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The Boltzmann echo (BE) is a measure of irreversibility and sensitivity to perturbations
for non-isolated systems. Recently, different regimes of this quantity were described for
chaotic systems. There is a perturbative regime where the BE decays with a rate given by
the sum of a term depending on the accuracy with which the system is time reversed and
a term depending on the coupling between the system and the environment. In addition,
a parameter-independent regime, characterized by the classical Lyapunov exponent, is
expected. In this paper, we study the behaviour of the BE in hyperbolic maps that are in
contact with different environments. We analyse the emergence of the different regimes
and show that the behaviour of the decay rate of the BE is strongly dependent on the
type of environment.

Keywords: quantum echoes; quantum maps; decoherence

1. Introduction

In quantum mechanics, there is no ‘exponential separation’ of initial conditions
owing to chaotic motion because evolution is—in principle—unitary. Peres [1]
proposed, as an alternative, to study the stability of quantum motion owing to
perturbations in the Hamiltionian. As a consequence, the Loschmidt echo (LE)
([1–3]; see also two reviews [4,5])

M (t) = |〈j0|eiHSt/h̄e−iHt/h̄ |j0〉|2 (1.1)

was introduced with the purpose of characterizing the sensitivity and
irreversibility arising from the chaotic nature of quantum systems. The parameter
S denotes perturbation strength. Equation (1.1) has a dual interpretation. On the
one hand, it can be interpreted as how close a state remains to itself evolving under
slightly different Hamiltonians. On the other hand, it measures the sensitivity of
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Irreversibility in quantum maps 279

a system to imperfect time inversion, i.e. evolve forward in time under H and
then invert time and evolve backward with HS (supposing that the time-inversion
operation is not perfect).

Depending on the nature of the underlying dynamics, the LE can exhibit
qualitatively different behaviour and it thus can be used to characterize quantum
chaotic systems. Moreover, a number of time-reversal experiments have been
performed [6–9], and therein lies the importance of the LE. In addition, the LE
(which in quantum information is known as fidelity) can be efficiently measured
in quantum information systems, i.e. its measurement scales only polynomially
with the system size [10].

An important fact to remark is that quantum systems cannot be isolated
easily. Most of the times, there is an environment acting upon the system. This
interaction is most probably unknown and its effects may be uncontrollable.
The Boltzmann echo (BE) was introduced [11] as a generalization of the LE
to take into account the fact that quantum systems are not isolated. The idea
is to consider the evolution of a system s with a Hamiltonian Hs that is coupled
to an environment e whose evolution is given by He. We suppose the evolution
of the environment e is unknown and are therefore uncontrollable, so we trace
out the environment degrees of freedom. Given a separable initial state, such
as r0 = r

(s)
0 ⊗ r

(e)
0 , where we take r

(s)
0 = |j0〉〈j0|, the BE is defined as the partial

fidelity
MB(t) = 〈〈j0|Tre[e−iHbt/h̄e−iHf t/h̄r0eiHf t/h̄eiHbth̄]|j0〉

〉
, (1.2)

where Hb and Hf are given by

Hf = Hs ⊗ Ie + Is ⊗ He + Uf (1.3)

and
Hb = −(Hs + Ss) ⊗ Ie + Is ⊗ −(He + Se) + Ub, (1.4)

which represent the forward and backward Hamiltonian, respectively. Equation
(1.2) can be explained as follows. First take an initial state r0 and evolve it forward
up to time t with Hamiltonian Hf . Then, invert time evolution and evolve with
Hamiltonian Hb. The imperfection in the inverting process is represented by: Ss
for the system and Se for the environment. The terms Uf and Ub represent forward
and backward interactions between the system and environment (for simplicity
throughout this work, we consider Uf = −Ub). Finally, the evolution of the system
and the BE is obtained by performing a partial trace over the environment degrees
of freedom and computing the overlap. Tracing out the environment makes the
effective evolution of the system non-unitary producing decoherence [12]. An
average over initial states of the environment r

(e)
0 is necessary (represented with

big brackets in equation (1.2)) because we have no control over its degrees of
freedom.

In the work of Petitjean & Jacquod [11], the BE was studied semiclassically
for two interacting—classically chaotic—sub-systems. One of them was used as
a system and the other as an environment. They found three different regimes
for the BE as a function of time: parabolic or Gaussian for very short times,
exponential for intermediate, followed by a saturation depending on the effective
Hilbert space size. Here, we focus on the exponential regime and specifically on the
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dependence of the decay rate on the perturbations and environment parameters.
The authors show ([11], see also [5]) that in the Fermi golden rule (FGR) regime
(small perturbations and weak coupling with the environment), the decay rate of
the BE results from the sum of the decay rates of the LE owing to imperfect time
inversion (by definition, the BE in the limit of no decoherence is just the LE), and
the contribution owing to the interaction Uf and Ub with the environment, G =
GSs + Gf + Gb. Henceforth, we call this the sum law. Moreover, for chaotic systems,
they find that in the limit of strong environment coupling or large perturbation,
the decay rate is perturbation independent and is given by the classical Lyapunov
exponent.

In the present contribution, we study the BE for quantum maps on the torus
that are classically chaotic. Quantum maps are very simple models that have all
the main features of chaotic systems and are ideal for numerical studies. Our
goal is to understand the behaviour of the BE under the action of different
environments. For this reason, we have computed the decay of the BE for a
wide range of the parameters that control the perturbation of the system and
the interaction with the environment. We find that a sum law for the decay rate
of the BE exists. It can be expressed as the sum of the decay rates of the LE
and the purity of the system, but it is fulfilled only partially, depending on the
decoherence model. The decoherence models that we present can be written as a
convolution with a kernel. It is for the cases where the kernels have polynomially
decaying tails—models with somewhat large correlations in phase space—when
the sum law is best achieved. In addition, the oscillations of the decay rate of
the LE, found in e.g. Wang [13], Andersen [14] and Ares & Wisniacki [15], are
damped completely in the limit of strong decoherence. However, the decoherence
(and perturbation) independent decay-rate saturation at the classical Lyapunov
exponent is not present for all decoherence models.

The paper is organized as follows. In §2a, we describe the quantum kicked maps
on the torus, the systems used for our studies. Then in, §2b, we introduce our
model of open maps using translations in phase space and the Kraus operator sum
form. The main part of this contribution is §3, which is devoted to the numerical
calculations and presentation of the results. Finally, in §4 we summarize our work
and results.

2. The system

(a) Quantum ‘kicked’ maps

Classical maps generally arise from the discretization of a differential equation
of the motion—e.g. a Poincaré surface of section. Nevertheless, one can build
abstract maps that do not necessarily relate to a differential equation, but that
can, however, provide insight into the properties of chaotic dynamics—e.g. the
baker’s map or the cat map. Like classical maps, quantum maps are usually
simple operators with all typical properties of quantum chaotic systems such as
level spacing statistics. In addition, there exist efficient quantum algorithms for
some quantum maps (e.g. [16,17]). As the Hilbert space grows exponentially with
the number of qubits, one could reach the semiclassical limit with a relatively
small number of qubits. For this reason, they are ideal testbeds for current
quantum computers in one of their possible uses: quantum simulators (see [18]).
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The systems we consider are quantum maps on the 2-torus. Periodic boundary
conditions imply that Hilbert space has the finite dimension N , and the effective
Planck constant is h̄ = 1/2pN . This means that the semiclassical limit is reached
as N → ∞. Position and momentum bases are discrete sets {qi = i/N }N−1

i=0 and
{pi = i/N }N−1

i=0 related by the discrete Fourier transform

〈p|q〉 = 1√
N

e−(2piN )pq . (2.1)

For practical purposes, we will consider maps that can be expressed as two
shears—linear or non-linear

p′ = p − dV (q)
dq

(mod 1)

and q ′ = q − dT (p′)
dp′ (mod 1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

These maps can be quantized, and the associated unitary map can be written as
a product of two ‘kicks’

U = ei2pNT (p)e−i2pNV (q). (2.3)

These types of map usually arise from Hamiltonians with periodic delta-kicks,
like the kicked rotator [19] or the kicked Harper Hamiltonian [20]. One of the
advantages of implementing these types of maps numerically is the possibility of
using the fast Fourier transform.

(b) Open quantum maps

A system with an evolution given by a map U might interact with another
system acting as an environment. If the dynamics of the environment cannot be
accessed or controlled, then the usual procedure is to trace out the degrees of
freedom of the environment. Tracing out the environment translates into a loss
information about the evolution, hence the word open—we picture information
flowing out of the system. It is this loss of information that is the cause of
decoherence—and subsequent loss of quantumness [12]. The evolution can be
described by a map of density matrices into density matrices. If the map is trace
preserving and completely positive, then it can be put in the Kraus operator sum
form [21]

rt =
∑

i

Ki(t)r0Ki(t)†. (2.4)

If the environment is Markovian, i.e. memoryless, then the Kraus operators Ki
are time independent, and equation (2.4) is further simplified as follows:

rt =
∑

i

Kirt−1K
†
i , (2.5)
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where trace preservation is assured by
∑

i K
†
i Ki = I (I is the identity).1 Here,

we assume that the Markov approximation holds. Therefore, the action of the
environment is coded into the Kraus operators Ki , in analogy with the Lindblad
master equation [22] where the action of the environment is given by the Lindblad
operators. Different Kraus operators will give different types of environments.
Rather than modelling the environment through the Lindblad operators and
solving the master equation, here we directly model the effect of the environment
on the density matrix of the system by

rt
def= De(rt−1) =

N−1∑
p,q=0

ce(q, p)Tqprt−1T †
qp, (2.6)

where Tqp are the translation operators on the torus, ce(q, p) is a function of q
and p and e quantifies the strength of the system–environment coupling. Even
though position and momentum operators with canonical commutation rules are
not defined on the torus, translations can be defined as cyclic shifts over the bases
elements [23]. Since Tqp are unitary, trace preservation in equation (2.6) requires
that

∑
q,p ce(q, p) = 1. The action decoherence superoperator De introduced

by equation (2.6) has a simple interpretation: it implements every possible
translation in phase space with probability ce(q, p). This effect is clear in the
Wigner function representation. Let W (q, p) be the discrete Wigner function (e.g.
[24]) of a density matrix r, then equation (2.6) can be rewritten as a convolution
with ce(q, p)

Wt(Q, P) =
∑
q,p

ce(q, p)Wt−1(Q − q, p − P). (2.7)

This is an incoherent sum of slightly displaced Wigner functions. Any fast
oscillating term present in the state represented by W (q, p) will be eventually
washed out, depending on the form of ce(q, p).

For simplicity, we suppose that the complete evolution of the quantum map
and the decoherent part take place in two steps: first the unitary map U , then
the decoherence term of equation (2.6)

rt = De(U rt−1U †). (2.8)

This is an approximation that works exactly in some cases, e.g. a billiard that
has elastic collisions on the walls and diffusion in the free evolution between
collisions. This kind of two-step model has been used to study quantum to
classical correspondence and the emergence of classical properties from quantum
dynamics [25,26].

The effect of decoherence can be characterized by using the purity

P(t) = tr(r2
t ), (2.9)

where rt is the reduced density matrix of the system. The purity measures the
relative weight of the non-diagonal matrix elements. It is a basis independent
measure that can be used to quantify the amount of entanglement between two
1Throughout this contribution, the ‘time’ t is a discrete time variable that implies the number of
times a map (or a superoperator) has been applied.
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parties. If P(t) = 1, it means that the global system can be factorized into two
separate systems and there is no entanglement. On the contrary, if the purity
of the reduced density matrix is minimum (completely mixed state), then the
entanglement is maximal. In the case of an N -dimensional system, P(t) = 1/N
for a completely mixed state (maximally entangled with the environment). As a
function of time, after an initial short transient, the purity decays exponentially
(see [5,12] and references therein). For long times, it saturates to a minimum
value given by h̄/(2p).

3. Numerical results

For our numerical calculations, we use the cat map perturbed in position and
momentum with a smooth nonlinear shear

p′ = p + a q − 2pk sin(2pq) (mod 1)

and q ′ = q + b p′ − 2pk sin(2pp′) (mod 1),

}
(3.1)

where a and b are integers. This map is uniformly hyperbolic and fully
chaotic. For k 	 1 the largest Lyapunov exponent given by l ≈ ln((2 + ab +√

ab(4 + ab))/2)/2. According to equation (2.3), the quantum version of
equation (3.1) is

Uk = e2pi(−P2/(2N )−k cos(2pP/N )) e2pi(Q2/(2N )+k cos(2pQ/N )), (3.2)

where P, Q = 0, . . . , N − 1. All the arithmetic peculiarities of the cat map, which
account for the non-generic spectral statistics are destroyed for k �= 0 [27,28]. We
can rewrite equation (1.2) for the BE for our open map as the overlap between two
states evolving forward in time—with slightly different maps plus decoherence—
as

MB(t) = Tr[r̄trt], (3.3)

where
rt = De(Ukrt−1U

†
k ) (3.4)

and
r̄t = De(Uk ′rt−1U

†
k ′), (3.5)

where k and k ′ are the perturbation strength of the cat map. We measure the
perturbation of one map with respect to the other by the parameter

S ≡ |k ′ − k|. (3.6)

For a chaotic system, after an initial transient, the BE decays exponentially [5].
Here, we focus on the decay rate G as a function of S and e for the exponential
decay regime. In the limit e → 0, we have G = GS, where GS is the decay rate of
the LE. In the limit S → 0, the BE as defined in equation (3.3) is equal to the
purity, so the decay rate is given by the decay rate of the purity Ge.

We explore the behaviour of G for three decoherence models and a wide range
of values of e and S. We analyse the parameter domain of validity of the sum
law (now G = GS + Ge) for these models. The different models of decoherence
we consider are implemented simply by changing the coefficients ce(q, p) in
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equation (2.6). As for the LE, to extract the decay rate G, an average over an
ensemble of initial states needs to be performed. For the averages, we used ns = 10
randomly chosen coherent states.

(a) Gaussian diffusion

The first model we have considered was introduced in the work of García-
Mata et al. [29] to model diffusion in a quantum map. We take a periodic sum of
Gaussians—to fit the boundary conditions of the 2-torus

ce(q, p) = 1
A

x∑
j ,k=−x

exp
[
−(q − jN )2 + (p − kN )2

2 (eN /2p)2

]
, (3.7)

where x is large enough (typically of order 10–15) so that the tails of the
furthermost Gaussians can be neglected and A is the normalization factor
(q, p = 0, . . . , N − 1). We call this model the Gaussian diffusion model (GDM).
The GDM can be interpreted as a smoothing or coarse graining of the unitary
evolution: with Gaussian weight, the state is displaced all over a region of size
of order e. As a consequence, the interference terms get washed out, while the
remaining classical part is diffused. As stated before, in the continuous limit,
equation (2.7) is a convolution of the Wigner function with a kernel ce(q, p). For
the GDM, it can be related to the solution of the heat equation with a diffusion
constant given by (e/2p)2 [30–33].

In figure 1a, we show the decay rate G of the BE as a function of perturbation
parameter S for the perturbed cat map a = b = 2, N = 800 and k = 0.01 in
the presence of the GDM for distinct values of e. The Lyapunov exponent
l = ln[3 + 2

√
2] is marked by a dashed line. For e = 0 (cross symbols), we recover

the decay rate of the LE: for small S, we get the characteristic quadratic
behaviour for small perturbations—FGR regime; for larger values of S, we get
a non-universal—perturbation dependent—oscillatory behaviour that has also
been observed in the work of Wang et al. [13] and Ares & Wisniacki [15,34].
As e increases, the initial G value tends to increase (giving the characteristic
exponential decay of the purity rate owing to decoherence), while the amplitude of
the oscillations seems to decrease approaching the value of the classical Lyapunov
exponent.

In figure 1b, the decay rate of the purity Ge, which corresponds to the BE for
S = 0, is shown. The symbols correspond to the curves—for different e values—
in figure 1a. For the GDM, we observe saturation of Ge at l, as is expected. In
the inset, we assess the sum law G ∼ Ge + GS for the BE, and we plot G − Ge

as a function of S/h̄: the expected behaviour—all curves collapsing into the one
corresponding to GS—is only observed for values of e � 0.0035 corresponding to
Ge � 0.5. For e = 0.0035 (diamonds), we see that the sum law breaks up around
S/h̄ ≈ 0.75. For e � 0.0035, the sum law is no longer valid.

(b) Generalized depolarizing channel

The next environment model that we have considered is the generalized
depolarizing channel (DC). Although—as we shall see—in phase space it is
somehow an extremely non-local noise, its importance lies in that it is one of the
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Figure 1. (a) Decay rate G of the BE as a function of the rescaled strength of the perturbation S/h̄
for a GDM environment. The map is the quantum version of the perturbed cat (equation (3.1)),
with a = b = 2. Averages were done over ns = 10 initial states. Other parameters are: k = 0.001, N =
800. Cross symbols, e = 0 (LE); squares, e = 0.003; diamonds, e = 0.0035; triangles, e = 0.004; circles,
e = 0.005; inverted triangles, e = 0.01. The horizontal dashed lines (in (a) and (b)) correspond to
the Lyapunov exponents of the corresponding map l = ln[3 + 2

√
2] ≈ 1.76275. (b) The decay rate

Ge of the purity as a function of the perturbation parameter e. The points correspond to the initial
values of the curves in (a). (inset) Decay rate G − Ge as a function of the rescaled strength of the
perturbation S/h̄.

simplest and the best-known noise channels in quantum-information formalism
[35]. The action of the DC for one qubit (N = 2) is simple: with probability (1 − e),
it does nothing, and with probability e, it ‘depolarizes’ it, meaning that it leaves
it in a completely mixed state. This is done by applying every possible Pauli
matrix on the state. For an N -dimensional system and a torus phase space, it
can be generalized as follows [36]:

DDC
e = (1 − e)r + e

N 2

∑
q,p �=0

TqprT †
qp, (3.8)

that is, with probability (1 − e), it leaves the state unchanged, while with
probability e, it applies every possible translation in phase space, with equal
weight e/N 2. So, contrary to the GDM where the incoherent sum over displaced
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Figure 2. (a) Decay rate G of the BE as a function of the rescaled strength of the perturbation
S/h̄ for a DC environment. The map is the quantum version of the perturbed cat (equation (3.1)),
with a = b = 2. Averages were done over ns = 10 initial states. Other parameters are: k = 0.001,
N = 800. Cross symbols, e = 0 (LE); squares, e = 0.1; triangles, e = 0.22; circles, e = 0.40; inverted
triangles, e = 0.7. The horizontal dashed lines (in (a) and (b)) correspond to the Lyapunov
exponents of the corresponding maps l = ln[3 + 2

√
2] ≈ 1.76275. (b) The decay rate Ge of the

purity as a function of the perturbation parameter e. The points correspond to the initial values
of the curves in (a). (inset) Decay rate G − Ge as a function of the rescaled strength of the
perturbation S/h̄.

states took place between states lying effectively close, owing to the Gaussian
weight, for the DC, the incoherent sum is over all states, close or apart. It is in
this sense that we say this model is highly non-local.

In figure 2a, we show the BE decay rate G as function of perturbation
parameter S for the perturbed cat map a = b = 2, N = 800 and k = 0.01 in the
presence of the DC noise model for distinct values of e. Again, the cross symbols
represent the GS of the LE. For smaller e, the curves look like essentially the same
curve shifted upwards. There is no evident saturation at the Lyapunov exponent.
For a larger e, the BE oscillations tend to disappear, and the growth is somehow
linear with no apparent saturation. In figure 2b, we show the decay rate of the
purity Ge as a function of e and the symbols mark the initial values of the curves
on the top. Initially, Ge grows linearly. As is expected [34], there is no parameter-
independent regime for the DC observed, neither for G nor for Ge. In the inset of
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Figure 3. (a) Decay rate G of the BE as a function of the rescaled strength of the perturbation S/h̄
for an LDM environment. The map is the quantum version of the perturbed cat (equation (3.1)),
with a = b = 2. Averages were done over ns = 10 initial states. Other parameters are: k = 0.001,
N = 800. Cross symbols, e = 0 (LE); squares, e = 0.001; triangles, e = 0.002; circles, e = 0.005;
inverted triangles, e = 0.01. The horizontal dashed lines (in (a) and (b)) correspond to the Lyapunov
exponents of the corresponding map l = ln[3 + 2

√
2] ≈ 1.76275. (b) The decay rate Ge of the

purity as a function of the perturbation parameter e. The points correspond to the initial values
of the curves in (a). (inset) Decay rate G − Ge as a function of the rescaled strength of the
perturbation S/h̄.

figure 2, we show the decay rate of G − Ge. We can see the lines collapse to the
curve corresponding to GS (cross symbols) for the LE for a sizeable interval of
S/h̄ and up to values of Ge ≈ 1. From the work by Casabone et al. [34], we know
that the decay rate of purity as a function of e is Ge = 2e, for small e. It is simple
to show that in the interval of e where this holds, the sum law GS ≈ G − Ge also
holds. Here, this is true up to values e � 0.4 (see also fig. 2 in [34]) corresponding
to Ge � 1.

(c) Lorentzian decoherence

Finally, we consider a model that is more local than the DC but which,
unlike the GDM, has polynomially decaying tails for ce(q, p). The motivation
for using this model arose in the work by Casabone et al. [34] when comparing
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the universalities of the purity and the LE. We take ce(q, p) to be a sum of
Lorentzians

ce(q, p) = 1
pA

x∑
j ,k=−x

eN /2p(
(eN /2p)2 + (q − Nj)2 + (p − Nk)2

) , (3.9)

with A the proper normalization for
∑

q,p ce(q, p) = 1 and q, p = 0, . . . , N − 1.
The sum is done to account for the periodicity of the torus (theoretically,
x → ∞; practically, x is an integer much larger than 1). We call this model
the Lorentz decoherence model (LDM). Equation (2.6) with ce(q, p) given by
equation (3.9) defines a random process with Lorentzian weight that can be
related to superdiffusion by Lévy flights. The effect of heavy tails in decoherence
is also explored in e.g. the work of Schomerus & Lutz [37].

In figure 3a, we show the decay rate G of the BE as a function of perturbation
parameter S for the perturbed cat map a = b = 2, N = 800 and k = 0.01, in the
presence of the LDM for different e values. Again, we see that for small e, the
curves look like a shift of one another—although less so than for the DC model—
and then for large values of e, the oscillations are destroyed and the growth of
G is linear, as for the DC. Figure 3b shows the decay rate Ge of the purity with
the initial points of the curves on the top superimposed. The initial growth of Ge

is quadratic with e, as was shown in Casabone et al. [34]. It can also be clearly
observed that in neither figure there is a parameter-independent—Lyapunov—
regime. In the inset of figure 3, we show the decay rate G − Ge. The sum law
GS ∼ G − Ge holds for an interval of S/h̄ up to S/h̄ ≈ 1.5 (similar to the DC
case), but it seems to break up a little bit earlier in the values of Ge. Note that
in the inset of figure 3b, the line corresponding to the circles (Ge ≈ 1) separates
from the others at S/h̄ ≈ 0.75.

4. Conclusions

Summarizing, we have studied the BE for quantum chaotic maps with three
different types of decoherence. The BE complements the original idea of the
LE in that it considers the presence of an environment, yielding it appropriate
for understanding the realistic experiments. We have done extensive numerical
calculations for a wide range of values of the perturbation of the map and the
strength of the decoherence superoperator, and we have focused on the decay
rate of the BE in the regime where it decays exponentially. Other than providing
a ‘visual landscape’ of the decay rate G of the BE, our calculations enable
a qualitative and quantitative analysis of the universal regimes found in the
literature. We found that the more realistic diffusion model (GDM) correctly
retrieves the Lyapunov behaviour for large enough values of e. However, for the
same case, the sum law G ≈ GS + Ge breaks up for relatively small values of e. We
infer that this problem is related to the fact that the Hilbert space associated
to the torus is N -dimensional (similar non-universal behaviour is found for the
purity in the work of Casabone et al. [34]). On the contrary, the two other cases
considered satisfy the sum law rather well. These two models have in common the
slow decaying tails of the kernel ce(q, p), which means that the decoherence model
acts non-locally in phase space. Furthermore, these two models fail to exhibit the
parameter-independent Lyapunov regime.
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We have used quantum maps as generic chaotic systems and three very different
decoherence models. We can thus conclude that non-generic behaviour is to be
expected in echo experiments with arbitrary types of environment.

The authors acknowledge financial support from CONICET (PIP-6137), UBACyT (X237) and
ANPCyT. D.A.W. and I.G.-M. are researchers of CONICET.

References

1 Peres, A. 1984 Stability of quantum motion in chaotic and regular systems. Phys. Rev. A 30,
1610–1615. (doi:10.1103/PhysRevA.30.1610)

2 Jalabert, R. A. & Pastawski, H. M. 2001 Environment-independent decoherence rate in
classically chaotic systems. Phys. Rev. Lett. 86, 2490–2493. (doi:10.1103/PhysRevLett.86.2490)

3 Jacquod, P., Silvestrov, P. G. & Beenakker, C. W. J. 2001 Golden rule decay versus
Lyapunov decay of the quantum Loschmidt echo. Phys. Rev. E 64, 055203(R). (doi:10.1103/
PhysRevE.64.055203)
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