this contradicts Lemma 2.1.

Case (2): By Case (ii) of Lemma 2.3, using a, b and 1, 2, 3, we have

P1 << Pa << P3 << Pb << P2 << Pc. If the other K2,3 with partition

b, c and 2, 3, 4 is in Case (i) of Lemma 2.3, then at least two of the vertices

2, 3, 4 is between b and c which contradicts Lemma 2.1. If the other K2,3

with partition b, c and 2, 3, 4 is in the case (ii) of Lemma 2.3, then we have

P3 << Pb << P2 << Pc << P4 which contradicts Lemma 2.1. ■

Theorem 2.4. Let G be the bipartite graph with partition {a, b, c} ∪
{1, 2, 3, 4, 5}; and adjacency N(a) = {1, 2, 3}, N(b) = {1, 2, 3, 4, 5} and

N(c) = {3, 4, 5}. Then, G is not B1-PVPG.

Proof. Applying Lemma 2.4 to the path [a, 1, b, 5, c], we have that Pb is

between Pa and Pc. Say, w.l.o.g, that Pa << Pb << Pc.

Case (1): By Case (i) of Lemma 2.3, using a, b and 1, 2, 3, we have that

between a and b there are two of the vertices 1, 2, 3. Again, by Case (i) of

Lemma 2.3, using b, c and 3, 4, 5, we have that between b and c there are

two of the vertices 3, 4, 5, but this contradicts Lemma 2.1.

Case (2): By Case (ii) of Lemma 2.3, using a, b and 1, 2, 3, we have

P1 << Pa << P3 << Pb << P2 << Pc. If the other K2,3 with partition

b, c and 3, 4, 5 is in Case (i) of Lemma 2.3, then at least two of the vertices

3, 4, 5 is between b and c which contradicts Lemma 2.1. If the other K2,3

with partition b, c and 3, 4, 5 is in Case (ii) of Lemma 2.3, then we have

P3 << Pb << P5 << Pc << P4 which contradicts Lemma 2.1. ■
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Theorem 2.5. Let G be the bipartite graph with partition {a, b, c} ∪
{1, 2, 3, 4, 5, 6}; and adjacency N(a) = {1, 2, 3}, N(c) = {4, 5, 6} and

N(b) = {1, 2, 3, 4, 5, 6}. Then, G is not B1-PVPG.

Proof. Applying Lemma 2.4 to the path [a, 3, b, 4, c], we have that Pb is

between Pa and Pc. Say, w.l.o.g, that Pa << Pb << Pc.

Case (1): By Case (i) of Lemma 2.3, using a, b and 1, 2, 3, we have that

between a and b there are two of the vertices 1, 2, 3. Again, by Case (i) of

Lemma 2.3, using b, c and 4, 5, 6, we have that between b and c there are

two of the vertices 4, 5, 6, but this contradicts Lemma 2.1.

Case (2): By Case (ii) of Lemma 2.3, using a, b and 1, 2, 3, we have

P1 << Pa << P3 << Pb << P2 << Pc. If the other K2,3 with partition

b, c and 4, 5, 6 is in Case (i) of Lemma 2.3, then at least two of the vertices

4, 5, 6 is between b and c which contradicts Lemma 2.1. If the other K2,3

with partition b, c and 4, 5, 6 is in Case (ii) of Lemma 2.3, then we have

P4 << Pb << P6 << Pc << P5 which contradicts Lemma 2.1. ■

3 Open problems

As immediate future work, we are working on finding the complete

family of minimal forbidden induced subgraphs for the class B1-PVPG.

The well known class of permutation graphs is contained in the class of

co-comparability graphs, and so in the class of PVPG graphs. Is it possi-

ble to characterize permutation graphs by imposing some restrictions to

PVPG-representations? We let as open problem to characterize permu-

tation B1-PVPG graphs by induced forbidden subgraphs. We conjecture

that a permutation graph is B1-PVPG if and only if it contains none of the

graphs depicted in Theorems 2.2, 2.3, 2.4 and 2.5 as induced subgraphs.

Several questions posed in [4] about the relation between the dimen-

sion of a comparability graph and the bend number of its complement,

can be extended to the parallel bend number. For instance, a challeng-

ing open problem is characterizing the co-comparability graphs such that

dimension(G) = bp(G).
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