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On perturbations of woven pairs of frames

P. Calderón & M. Ruiz

Abstract

In this note, we prove some results related to small perturbations of a frame for

a Hilbert space H in order to have a woven pair for H . Our results complete those

known in the literature. In addition we study a necessary condition for a woven pair,

that resembles a characterization for Riesz frames.

1 Introduction and preliminaries

Woven families of frames were introduced in [2] motivated by a problem of distributed

signal processing in which the pre-processing of a signal is performed by a family of

frames that correspond to a wireless sensor network. The purpose is to have some robust-

ness in the reconstruction of a signal independently of the set of measurements obtained

at each node or sensor. Mathematically speaking, the idea is to have a family of frames

{ fi j}i∈I, j∈In for a separable Hilbert space H such that, for every partition {σ j} j∈In of I,

the set { fi j}i∈σ j , j∈In is a frame for H .

The study of woven frames continued in the work [4] where the authors reviewed

some basic results relating perturbations by invertible operators, projection of woven

frames, and a weaving equivalent of unconditional sequences. Weaving frames were

then generalized to the context of Banach frames ([3]), K-frames ([7]), continuous

frames ([6]), fusion frames ([8], [12]), among others. The topic attracted the interest

of researchers in frame theory, as is evident from the number of papers published in

recent years.

Our purpose in this note is to study the notion of woven pairs in terms of the synthesis

operators of the frames involved. From this perspective, simpler proofs of perturbation

results can be achieved. We also use this setting to look for characterization of woven

pairs in terms of the angle between the nullspace of some operator and a family of ranges

of obliques projections.

1.1 Frames and woven frames.

In this section, we give a brief summary of frame theory and fix some notations used

throughout the paper. Let H be a separable (finite or infinite dimensional) Hilbert
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space. By B(H ), we mean the algebra of bounded linear operators on H . Given an

operator T ∈ B(H ), we denote by R(T ) and N(T ) its range and nullspace, respectively.

Finally, we shall denote by I an index set (finite or countably infinite) and by Im the finite

index set Im = {1,2, . . . ,m}, for m ∈ N.

Definition 1 A family F = { fi}i∈I of vectors in H is called a frame for H if there

exist constants A,B > 0 such that

A‖x‖2 ≤ ∑
i∈I

| 〈x, fi〉 |2 ≤ B‖x‖2 , for every x ∈ H .

If we have only the upper bound condition, we say that F is a Bessel sequence for H .

The maximal lower bound AF and the minimal upper bound BF are called the optimal

frame bounds of F .

Let fix some orthonormal basis B = {ei}i∈I for H . Then, one can associate some

bounded linear operators to a Bessel sequence F . Namely, the synthesis operator TF ∈
B(H ), defined by TF ei = fi, the analysis operator T ∗

F
, which is the adjoint of TF , and

finally, the frame operator, SF = TF T ∗
F

.

The frame operator plays a major role in the reconstruction of a vector f ∈ H from

its frame coefficients {〈x, fi〉}i∈I: we define the canonical dual of a frame F as the

sequence S−1
F
(F ) = {S−1

F
fi}i∈I . We have then the reconstruction formulas:

x = ∑
i∈I

〈x, fi〉 S−1
F

fi = ∑
i∈I

〈

x,S−1
F

fi

〉

fi.

There are several results and frame features that can be stated in terms of these

operators. In the following Proposition we list some of them

Proposition 1 Let F = { fi}i∈I be a Bessel sequence in H , with synthesis operator TF .

Then, the following are equivalent:

1. F is a frame for H .

2. TF is a surjective operator.

3. SF = TF T ∗
F

is a positive invertible operator.

Moreover, the (optimal) frame bounds can be computed as AF = ‖T
†
F
‖−2, BF = ‖TF‖2,

where T †
F

is the Moore-Penrose pseudoinverse of TF and ‖·‖ is the usual operator norm

in B(H ).
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Woven frames

Lets recall the definition of woven frames given in [2]:

Definition 2 A family of frames F j = { fi j}i∈I for j ∈ In for a Hilbert space H is said to

be woven if there are universal constants A and B such that for every partition {σ j} j∈In

of I, the family { fi j}i∈σ j , j∈In is a frame for H , with lower and upper frame bounds A

and B, respectively. Each frame Fσ = { fi j}i∈σ j , j∈In is called a weaving.

If we do not require the existence of the uniform frame bounds A, B for all the weav-

ings, we say that the family is weakly woven.

In [2], the authors make an intensive study of woven frames. Among others, one

of the most relevant results of that work states that weakly woven pairs are woven ([2,

Thm. 4.5]):

Theorem 1 Given two frames F = { fi}i∈I and G = {gi}i∈I for H , the following are

equivalent:

(i) The two frames are woven.

(ii) The two frames are weakly woven.

We shall restrict ourselves to the study of woven pairs of frames (F ,G ) for H .

That is, F = { fi}i∈I and G = {gi}i∈I are frames for H and there exist A,B > 0 such

that, for every partition {σ ,σ c} of I,

A‖x‖2 ≤ ∑
i∈σ

| 〈x, fi〉 |2 + ∑
i∈σ c

| 〈x,gi〉 |2 ≤ B‖x‖2 , for every x ∈ H .

2 Woven pairs and perturbations.

Let F = { fi}i∈I be a frame for H with synthesis operator TF . It is obvious that the

pair (F ,F ) is a woven pair for H . A natural question that arises is to determine if the

pair (F ,G ) is a woven pair as long as G is a frame “sufficiently close” to F .

In [2], the authors answer this question by showing that for a small perturbation

G of F , the pair is woven (see [2, Thm. 6.1]). Our purpose is to refine that result,

showing that for every Bessel sequence G = {gi}i∈I whose synthesis operator TG lies in

an appropriate neighborhood of TF , the pair (F ,G ) is woven.

Before stating the main result, we need the following well known result, which can

be seen as a particular case of [10, Thm. 3.1] about perturbations of a closed range

operator:

Lemma 1 Let A ∈ B(H ) be a surjective operator, with Moore-Penrose pseudoinverse

A†. Let B ∈ B(H ) such that ‖A−B‖< ‖A†‖−1, then B is also surjective, with ‖B†‖ <
1

‖A†‖−1−‖A−B‖ .
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Theorem 2 Let F = { fi}i∈I be a frame for H and let G = {gi}i∈I be a Bessel sequence

in H with synthesis operators TF and TG , respectively. If AF is the optimal lower frame

bound for F and ||TF −TG ||2 < AF , then (F ,G ) is a woven pair, with frame bounds

(A
1/2

F
−‖TF −TG ‖)2 and BF +BG .

Proof 1 Each weaving is a Bessel sequence with upper bound BF +BG . Indeed, for

every σ ⊂ I and x ∈ H we have:

∑
i∈σ c

| 〈x, fi〉 |2 + ∑
i∈σ

| 〈x,gi〉 |2 ≤ ∑
i∈I

| 〈x, fi〉 |2 +∑
i∈I

| 〈x,gi〉 |2 ≤ (BF +BG )‖x‖2.

Recall that we denote by B = {ei}i∈I the (fixed) orthonormal basis of H such that

TF ei = fi, and TG ei = gi, ∀i ∈ I.

Given a partition σ ∪σ c = I, denote by Pσ the orthogonal projection onto the closed

span of {ei}i∈σ .

Then, it is easy to see that the synthesis operator for the (Bessel) weaving Wσ =
{ fi}i∈σ c ∪{gi}i∈σ is the bounded operator

TWσ = TF (I −Pσ)+TG Pσ = TF +(TG −TF )Pσ .

Now, since

‖TF −TWσ ‖= ‖(TG −TF )Pσ‖ ≤ ‖TF −TG ‖< A
1/2

F
= ‖T

†
F
‖−1,

we have, by Lemma 1 that TWσ is a surjective operator in B(H ). Moreover, we have

‖T †
Wσ

‖< (A
1/2

F
−‖(TF −TG )Pσ‖)−1.

Thus, we conclude, by Proposition 1, that Wσ is a frame for H with optimal lower

frame bound AWσ ≥ (A
1/2

F
−‖(TF −TG )Pσ‖)2.

Finally, since A
1/2

F
−‖TF −TG ‖ ≤ A

1/2

F
−‖(TF −TG )Pσ‖ for every σ , we conclude

that A = (A
1/2

F
−‖TF − TG ‖)2 is a uniform lower frame bound, therefore (F ,G ) is a

woven pair with frame bounds A and B = BF +BG .

The next corollary is a slight generalization of Proposition 6.2 in [2]:

Corollary 1 Let F = { fi}i∈I be a frame for H with bounds AF ,BF and let T ∈B(H ).
Suppose that

‖(Id−T)TF ‖< A
1/2

F
,

then, F and T (F ) = {T fi}i∈I are woven.

Proof 2 We only have to notice that T TF is the synthesis operator for the Bessel se-

quence {T fi}i∈I . The result then follows from the previous theorem.
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Example 1 Let {ei}i∈I be an orthonormal basis of H . Let M > 1 and consider the

frame for H :

F = {
√

Me1, e2, e3, . . .}
with frame bounds A = 1, B = M. Notice that, according [2, Prop. 6.2], for those

invertible operators T such that ‖Id−T‖2 < A
B
= 1

M
, we have that (F ,T (F )) is woven.

In particular, for large upper bounds M, T is too close to Id.

Now, let 0 < c < 1 and

T = e1 ⊗ e1 +∑
i>1

(1− c)ei⊗ ei;

clearly, T is invertible in B(H ) and ‖(Id − T )TF‖ = c < 1. Therefore, by Cor. 1

(F ,T (F )) is woven. Notice that, in this case, ‖Id−T‖= c is as close to 1 as we want,

regardless of the value of M.

Our next result gives us a sufficient condition for a linear perturbation of a woven

pair by invertible operators to be woven.

Let (F ,G ) be a woven pair of frames. Let us take some of the notations used in

the proof of Thm. 2. Hence, by Wσ , we denote the weaving Wσ = { fi}i∈σ c ∪{gi}i∈σ ,

whose lower and upper frame constants are Aσ and Bσ , respectively. As we saw before,

the synthesis operator of Wσ is

TWσ = TF +(TG −TF )Pσ .

(Recall that Pσ denotes the orthogonal projection onto the closed subspace generated by

{ei}i∈σ ).

Theorem 3 Let F = { fi}i∈I and G = {gi}i∈I be frames for H with frame bounds

AF ,BF and AG ,BG respectively, such that (F ,G ) is a woven pair with optimal lower

frame constant 0 <C. Let U,V ∈ B(H ) be a pair of invertible operators such that

‖U−1V − Id‖2 <
C

BG

or ‖V−1U − Id‖2 <
C

BF

then U(F ) = {U fi}i∈I and V (G ) = {Vgi}i∈I are woven.

Proof 3 As we did before, our goal is to prove that the synthesis operator of the Bessel

sequence {U fi}i∈σ c ∪{Vgi}i∈σ , i.e.

UTF +(VTG −UTF )Pσ

is surjective, for all σ ⊂ I .

Suppose that ‖U−1V − Id‖2 < C
BG

, the other case is similar.
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Let Wσ be the weaving Wσ = { fi}i∈σ c ∪{gi}i∈σ . Then, by definition of woven frames

we have that C ≤ Aσ = ‖T
†
Wσ

‖−2.

Since by assumption ‖U−1V − Id‖2 < C
BG

, we have

‖U−1VTG −TG ‖ ≤ ‖U−1V − Id‖ ‖TG ‖
≤ ‖U−1V − Id‖ B

1/2

G
<C1/2 ≤ ‖T

†
Wσ

‖−1.

Then,

‖TWσ − (TF +(U−1VTG −TF )Pσ )‖ = ‖(U−1V TG −TG )Pσ‖< ‖T
†
Wσ

‖−1.

Hence, by Lemma 1, the operator TF +(U−1VTG −TF )Pσ is surjective, so do is U(TF +
(U−1VTG −TF )Pσ ), therefore, the weaving {U fi}i∈σ c ∪{Vgi}i∈σ is a frame for H .

Since σ ⊂ I is arbitrary, the pair (U(F ),V (G )) is weakly woven, so it is a woven

pair by the equivalence between weakly woven and woven pairs of frames.

Remark 1 The necessary condition given in the previous theorem is not sufficient. To

see this, let us consider a finite dimensional Hilbert space H and let F = {ei}i∈I be a

orthonormal basis for H . It is clear that (F ,F ) is a woven pair with frame constants

A = B = 1. On the other hand, it easy to see that, for every invertible operator V ,

diagonal with respect to F (that is, such that Vei = αi ei, for some αi 6= 0, ∀i ∈ I), the

pair (F ,V (F )) is woven.

In particular, if we take V such that ‖V − Id‖ ≥ 1 and ‖V−1 − Id‖ ≥ 1 we see that

the condition is not satisfied for U = Id even though U(F ) and V (F ) are woven.

As a consequence of this result we can obtain the next result about canonical duals:

Corollary 2 Let (F ,G ) a woven pair as before, with lower frame constant 0 <C. De-

note by SF and SG the frame operators for F ,G , respectively. Then if

‖S−1
F

− S−1
G
‖2 <C max{ 1

BG B2
F

,
1

BF B2
G

}

we have that the canonical duals {S−1
F

fi}i∈I and {S−1
G

gi}i∈I form a woven pair.

3 A characterization of woven pairs.

In this section we consider a connection between woven pairs and Riesz Frames. More

specifically we want to derive a necessary condition for a woven pair in terms of angle

(or gap) between certain closed subspaces that resembles the condition found for Riesz

frames in [1].

Let us recall the definition of Riesz Frames, introduced by O. Christensen in [5] :
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Definition 3 A frame F = { fi}i∈I for H is called a Riesz frame if there exists A,B > 0

such that, for every σ ⊂ I the sequence { fi}i∈σ is a frame sequence with bounds A,B.

In [1] the authors show that the Riesz frames can be characterized in terms of the

nullspace of the synthesis operator, considering its position with respect to “diagonal”

subspaces, that is, those closed subspaces generated by {ei}i∈σ .

Specifically, the uniform lower bound for the (sub)frame sequences of a Riesz frame

is related to the existence of a uniform bound 0 < β for the angle between the nullspace

of the synthesis operator and the diagonal subspaces.

Let us introduce some definitions first:

Definition 4 Given two closed subspaces M and N of a Hilbert space H , let M̃ =
M⊖ (M∩N) and Ñ = N⊖ (M∩N). The angle between M and N is the angle in [0,π/2]
whose cosine is defined by

c(M, N ) = sup{|〈x,y〉 | : x ∈ M̃, y ∈ Ñ and ‖x‖= ‖y‖= 1}
= ‖PMPNP(M∩N)⊥‖

The angle c(M, N ) is related with the gap δ (M,N) between the closed subspaces

M, N:

δ (M,N) = sup
x∈M,‖x‖=1

dist(x,N) = ‖PN⊥PM‖

In particular, if M∩N⊥ = {0}, δ (M,N) = c
(

M, N⊥ )

.

The following result shows the closed connection between angles and closed range

operators. For more details and properties we refer the reader to the work by Deutsch

[9].

Proposition 2 Let A,B ∈ B(H ) be closed range operators. Then, AB has closed range

if and only if c(R(B),N(A))< 1.

For an operator T ∈ B(H ) we define its reduced minimum modulus by

γ(T ) := inf{‖Tx‖ | ‖x‖= 1 , x ∈ N(T )⊥}. (1)

It is well known that T has closed range if and only if γ(T )> 0. Moreover, in this case,

γ(T ) = γ(T ∗) = γ(T ∗T )1/2 = ‖T †‖−1.

Finally, the following result relates all these concepts, and will be useful in our char-

acterization of woven pairs:

Proposition 3 (Rem. 2.10, [1]) Let A,B ∈ B(H ) with closed ranges and let c :=
c(N(A), R(B)). Then,

γ(A)γ(B)(1− c2)1/2 ≤ γ(AB)≤ ‖A‖‖B‖(1− c2)1/2. (2)

In particular, AB is a closed range operator if and only if c < 1.
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Now, if we have a frame F = { fi}i∈I , with synthesis operator TF , it turns out that

F is a Riesz frame if and only if N(TF ) (the nullspace of TF ) is compatible with respect

to the basis B = {ei}i∈I , that means that:

sup
σ⊂I

c(N(TF ), R(Pσ ))< 1

(see [1]).

Our purpose in this section is to find a similar condition to a woven pair. It is clear

that an equivalent condition in terms of angles is not possible, since each weaving must

be a frame for H and not just a frame sequence. However, by properly defining the

setting, we can state a sufficient condition for a woven pair.

Suppose that we have a woven pair (F ,G ) for H . Denote by H̃ = H ⊕H the

Hilbert space endowed with the inner product

〈x⊕ y,z⊕w〉
H̃

= 〈x,z〉+ 〈y,w〉 .

Also, for each σ ⊂ I we shall denote by Qσ to the oblique projection in B(H̃ ) given by

Qσ =

(

I Pσ

0 0

)

.

Theorem 4 Let F = { fi}i∈I and G = {gi}i∈I be frames for H . Define the bounded

operator TF ,G : H̃ → H by

TF ,G (x⊕ y) = TF (x)+ (TG −TF )(y).

Therefore, if (F ,G ) is a woven pair, then

sup
σ⊂I

c
(

N(TF ,G ), R(Q∗
σ )

)

< 1. (3)

Proof 4 Denote by B = T ∗
F

and A = T ∗
G
−T ∗

F
. Then, if (F ,G ) is a woven pair, it is

clear that there exists a constant C > 0 such that, for every σ ⊂ I:

C‖x‖ ≤ ‖(Pσ A+B) x‖ ∀x ∈ H .

It is easy to see that T ∗
F ,G is an injective closed range operator (since TF and TG are

synthesis operators of frames).

On the other hand, if x ∈ H , ‖x‖= 1,

||T ∗
F ,G x||=

√

||Bx||2 + ||Ax||2 ≥ ||Bx|| ≥ γ(B) = γ(T ∗
F ) = A

1/2

F

so γ(T ∗
F ,G )≥ A

1/2

F
.
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Finally, we have

γ(Qσ T ∗
F ,G ) = γ

((

(B+PσA) 0
)

⊺
)

= γ(B+PσA).

Therefore, if c = c
(

N(Qσ ), R(T ∗
F ,G

)

, by Prop. 3:

γ(Qσ )γ(T
∗
F ,G )(1− c1/2)1/2 ≤ γ(B+PσA)≤ ||Qσ || ||T ∗

F ,G || (1− c1/2)1/2. (4)

Thus, if (F ,G ) woven, the uniform lower bound for γ(B+PσA) implies

sup
σ⊂I

c
(

N(Qσ ), R(T ∗
F ,G

)

= sup
σ⊂I

c
(

N(TF ,G ), R(Q∗
σ )

)

< 1.

Remark 2 The condition (3), which works as a kind of “oblique” compatibility condi-

tion between N(TF ,G ) and the ranges of Q∗
σ , does not guarantee that (F ,G ) is a woven

pair since it only implies that the weavings { fi}i∈σ c ∪{gi}i∈σ are frame sequences for

H with a uniform lower frame bound for every σ .

4 Woven pairs for the scaled canonical dual frame.

In [11, Cor. 5.4], the authors state a result that provides a sufficient condition on a g-

frame and a scaled canonical dual g-frame in order to be a woven pair. In terms of usual

vector frames, it can be written as:

Proposition 4 Let F = { fi}i∈I a frame for H with bounds AF ,BF . If
BF

AF
< 2, then

F and the scaled canonical dual frame G = { 2AF BF

AF+BF
S−1

F
fi}i∈I are a woven pair.

The purpose of this section is to apply Thm. 2 to this particular case. Specifically, we

shall show that for a greater ratio
BF

AF
we can determine an interval of positive numbers

α which guarantee that the pair (F ,α ·F ♯) is woven, where we denote F ♯ to the

canonical dual frame of F .

Theorem 5 Let F = { fi}i∈I a frame for H with bounds 0 < AF ≤ BF . If
BF

AF
< 4,

then for every α > 0 which satisfies BF −
√

AF BF < α < 2AF , (F ,α ·F ♯) is a woven

pair.

Proof 5 According to Thm. 2 we need to prove that under our hypothesis, we have that

‖TF −αS−1
F

TF‖2 < AF .
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If we rewrite the left side of this inequality,

‖TF −αS−1
F

TF ‖2 = ‖(I−αS−1
F
)TF T ∗

F (I−αS−1
F
)‖= ‖(SF −αI)S−1

F
(SF −αI)‖.

Using functional calculus, we can obtained specifically that

‖(SF −αI)S−1
F
(SF −αI)‖= max

x∈[AF ,BF ]

(x−α)2

x
.

In particular,

‖TF −αS−1
F

TF ‖2 = max

{

(BF −α)2

BF

,
(AF −α)2

AF

}

.

As we supposed BF < 4AF , then BF −
√

AF BF <
√

AF BF . Let α be such that

BF −
√

AF BF < α ≤
√

AF BF .

It is easy to check that α ≤
√

AF BF implies that

‖TF −αS−1
F

TF‖2 =
(BF −α)2

BF

.

In the other hand, from BF −
√

AF BF < α , we get that

(BF −α)2

BF

<

(

BF − (BF −
√

AF BF )
)2

BF

= AF ,

and hence the pair is woven.

Similarly, if
√

AF BF < α < 2AF , it turns out that

‖TF −αS−1
F

TF‖2 =
(AF −α)2

AF

< AF ,

and together with Thm. 2, we can conclude the proof.

Remark 3 The value of the scale used in the cited work [11], i.e. α = 2AF BF

AF+BF
, is not

necessarily under the conditions of our result. It is clear that, because of the arithmetic-

geometric mean inequality, α is less than or equal to
√

AF BF . However, the condition
BF

AF
< 4 does not ensure that BF −√

AF BF < α in this case. In the following we see

this carefully.

Due to α ≤
√

AF BF , we need to find conditions over the ratio
BF

AF
in order to have

BF −
√

AF BF < α
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and hence arrive to the conclusion of Thm.5. If we make a short calculation, we see that

the condition

BF − 2AF BF

AF +BF

≤
√

AF BF

is equivalent to have

BF −AF

BF +AF

<

√

AF

BF

.

Moreover, if we call r = BF

AF
, this inequality turns into

(r− 1)2

(r+ 1)2
<

1

r
.

In particular, our interest is to find 1≤ r such that r3−3r2−r−1< 0. As the polynomial

f (r) = r3 − 3r2 − r− 1 has a unique real root

r0 =









3

√

√

√

√
3+

√

11
3

6
+

3

√

√

√

√
3−

√

11
3

6









3

≈ 3.383,

then we can allow a greater bound for
BF

AF
(that is

BF

AF
< 3.383) to arrive to the same

result as in [11].
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