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The development of computational models for assessing the transfer of chemicals across
the placental membrane would be of the utmost importance in drug discovery campaigns,
in order to develop safe therapeutic options. We have developed a low-dimensional
machine learning model capable of classifying compounds according to whether they can
cross or not the placental barrier. To this aim, we compiled a database of 248 compounds
with experimental information about their placental transfer, characterizing each
compound with a set of ∼5.4 thousand descriptors, including physicochemical
properties and structural features. We evaluated different machine learning classifiers
and implemented a genetic algorithm, in a five cross validation scheme, to perform feature
selection. The optimization was guided towards models displaying a low number of false
positives (molecules that actually cross the placental barrier, but are predicted as not
crossing it). A Linear Discriminant Analysis model trained with only four structural features
resulted to be robust for this task, exhibiting only one false positive case across all testing
folds. This model is expected to be useful in predicting placental drug transfer during
pregnancy, and thus could be used as a filter for chemical libraries in virtual screening
campaigns.
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INTRODUCTION

Drug prescribing in pregnancy remains a complex and controversial issue for both pregnant women
and clinicians (Leong et al., 2019). According to the Center for Disease Control and Prevention
(CDC), 9 out of 10 women take at least one medication during pregnancy; and 70% of pregnant
women take at least one prescribed medication (https://www.cdc.gov/pregnancy/meds/
treatingfortwo/index.html). Over the past 30 years, the use of prescription drugs during the first
quarter trimester of pregnancy has increased by more than 60%. This suggests that at the beginning
of pregnancy, many women either present pre-chronic conditions (e.g., pre-gestational diabetes) or
develop pregnancy-specific diseases (e.g., hyperemesis gravidarum, intrahepatic cholestasis of
pregnancy, HELLP syndrome) which will require the administration of medications, including
those which might cause fetal toxicity or teratogenesis (Eke et al., 2020). To guarantee drug safety
during pregnancy, in vitro and in vivo experimental models were developed to study the transfer
and metabolism of drugs across the human placental barrier. Since the placenta is the most
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species-specific organ, human cell lines and tissue models are
considered more appropriate than in vivo assays performed in
rodent models for evaluating the transfer of chemicals across the
human placental barrier (Giaginis et al., 2012). In this regard, the
ex vivo human placental perfusion model, which preserves
placental structural integrity, and mimics the maternal and
fetal blood circulation, is more suitable (Gordon et al., 2016).
Unfortunately, in vitro and ex vivo methods cannot directly
predict in vivo outcomes, making the assessment of placental
transfer difficult (Hutson et al., 2011). On the other hand, in vivo
assays are more accurate in evaluating drug toxicity. In vivo data
can be obtained by measuring drug concentrations in the
umbilical cord blood and maternal blood at delivery (Freriksen
et al., 2020). The fetal-maternal concentration ratio is a widely
used indicator of placental permeability that has been applied to
drug monitoring (Hutson et al., 2011). However, there is an
obvious ethical barrier to develop in vivo studies to assess the risk
of transfer of chemicals across the placental membrane from the
mother to the fetus. In this scenario, there is an urgent need for an
integrated approach incorporating all the range of methodologies
(in vitro, ex vivo, in silico and in vivo studies) to accelerate
the availability of pharmacology data in pregnant women to
allow the safe and effective use of medication during this
physiological state.

Several Quantitative Structure–Activity Relationship (QSAR)
models have been published on this topic. Based on ex vivo
human placental perfusion results, Giaginis et al. Giaginis et al,
(2009) developed a model to predict placental transfer through
the calculation of the Clearance Index (CI) values for a set of 88
compounds. Using this approach, Zhang et al. Zhang et al, (2015)
estimated the placental barrier permeability, also expressed as CI
values, for a set of 65 compounds. Takaku et al. Takaku et al,
(2015) developed a QSAR model for predicting the in vivo
fetal–maternal blood concentration ratio (F/M ratio) for a set
of 55 compounds. Later, Wang et al., using the same chemical
library of 55 compounds as Takaku et al. Takaku et al, (2015),
developed a QSAR model following the Organization for
Economic Co-operation and Development (OECD) guidelines
based on multiple linear regression adjustments for predicting in
vivo log (F/M) values (Wang et al., 2020). These studies achieved a
reasonable predictive potential (the correlation between
measured and predicted values is acceptable); however, all of
them were validated with few samples. Giagnis et al. used only
nine compounds as a test set, Takaku et al. andWang et al. used a
test set of 14 compounds, and Zhang et al. utilized 19 compounds
for the test set. Takaku et al. used three features for their QSAR
model, and Wang et al. utilized two descriptors, which is a
reasonable approach taking into account the number of
samples in their set; however, Zhang et al. utilized 48
descriptors to construct their QSAR model.

In this study, we used available information on drug placental
transfer to train machine learning (ML) algorithms in order to
carry out the in silico prediction of whether a compound will cross
the placental barrier or not. ML approaches have been
consistently implemented in the last decade with different
degrees of success in the drug discovery pipeline (Carpenter
et al., 2018; Chen et al., 2018; Chan et al., 2019; Mak and

Pichika, 2019; Cavasotto and Di Filippo, 2021a); while a ML
model would not necessarily provide a clearer understanding of
why some drugs cross or do not cross the placental barrier, its
importance lies on the direct use for practical purposes, namely,
serving as a filter in a high throughput screening campaign of a
chemical library. To this purpose, we compiled a database of 248
compounds, collecting for each compound its CI value, and/or
F/M ratio, and/or assessment from the literature whether it
crosses or not the placental barrier. Considering the variability
of the experimental parameters collected between different
laboratories (Hutson et al., 2011), we decided to label each
compound in a binary fashion according to whether it crosses
(C) or does not cross (NC) the placental membrane, using the
above mentioned information and based on a proposed set of
criteria (see Methods). We used molecular descriptors as inputs
and the binary output (C/NC) to train the ML classifiers to
predict whether a molecule will cross the placental barrier or not.
After an extensive feature selection process and the evaluation of
different models, we present in this work a robust LDA classifier
trained with only four features that exhibits an excellent
performance. Furthermore, the model exhibits a critical
characteristic, namely, the amount of molecules that cross the
placenta that are misclassified as not crossing is almost null.

MATERIALS AND METHODS

Data Collection
We collected a dataset of 248 molecules with at least one of these
pieces of information: CI, F/M ratio (F/M), evidence from the
literature that the molecule crosses or not the placenta barrier
(Supplementary Table S1). If F/M ≤ 0.15, the molecule was
labeled as NC; if F/M ≥ 0.3, the molecule was labeled as C; to
avoid dubious cases, molecules in the range 0.15 < F/M < 0.3 were
not included in the set. In cases where only the CI value was
available, the molecule was labeled as C if CI > 0.80 (this
threshold was chosen based on the fact that whenever both
F/M and CI values were available, all molecules with CI > 0.8
have F/M > 0.3, i.e., they were labeled as C). If F/M ≥ 0.3 and CI <
0.8 the molecule was labeled as C, since we privileged results from
in vivo assays over those using the perfusion method. Several
molecules lacked of F/M and CI values, but evidence was found in
the literature to classify them as C or NC (cf. Supplementary
Table S1). Using these criteria, the dataset contained 213
molecules (∼86%) that cross the placental barrier, and 35
(∼14%) that do not. Following the standard convention, we
defined the larger class as the negative one.

Dataset Split
The standard training set/test set split is useful only for large size
datasets, which is clearly not our case. If, for example, 20% of the
dataset were used for testing, results would be reported only over
50 samples; furthermore, the results could be biased due to the
unique random split of the training and test sets. Instead, we
adopted a standard procedure when dealing with small datasets, a
5-fold cross-validation scheme. For this purpose, the dataset was
split randomly into five folds, where each fold approximately
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exhibits the C/NC distribution of the entire dataset, as shown in
Figure 1. Unlike a single training set/test set split, this scheme
allows the use of each of the samples both in the training set (four
times) and in the test set (once).

Molecular Descriptors
Molecules were protonated at physiological pH using the ICM
software (MolSoft, San Diego, CA, 2019) (Abagyan et al., 1994),
in a similar fashion as in earlier works (Cavasotto and Aucar,
2020; Cavasotto and Di Filippo, 2021b), and then each molecule
was visually inspected. To generate model inputs, molecules were
described using a set of 5,379 features, which are summarized in
Table 1. These were calculated with OpenBabel (O’Boyle et al.,
2008; O’Boyle et al., 2011) and PaDEL (Yap, 2011), and included
both physicochemical properties and substructure fingerprint
counts. These fingerprint count features encompass electro-
topological state indices (Hall and Kier, 1995), the presence of
SMARTS patterns (Klekota and Roth, 2008), and the presence of
chemical substructures.

Evaluation Metrics
A binary classifier predicts all the instances as either positive 1) or
negative (0). Considering that these instances can be classified
correctly or incorrectly, four types of outcomes can be
distinguished: True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN). In general, classification
algorithms predict the probability that an observation will belong to
the positive class, i.e., will be 1. Tomake discrete predictions based on
the probability provided by the classifier, that is to say, to have a
binary outcome, it is necessary to define a threshold: Probabilities
below this threshold are discretized as 0 and above the threshold as 1.

The Accuracy (A) is the percentage of accurate predictions,
and is defined as

A � TP + TN
TP + FP + TN + FN

(1)

Precision (P), Recall (R), and the False Positive Rate (FPR) are
defined as

P � TP
TP + FP

,

R � TP
TP + FN

,

FPR � FP
FP + TN

(2)

The Fβ score, which is the weighted harmonicmean of P and R,
is expressed as

Fβ � (1 + β2) P × R

β2 × P + R
(3)

where β is a parameter that controls the balance to give more
weight to P (β < 1) or R (β > 1).

Due to the imbalance of the dataset classes, it is evident that
accuracy (Eq. 1) would not be a proper score for the classification
task. Indeed, a classificator that predicts the negative class for all
cases would have an accuracy of 86%. It has been shown that, for
imbalanced sets, computing precision and recall (Eq. 2) gives a
better insight about the classificator’s performance than the
Receiver Operating Characteristic curve, a common metric in
classification tasks (Saito and Rehmsmeier, 2015). In this context,
a low false positive rate is represented by a high precision score,
while false negatives are addressed by the recall. In this work, we
chose the Fβ score (Eq. 3) using β � 0.5 to penalize the classifying
of molecules that cross the barrier as not crossing, i., e,
classification of negative samples as positive samples. Thus, we
favor models that have a low number of false positives. A
common metric for unbalanced classification problems is the
Mathews Correlation Coefficient (MCC); since a recent study
discourages its use in unbalanced sets (Zhu, 2020), we decided to
use only the Fβ score due to its direct implementation in
penalizing false positives.

The Precision-Recall Curve (PRC) is constructed by plotting P
in terms of R for different probability thresholds. The Average
Precision (AP) is a scalar that summarizes the PRC, in the same
manner as the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve. Strictly, the AP is the
area under the PRC.

AP � ∫1

0
P(R)dR (4)

FIGURE 1 | The dataset of 248 compounds was divided randomly into
five folds. Each of these folds presents, approximately, the same distribution of
positive and negative samples as the full dataset.

TABLE 1 |Molecular features calculated with OpenBabel and PaDEL. Physicochemical properties include classical descriptors such as molecular weight, rotatable bonds,
number of Hydrogen bond donors and acceptors, etc.

Source Name Descriptors Number

OpenBabel 1D and 2D descriptors Physicochemical properties 13
PaDEL EState fingerprints Electrotopological state indices 79
PaDEL KlekotahRoth fingerprints Presence of SMARTS patterns 307
PaDEL Substructure fingerprints Presence of chemical substructures 4,860
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In this work, we approximated this integral by a sum over the
precisions at every possible threshold value (n) multiplied by the
change in R, according to

AP ≈ ∑
n

Pn(Rn − Rn−1) (5)

where Rn and Pn are, the recall and precision values at the nth
threshold value, respectively.

RESULTS AND DISCUSSION

The objective of this study was to provide a ML model capable of
classifying compounds either as crossing or not crossing the
placental barrier. To this aim, using a dataset of 248
compounds (see Methods), we trained and compared several
ML models, searching for optimal low-dimensional sets of
descriptors. Considering that the odds of classifying a
molecule that crosses the placenta as not crossing must be
reduced to a minimum, we chose F1/2 as the metric to
evaluate performance, thus favoring models that have a low
number of FPs; while having a high false rate of predictions is
always undesirable, it would be highly risky in this specific case.
Due to the high features/samples ratio, we decided to keep the
number of descriptors in the final models to a minimum.

Design of the Feature Selection Protocol
Considering the size of our dataset (248 samples), and the
number of calculated features (∼5.4 thousand descriptors), we
performed a feature selection process to avoid over-fitting.
Initially we considerably reduced the high dimensionality of
the feature space by eliminating from the PaDEL set of
descriptors variables that did not provide significant
information, by eliminating features (specifically, fingerprint
counts) that had less than three matches within the molecules
of the dataset. This decision was principally based on the trade-off
between the number of remaining descriptors (by removing
features) and the information loss. After this process, the
number of descriptors fell to 760. Needless to say, this
procedure is independent of the class labels, and thus can be
done before the cross validation split.

To reduce even further the set of 760 features, we used a
genetic algorithm (GA) which essentially searches for sets of
features with a high F1/2 score over a given training set, as
described below.

Genetic Algorithm
From a training dataset composed of a set of molecules with their
corresponding descriptors, the GA generated a population of
1,000 individuals, where each individual was defined as a set of six
randomly selected features; we also explored the use of
individuals described with nine and 12 features, but did not
find any improvement over the use of six features (see Additional
Genetic Algorithm Runs Using Identical Initial Conditions). Then,
each individual was used to train a ML classifier, and
subsequently ranked in terms of the obtained F1/2 score over

the training data. After having this initial population of 1,000
individuals ranked, the following iterative process was carried
out: 1) the set of features with the best score of the population (the
optimal individual) was assessed; 2) random sets from the top half
of the population were selected in pairs and combined until 500
new sets were obtained; with two individuals, a new agent was
generated by retrieving the first three features from one individual
and the other three features from the other individual; 3) the F1/2
score was calculated for each of these 500 generated sets and,
independently of the results, these new individuals replaced the
bottom half from the past population; 4) the new population of
1,000 features was re-ranked. This iterative process was carried
out for 199 iterations, which allowed both the convergence of the
method (the top ranked individuals were very similar) and the
exploration of the feature space (as explained below).

Within this process, three operations were performed: 1) every
time a new set of features was generated (by the combination of
two other sets), it was assigned a probability of 0.2 of being
mutated. If it was mutated, the new agent would change all its
variables with those of the optimal individual, replacing two
features with two random ones from the major set; in certain
sense, this is a way to explore the “vicinity” of the best scored
individual; 2) for each generation we replaced one third of the
reproducible population (top half of the population) with new
random agents; 3) finally, after 50 iterations, a new initial
population of 1,000 individuals was generated and ranked, and
the current population was replaced entirely except for the top 10
individuals. The last two operations were performed for the sake
of augmenting the exploration of the feature space.

Coupling the Genetic Algorithm With the Cross
Validation Scheme
Following Hastie et al. Hastie et al, (2009), we first split the data
according to the cross validation scheme, and then used the
feature selection method described above with the training data.
Specifically, we proceeded as follows:

1) Divide the total amount of samples into 5 cross-validation
folds (k � 1, 5) at random as shown in Figure 1 and generate
five partitions, where partition k corresponds to using fold k as
a test set, and the remaining four folds as the training set.

2) For each partition, the GA is used to find a set of predictors
that exhibits a high value of the F1/2 score, calculated only on
the training samples.

3) Assess shared features between the optimal sets found in each
of the five partitions (common features), as illustrated in
Figure 2.

4) Evaluate the performance of the set of common features over
the corresponding test sets of each partition, as shown in
Figure 3.

As is standard in the use of cross validation schemes, we report
the average F1/2 scores over the five training sets, and over the five
test sets. For simplicity, the process depicted in Figure 2 of
finding a set of “Common features” and evaluating it as shown in
Figure 3 will be referred from now on as a “run”.
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Selection of the Best Machine Learning
Model
Common sets of descriptors were searched for four different ML
algorithms: Linear Discriminant Analysis (LDA), Logistic
Regression (LR), Random Forest (RF), and Support Vector
Machines (SVM). For this task, we ran one GA per model,
feeding each algorithm with the same initial population.
Before displaying the results corresponding to the four
methods, we will illustrate the feature selection protocol with
the LDA. In Table 2 we show the best sets of features found in
each partition for the LDA model by running a single GA. As
mentioned earlier, only the F1/2 score over the training set is

reported at this stage. These sets of features correspond to the
“Selected features” shown in Figure 2.

Across the five sets of features shown in Table 2, there are four
repeated descriptors: KRFPC413 (2 times), KRFPC566 (4 times),
KRFPC608 (4 times), and KRFPC4830 (2 times). Although the
GA was fed with sets of six features, only these four repeated
features constitute the set of “Common features” (cf. Figure 2).
Using these four features we trained another LDA model
(Figure 3). This model exhibited mean F1/2 scores of 0.80 and
0.77 in the training and test sets, respectively (see Table 3). The
average F1/2 score of 0.77 over the test sets corresponded to
average values of P and R of 0.93 and 0.51, respectively. This

FIGURE 2 | Feature selection scheme. From left to right, training data from partitions 1-5 are fed to a GA. The GA yields a solution for each partition (“Selected
features”) and finally, the shared features between those solutions are collected (“Common features”).

FIGURE 3 | Evaluation procedure of the common sets of features with the 5-fold cross validation scheme.
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represents a very good performance, and a priori indicates that it
is plausible to select features in this manner.

The same process was carried out for the other 3 ML methods.
The sets of common features found for each model, as well as the
training and test F1/2 scores are summarized in Table 3. RF and
SVM models were prone to over-fitting, as they achieved a null
averaged R over the test sets (non-defined F1/2 score), and the LR
model displayed a significantly poorer performance compared to
LDA. We thus continued the analysis with only the LDA model.
While different alternatives could be pursued to improve the
performance of the other ML models, the aim of this study is to
find a robust and accurate model exhibiting high performance.

Linear Discriminant Analysis Model
Analysis
Despite of having promising results with the LDA model
(Table 3), at this point it is not yet clear whether the found
set of features is robust. Considering the random nature of the
GA, we analyzed how the different parameters of the feature
selection process could impact on the results. First, we performed
five additional runs using the same initial conditions of the GA
used for the LDA model shown in Table 3. Then, we focused on
three main parameters of the initial conditions of the GA, namely,
the number of features used to describe the individuals of the GA,
the cross validation split, and the initial population fed to the GA,
and performed additional runs maintaining two of the mentioned
initial parameters fixed, while varying the third one. In the
following results, “run” refers to the finding of a set of
common features” and evaluating it (see Figures 2, 3).

Additional Genetic Algorithm Runs Using Identical
Initial Conditions
Using the same initial population and cross validation split as in
the first ML model selection (Table 3), we performed five
additional runs of the GA for the LDA model, obtaining

another five sets of common features. Results are summarized
in Supplementary Table S2. In four of the five runs, KRFPC566
and KRFPC608 belonged to the set of common features and,
remarkably, KRPFC3948 was repeated in the five sets. This
indicates, that the KRFPC566 and KRFPC608 features, which
were found in the first LDAmodel (Table 3), are retrieved despite
of the inherent randomness of the GA, and that the first obtained
solution missed an apparently important feature, KRFPC3948.

Extending the Size of the Genetic Algorithm
Individuals
We performed five runs (see Figures 2, 3) with sets of nine
features, and five runs with sets of 12 features. Results are shown
in Supplementary Tables S3, S4.

Every set of common features exhibited a low performance in
comparison to the LDA model using six features in the GA
(Table 3). Over the training data, the highest F1/2 score was of
0.60. In the test data, we found one common set for which the
model’s performance was of 0.50 (run 3, Supplementary Table
S3), and in the rest of the runs, the corresponding models
achieved null recall values. This shows that using nine or 12
features in the GA shows no advantage on the performance of the
LDA model.

Genetic Algorithm Runs Changing the Cross
Validation Split
We performed fifteenmore runs using the same initial population
fed to the GA, but changing the cross validation split three
times–five runs per cross validation split. Results are
summarized in Supplementary Tables S5-S7. In the first split
(Supplementary Table S5) the KRFPC566 feature was found in
the common set of features in four of the five runs, which further
supports the hypothesis of this descriptor being a key feature. The
same applies to the KRFPC3948 descriptor, which was found in
three of the five common sets. Two additional features were
found: the KRFPC435 descriptor, repeated in two of the five

TABLE 2 | Best set of features (“Selected features”, see Figure 2) obtained on each partition of the cross validation split based on the training F1/2 score for the LDA model.

Partition Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 F1/2 Train

1 KRFPC608 KRFPC841 KRFPC1773 KRFPC3224 KRFPC3591 KRFPC4830 0.87
2 KRFPC413 KRFPC566 KRFPC608 KRFPC1638 KRFPC3399 SubFPC19 0.90
3 KRFPC442 KRFPC557 KRFPC566 KRFPC3400 KRFPC3741 KRFPC3948 0.89
4 KRFPC413 KRFPC566 KRFPC608 KRFPC3139 KRFPC3737 KRFPC4006 0.87
5 KRFPC326 KRFPC566 KRFPC592 KRFPC608 KRFPC3730 KRFPC4830 0.83

TABLE 3 | Repeated features across different partitions for the first run of the GA (“Common features”, see Figures 2, 3) using different ML models. The frequency each
feature is repeated within partitions is shown in paretheses. The F1/2 Train and F1/2 Test columns refer to the average score across the different training folds and test
folds, respectively.

Model Feature
1

Feature
2

Feature
3

Feature
4

Feature
5

Feature
6

F1/2
train

F1/2
test

RF KRFPC476 (2) KRFPC3707 (2) KRFPC4556 (2) SubFPC3 (2) SubFPC301 (2) MP (2) 1.0 -
LDA KRFPC413 (2) KRFPC566 (3) KRFPC608 (4) KRFPC4830 (2) - - 0.80 0.77
SVM KRFPC1564 (2) KRFPC3946 (2) SubFPC169 (2) - - 0.72 -
LR KRFPC608 (4) ROTB (2) - - - - 0.59 0.54
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common sets, and the KRFPC4830 descriptor, found in three of
the five common sets. Remarkably, one of the common sets
found consisted of these four features and obtained an average
training F1/2 score of 0.81 and an average test F1/2 score of 0.78,
matching the top performance of the first LDA model (Table 3).
Both these sets of common features that display top
performances (at least up to this point) share two features,
KRFPC566 and KRFPC4830, which indicates that KRFPC4830
may also be a key descriptor.

Although in the second cross validation split (Supplemenatry
Table S6) the observed top performance was of 0.54 in the test set,
an already encountered descriptor, the KRFPC608 feature, was
found repeated in three of the five runs. In the last cross validation
split (Supplementary Table S7), the top F1/2 score achieved in the
test set was of 0.64. The KRFPC435 descriptor was found again in
these sets of runs - repeated in three of the five runs-, and also the
KRFPC3392 descriptor, found in two of the five runs.

Genetic Algorithm Runs Changing the Initial
Population
We also performed five extra runs in which the cross validation
split was maintained (the same as in the initial run), but changing
the initial population fed to the GA. Strictly speaking, this was
performed with three different initial populations, totalizing
fifteen extra runs. Results are shown in Supplementary Tables
S8-S10. The KRFPC566 descriptor was found to be repeated in
eight of the fifteen runs, thus clearly indicating that this feature is
indeed important to achieve a high F1/2 score with the LDA
model. For the first change in the initial population, i.e., the first
five runs, the KRFPC3948 descriptor was found in four of the five
common sets. Although it was not found repeated in the
remaining ten runs, it must be taken into consideration that
this descriptor had already been found previously in a high
performance set (Supplementary Table S5). The KRFPC435
descriptor shows a similar behavior, which was found earlier
along with the KRFPC3948 descriptor (Supplementary Table
S5): the results of the second change in the initial population
(Supplementary Table S9) show that the KRFPC435 descriptor
is repeated in two of five common sets. Other descriptors were
also found repeated within the common sets, but at this point we
considered them as irrelevant since they did not show up in any of
the previous results, specifically, the KRFPC3899 and the
KRFPC669 descriptors. Similar to the change in the cross
validation split, where one particular change led to a top
performing model (Supplementary Table S5), and the two
other led to models with a poor performance (Supplementary
Tables S6, S7), the same happens with the change in the initial
population: The performances shown in Supplementary Tables
S9-S10 are low in comparison to previous results. Nonetheless, a
particular run shown in Supplemenatary Table S8 presents the
best performance so far. This set of features included the
KRFPC435, KRFPC566 and KRFPC3948 descriptors, along
with KRFPC3399 and KRFPC3899. The first three descriptors
were already included in a high performance model (Run 1 from
Supplementary Table S5). Presumably, the last two descriptors
are only complementary features (to the first three) related to the
change of the initial population.

Final Linear Discriminant Analysis Model
From the previous results (Table 3; Supplementary Table S4-
S10), we show in Table 4 the three sets with the best
performances. These correspond to the LDA run from
Table 3, run 1 from Supplementary Table S5, and run 1
from Supplemenatary Table S8.

To compare these sets of features, we assessed, feature by
feature, in which of the previous runs (Table 3; Supplementary
Table S4-S10), each descriptor was present. For each table, we
distinguish three cases: 1) the feature was not present in any of the
runs of the corresponding table; 2) the feature was present only in
one run; 3) the feature was present in more than one run. To
quantify the appearance of features across different runs we
assigned a partial score to each of the cases described before,
being 0 for 1), ½ for 2) and 1 for 3). Taking into account that in
Table 3 there is only one LDA run, the sum of partial scores
ranges from 0 to 7.5. The feature importance was defined, for each
feature, as the sum of partial scores normalized by 7.5, so that the
ranking goes between 0 and 1. This information is summarized in
Table 5, which allows the visualization of which features are
repeated even when the initial conditions of the selection process
were changed consistently, like KRFPC566, and which features
appear to be dependent on a particular condition of the same
process, such as KRFPC608, which appears only in Table 3;
Supplementary Table S4, corresponding to the exact same
conditions. The comparison between the sets of features
presented in Table 4 in terms of the feature importance of
each descriptor supports the fact that the set of features
composed by KRFPC435, KRFPC566, KRFPC3948 and
KRFPC4830 descriptors (Table 4, highlighted in bold) is the
most robust. Intuitively, the selected features were the ones which
were found more often in the different runs in which the initial
conditions of the optimization process were changed. Given a
compound, these four features describe the number of times a
specific SMARTS pattern is repeated along the molecular
structure. The SMARTS associated with each descriptor are
shown in Table 6.

Analysis of Misclassified Molecules Within
the Final Model
It is important to bear in mind that the scores of the final model
shown in Table 4 (highlighted in bold) were achieved over a
particular cross validation split. To ensure that the score achieved
with these features was not highly dependent on that particular
split, we generated 100 different splits and evaluated the model’s
scores on each one (see Figure 4).

As can be seen, the mean scores are close to the achieved values
in the initial split. For this reason, we present the full performance
over the test set on each fold (Table 7) using that initial cross
validation split. TP, FP, FN and TN are also computed to show
exactly how the LDA model is classifying the compounds.

Remarkably, there is only one negative sample misclassified,
thus achieving the most important objective sought for this
classifier. A great balance is observed between the total
number of TPs (17) and FNs (18), which in conjunction with
the correct classification of the negative class, gives an overall
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excellent performance. To use this model prospectively, given a
new set of molecules, the final model would have to be trained
with our entire dataset of 248 compounds. For the new
compounds, we would only calculate the KRFPC435,
KRFPC566, KRFPC3948 and KRFPC4830 descriptors, and
placental transfer would be predicted by inputting the new set
of molecules to the ML model.

False Positive Case
The only FP observed in the test sets corresponds to Tubocuraine
(CID � 6,000), which belongs to fold 2. As a matter of fact, when

this compound is used to train the LDA model, and this trained
model is used to make predictions over the corresponding
training set (partitions 1, 3, 4, and 5), this compound is also
miss-classified, so this is the only compound belonging to the
negative class that is misclassified both in the training and
test sets.

Compound 6,000 is described with the following
descriptors: KRFPC435 � 4, KRFPC566 � 0, KRFPC3948 � 0
and KRFPC4830 � 0. Similar molecules from the database in
terms of these four features, i.e., compounds with KRFPC435
> 0 and the rest of the descriptors equal to zero, are listed in

TABLE 4 | Best set of common features found in the complete set of runs.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 F1/2 Train F1/2 Test

LDA (Table 3) KRFPC435 KRFPC566 KRFPC3948 KRFPC4830 - 0.81 0.78
Run 1 (Supplementary Table S5) KRFPC413 KRFPC566 KRFPC608 KRFPC4830 - 0.80 0.77
Run 1 (Supplementary Table S6) KRFPC435 KRFPC566 KRFPC3948 KRFPC3399 KRFPC3899 0.80 0.78

TABLE 5 | Analysis of the repeated features over different runs. The column headers display each of the features that appear in Table 4. The rows contain information on
whether these features were present or not in each of the performed runs: XX indicates that the feature was repeated across common sets of features, and X indicates
the presence of the feature in only one common set.

KRFPC435 KRFPC566 KRFPC3948 KRFPC4830 KRFPC413 KRFPC608 KRFPC3399 KRFPC3899

Initial run (Table 3) - X - X X X - -
Extra five runs (Supplementary Table S2) - XX XX X - XX - -
Change in cross validation split
(Supplementary Table S5)

XX XX XX X - - - X

Change in cross validation split
(Supplemenatry Table S6)

- X - - - XX - -

Change in cross validation split
(Supplementary Table S7)

XX - - X - X - -

Change initial population (Supplemenatary
Table S8)

X XX XX - - - X XX

Change initial population (Supplementary
Table S9)

XX XX X X X - - -

Change initial population (Supplementary
Table S10)

X XX - X - - - -

Feature importance 0.53 0.8 0.47 0.4 0.13 0.4 0.07 0.2

TABLE 6 | SMARTS patterns associated with set of descriptors of the final LDA model. R represents any atom other than Hydrogen.

KlekotahRoth
Fingerprint Count

SMARTS Molecular Structure

KRFPC435 [#6]-[#7](-[!#1])-[#6]-[#6]-[!#1]

KRFPC566 [!#1]-[#6]-[#6]-1 � [#6]-[#6] � [#6]-[#6] � [#6]-1

KRFPC3948 [#6]-[#7]-[#6]-[#6]-[#8]

KRFPC4830 [#8]-[#6]-[#6]-[#8]-[#6] � [#8]
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Table 8, together with their actual placental transfer class (C
or NC).

Taking into account that compound 6,000 is the only FP in the
training and test sets, and considering that the rest of the
compounds that cross the placenta shown in Table 8 are
correctly classified whether they were in the training or the
test set, it is reasonable to suppose that in the case of having
null values in the KRFPC566, KRFPC3948 and KRFPC4830
descriptors, classes are distinguished based on a threshold in
the KRFPC435 value: compounds with KRFPC435 ≤ 4 cross the
placenta, while compounds with a KRFPC435 > 5 do not cross it.

To assess which threshold our LDA model–trained with the
248 compounds has learned, we inputted several artificial samples
with KRFPC435 values ranging from one to nine and the rest of

the descriptors with values equal to zero. We confirmed that
compounds are classified as not crossing the placental barrier
with KRFPC435 ≥ 4, which explains why compound 6,000 is
misclassified.

False Negative Cases
From Table 7 18 FNs were identified in the test sets. Inspecting the
representation of the database in terms of the optimal descriptors,
we found that the majority of the compounds that cross the
placenta were described by null values in the four descriptors
(161 compounds), or had only KRFPC3948 > 0 (31 compounds).
Of the 18 FNs, we found 17 compounds that had one of the
representations described before (corresponding to compounds
crossing the placenta): 12 compounds had all the four values equal
to zero and five compounds had only KRFPC3948 > 0. The
remaining FN corresponds to compound 441243. Surprisingly,
there is another compound (CID � 5362440) with the same
representation (KRFPC435 � 0, KRFPC566 � 1, KRFPC4830 �
0 and KRFPC3948 � 3) that does not cross the placenta and which
is not misclassified. As these two compounds belong to different
folds, and effectively checking that there is no compound that
crosses the placenta with this exact representation, we assume that
the misclassification of compound 441243 is directly related to the
cross validation split. Unlike the other 17 FNs, miss-classifications
like compound 441243 could be avoided in prospective
applications (by the use of both 441243 and 5362440
compounds in the training set).

TABLE 7 | Results using the best set of features (KRFPC435, KRFPC566,
KRFPC3948 and KRFPC4830) on each partition over the corresponding test
sets.

Partition F1/2
Test

Precision Recall AP TP FP FN TN

1 0.79 1.0 0.43 0.54 3 0 4 43
2 0.74 0.8 0.57 0.63 4 1 3 42
3 0.66 1.0 0.29 0.40 2 0 5 43
4 0.79 1.0 0.43 0.73 3 0 4 42
5 0.93 1.0 0.71 0.76 5 0 2 42
Average 0.78 0.96 0.49 0.61 - - - -

FIGURE4 | Performance of the final LDAmodel over 100 different five cross validation splits. The red line indicates themean score on each case. Left: Training data.
Right: Test data.

TABLE 8 | Compounds from the database similar to Tubocuraine (CID � 6,000, in bold) in terms of the four descriptors of the final model. The“Cross” column contains the
actual placental transfer class (C or NC).

CID Name KRFPC435 KRFPC566 KRFPC3948 KRFPC4830 Cross

47,320 Atracurium Besilate 8 0 0 0 NC
21,233 Dimethyl-Tubocurarine 6 0 0 0 NC
6,000 Tubocuraine 4 0 0 0 C
5,750 Pethidine (Meperidine) 2 0 0 0 C
4,062 Mepivacaine 1 0 0 0 C
43,708 Cefotiam 1 0 0 0 C
89,594 Nicotine 1 0 0 0 C
5288826 Morphine 1 0 0 0 C
2,801 Clomipramine 1 0 0 0 C
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It is clear that the majority of FNs arise due to there being
compounds belonging to different classes (C-NC) with the same
representation. In fact, the positive samples that were correctly
classified in the test sets (Table 7) presented clear distinctions in
their representations with respect to negative samples. This
indicates that to reduce the amount of FNs, at least one more
feature should be incorporated. As simple as this may sound,
directly incorporating new descriptors to this particular set of
features would introduce a bias into the solution [because the
relationship between descriptors and classes (C-NC) is already
known for the entire dataset], and would finally result in an
overfitted model. Although this is a limitation of our method,
taking into account that the amount of TPs is at an acceptable
level, and that the main goal of having low amounts of false
positives was fulfilled by the use of the F1/2 score, we consider
performing further GA searches or modifying any of the feature
selection protocol parameters unnecessary.

CONCLUSION

The study of chemical transfer across the placental membrane
from themother to the fetus is of the utmost importance due to its
importance to drug safety, especially in a time when drug
prescription during pregnancy is common. Taking into
account that in vivo data cannot be obtained for ethical
reasons, the main difficulty arises from the fact that in vitro
and ex vivo methods cannot directly predict in vivo outcomes. In
this scenario, the use of in silico approaches to complement ex
vivo and in vitro models constitutes an interesting strategy to
tackle this challenge.

Although QSAR models have been developed, the datasets
used for developing these models were rather small (<100
compounds), and the models validated only on small test sets
(<20 compounds). In this study, a database of 248 compounds
was compiled, and although this still remains a small dataset, to
our knowledge it is the largest reported so far. Also, unlike those
studies, which predicted either the CI or the F/M ratio, we treated
the placental transfer as a binary classification problem (cross/not
cross) rather than as a regression task for a continuous variable.

The results shown in this work support the use of our feature
selection protocol, which involves the implementation of a GA
that maximizes the F1/2 score in conjunction with a five cross
validation scheme. The final LDA model displayed key
characteristics that are desirable for a ML classificator in this
context: 1) it relies on a set of only four features to discriminate
between classes; 2) it correctly classifies the majority of both

classes; 3) most importantly, the number of molecules that cross
the placenta predicted by the LDA model as not crossing was
very low.

One limitation of our ML model is that it was trained with a
low amount of data (N ∼ 250). Strictly speaking, this limitation is
not intrinsic to the model itself, but related to our knowledge of
placental transfer itself, since there is scarce reliable information
publicly available.

As we highlighted before, despite having a low amount of
positive (non-crossing) samples, the fact of having only one false
positive along the test sets is remarkable. Considering also that a
significant number of molecules within the positive class was
correctly classified in the test sets (approximately, half of the
corresponding positive samples), this supports the incorporation
of a ML predictor of placental membrane crossing in a drug
discovery campaign.
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