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Today high-throughput docking is one of the most commonly used computational

tools in drug lead discovery. While there has been an impressive methodological

improvement in docking accuracy, docking scoring still remains an open challenge.

Most docking programs are rooted in classical molecular mechanics. However, to

better characterize protein-ligand interactions, the use of a more accurate quantum

mechanical (QM) description would be necessary. In this work, we introduce a QM-

based docking scoring function for high-throughput docking and evaluate it on 10

protein systems belonging to diverse protein families, and with different binding site

characteristics. Outstanding results were obtained, with our QM scoring function

displaying much higher enrichment (screening power) than a traditional docking method.

It is acknowledged that developments in quantum mechanics theory, algorithms

and computer hardware throughout the upcoming years will allow semi-empirical (or

low-cost) quantum mechanical methods to slowly replace force-field calculations. It

is thus urgently needed to develop and validate novel quantum mechanical-based

scoring functions for high-throughput docking toward more accurate methods for the

identification and optimization of modulators of pharmaceutically relevant targets.

Keywords: high-throughput docking, structure-based drug design, molecular docking, quantum mechanics,
semi-empirical methods

INTRODUCTION

The cost to bring a new drug to themarket could be as high as 2.6 billion US dollars, and can take up
to 15 years (DiMasi et al., 2016). For many years, both the identification and optimization of novel
drug lead compounds were accomplished within the drug discovery process by the experimental
high-throughput screening of large chemical libraries. In spite of multiple efforts to improve its
performance, drug discovery remains a costly and time consuming technique (Phatak et al., 2009).
However, for the last 25 years, theoretical developments, better computational algorithms, faster
computing resources, and improved visualization tools enabled the routine use of computational
methods to model and visualize protein-ligand (PL) interactions, calculate binding free energy
to different degrees of accuracy, and in silico screen chemical libraries using ligand-based and
structure-based approaches. Today, computational chemistry is firmly established as a valuable tool
in any drug lead discovery endeavor, aimed at saving time, effort, resources, and reducing costs
(Cavasotto and Orry, 2007; Jorgensen, 2009, 2012; Spyrakis and Cavasotto, 2015; Pagadala et al.,
2017).
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During the last three decades, molecular docking has been
one of the most commonly used computational methods in drug
lead discovery (for review, cf., Kitchen et al., 2004; Rognan,
2011; Ciancetta and Moro, 2015; Sotriffer, 2015; Spyrakis and
Cavasotto, 2015; Sulimov et al., 2019b). The aim of protein-
small-molecule docking is the characterization of the optimal
binding modes (poses) of a molecule within the binding site,
and an estimation of its binding free energy. In high-throughput
docking (HTD), where the protein is usually considered rigid
or with very few degrees of freedom, and thousands to millions
of molecules from a chemical library are screened, the goal is
to generate a sub-library enriched with potential ligands, which
will be prioritized for further experimental evaluation. In HTD,
two different stages can be distinguished: the assessment of the
best binding mode(s) of each molecule of the library (“docking
stage”), and, on each in silico generated protein-small-molecule
complex, the calculation of a score reflective of the likelihood
that the molecule will actually bind to the target (“scoring stage”)
(Cavasotto and Orry, 2007; Guedes et al., 2018). In the docking
stage, the docking energy (DE) is used to select, for eachmolecule,
the lowest-energy pose(s) from a large amount of conformations
generated, while the docking score (DS) is generally calculated as
a fast approximation to the binding free energy (1Gbinding), and
depends on several factors, such as the energy representation of
the system, themodel used to represent the aqueous environment
and the consideration of explicit water molecules within the
active site (Cozzini et al., 2006; Amadasi et al., 2008), and the
degree of consideration of receptor flexibility (Cavasotto and
Singh, 2008; Spyrakis et al., 2011; Spyrakis and Cavasotto, 2015).
Thus, DE discriminates among poses of the same molecule,
while the DS characterizes each molecule of the docked chemical
library and is used to rank them according to the likelihood of
binding. Many docking programs, however, use a single function
as DE and DS.

It should be stressed that one of the main advantages of
docking is that in silico generated poses usually serve as the
starting point for in silico ligand optimization, using for example
molecular dynamics-based calculation of binding free energies,
such as Molecular Mechanics-Poisson Boltzmann Surface Area
(MM-PBSA) and MM-Generalized Born Surface Area (MM-
GBSA) methods (Kerrigan, 2013; Reddy et al., 2014; Genheden
and Ryde, 2015; Sun et al., 2018; Wang et al., 2019).

While docking accuracy depends on the program, it is
acknowledged that most of them are usually successful in
identifying the correct pose (RMSD < 2 Å) with respect to
the native structure (Warren et al., 2006; Wang et al., 2016).
Moreover, an extensive recent benchmark of the Comparative
Assessment of Scoring Functions (CASF) (Su et al., 2019)
highlighted that docking programs display a better performance
in terms of docking accuracy than in any of these three scoring-
related metrics: correlation with experimental binding data
(scoring power), ranking of ligands by their binding affinity data
provided their correct poses are known (ranking power), and
identification of actual ligands from a sub-library of top-ranking
small-molecules (screening power). This was in agreement
with other works (Cavasotto and Abagyan, 2004; Slater and
Kontoyianni, 2019).

Most docking developments have been mainly rooted in
molecular mechanics (MM) force-fields (FF). However, to better
characterize protein-ligand interactions, at least in some cases,
the use of a quantum mechanical (QM) description would
be necessary (Cavasotto et al., 2019). The QM formulation
is theoretically exact, as in principle, it accounts for all
contributions to the energy (including terms or effects usually
missing in FFs, such as electronic polarization, charge transfer,
halogen bonding, and covalent-bond formation). Moreover, the
QM framework is general across the chemical space so that all
elements and interactions can be considered on equal footing,
thus avoiding MM parameterizations.

Following the pioneering work of Raha and Merz (2004,
2005) where a QM-based score was used to discriminate
ligand from decoy poses, there have been recently some
applications of QM methods in docking, mainly aiming for
accurate ligand binding mode assessment (for a survey of
recent related works cf., Mucs and Bryce, 2013; Cavasotto
et al., 2018; Aucar and Cavasotto, 2020). In a significant
step forward, Pecina et al. obtained impressive results on the
discrimination of native from decoy docking poses on four
challenging systems (Pecina et al., 2016) using a docking energy
function (Lepšík et al., 2013) based on the semi-empirical
QM PM6 Hamiltonian (Stewart, 2007) supplemented with the
D3H4X correction for dispersion, hydrogen- and halogen-
bonding interactions (Rezáč and Hobza, 2012). In a follow-up
contribution (Pecina et al., 2017), an even superior performance
was achieved for accurate pose assessment using a self-consistent-
charge density-functional tight-binding method (SCC-DFTB)
formulation coupled with D3H4 corrections for dispersion and
hydrogen-bond interactions, though at a higher computational
cost. This docking energy score function was further used to
obtain a reliable ranking on 10 inhibitors binding to carbonic
anhydrase II (CAII) (Pecina et al., 2018).

However, the development of QM-based docking scoring
functions aiming at the ranking of molecules within HTD
(screening power) has progressed at a significantly slower
pace. Only very recently, a QM-based approach was presented
displaying a very good performance on discriminating ligands
and decoys on a single system (heat shock protein 90, HSP90)
(Eyrilmez et al., 2019). In fact, the development of fast yet
accurate docking scoring functions still constitutes an area of
active research (Cavasotto, 2012; Guedes et al., 2018). Moreover,
the blind challenges ran by the Drug Design Data Resource
(D3R) for ligand-pose and affinity prediction in 2015 (Gathiaka
et al., 2016), 2016 (Gaieb et al., 2018), and 2018 (Gaieb et al.,
2019), have shown the importance of method development and
benchmarking in pose prediction and binding affinity ranking
of ligands.

In this work, we introduce a QM-based docking scoring
function and evaluate it in terms of ligand enrichment on
10 protein systems belonging to diverse protein families in
terms of different binding site characteristics, the presence of
co-factors and water molecules, and the enrichment factors
computed with a standard HTD method. Excellent results were
obtained by displaying our QM-based scoring function a much
higher enrichment (screening power) than a traditional docking
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method. We stress that our goal is to present and to validate an
initial straightforward approach, which could serve as a starting
point for further developments and improvement. A wider and
extensive benchmarking on more systems and a systematic
comparison with most of the standard docking programs, and
the assessment of the optimal combination of the different
components of our approach (QM formalism and continuum
solvent model, energy minimization strategies, use of single or
multiple docking poses for scoring, and entropy contribution)
are considerations of their importance. However, they exceed the
purpose of our work and will be published in due course.

Assuming a continuous development in QM theory,
algorithms and computer hardware, it is likely that semi-
empirical methods [or low-cost Density Functional Theory
(DFT) methods] will replace FF over the next 25 years (Grimme
and Schreiner, 2018). Therefore, it is absolutely justified and there
is an urgent need to start developing the next generation of QM-
based scoring functions for HTD toward better methods for the
identification of small-molecule modulators of pharmaceutically
relevant targets.

MATERIALS AND METHODS

Protein Systems Preparation
The following targets were downloaded from the PDB (cf.
Table 1): Cyclin-dependent Kinase 2 (CDK2, PDB 1FVV),
Estrogen Receptor α (ESR1, PDB 3ERT), Cyclooxygenase-1
(COX1, PDB 2OYU), Neuraminidase (NRAM, PDB 1B9V), Heat
Shock Protein 90 α (HSP90a, PDB 1UYG), Hexokinase Type IV
(HXK4, PDB 3F9M), Coagulation Factor VII (FA7, PDB 1W7X),
Thymidine kinase (KITH, PDB 2B8T), Fatty Acid Binding
Protein Adipocyte (FABP4, PDB 2NNQ), and Phospholipase A2
(PA2GA, PDB 1KVO). All water molecules and co-factors were
deleted, except in the following cases: NRAM and PA2GA, the
Ca2+ atom within 8 Å of the bound ligand; HSP90a, water
molecules 2059, 2121, 2123, and 2236; FA7, water molecule 2440;
FABP4 water molecules 303, 623, 634, 665.

Each target was prepared using ICM software (MolSoft, San
Diego, CA, 2019; Abagyan et al., 1994) in a similar fashion
as in earlier works (Phatak et al., 2010). Succinctly, hydrogen
atoms were added, followed by a local energy minimization of
the complete system, and polar and water hydrogen positions
were determined by optimizing the hydrogen bonding network
within the torsional coordinates space. All Asp and Glu residues
were assigned a −1 charge, and all Arg and Lys residues were
assigned a+1 charge. Histidine tautomers were chosen according
to their corresponding hydrogen bonding pattern. For docking
with AutoDock Vina (Trott and Olson, 2010), the systems were
pre-processed with AutoDock Tools (Morris et al., 2009).

Docking Library Preparation
For each target, the docking libraries were built by merging a
set of ligands and a set of decoys, where the latter had similar
physico-chemical properties to the ligands, but dissimilar 2-
D topology. This has been shown to be necessary to ensure
unbiased results when benchmarking docking programs (Huang
et al., 2006; Gatica and Cavasotto, 2012). Ligands and decoys

TABLE 1 | Target proteins used in the evaluation of QM-based scoring functions.

Receptor name Receptor
code

PDB
code

Co-
factora

Number
of water
moleculesb

EF(1)c

Cyclin-dependent

Kinase 2

CDK2 1FVV – – 8.0

Estrogen receptor α ESR1 3ERT – – 16.5

Cyclooxygenase-1 COX1 2OYU – – 1.3

Neuraminidase NRAM 1B9V Ca2+ – 0.

Heat shock protein 90 α HSP90a 1UYG – 4 0.

Hexokinase type IV HXK4 3F9M – – 1.1

Coagulation factor VII FA7 1W7X – 1 20.2

Thymidine kinase KITH 2B8T – – 35.1

Fatty acid binding protein

adipocyte

FABP4 2NNQ – 4 31.9

Phospholipase A2 PA2GA 1KVO Ca2+ – 2.0

aWithin 8 Å of the cyrstallographic ligand.
bWithin 4 Å of the cyrstallographic ligand.
cEnrichment factor at 1% corresponding to docking with AutoDock Vina.

were extracted from the Directory of Useful Decoys (DUD,
Huang et al., 2006), the NRLiSt binding data base for nuclear
receptors (Lagarde et al., 2014), or the Directory of Useful
Decoys- Enhanced (DUD-E, Mysinger et al., 2012), according to:
CDK2, DUD (72, 2074) (number of ligands, number of decoys);
ESR1, NRLiSt (133, 6555); COX1, DUD-E (210, 6955); NRAM,
DUD-E (222, 6227); HSP90a (125, 4942); HXK4, DUD-E (127,
4802); FA7, DUD-E (185, 6300); KITH, DUD-E (132, 2866);
FABP4, DUD-E (57, 2855); PA2GA (127, 5215). The protonation
state and chirality of all molecules were conserved as in their
original database.

High-Throughput Docking With AutoDock
Vina
Molecular docking of the chemical libraries onto the associated
targets using AutoDock Vina (Trott and Olson, 2010) was
performed in a similar fashion as in our recent work (Palacio-
Rodriguez et al., 2019).

Protein-Molecule Complex Generation,
Structural Relaxation, and Unbound
Protein and Ligand States Characterization
Protein-molecule complexes for QM-scoring were generated
using the ICM docking module, keeping for each molecule its
lowest DE conformation (docking RMSD values of native ligands
are shown in Table 2). These protein-molecule complexes were
also relaxed through cycles of local energy minimization in ICM
according to the following procedure: (i) For each protein, the
collected dihedral angles of amino-acids within 4 Å of any docked
ligand of the corresponding chemical library were considered
free; (ii) For each protein-molecule complex, five cycles of
local energy minimization were performed restraining the heavy
atoms with a harmonic potential with respect to their initial
conformation; in each cycle the weight of this added potential
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TABLE 2 | RMSD values of docked native ligands.

Receptor name Receptor
code

PDB
ligand ID

RMSD (Å)

ICM AD Vina

Cyclin-dependent Kinase 2 CDK2 107 0.74 2.68

Estrogen receptor α ESR1 oht 1.48 4.69

Cyclooxygenase-1 COX1 ims 1.40 0.36

Neuraminidase NRAM ra2 0.54 0.91

Heat shock protein 90 α HSP90a pu2 0.52 0.26

Hexokinase type IV HXK4 mrk 0.47 7.56

Coagulation factor VII FA7 413 0.31 0.60

Thymidine kinase KITH thm 0.22 0.70

Fatty acid binding protein

adipocyte

FABP4 t4b 0.37 0.79

Phospholipase A2 PA2GA oap 0.54 1.37

was reduced in the following way: 50, 10, 5, 1, and 0 kcal/mol
(no restraint). During this local energy minimization, the protein
system was optimized in the torsional space (Abagyan et al.,
1994), and the small-molecule in the Cartesian space.

To generate the unbound states, local energy minimization
was performed on both protein and small-molecule in
isolation from the crystallographic structure and the docked
conformation, respectively.

System Cutout
For each target, a reduced-system was defined by first listing all
the amino-acids within 8 Å of any docked molecule with ICM
(only heavy atoms were considered in this threshold). Then, upon
visual inspection, other amino-acids were eventually added to the
list in order to avoid intra-helix or intra-β-sheet fragmentation,
or loop fragments with just one amino-acid. A reduced-system
was then built by deleting from the structure all amino-acids
not included in the list, capping the N- and C-terminal of each
fragment with hydrogens.

Entropy Calculation
Binding small-molecule conformational entropy was
estimated as

1S = −R ln� (1)

where it is assumed that, upon binding, the molecule adopts
a single conformation state (thus Sbound = 0), and Ω is the
number of conformations in the free state, which was estimated
in two different ways: i) by assigning each of the N free torsional
bonds three rotational degrees of freedom (and thus Ω =

3N); ii) by performing a Monte-Carlo (MC) sampling with
local energy minimization in the torsional space using ICM
(Abagyan and Totrov, 1994; Abagyan et al., 1994), collecting all
distinct conformations within the lowest 3 kcal/mol energy, and
assuming all conformers are equally probable (a similar low-
level sampling approach was used to explore the conformational
flexibility of small-molecules, Forti et al., 2012). The MC

approach was considered since rotamer count is known to over-
estimate the number of low-energy conformations, and thus the
entropy (Anisimov and Cavasotto, 2011).

Quantum Mechanical Calculations
All QM calculations were performed using the QM package
MOPAC2016 (Stewart, 2016) and its linear-scaling module
MOZYME (Stewart, 1996), using the semi-empirical PM7
Hamiltonian (Stewart, 2013). In agreement with other authors
(Sulimov et al., 2017a), we selected PM7 since it accounts for
dispersion interactions, and hydrogen and halogen bonding have
been taken into consideration at the paramterization stage, while
it also includes several corrections to the PM6 Hamiltonian.
Moreover, PM7 exhibited a very good performance on energy
calculations aimed at discriminating native ligand positions in
crystallographic complexes (Sulimov et al., 2017b). The solvation
energy contribution in aqueous environment was calculated
using the Conductor Like Screening Model (COSMO, Klamt
and Schüürmann, 1993) continuum solvent model, with default
atomic radii and surface tension parameters. The solvent-
accessible surface area was taken from the program output [cf.
(Stewart, 2016) for details on how the surface is built]. Those
molecules which did not complete the QM calculation were
excluded when computing the enrichment.

Evaluation Metrics
The enrichment factor (EF) measures the enrichment of actual
ligands in a docked hit-list given a specific percentage of the
dataset (threshold). The EF is defined as the ratio between actual
number ligands (hits) found at the top x% of the screened
database (Hitsx%) and the number of molecules at that threshold
Nx%, normalized by the ratio between the total number of actual
ligands within the entire dataset (Hitstotal) and the total number
of molecules of the latter (Ntotal).

EF(x) =
Hitsx%

Nx%
/
Hitstotal

Ntotal
(2)

Thus, the EF represents the probability of finding an actual
ligand within the x% of the screened database with respect to the
probability of finding an actual ligand at random. Whenever a
molecule is represented within a chemical library with different
states according to its protonation or chirality, each state is
assigned an individual score, and the lowest score is used in the
hit-list, and thus to calculate the EF. Throughout this work we
report EF(1) and EF(2), since they are more representative of
early enrichment.

We also report receiver operating characteristics (ROC)
curves for each of the studied systems, measuring the area under
the curve (AUC).

THEORETICAL FRAMEWORK

The binding free energy (1Gbinding) corresponding to Protein-
Ligand (PL) association is expressed within the end-point
molecular mechanics-quantum mechanics surface area method
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(MM-QMSA) (Anisimov and Cavasotto, 2011; Anisimov et al.,
2011) as

1Gbinding = 1
〈

GQM
〉

− T1S (3)

where the difference in the first term is calculated between
the bound (PL) and unbound (P, L) states, <. . . > represents
the average over QM-minimized classical molecular dynamics
(MD) trajectories, GQM is the QM energy including a continuum
solvation term in an aqueous environment, and the second term
represents the entropy change of P and L upon binding. We
prefer to note the first term as a free energy, since it also includes
the change in solvation free energy.

Since 1Gbinding in Equation (3) is obviously too costly to be
used to score and rank large chemical libraries of small-molecules
in HTD, a reasonable QM docking scoring function (QMDS) can
be defined as an approximation to Equation (3), namely

QMDS = 1GQM
− T1S (4)

where averages over MD trajectories have been replaced by
single-point QM calculations on the docked PL structure, and
the free unbound L and P structures. The L and P deformation
penalty contributions due to changes in L and P conformations
upon binding are expressed as

1GQM
conf

(X) = GQM
o (X)− GQM(X) , with X = L, P (5)

where Go(X) is the energy of the isolated X in the conformation
of the docked PL complex, and G(X) is the energy of X in the
free unbound state. Considering Equation (5), Equation (4) can
be now be written out making the deformation contributions
explicit as

QMDS = 1GQM
o + 1GQM

conf
(P)+ 1GQM

conf
(L)− T1S (6)

where the “o” subscript in the first term refers to calculations
using the PL, P, and L conformations from the docked complex.
It should be pointed out that Equation 6 is formally identical to
another formulation (Eyrilmez et al., 2019).

Two types of QM docking scoring functions were defined
according to the relaxation of the reference docked PL complexes:
(i) QMDS1, with no relaxation, that is, the QM calculations
are performed directly on the docked PL complex, and (ii)
QMDS2, where docked PL complexes are relaxed through local
energy minimization (see Methods). When the deformation
contributions (second and third terms in Equation 6) were
included, the suffix “d” is added (QMDS1d and QMDS2d).

RESULTS AND DISCUSSION

Improved HTD Enrichment Using
QM-Based Scoring
Ten target proteins were selected based on different
characteristics such as protein family, binding site properties,
presence of co-factors and water molecules (within or close to
the binding site), and enrichment factor at 1% calculated after

TABLE 3 | Comparison of the enrichment factors [EF (1)] for docking and scoring

(QMDS1) using a complete and reduced protein systems.

Receptor Complete system Reduced system

CDK2 20.1 24.2

ESR1 33.7 36.4

docking with AutoDock Vina (Table 1). Only crystallographic
and/or conserved water molecules within 4 Å of the native ligand
were included.

Throughout all this work, the QMDS was calculated in all its
variants on PL complexes generated with ICM docking, since
it is acknowledged to generate high quality protein-molecule
poses (Bursulaya et al., 2003; Neves et al., 2012), as confirmed
by the RMSD values of the docked native ligands in Table 2).
Clearly, better enrichment is strongly coupled to scoring over
correct docking poses. In this regard, the use of multiple docked
conformations for each molecule, stemming from the same
docking program or not, might clearly enhance the results of our
QM-scoring scheme. However, we preferred to use a single pose
from a single program, to keep our methodology straightforward,
and to establish a clear baseline from which to start looking
for improvement.

Since a target receptor protein is usually very large for QM
calculations, to calculate the QMDS we used a reduced system
by cutting out amino acids farther than ∼8 Å from any docked
molecule (cf. the Methods section for full details on the cutout
process), since a threshold of <6 Å has been reported to
seriously deteriorate the results (Ehrlich et al., 2017); moreover,
it should be highlighted that the smaller the threshold, the
greater the impact of the continuous solvent surface replacing the
cutout amino-acids. To further validate our approach, quantum
mechanical docking scores QMDS considering the complete
protein and its associated reduced system were calculated on
CDK2 and ESR1 (Table 3).We observe that using a cutout system
has no impact on the calculation. Thus, throughout this work, a
reduced representation of the target protein will be used for all
QM calculations.

In Table 4, we display the enrichment factors EF(1) for the 10
target systems comparing AutoDock Vina with four schemes of
QM docking scoring (for HSP90a, enrichment values including
and excluding the 19 macrocycle containing ligands are shown).
The conformational entropy change upon ligand binding was
estimated in two ways: (i) 1Srot , based on a term proportional
to the number of N free rotatable bonds of the molecule (Ωconf

= 3N), and (ii) 1Sconf , by estimating Ωconf as the number of
low-energy diverse conformations generated using Monte-Carlo
sampling with local energy minimization (cf. Methods). We
found that the use of Srot deteriorates the EF (data not shown),
so Sconf is used in all calculations. In QMDS2 and QMDS2d the
reference docked PL complexes were local energy minimized
using MM (see Methods). Obviously, a QM minimization would
have been desirable, but this would render any QM docking
scoring function useless due to the computational times involved,
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TABLE 4 | Enrichment factors calculated at 1% [EF (1)] and 2% [EF (2)] (in
parenthesis) for AutoDock Vina and QM docking scoring.

Receptor AD Vina QMDS1 QMDS1d QMDS2 QMDS2d

CDK2 8.0 (5.0) 24.2 (15.1) 26.2 (18.1) 26.3 (16.2) 26.3 (18.2)

ESR1 16.5 (11.0) 36.4 (26.1) 30.6 (22.4) 44.0 (29.2) 43.2 (26.4)

COX1 1.3 (0.7) 2.8 (2.8) 3.5 (3.9) 2.8 (1.4) 3.5 (3.5)

NRAM 0. (0.) 9.3 (8.7) 9.3 (10.2) 21.4 (15.8) 21.4 (16.3)

HSP90a 0. (0.) 15.3 (11.9) 16.7 (11.9) 28.3 (16.1) 31.1 (16.1)

HSP90aa 0. (0.) 14.1 (10.5) 15.2 (10.5) 23.3 (14.5) 26.8 (14.0)

HXK4 1.1 (1.1) 11.4 (7.9) 9.1 (6.2) 15.6 (8.8) 15.6 (9.9)

FA7 20.2 (20.2) 49.0 (42.5) 47.0 (42.5) 54.0 (41.0) 52.0 (41.0)

KITH 35.1 (21.1) 35.4 (23.8) 31.7 (22.9) 34.1 (24.2) 30.5 (26.9)

FABP4 31.9 (16.0) 33.9 (18.9) 36.2 (20.9) 32.8 (18.6) 32.8 (23.0)

PA2GA 2.0 (2.0) 6.5 (7.5) 10.9 (8.6) 18.2 (12.9) 16.1 (12.9)

aExcluding the macrocycle containing molecules for calculating the EF.

even for reduced systems. Moreover, in this case further caution
should be exerted not to artificially deform the molecular system.

As stated before, a wide range of enrichment factors calculated
from docking with AD Vina was taken into account for selecting
the target proteins for this benchmark. It can be readily seen from
Table 4 that using any variant of QM docking scoring has an
impressive improvement over AD Vina, especially in those cases
with low AD Vina EF. This happens even in the simplest case of
QMDS1, where no relaxation is performed on the PL complexes.

It is clear that PL relaxation, even using a MM-based
approach, has on average a positive effect for calculating the
QM docking score. Moreover, in those cases where the EF(1)
slightly decreases (KITH, FABP4), the EF(2) is conserved.
Focusing in the analysis of QMDS2 and QMDS2d, inclusion
of the deformation contribution (second and third term in
Equation 6) slightly deteriorates the results in ESR1, FA7, KITH,
and PA2GA. However, in all but ESR1, EF(2) improves after
inclusion of the deformation term (as it also happens in the
other cases where EF(1) increases or is constant, CDK2, COX1,
NRAM, HSP90a, HXK4, and FABP4). Considering that the effect
on EF(1) is in no way dramatic, and that EF(2) (which also
refers to early enrichment), improves except in one case, we
state that the deformation terms are necessary to obtain better
enrichment factors, though this should obviously be validated
in a larger-scale benchmark. We hypothesize that this slight
deterioration might be related to a small noise introduced upon
energy minimization, which is canceled out in the QMDS2
case. In the special case of HSP90a, the consideration of 19
macrocycle containing molecules has a negative effect in the
EF calculation. We hypothesize that the strong performance of
QM-scoring is due to a better representation of intra- and inter-
molecular interactions, though of course further validation and
benchmarking is still needed to confirm this.

In Figure 1, the ROC plots of QMDS2 and AD Vina for
the 10 systems are shown, including the corresponding AUC
values. Analysis of the curves confirm what has been noted
above based on EF, exhibiting the QM-score excellent results.

FIGURE 1 | Receiver operating characteristic (ROC) plots of AutoDock Vina

(red line) and QM-scoring QMDS2d (blue line) for the 10 systems studied. The

dotted line corresponds to random selection (AUC = 0.5). FPR, False Positive

Rate; TPR, True Positive Rate; AUC, Area under the curve.

Frontiers in Chemistry | www.frontiersin.org 6 April 2020 | Volume 8 | Article 246

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Cavasotto and Aucar High-Throughput Docking Using QM Scoring

FIGURE 2 | Enrichment plots for ESR1, COX1, and FA7 using AutoDock Vina (red line) and QM-scoring QMDS2d (blue line). The dotted line corresponds to random

selection.

Interestingly, in ESR1 both scoring methods show basically the
same AUC, which is in conflict with the large difference in EF
values reported in Table 4. To clarify this issue, in Figure 2 we
show the enrichment plot associated to ESR1. It can be seen that
AD out-performs QMDS2 after 30% of the screened database, a
region of no importance for drug discovery; for early enrichment,
the enrichment plot in Figure 2 confirms the trend observed
in Table 4 that QMDS2 is remarkable superior in the initial
part of the ranking. A similar behavior is observed for FA7 (cf.
Table 4 and Figures 1, 2). In the case of COX1, while the AUC
of the QM-score is slightly less than AD Vina, the enrichment
plot in Figure 2 shows that for early enrichment, QM-scoring
out-performs AD Vina.

While our QM-score appears to be a very promising for
HTD, and QM calculations are in principle more accurate than
classical ones to describe molecular interactions, there are still
a number of approximations which prevent the direct use of
QMDS as a measure of actual absolute binding free energy. We
mention three, among many: (i) QM local energy minimization
was not performed (for computational efficiency, as said above);
(ii) Vibrational entropies were not included; (iii) PM7 has not
been parameterized to reproduce binding free energies. Our QM
calculations were in the order of −70 kcal/mol, in agreement
with recent binding enthalpy calculations on protein-ligand
complexes using a PM7+COSMO approach (Sulimov et al.,
2019a), where in spite of the difference between experimental
and calculated absolute binding enthalpies, very good correlation
with experimental values was obtained. It should be added that
it is also well-known that traditional scoring functions correlate
poorly with binding energy (cf. Enyedy and Egan, 2008, among
others). Moreover, among traditional scoring functions there is
no uniform scale: While AutoDock and Glide (Friesner et al.,
2004; Halgren et al., 2004) are roughly in the range of −10
kcal/mol and higher, others are around−60 kcal/mol. Moreover,
even end-point methods such as MM/PBSA or MM/GBSA
exhibited calculated binding free energies in the order of −60
kcal/mol, or even lower when changes in vibrational entropy
are not included (Zhong and Carlson, 2005), and even when

including those terms (Woo and Roux, 2005; Anisimov and
Cavasotto, 2011; Anisimov et al., 2011). Thus, we stress that
QMDS should be considered a score, not a measure of absolute
binding energy. It is aimed for relative binding energy estimation,
and thus for compound ranking.

On average, the computing time of this QMdocking score on a
single core is∼6–8 minutes (depending on the size of the system,
and on whether the deformation energy term is considered),
around an order of magnitude slower than a MM-based DS.

CONCLUSIONS AND PERSPECTIVES

Docking programs have been so far based on molecular
mechanics force-fields. However, a better description of
protein-ligand interactions could be achieved, in principle,
with quantum mechanical methods, which are theoretically
exact, capture the underlying physics of the molecular
system, and account for all contributions to the energy,
including those effects usually missing in force-fields, such as
electronic polarization, covalent-bond formation, and charge
transfer. Moreover, a quantum mechanical formulation is
generally valid across the chemical space, thus avoiding the
force-field parameterizations.

We present a new QM-based high-throughput docking
scoring function, which has been evaluated on 10 protein
systems belonging to different protein families, displaying diverse
binding site properties, and covering a wide range of enrichment
factors computed with a traditional docking program. As shown
in Table 4, even the simplest QM docking scoring function
(where no relaxation is performed on the reference docked
protein-small-molecule complex) shows excellent results in
terms of enrichment (screening power). In fact, the improvement
over AutoDock Vina on all systems is remarkable, especially
in those cases with very low AD Vina enrichment. Upon
complex relaxation, the improvement is even larger, regardless
of whether the protein and ligand deformation terms are
included or not.
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We highlight that our main aim is to develop and validate
a simple, straightforward approach for QM docking scoring,
from which further developments can be built. Clearly, to further
improve this methodology, several aspects should be analyzed:
(i) a wider and extensive benchmark on many more target
systems; (ii) comparison with other MM-based standard docking
scoring functions; (iii) evaluation of other QM formalisms,
continuum solvent models and their associated parameters
(atomic radii and surface tension parameters); (iv) structural
relaxation strategies; (v) use of single or multiple poses for
scoring; (vi) the vibrational entropy changes upon binding. All
of these considerations are important. They are currently being
investigated and will be published in due course. Considering the
outstanding improvements to our methods, we highlight that the
QMDS should be used as a score and not an estimation to the
absolute binding energy.

In terms of CPU time, our QM docking scoring function
is approximately 10 times slower than MM-based standard
scores on a single core. In spite of this, our impressive
results on a set of 10 different protein targets highlight the
huge potential of QM-based scoring. Moreover, considering
future developments in QM theory, algorithms and computer
hardware, it can be hypothesized that semi-empirical methods
(or low-cost DFT methods) will replace FF over the following
years (Grimme and Schreiner, 2018). We thus believe it is
fully justified and of the utmost importance to develop the
next generation of QM-based scoring functions for HTD
toward highly accurate methods for the identification and
optimization of small-molecule modulators of pharmaceutically
relevant targets.
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