Integrated use of otolith shape and microchemistry to assess *Genidens barbus* fish stock structure

Thaís Rodrigues Maciel, Marcelo Vianna, Barbara Maichak de Carvalho, Nathan Miller, Esteban Avigliano

PII: S0272-7714(21)00410-8

DOI: https://doi.org/10.1016/j.ecss.2021.107560

Reference: YECSS 107560

To appear in: Estuarine, Coastal and Shelf Science

Received Date: 16 June 2021

Revised Date: 27 July 2021

Accepted Date: 15 August 2021

Please cite this article as: Maciel, Thaí.Rodrigues., Vianna, M., Maichak de Carvalho, B., Miller, N., Avigliano, E., Integrated use of otolith shape and microchemistry to assess *Genidens barbus* fish stock structure, *Estuarine, Coastal and Shelf Science* (2021), doi: https://doi.org/10.1016/j.ecss.2021.107560.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

		D.				
Journ	aı	F.	DĽ	Ο	U.	

1	Integrated use of otolith shape and microchemistry to assess Genidens barbus fish
2	stock structure
3	
4	Thaís Rodrigues Maciel ^a , Marcelo Vianna ^{a,b} , Barbara Maichak de Carvalho ^c , Nathan
5	Miller ^d , Esteban Avigliano ^e *
6	
7	^a Instituto de Biologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas
8	Filho, 373, Ilha do Fundão, (21941-541) Rio de Janeiro, RJ, Brazil.
9	^b Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio
10	de Janeiro Marine Aquarium Research Center, Rio de Janeiro, Brazil. E-mail address:
11	mvianna@biologia.ufrj.br
12	° Programa de Pós-Graduação em Engenharia Ambiental, Departamento de Engenharia -
13	Universidade Federal do Paraná, Centro Politécnico, (81531-970) Bairro Jardim das
14	Américas, Curitiba, Paraná, Brazil. E-mail address: bmaicarvalho@gmail.com
15	^d Jackson School of Geosciences, University of Texas at Austin, Austin, (78712) Texas,
16	USA. E-mail address: nrmiller@jsg.utexas.edu
17	^e Instituto de Investigaciones en Producción Animal (INPA-CONICET-UBA), Facultad
18	de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Av. Chorroarín 280,
19	(C1427CWO) Ciudad Autónoma de Buenos Aires, Argentina. E-mail address:
20	estebanavigliano@conicet.gov.ar
21	* Corresponding author: estebanavigliano@conicet.gov.ar
22	
23	
24	

26 Abstract

27 Otolith composition (edge vs core: Mg/Ca, Mn/Ca, Zn/Ca, Sr/Ca, Ba/Ca) by LA-ICP-MS and Elliptic Fourier analysis were integrated to evaluate spatial segregation of adult 28 29 and juvenile stages of Genidens barbus from specimens collected from five coastal areas off Brazil (Paraíba do Sul River, Guanabara Bay, Itapanhaú River mouth, 30 Paranaguá Bay), Argentina and Uruguay (La Plata Estuary). Fisheries of this 31 diadromous catfish have largely collapsed in the southwest Atlantic coastal region due 32 to overexploitation. An understanding of population structure is now critically needed 33 for improved management strategies for this endangered species. PERMANOVA based 34 on chemistry showed significant differences (p < 0.05) between all sites, except 35 Itapanhaú River and Paranaguá Bay (edge). Shape, by comparison, found significant 36 differences between all sampling sites, except Guanabara Bay and Paranaguá Bay, and 37 Itapanhaú River and Paranaguá Bay. Discriminant analysis cross-classification success 38 based on chemistry ranged from 33.3 (Paranaguá Bay) to 100% (La Plata Estuary), and 39 66.7 (Paranaguá Bay) to 100% (La Plata Estuary) for otolith edges (mean=61.3%) and 40 cores (mean=78.9%). For otolith shape, the jackknifed rate (mean=45.9%) was 41 42 relatively low for all sites (32.1-44.7%) except La Plata Estuary (67.6%). Although we do not find otolith shape to be particularly useful; otolith microchemistry supports the 43 44 presence of different management units. The results revealed that on a small geographic scale (~300 km) microchemistry might not be efficient to discriminate between some 45 46 sampling sites.

47

48 **Key words:** catfish; estuaries; fish stock; segregation; trace elements.

- 49
- 50
- 51
- 52

- 54
- 55

56 **1. Introduction**

57 The diadromous catfish Genidens barbus (Lacépède 1803), family Ariidae, inhabits freshwater, estuarine and marine environments ranging from Bahía (Brazil) to Patagonia 58 (Argentina) (Caille et al., 1995; López and Bellisio, 1965). This catfish presents a 59 plastic and complex life cycle, including differing amphidrome migration patterns and 60 resident freshwater specimens (Avigliano et al., 2021, 2017c, 2015b). Amphidromus 61 62 specimens typically migrate from the sea/estuary to lower salinity waters during reproduction period (Avigliano et al., 2017c). Males perform oral incubation of 63 offspring, releasing them in the mouth of the estuary, where they remain until complete 64 65 development, and then migrate as far as the continental platform (Avigliano et al., 66 2017c, 2015b, 2015c; Reis, 1986a).

Formerly an important species for artisanal fishing, mainly in Southern Brazil (Gomes 67 68 and Araújo, 2004; Reis, 1986b; Velasco et al., 2007), the catch rate has dropped significantly in recent decades. In response to dramatic declines in landings (e.g., from 69 30,000 in 1962 to to 10,000 in 2011; (Mendonça et al., 2017), G. barbus was added to 70 the List of Endangered Brazilian Fauna, subsequently banning its capture, transport, and 71 storage (MMA, 2014). Factors besides overfishing, such as pollution and habitat loss, 72 73 also contribute to this decline (Barletta and Lima, 2019; Kime, 1995). Complex reproduction and high age of first maturity (8.5 years for females and 9 years for males, 74 (Reis, 1986a) also hinder the recovery of this fishery species. Thus, effective 75 76 management of G. barbus stocks is essential to their recovery. The term "fishing stock" refers to a commercially exploited resource that is included within fishery management 77 78 strategies (Begg and Waldman, 1999). Fishing stocks are basic work units in which the state of fisheries is assessed and management policies applied to implement sustainable 79 exploitation (Tanner, et al., 2015). Among the various techniques available for 80

identifying fish stocks, chemical fingerprinting of calcified structures, such as otoliths, 81 82 has proven to be one of the most efficient. Otoliths are calcified structures present in the inner ear of teleost fish that form by continuous outward (radial) growth through life 83 (Campana, 1999). Ambient water is the predominant source of most inorganic elements 84 deposited in its matrix (Campana, 1999; Hüssy et al., 2020; Kerr and Campana, 2014), 85 although diet, ontogeny and genetics can also affect its chemical composition (Clarke et 86 al., 2011; Elsdon, and Gillanders, 2003; Morales-Nin, 2000). Because otoliths are 87 metabolically inert structures, the elements deposited in their accreting surface layers 88 are permanently retained (Campana, 1999), and the core-to-edge chemical composition 89 90 can be used as a biological tracer to discriminate between fish groups that spend parts of 91 their lives in different areas (Kerr and Campana, 2014). In fact, otolith core and edge elemental signatures have proven useful for identifying both nursery areas (Avigliano et 92 93 al., 2016; Bailey et al., 2015; Patterson et al., 2008) and discriminating fish stocks (Avigliano, 2021; Kerr and Campana, 2014; Soeth et al., 2019; Tanner, et al., 2015). 94

95 In Southwestern Atlantic (South America) coastal waters, a relationship between the water and G. barbus otoliths has been reported for Ba:Ca and Mn:Ca ratios (Avigliano 96 97 et al., 2019). Other microchemical studies have identified four G. barbus nursery areas 98 using otolith core compositions (Avigliano et al., 2016) and five fish stocks through integration of dorsal fin spine and otolith edge compositions (Avigliano, et al., 2017; 99 Avigliano et al., 2019). However, evidence supporting the existence of different stocks 100 101 is fragmented because the studies have thus far been limited to widely separated geographic areas (e.g., 700-1000 km spacing) and have sampled limited portions of life 102 103 histories (e.g., otolith edges). Critically needed are studies integrating sampling sites with differing spacings but covering the entire distribution area of this fishery. 104

105 Besides the life history information gained from otolith chemistry, otolith shape can 106 provide complementary marker information for stock discrimination (Biolé et al., 2019; Hüssy et al., 2016; Ibáñez et al., 2017). Genetic and environmental factors (e.g. 107 108 temperature, depth, salinity and food availability) can significantly impact fish growth rates and otolith growth patterns (Longmore, et al., 2010; Vignon and Morat, 2010a). 109 110 Accordingly, fish that experience different environmental conditions may tend to 111 present differences in otolith shape, and these differences can be statistically characterized. Otolith shape (morphometry) analysis is also much more economical than 112 microchemistry and has proven useful for discerning habitat use (Avigliano et al., 113 114 2015d, 2014), sexual dimorphism (Maciel et al., 2019), species (Avigliano et al., 2018; Gut et al., 2020), relative growth (Maciel et al., 2019; Perin and Vaz-dos-Santos, 2014), 115 stocks (Annabi et al., 2013; Biolé et al., 2019; Soeth et al., 2019) and nursery areas 116 117 (Avigliano et al., 2017b). More efficient and accurate stock characterization may thus be obtained from integrated studies of otolith morphometry and chemistry (Biolé et al., 118 119 2019; Longmore, et al., 2010; Soeth et al., 2019).

Toward improved management strategies of this endangered species, we integrate
otolith microchemistry and morphometry to discern *G. barbus* population structure in
the main area of its distribution.in the Southwestern Atlantic coastal region.

123

124 **2.** Materials and methods

125 **2.1. Study area**

Genidens barbus specimens were collected from five Southwestern Atlantic coastal
river mouth estuaries, four off Brazil: 1) Paraíba do Sul River, 2) Guanabara Bay, 3)
Itapanhaú River, 4) Paranaguá Bay, and one off Argentina-Uruguay: 5) La Plata (Figure
1).

Paraíba do Sul River mouth is a delta (Krüger et al., 2006) located in Rio de Janeiro 130 state (21°36'23.9"S, 41°02'43.8"W), near the frontier with Espírito Santo state (Brazil). 131 The delta is characterized by beach ridges, that separate a main estuary in the Altafona 132 region from a secondary estuary in the Gargaú region (Bernini and Rezende, 2004). 133 Paraíba do Sul River has a length of 1145 km, a drainage basin of 55.400 km² and 134 salinities ranging from 0 to 30% (Krüger et al., 2006). Guanabara Bay, southeast of Rio 135 de Janeiro State (Brazil) (22°48'24.3"S, 43°09'14.7"W), is a semi-closed estuarine 136 coastal ecosystem (Meniconi et al., 2012). It has an area of 380 km², a contributing 137 drainage basin of 4080 km² and salinities ranging from 0 to 35‰ (Kjerfve et al., 1997). 138 This bay is currently considered to be one of the most degraded estuarine systems off 139 the Brazilian coast (Meniconi et al., 2012; Valentin et al., 1999). Itapanhaú River 140 estuary, east of São Paulo state (Brazil) (23°49'47.1"S, 46°09'12.8"W), contributes to the 141 142 Bertioga Channel, adjacent to Santos Bay, the largest port terminal of Latin America (Ambrozevicius and Abessa, 2008). It has a drainage basin of 260 km² (Bernardes and 143 144 Miranda, 2001) and salinities ranging from 0 to 35‰ (Maciel, unpublished data). 145 Paranaguá Estuarine Complex, located in coastal Paraná state (Brazil) (25°29'26.7"S, 48°29'55.6"W), is divided into into north-south (Laranjeira and Pinheiro) and east-west 146 (Paranaguá Bay) regions, with an area of 612 km² (Lana et al., 2001) and salinities 147 ranging from 0 to 31‰ (Dias et al., 2016). La Plata Estuary is formed by the 148 convergence of the Paraná and Uruguay rivers (Guerrero et al. 1997), between 149 Argentina and Uruguay (34°30'S e 58°10'W). With an area of 35,000 km², the estuary is 150 the second largest fluvio-marine system in the Americas, with a contributing drainage 151 basin area of 3,170,000 km². Salinities range from 0 to 32‰ (Acha et al., 2008; 152 Avigliano et al., 2017c). 153

155 **2.2. Sampling**

All sample specimens were obtained from small scale artisanal landings, except those from La Plata Estuary, Argentina (Paraná Guazú and Sauce rivers), which were collected by scientific collections using hook. Fishes were identified based on Marceniuk (2005) and Marceniuk and Menezes (2007) keys, measured (total length -TL, \pm 0.1 cm) and the *lapillus* otoliths were removed, washed with ultrapure water, air dried and weighed (\pm 0.001g). Table 1 shows the biometrics information.

162

163 **2.3. Otolith chemistry**

Genidens barbus left otoliths (Table 1) were decontaminated with 3% H₂O₂, 2% HNO₃ 164 (Merck KGaA, Garmstadt, Germany) and washed with Milli-Q water (resistivity 18.2 165 mOhm/cm), and dried (Avigliano et al., 2017d). Otoliths were inserted into epoxy resin, 166 167 and 700 µm thick central sections were obtained from cured mounts using a Buehler Isomet low speed saw (Hong Kong, China). The sections were fixed onto glass slides 168 using epoxy resin, and the upper otolith surface polished with 10 µm grit sandpaper and 169 then thoroughly rinsed with Milli-Q water. As age may influence the chemical 170 composition of calcified structures, annual otolith growth rings (Reis 1985b) were 171 172 counted under magnification (40x) using a Leica EZ4-HD stereomicroscope. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) was used to 173 measure ⁴³Ca, ²⁴Mg, ⁵¹V, ⁵⁵Mn, ⁶⁰Ni, ⁶³Cu, ⁶⁶Zn, ⁸⁵Rb, ⁸⁸Sr, ¹⁰⁷Ag, ¹¹¹Cd, ¹³⁸Ba, ²⁰²Hg 174 and ²⁰⁸Pb in otolith cores and edges at the University of Texas at Austin Department of 175 176 Geosciences (USA). The LA-ICP-MS system consisted in an ESI NWR193-UC excimer laser ablation system (193 nm, 4ns pulse width) coupled to an Agilent 7500ce 177 ICP-MS. A rectangular aperture of $25 \times 100 \,\mu\text{m}$ was used at 8 μm s⁻¹ (repetition rate/ of 178

10 Hz, energy densities/ 3.8 Jcm²⁻¹). To minimize the temporal sampling alias, the long 179 180 axis of the aperture was maintained parallel to growth banding in all the transects.

Based on the growth ring chronologies, the sampled core and edge regions correspond 181 182 to within the first year (inner 1,000-1,500 µm) and last two years (outer 300 µm) of life, respectively. Prior to measurements, the surface contaminants were removed by pre-183 ablation, using a spot size of 25x125 µm at 50 m s⁻¹. The ICP-MS was operated at 184 power of 1600 W with using argon as carrier gas (flow/800 mL min⁻¹). Ratios 185 232 Th 16 O 232 Th (<0.35%) and 238 U 232 Th (~1) were used during tuning to monitor the 186 oxide production and mass fractionation plasma robustness. NIST 612 and USGS 187 MACS-3 reference materials, analyzed in replicate each hour, were used as external and 188 primary standards, respectively (Jochum et al., 2011). 189

Analyte intensities were converted to elemental concentrations (mg kg⁻¹) using Iolite 190 software (Paton et al., 2011), with ⁴³Ca (38.3 weight %) as the internal standard 191 192 (Yoshinaga et al. 2000).

193 Reference materials recoveries averaged and were within 7% of to GeoREM preferred values (Jochum et al. 2011): 98% for ¹³⁸Ba, 106% for ⁶³Cu, 96% for ²⁴Mg, 103% for 194 ⁵⁵Mn, 102% for ⁶⁰Ni, 100% for ⁸⁸Sr and 93% for ⁶⁶Zn. Detection limits (LOD, mg kg⁻¹) 195 based on three times the standard deviation of the estimated baseline intensity during 196 bracketing gas blank intervals were 0.01 for ¹³⁸Ba, 0.21 for ⁶³Cu, 0.12 for ²⁴Mg, 0.16 for 197 ⁵⁵Mn, 0.07 for ⁶⁰Ni, 0.01 for ⁸⁸Sr and 0.28 for ⁶⁶Zn. Concentrations were expressed as 198 molar ratios in relation to Ca (element/Ca, mmol mol⁻¹). Otolith ⁵¹V, ⁶⁰Ni, ⁶³Cu, ⁸⁵Rb, 199 ¹⁰⁷Ag, ¹¹¹Cd, ²⁰²Hg and ²⁰⁸Pb levels were below LOD, thus, further data analysis is 200 based on concentrations of Mg, Mn, Zn, Sr and Ba. 201

202

2.4. Otolith morphometry 203

Digital images of the distal face of *G. barbus* right *lapilli* otoliths (Table 1) were recorded (Nikon Coolpix L110) at the same magnification against a black background with a scale.

207 Differences in otolith contour between estuaries were calculated using Elliptic Fourier Analysis (EFA), where otolith curvature was modeled as a two-dimensional closed 208 curve applying a combination of harmonically related sine and cosine functions 209 210 (descriptors), with each function composed of four Fourier Coefficients (FCs). The first 12 harmonics obtaind 99.99% of the accumulated power, according to the Fourier 211 Power Spectrum (Crampton, 1995) (Figure 2). The first three descriptors were used to 212 213 normalize the FCs, being converted into constants, totaling 45 FCs instead of 48. The FCs were calculated using the Shape 1.3 software. 214

215

216 **2.5. Statistical analysis**

A covariance analysis (ANCOVA) was used to verify the effect of total length (TL) on 217 218 FCs. One FC (b8) co-varied with TL (F=4.0, p=0.045) and were corrected by 219 subtracting the common slope of the ANCOVAs. To avoid potential allometric effects, FCs were normalized to TL using the allometric ratio and standardized to a fish length 220 221 of 58.5 cm (mean TL for all fish) (Lleonart et al. 2000). A principal component analysis (PCA) was performed to reduce the dimension of the morphometric data matrix (Tuset 222 223 et al., 2020) and convert the 45 FCs into 11 independent principal components (PCs), created through the orthogonal combination of the original variables, which 224 225 accumulated 99.9% of the variability. This process also reduces multi-collinearity between the FCs. 226

Shapiro-Wilk and Levene tests were performed to test elemental ratios for normalityand homogeneity of variance, respectively. Spearman and ANCOVA correlation were

used to test the effect of age, TL and otolith weight on the element: Ca ratios (Longmore 229 230 et al. 2010; Kerr and Campana 2014). Only Mg:Ca, Mn:Ca, Zn:Ca and Sr:Ca in the core co-varied with age $(7.0 < F < 37 \ 0.0001 < p < 0.01)$ and this trend was removed by 231 232 subtracting the common slope of the ANCOVAs. Since core Mg:Ca, Zn:Ca and Sr:Ca ratios fulfilled the assumptions of normality and homogeneity (Shapiro-Wilk and 233 Levene tests, p>0.05), ANOVA and Tukey tests were used to make univariate 234 235 comparisons between sampling sites. Core Mn:Ca and Ba:Ca ratios and edge elemental:Ca ratios did not meet the assumptions simultaneously (Shapiro-Wilk and 236 Levene tests, p<0.05), so Kruskal Wallis was used for the same purpose. 237

Permutational multivariate analysis of variance (PERMANOVA) based on the distances
of Mahalanobis with 9999 permutations (Anderson 2006) was used to evaluate otolith
morphometric (PCs) and multi-elemental (core and edge separately) differences for each
sampling site.

242 Discriminant analyses were performed to assess the ability of the data to be classified 243 in their respective capture areas. Because the variance-covariance matrices were not 244 homogeneous (Box test, p <0.05), quadratic models (QDA) instead of linear were applied to assess classification by otolith shape (PCs), otolith core and edge chemistry. 245 246 An additional discriminant analysis (lineal model, LDA) was conducted using the otolith shape variables (PCs) and the edge elemental ratios together to determine if the 247 integrated use of these two methods of stock assessment can improve discriminatory 248 249 ability in relation to their independent use. LDA was used because co-variance matrices 250 were homogeneous (Box test, p>0.05).

Prior to discriminant analyses, multi-collinearity was verified by using the tolerance and
F-to-remove values (Hair et al., 2013). The classification accuracy of the QDA and
LDA were tested by leave-one-out cross-validation (stepwise jackknifed procedure).

254	Finally, the expected prior probability classification (random rate) was estimated on
255	sample sizes and group numbers, and then, proportion tests were performed to assess
256	the difference between random and the percentage of correctly classified individuals.
257	Statistical analyses were performed using Mystat 13 and SPSS 17.0 software.
258	3. Results
259	
260	3.1. Otolith chemistry
261	Three element:Ca ratios (Mg:Ca, Sr:Ca, Ba:Ca) were significantly different
262	(p<0.05) between several sampling sites for otolith edge measurements (Figure 3),
263	whereas no differences were observed for Mn:Ca ($H= 2.98$; $p= 0.5613$) and Zn:Ca ($H=$
264	2.78; $p=0.5950$). Otolith edge Mg:Ca was higher in Paranaguá Bay and lower in
265	Paraíba do Sul River ($H= 13.40$; $p= 0.0095$). Edge Sr:Ca was higher in Paraíba do Sul
266	River, Itapanhaú River and Paranaguá Bay, and lower in Guanabara Bay. Edge Ba:Ca
267	ratio was high in La Plata Estuary and low in Guanabara Bay.
268	Multivariate analysis (PERMANOVA) based on otolith edge chemistry reveals
269	significant differences between all sites (2.4 $<$ F $<$ 6.1; 0.003 $<$ p $<$ 0.22), except for
270	Itapanhaú River-Paranaguá Bay (F=1.4, p=0.22) and Paraíba do Sul River-Itapanhaú
271	River (F=1.8, p =0.09). The first two axes of the QDA (Wilks's Lambda=0.041, F=22.7,
272	p<0.0001) explained 97% of the variability, with the first axis being the most
273	representative (93%). Based on means of standardized coefficients, the most relevant
274	variables for classification were Ba/Ca (-1.1) and Sr/Ca (0.34) for the first function and
275	Sr/Ca (0.93) and Zn/Ca (-0.29) for the second one.

Cross-classification matrix indicates that 61.3% of individuals were correctly
classified. For the chemical analyses, expected prior probabilities of classification (in
%) were 18, 24, 31, 8 and 7 for Paraíba do Sul River, Guanabara Bay, Itapanhaú River,

Paranaguá Bay and La Plata Estuary, respectively (Table 2). The percentage of 279 280 classification was perfect (100%) for the La Plata Estuary and relatively high for Guanabara Bay (86.4%), indicating they are non-random outcomes (Table 2). For the 281 282 other sites. low/moderate (33.3-55.5%) and no significant differences in classification rate were observed with respect to random (Table 2). However, 283 misclassified individuals were assigned to geographically proximal sampling sites, 284 285 except for La Plata Estuary.

Otolith core Mg:Ca was higher in Paraíba do Sul River and Itapanhaú River, 286 intermediate in Guanabara and Paranaguá Bays and lower in La Plata Estuary (F= 13.0; 287 p=0.01). Core Mn:Ca ratio was higher in La Plata Estuary and lower in the other 288 sampling sites (H= 18.1; p= 0.001). Core Zn:Ca was higher in Paranaguá Bay and 289 Paraíba do Sul River, intermediate in Guanabara Bay and Itapanhaú River and lower in 290 291 La Plata Estuary (H= 11.2; p= 0.02). Sr:Ca was higher in Itapanhaú River and 292 Paranaguá Bay, intermediate in Paraíba do Sul River and Guanabara Bay, and lower in 293 La Plata Estuary (H= 27.0; p<0.0001). The highest core Ba:Ca values were found in 294 specimens collected from Paraíba do Sul River and La Plata Estuary (H=46.9; *p*<0.0001). 295

296 PERMANOVA based on otolith core chemistry demonstrates significant differences between all sites (2.6 < F < 6.2; 0.0001 < p < 0.01). The first two function of the QDA 297 (Wilks's Lambda=0.088, F=14.9, p<0.0001) explained 83 and 7% of the variability, 298 respectively (accumulate=90%). Ba/Ca (first function=0.69, second function=0.86) and 299 300 Mn/Ca (first function=0.51, second function=-0.77) were the most important variables for the classification. The mean jackknifed classification percentage was 78.9% and like 301 otolith edge, the classification percentage was 100% for the La Plata Estuary. The 302 jackknifed percentages for the other sites ranged from 66.7 to 82.4%. All 303

304 jackknifed classification percentages were significantly higher than random (Table 2).

305 Except for Paranaguá and Paraiba do Sul capture sites, misclassified individuals from

306 other sites were classified into geographically close sampling sites.

307

308 3.2. Otolith morphometry

PERMANOVA showed significant difference in the otolith shape between all sampling sites (F=3.0; 0.0001), except between Guanabara and Paranaguá bays, andbetween Itapanhaú River and Paranaguá Bay (<math>0.051).

According to the LDA (Lambda de Wilks=0.39, p<0.0001) the first two discriminant functions explained 51.3% and 21.9% (accumulate: 73.2%) of the variability, respectively.

The percentage of well-classified individuals (mean=45.9%) was relatively low for all sites (32.1-67.6%), except La Plata Estuary (67.6%). The prior probabilities of classification (random, in %) were 18 for Paraíba do Sul River, 26 for Guanabara Bay; 19 for Itapanhaú River, 18 for Paranaguá Bay and 21 for La Plata Estuary. Reclassification rates were significantly higher than random for Paraíba do Sul River and La Plata estuary (Table 2).

321

322 3.3. Simultaneous use of chemistry and morphometry

According to LDA (Wilks's Lambda=0.05, F=11.7, p<0.0001) based on the concomitant use of the two techniques , the mean classification percentage (58.2%) was intermediate in relation to that obtained when both methods were applied separately (Table 2). The LDA analysis had high jackknifed classification success for La Plata Estuary (100%), moderate success for Guanabara Bay (66.7%) and relatively low success for the other sites (16.7-54.5%). Only Guanabara Bay and La Plata Estuary showed higherclassification rates than chance (Table 2).

330

331 **4. Discussion**

This study evaluated otolith microchemistry and shape for the first time as a potential 332 integrated tool for discrimination of catfish stocks in Southwestern Atlantic estuarine 333 334 settings, including two (Paraíba do Sul River and Itapanhaú River) estuaries that have not been considered in previous population structure evaluations. Multivariate analysis 335 based on otolith chemistry proved effective for delimiting several capture sites. QDA 336 337 based on edge chemistry was particularly effective for delimiting samples from La Plata Estuary and Guanabara Bay, while the other sites had low classification rates. The high 338 classification rates obtained for La Plata Estuary (100%) and Guanabara Bay (86.4%) 339 340 are consistent with previous studies, which reported values of 100% for Guanabara Bay (Avigliano et al., 2017d) and between 81.3% (Avigliano et al., 2019) and 100% 341 342 (Avigliano et al., 2017d, 2015c) for La Plata Estuary. Although classification rates are sensitive to the variables used and the number of groups, the available evidence 343 supports that different stocks reside within these two coastal systems. 344

345 Based on morphological and chemical analyzes, Paraíba do Sul, the northernmost site studied to date, showed a high overlap with the sites located to the south (Guanabara 346 Bay, 500 km) and Paranaguá Bay (1,000 km), while high segregation was observed in 347 348 relation to the more southern and remote (2,400 km). Itapanhaú River, one of the sites 349 studied for the first time, had a high overlap with sites located to the north (Paraíba do Sul and Guanabara Bay), but showed high segregation in relation to the southernmost 350 localities (Paranaguá Bay and La Plata Estuary). G. barbus specimens from Paranaguá 351 Bay (N=6) were mostly classified (misclassification=66.7%) in Itapanhaú River, but we 352

353 acknowledge that this could be a statistical artifact due to the relatively small sample 354 size compared to other capture sites. Previous studies have reported classification percentages of 82-100% using otoliths (Avigliano et al., 2017d, 2019a) and 100% using 355 356 spines (Avigliano et al., 2019c, 2020) for Paranaguá Bay. However, consistent with previous otolith and spine studies we observe no overlap with La Plata Estuary 357 358 (Avigliano et al., 2020, 2019, 2017d) and relatively low (18%) overlap with Guanabara 359 Bay (Avigliano et al., 2017d), which supports that the chemical signature of Paranaguá Bay can be distinguished from Guanabara Bay and La Plata Estuary. 360

The performance of both techniques applied simultaneously was lower than that of the 361 362 chemistry used alone. This is probably due to the relatively low efficiency of morphometry to discriminate between some of the G. barbus stocks (Table 2). 363 However, when both techniques are moderately efficient to discriminate between 364 stocks, the simultaneous use of these tends to increase the classification percentages 365 (Biolé et al., 2019; Longmore, et al., 2010; Soeth et al., 2019), since the variables can 366 367 respond to different drivers, for example environmental, physiological, genetic, or evolutionary (Avigliano, 2021; Tanner, et al., 2015). 368

The high overlap obtained here among the closest sites (e.g. Itapanhaú River and 369 370 Paranaguá Bay, and Paraíba do Sul, Guanabara Bay and Paranaguá Bay) could be due to a high connectivity between these sampling sites, however, similar environmental or 371 372 endogenous pressures (e.g. physiological factors) on these sites could contribute to similar chemical signatures in the region (Avigliano, 2021). A recent G. genidens 373 374 otolith edge microchemical study found high misclassification rates (up to 52.6%) 375 between Itapanhaú River and Paranaguá Bay (Maciel et al., 2020). These authors suggested that G. genidens presents low connectivity between the studied estuaries, so 376 377 similar chemical fingerprints in the present study may indicate similar environmental

378 pressures rather than high connectivity.

379 Maciel et al. (2020) also found that otolith core-based classification rates (78.9%) for G. barbus were somewhat higher than edge-based classification rates (61.3%), suggesting 380 381 some segregation between study sites. However, classification of adult fish based on the 382 otolith cores should be taken with caution because the environment used by juveniles does not necessarily correspond to that in capture sites. Assuming that there is high 383 384 segregation throughout ontogeny, differences in classification success between core and 385 edge could be due to spatio-temporal environmental variations. For example, Avigliano et al. (2017a) demonstrated that temporal variation in the chemical signature of the adult 386 387 catfish otolith core can affect the percentages of spatial classification.

Ba/Ca, Sr/Ca, Mn/Ca and Zn/Ca were the most important variables for delimiting 388 389 groups. In several diadromous species, Ba/Ca and Sr/Ca can negatively and positively proxy salinity, rather than to other exogenous or endogenous factors (Brown and 390 391 Severin, 2009), and thus have been widely used to track migratory routes in saline 392 gradients (Araya et al., 2014; Hermann et al., 2016). Particularly in G. barbus, these element: Ca ratios in calcified structures were associated with salinity and surrounding 393 water concentration (Avigliano et al., 2019), and have been useful in describing the life 394 395 history patterns (Avigliano et al., 2017c, 2015b). The incorporation of Mn into the 396 otolith can be regulated by both endogenous and exogenous factors, and is speciesdependent (Hüssy et al., 2020; Sturrock et al., 2015). In some species such as 397 Micropogonias furnieri (Avigliano, et al., 2021), Micropogonias undulatus (Altenritter 398 et al., 2018; Dorval et al., 2007) and Morone saxatilis (Mohan et al., 2012), Mn/Ca has 399 400 been linked with environmental concentration (Dorval et al., 2007; Mohan et al., 2012), while in Gadus morhua, Platichthys flesus, Pseudopleuronectes americanus, and M. 401 402 undulates, it has been negatively associated to dissolved oxygen. Other factors such as

403 temperature, salinity, food composition and/or growth have also been identified as 404 potential Mn drivers (Hüssy et al., 2020; Thomas and Swearer, 2019). For G. barbus, Mn/Ca values are several times higher in the core than in the edge, as previously 405 406 reported by (Avigliano et al., 2017d, 2017a), and similarly reported for other species (Limburg et al., 2015; Miller, 2009; Rogers et al., 2019), including G. genidens (Maciel 407 et al., 2020) and other ariids like Cathorops spixii (Maichak de Carvalho et al., 2020). 408 409 Mn enrichment in otolith cores has been linked to maternal transfer, transition to freeembryo or juvenile or growth (Hüssy et al., 2020). Literature on otolith Zn 410 incorporation is scare. Otolith Zn levels seem to be independent of environmental 411 concentrations (Ranaldi and Gagnon, 2008), but may be influenced by diet (Ranaldi and 412 Gagnon, 2008), growth (Hüssy et al., 2020; Sturrock et al., 2015), ontogeny (Avigliano 413 et al., 2015a; Ranaldi and Gagnon, 2008) and gonadosomatic activity (Sturrock et al., 414 415 2015). In the present study, Zn/Ca values were comparable between core and and spatially within the edge, and controlling factor are unclear. 416

417 Otolith shape is also affected for endogenous and exogenous factors (Reichenbacher et al., 2009; Vignon and Morat, 2010b), which may be expressed as inter and intra-specific 418 morphometric differences. Quantitative characterization of these differences have been 419 420 exploited in recent decades to study stock compositions (Biolé et al., 2019; Longmore, et al., 2010) and species delimitation (Avigliano et al., 2018; Tuset et al., 2013). Among 421 422 the main environmental morphologic drivers are temperature, salinity, depth and diet (Lombarte and Lleonart, 1993; Sea et al., 2008; Tuset et al., 2003; Vignon, 2018), 423 424 however, genetics (Annabi et al., 2013; Reichenbacher and Reichard, 2014; Vignon and 425 Morat, 2010b), growth rate and ontogeny (Vignon, 2012) can also affect morphology. In this study, multivariate analyses of otolith contours allowed partial site 426 discrimination, particularly La Plata Estuary and marginally for Paraíba do Sul. 427

However, the otolith shape showed low discriminatory power and high overlap in both 428 429 PERMANOVA and discriminant analysis, therefore, this methodology is not recommended for delimiting G. barbus stocks, at least among the sampling sites from 430 431 Brazil. Interestingly, EFA provide efficient for delimiting G. genidens catfish population between Paraíba do Sul River, Guanabara Bay and Paranaguá Bay (Maciel et 432 al., 2020), suggesting that factors that regulate otolith shape are species-dependent 433 434 within the genus. On the other hand, G. genidens is considered to be a less migratory species than G. barbus (Maciel et al., 2020), remaining within estuaries throughout 435 most of its life. This would not only reduce the chance of connectivity, but could reduce 436 437 the variability of environments to which they are exposed, impacting on the otolith morphometry. 438

In summary, this work complements the evaluation of catfish population structure in the 439 Southeastern Atlantic margin between latitude 21° and 34° S, by integrating otolith 440 shape and microchemistry in previously studied and two new study sites. Otolith shape 441 442 was not particularly useful for classification, whereas otolith microchemistry supported the site specific differences reported by previous studies, and shed light on the regional 443 population structure as a whole. The results revealed on a smaller geographical scale 444 445 (~300 km), microchemistry may confuse between some sampling sites, which could be revealing the limits of the method's discriminatory capacity or events of high 446 447 connectivity. Synthesis of all findings supports the presence of different management units, corresponding to the La Plata Estuary, Lagoa dos Patos, Paranaguá-Itapanhaú 448 449 River, and Paraíba do Sul-Guanabará. Future studies may improve population 450 assessments of connectivity and distribution limits by including other methodologies, such as genetics, capture and recapture assessments. 451

453 5. Acknowledgements

454 We thank the CNPq, FAPERJ (MV) and CAPES (TM and BMC) for the research grants and studentships. Funding was provided by National Council for Scientific and 455 456 Technological Development (CNPq), Ministry of Science, Technology, Innovations and Communications (MCTIC) and Secretary of Aquaculture and Fisheries, Ministry of 457 Agriculture, Livestock and Food Supply (SAP-MAPA) (Call MCTI/MPA/CNPq N° 458 22/2015 - Process: 445782/2015-3), Agencia Nacional de Promoción Científica y 459 Tecnológica (Grant PICT 2015-1823), and Universidad de Buenos Aires (Grant 460 UBACyT 160 20020150100052BA). 461

462

463 **6. References**

- Acha, E.M., Mianzan, H., Guerrero, R., Carreto, J., Giberto, D., Montoya, N., Carignan,
 M., Marcelo Acha, E., Mianzan, H., Guerrero, R., Carreto, J., Giberto, D.,
- Montoya, N., Carignan, M., 2008. An overview of physical and ecological
 processes in the Rio de la Plata Estuary. Cont. Shelf Res. 28, 1579–1588.
- 468 https://doi.org/10.1016/j.csr.2007.01.031
- Altenritter, M.E., Cohuo, A., Walther, B.D., 2018. Proportions of demersal fish exposed
 to sublethal hypoxia revealed by otolith chemistry. Mar. Ecol. Prog. Ser. 589, 193–
 208. https://doi.org/10.3354/meps12469
- Ambrozevicius, A.P., Abessa, D.M.S., 2008. Acute toxicity of waters from the urban
 drainage channels of Santos (São Paulo, Brazil). Panam. J. Aquat. Sci. 3, 108–115.
- Annabi, A., Said, K., Reichenbacher, B., 2013. Inter-population differences in otolith
 morphology are genetically encoded in the killifish *Aphanius fasciatus*(Cyprinodontiformes). Sci. Mar. 77, 269–279.
- 477 https://doi.org/10.3989/scimar.03763.02A
- Araya, M., Niklitschek, E.J., Secor, D.H., Piccoli, P.M., 2014. Partial migration in
 introduced wild chinook salmon (*Oncorhynchus tshawytscha*) of southern Chile.
 Estuar. Coast. Shelf Sci. 149, 1–9. https://doi.org/10.1016/j.ecss.2014.07.011
- Avigliano, E., Alves, N., Rico, R., Ruarte, C., D'Atri, L., Méndez, A., Pisonero, J.,
 Volpedo, A., Borstelmann, C., 2021. Population structure and ontogenetic habitat
 use of *Micropogonias furnieri* in the southwestern Atlantic Ocean inferred by
 otolith chemistry. Fish. Res. 204, 105953.
- Avigliano, E., Carvalho, B.M., Leisen, M., Romero, R., Velasco, G., Vianna, M., Barra,
 F., Volpedo, A.V., 2017. Otolith edge fingerprints as approach for stock
 identification of *Genidens barbus*. Estuar. Coast. Shelf Sci. 194, 92–96.
 https://doi.org/10.1016/j.ecss.2017.06.008
- Avigliano, E., 2021. Optimizing the methodological design in fish stock delineation
 from otolith chemistry: review of spatio-temporal analysis scales. Rev. Fish. Sci.
 Aquac. in press.
- Avigliano, E., Carvalho, B., Velasco, G., Tripodi, P., Vianna, M., Volpedo, A.V., 2016.
 Nursery areas and connectivity of the adults anadromous catfish (*Genidens barbus*) revealed by otolith-core microchemistry in the south-western Atlantic Ocean. Mar.

495	Freshw. Res. 68, 931–940. https://doi.org/10.1071/MF16058
496	Avigliano, E., Carvalho, B., Velasco, G., Tripodi, P., Volpedo, A.V., 2017a. Inter-
497	annual variability in otolith chemistry of catfish Genidens barbus from South-
498	western Atlantic estuaries. J. Mar. Biol. Assoc. United Kingdom.
499	https://doi.org/10.1017/S0025315417000212
500	Avigliano, E., Carvalho, B.M., Miller, N., Gironde, S.C., Tombari, A., Limburg, K.E.,
501	Volpedo, A.V., 2019. Fin spine chemistry as a non-lethal alternative to otoliths for
502	stock discrimination in an endangered catfish. Mar. Ecol. Prog. Ser. 614, 147–157.
503	https://doi.org/10.3354/meps12895
504	Avigliano, E., Domanico, A., Sánchez, S., Volpedo, A. V., 2017b. Otolith elemental
505	fingerprint and scale and otolith morphometry in <i>Prochilodus lineatus</i> provide
506	identification of natal nurseries. Fish. Res. 186, 1–10.
507	https://doi.org/10.1016/j.fishres.2016.07.026
508	Avigliano, E., Leisen, M., Romero, R., Carvalho, B., Velasco, G., Vianna, M., Barra, F.,
509	Volpedo, A.V., 2017c. Fluvio-marine travelers from South America: Cyclic
510	amphidromy and freshwater residency, typical behaviors in Genidens barbus
511	inferred by otolith chemistry. Fish. Res. 193, 184–194.
512	https://doi.org/10.1016/j.fishres.2017.04.011
513	Avigliano, E., Maichak de Carvalho, B., Leisen, M., Romero, R., Velasco, G., Vianna,
514	M., Barra, F., Volpedo, A.V., 2017d. Otolith edge fingerprints as approach for
515	stock identification of Genidens barbus. Estuar. Coast. Shelf Sci. 194, 92-96.
516	https://doi.org/10.1016/j.ecss.2017.06.008
517	Avigliano, E., Martinez, C.F.R., Volpedo, A.V., 2014. Combined use of otolith
518	microchemistry and morphometry as indicators of the habitat of the silverside
519	(Odontesthes bonariensis) in a freshwater-estuarine environment. Fish. Res. 149,
520	55-60. https://doi.org/10.1016/j.fishres.2013.09.013
521	Avigliano, E., Miller, N., Maichak fr Carvalho, B., Córdoba, S., Tombari, A., Volpedo,
522	V.A., 2020. Fin spine metals by LA-ICP-MS as a method for fish stock
523	discrimination of Genidens barbus in anthropized estuaries. Fish. Res. 230,
524	105625. https://doi.org/10.1016/j.fishres.2020.105625
525	Avigliano, E., Pisonero, J., Méndez, A., Tombari, A., Volpedo, A. V., 2021. Habitat use
526	of the amphidromous catfish Genidens barbus: first insights at its southern
527	distribution limit. New Zeal. J. Mar. Freshw. Res. 0, 1–7.
528	https://doi.org/10.1080/00288330.2021.1879178
529	Avigliano, E., Rolón, M.E., Rosso, J.J., Mabragaña, E., Volpedo, A.V., 2018. Using
530	otolith morphometry for the identification of three sympatric and morphologically
531	similar species of Astyanax from the Atlantic Rain Forest (Argentina). Environ.
532	Biol. Fishes. https://doi.org/10.1007/s10641-018-0779-2
533	Avigliano, E., Saez, M.B., Rico, R., Volpedo, A. V., 2015a. Use of otolith
534	strontium:calcium and zinc:calcium ratios as an indicator of the habitat of
535	Percophis brasiliensis Quoy and Gaimard, 1825 in the southwestern Atlantic
536	Ocean. Neotrop. Ichthyol. 13, 187–194. https://doi.org/10.1590/1982-0224-
537	20130235
538	Avigliano, E., Velasco, G., Volpedo, A.V., 2015b. Assessing the use of two
539	southwestern Atlantic estuaries by different life cycle stages of the anadromous
540	catfish Genidens barbus (Lacépède, 1803) as revealed by Sr:Ca and Ba:Ca ratios in
541	otoliths. J. Appl. Ichthyol. 31, 740–743. https://doi.org/10.1111/jai.12766
542	Avigliano, E., Velasco, G., Volpedo, A.V., 2015c. Use of lapillus otolith
543	microchemistry as an indicator of the habitat of Genidens barbus from different
544	estuarine environments in the southwestern Atlantic Ocean. Environ. Biol. Fishes

545	98, 1623–1632. https://doi.org/10.1007/s10641-015-0387-3
546	Avigliano, E., Villatarco, P., Volpedo, A.V., 2015d. Otolith Sr:Ca ratio and
547	morphometry as indicators of habitat of a euryhaline species: The case of the
548	silverside Odontesthes bonariensis. Ciencias Mar. 41, 189–202.
549	https://doi.org/10.7773/cm.v41i3.2464
550	Bailey, D.S., Fairchild, E., Kalnejais, L.H., 2015. Microchemical signatures in juvenile
551	winter flounder otoliths provide identification of natal nurseries. Trans. Am. Fish.
552	Soc. 144, 173–183, https://doi.org/10.1080/00028487.2014.982259
553	Barletta, M., Lima, A.R.A., 2019. Systematic review of fish ecology and anthropogenic
554	impacts in South American estuaries: Setting priorities for ecosystem conservation.
555	Front. Mar. Sci. 6, 1–29. https://doi.org/10.3389/fmars.2019.00237
556	Begg, G.A., Waldman, J.R., 1999. An holistic approach to fish stock identification.
557	Fish. Res. 43, 35–44. https://doi.org/10.1016/S0165-7836(99)00065-X
558	Bernardes, M.E.C., Miranda, L.B., 2001, Circulação estacionária e estratificação de sal
559	em canais estuarinos: simulação com modelos analíticos. Rev. Bras. Oceanogr. 49.
560	115–132. https://doi.org/10.1590/S1413-77392001000100010
561	Bernini, E., Rezende, C.E., 2004. Estrutura da vegetação em florestas de mangue do
562	estuário do rio Paraíba do Sul. Estado do Rio de Janeiro, Brasil. Acta Bot, Brasilica
563	18, 491–502, https://doi.org/10.1590/S0102-33062004000300009
564	Biolé, F.G., Thompson, G.A., Vargas, C. V., Leisen, M., Barra, F., Volpedo, A.V.,
565	Avigliano, E., 2019. Fish stocks of <i>Urophycis brasiliensis</i> revealed by otolith
566	fingerprint and shape in the Southwestern Atlantic Ocean. Estuar. Coast. Shelf Sci.
567	229, 106406. https://doi.org/10.1016/j.ecss.2019.106406
568	Brown, R.J., Severin, K.P., 2009. Otolith chemistry analyses indicate that water Sr:Ca is
569	the primary factor influencing otolith Sr:Ca for freshwater and diadromous fish but
570	not for marine fish. Can. J. Fish. Aquat. Sci. 66, 1790–1808.
571	https://doi.org/10.1139/F09-112
572	Caille, G.M., Ferrari, S., Albrieu, C., 1995. Los peces de la Ría de Gallegos, Santa
573	Cruz Argonting Not Potosénico Ciongios Pielégicos 2, 101, 104
	Cruz, Argentina. Nat. Patagonica, Ciencias Diologicas 5, 191–194.
574	Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways,
574 575	Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297.
574 575 576	Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263
574 575 576 577	 Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith
574 575 576 577 578	 Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68,
574 575 576 577 578 579	 Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147
574 575 576 577 578 579 580	 Cruz, Argentina. Nat. Patagonica, Clencias Biologicas 3, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical
574 575 576 577 578 579 580 581	 Cruz, Argentina. Nat. Patagonica, Clencias Biologicas 3, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-
574 575 576 577 578 579 580 581 582	 Cruz, Argentina. Nat. Patagonica, Clencias Biologicas 3, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x
574 575 576 577 578 579 580 581 582 583	 Cruz, Argentina. Nat. Patagonica, Clencias Biologicas 3, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x Dias, T.H., Oliveira, J., Sanders, C.J., Carvalho, F., Sanders, L.M., Machado, E.C., Sá,
574 575 576 577 578 579 580 581 581 582 583 583 584	 Cruz, Argentina. Nat. Patagonica, Clencias Biologicas 3, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x Dias, T.H., Oliveira, J., Sanders, C.J., Carvalho, F., Sanders, L.M., Machado, E.C., Sá, F., 2016. Radium isotope (²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra) distribution near Brazil's
574 575 576 577 578 579 580 581 582 583 583 584 585	 Cruz, Argentina. Nat. Patagonica, Clencias Biologicas 5, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x Dias, T.H., Oliveira, J., Sanders, C.J., Carvalho, F., Sanders, L.M., Machado, E.C., Sá, F., 2016. Radium isotope (²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra) distribution near Brazil's largest port, Paranaguá Bay, Brazil. Mar. Pollut. Bull. 111, 443–448.
574 575 576 577 578 579 580 581 582 583 583 584 585 586	 Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x Dias, T.H., Oliveira, J., Sanders, C.J., Carvalho, F., Sanders, L.M., Machado, E.C., Sá, F., 2016. Radium isotope (²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra) distribution near Brazil's largest port, Paranaguá Bay, Brazil. Mar. Pollut. Bull. 111, 443–448. https://doi.org/10.1016/j.marpolbul.2016.07.004
574 575 576 577 578 579 580 581 582 583 584 583 584 585 586 587	 Cruz, Argentina. Nat. Patagonica, Clencias Biologicas 3, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x Dias, T.H., Oliveira, J., Sanders, C.J., Carvalho, F., Sanders, L.M., Machado, E.C., Sá, F., 2016. Radium isotope (²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra) distribution near Brazil's largest port, Paranaguá Bay, Brazil. Mar. Pollut. Bull. 111, 443–448. https://doi.org/10.1016/j.marpolbul.2016.07.004 Dorval, E., Jones, C.M., Hannigan, R., Montfrans, J. van, 2007. Relating otolith
574 575 576 577 578 579 580 581 582 583 584 585 584 585 586 587 588	 Cruz, Argentna. Nat. Patagonica, Clencias Biologicas 5, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x Dias, T.H., Oliveira, J., Sanders, C.J., Carvalho, F., Sanders, L.M., Machado, E.C., Sá, F., 2016. Radium isotope (²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra) distribution near Brazil's largest port, Paranaguá Bay, Brazil. Mar. Pollut. Bull. 111, 443–448. https://doi.org/10.1016/j.marpolbul.2016.07.004 Dorval, E., Jones, C.M., Hannigan, R., Montfrans, J. van, 2007. Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Can. J. Fish. Aquat.
574 575 576 577 578 579 580 581 582 583 584 585 584 585 586 587 588 589	 Cruz, Argentina. Nat. Patagonica, Clencias Biologicas 3, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x Dias, T.H., Oliveira, J., Sanders, C.J., Carvalho, F., Sanders, L.M., Machado, E.C., Sá, F., 2016. Radium isotope (²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra) distribution near Brazil's largest port, Paranaguá Bay, Brazil. Mar. Pollut. Bull. 111, 443–448. https://doi.org/10.1016/j.marpolbul.2016.07.004 Dorval, E., Jones, C.M., Hannigan, R., Montfrans, J. van, 2007. Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Can. J. Fish. Aquat. Sci. 64, 411–424. https://doi.org/10.1139/f07-015
574 575 576 577 578 579 580 581 582 583 584 583 584 585 586 587 588 589 589	 Cruz, Argentina. Nat. Paragonica, Clencias Biologicas 5, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x Dias, T.H., Oliveira, J., Sanders, C.J., Carvalho, F., Sanders, L.M., Machado, E.C., Sá, F., 2016. Radium isotope (²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra) distribution near Brazil's largest port, Paranaguá Bay, Brazil. Mar. Pollut. Bull. 111, 443–448. https://doi.org/10.1016/j.marpolbul.2016.07.004 Dorval, E., Jones, C.M., Hannigan, R., Montfrans, J. van, 2007. Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Can. J. Fish. Aquat. Sci. 64, 411–424. https://doi.org/10.1139/f07-015 Elsdon, T.S., Gillanders, B.M., 2003. Relationship between water and otolith elemental
574 575 576 577 578 579 580 581 582 583 584 585 585 586 585 586 587 588 589 590 591	 Cruz, Argennia. Nat. Patagonica, Clencias Biologicas 5, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x Dias, T.H., Oliveira, J., Sanders, C.J., Carvalho, F., Sanders, L.M., Machado, E.C., Sá, F., 2016. Radium isotope (²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra) distribution near Brazil's largest port, Paranaguá Bay, Brazil. Mar. Pollut. Bull. 111, 443–448. https://doi.org/10.1016/j.marpolbul.2016.07.004 Dorval, E., Jones, C.M., Hannigan, R., Montfrans, J. van, 2007. Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Can. J. Fish. Aquat. Sci. 64, 411–424. https://doi.org/10.1139/f07-015 Elsdon, T.S., Gillanders, B.M., 2003. Relationship between water and otolith elemental concentrations in juvenile black bream <i>Acanthopagrus butcheri</i>. Mar. Ecol. Prog.
574 575 576 577 578 579 580 581 582 583 584 583 584 585 586 587 588 587 588 589 590 591 592	 Cruz, Argentina. Nat. Patagonica, Clencias Biologicas 3, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x Dias, T.H., Oliveira, J., Sanders, C.J., Carvalho, F., Sanders, L.M., Machado, E.C., Sá, F., 2016. Radium isotope (²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra) distribution near Brazil's largest port, Paranaguá Bay, Brazil. Mar. Pollut. Bull. 111, 443–448. https://doi.org/10.1016/j.marpolbul.2016.07.004 Dorval, E., Jones, C.M., Hannigan, R., Montfrans, J. van, 2007. Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Can. J. Fish. Aquat. Sci. 64, 411–424. https://doi.org/10.1139/f07-015 Elsdon, T.S., Gillanders, B.M., 2003. Relationship between water and otolith elemental concentrations in juvenile black bream <i>Acanthopagrus butcheri</i>. Mar. Ecol. Prog. Ser. 260, 263–272. https://doi.org/10.3354/meps260263
574 575 576 577 578 579 580 581 582 583 584 585 586 585 586 587 588 589 590 591 592 593	 Cruz, Argentina. Nat. Paragonica, Crencias Biologicas 5, 191–194. Campana, S.E., 1999. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297. https://doi.org/10.3354/meps188263 Clarke, L.M., Conover, D.O., Thorrold, S.R., 2011. Population differences in otolith chemistry have a genetic basis in menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/F10-147 Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x Dias, T.H., Oliveira, J., Sanders, C.J., Carvalho, F., Sanders, L.M., Machado, E.C., Sá, F., 2016. Radium isotope (²²³Ra, ²²⁴Ra, ²²⁶Ra and ²²⁸Ra) distribution near Brazil's largest port, Paranaguá Bay, Brazil. Mar. Pollut. Bull. 111, 443–448. https://doi.org/10.1016/j.marpolbul.2016.07.004 Dorval, E., Jones, C.M., Hannigan, R., Montfrans, J. van, 2007. Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Can. J. Fish. Aquat. Sci. 64, 411–424. https://doi.org/10.1139/f07-015 Elsdon, T.S., Gillanders, B.M., 2003. Relationship between water and otolith elemental concentrations in juvenile black bream <i>Acanthopagrus butcheri</i>. Mar. Ecol. Prog. Ser. 260, 263–272. https://doi.org/10.3354/meps260263 Gomes, I.D., Araújo, F.G., 2004. Reproductive biology of two marine catfishes

595	https://doi.org/10.15517/rbt.v52i1.14763
596	Gut, C., Vukić, J., Šanda, R., Moritz, T., Reichenbacher, B., 2020. Identification of past
597	and present gobies: distinguishing Gobius and Pomatoschistus (Teleostei:
598	Gobioidei) species using characters of otoliths, meristics and body morphometry.
599	Contrib. to Zool. 89, 282–323. https://doi.org/10.1163/18759866-BJA10002
600	Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., 2013. Multivariate Data Analysis:
601	Pearson New International Edition. Pearson new international edition. Harlow.
602	United Kingdom, https://doi.org/10.1016/j.jpharm.2011.02.019
603	Hermann, T.W., Stewart, D.J., Limburg, K.E., Castello, L., 2016. Unravelling the life
604	history of Amazonian fishes through otolith microchemistry. R. Soc. Open Sci. 3,
605	160206. https://doi.org/10.1098/rsos.160206
606	Hüssy, K., Limburg, K.E., Pontual, H. De, Thomas, O.R.B., Cook, K., Heimbrand, Y.,
607	Blass, M., Sturrock, A.M., 2020. Element patterns in otoliths: the role of
608	biomineralization. Rev. Fish. Sci. Aquac. 1–33.
609	https://doi.org/10.1080/23308249.2020.1760204
610	Hüssy, K., Mosegaard, H., Albertsen, C.M., Nielsen, E.E., Hemmer-Hansen, J., Eero,
611	M., 2016. Evaluation of otolith shape as a tool for stock discrimination in marine
612	fishes using Baltic Sea cod as a case study. Fish. Res. 174, 210–218.
613	https://doi.org/10.1016/J.FISHRES.2015.10.010
614	Ibáñez, A.L., Hernández-Fraga, K., Alvarez-Hernández, S., 2017. Discrimination
615	analysis of phenotypic stocks comparing fish otolith and scale shapes. Fish. Res.
616	185, 6–13. https://doi.org/10.1016/j.fishres.2016.09.025
617	Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E.,
618	Stracke, A., Birbaum, K., Frick, D.A., Günther, D., Enzweiler, J., 2011.
619	Determination of reference values for NIST SRM 610-617 glasses following ISO
620	guidelines. Geostand. Geoanalytical Res. 35, 397–429.
621	https://doi.org/10.1111/j.1751-908X.2011.00120.x
622	Kerr, L.A., Campana, S.E., 2014. Chemical composition of fish hard parts as anatural
623	marker of fish stocks, in: Stock Identification Methods: Applications in Fishery
624	Science: Second Edition. Academic Press., San Diego, USA, pp. 205–234.
625	https://doi.org/10.1016/B978-0-12-397003-9.00011-4
626	Kime, D.E., 1995. The effects of pollution on reproduction in fish. Rev. Fish Biol. Fish.
627	5, 52–95. https://doi.org/10.1007/BF01103366
628	Kjerfve, B., Ribeiro, C.H.A., Dias, G.T.M., Filippo, A.M., Quaresma, V.S., 1997.
629	Oceanographic characteristics of an impacted coastal bay: Baía de Guanabara, Rio
630	de Janeiro, Brazil. Cont. Shelf Res. 17, 1609–1643.
631	Krüger, G.C.T., Carvalho, C.E.V., Suzuki, M.S., 2006. Dissolved nutrient, chlorophyll-
632	a and DOC dynamic under distinct riverine discharges and tidal cycles regimes at
633	the Paraíba do Sul River estuary, RJ, Brazil. J. Coast. Res. II, 724–730.
634	Lana, P.C., Marone, E., Lopes, R.M., Machado, E.C., 2001. The subtropical estuarine
635	complex of Paranaguá Bay, Brazil. Ecol. Stud. 144, 131–145.
636	https://doi.org/10.1007/978-3-662-04482-7_11
637	Limburg, K.E., Walther, B.D., Lu, Z., Jackman, G., Mohan, J., Walther, Y., Nissling,
638	A., Weber, P.K., Schmitt, A.K., 2015. In search of the dead zone: Use of otoliths
639	for tracking fish exposure to hypoxia. J. Mar. Syst. 141, 167–178.
640	https://doi.org/10.1016/j.jmarsys.2014.02.014
641	Lombarte, A., Lleonart, J., 1993. Otolith size changes related with body growth, habitat
642	depth and temperature. Environ. Biol. Fishes 37, 297–306.
643	https://doi.org/10.1007/BF00004637
644	Longmore, C., Fogarty, K., Neat, F., Brophy, D., Trueman, C., Milton, A., Mariani, S.,

645	2010. A comparison of otolith microchemistry and otolith shape analysis for the
646	study of spatial variation in a deep-sea teleost, <i>Coryphaenoides rupestris</i> . Environ.
647	Biol. Fishes 89, 591–605. https://doi.org/10.1007/s10641-010-9674-1
648	López, R.B., Bellisio, N.B., 1965. Contribuición al conocimiento del Tachysurus barbus
649	(Lacépède), bagre del Mar argentino (Pisces, Ariidae), in: Anuario Del II Congreso
650	Latinoamericano Zoología. São Paulo, pp. 145–153.
651	Maciel, T.R., Avigliano, E., Maichak de Carvalhoc, B., Miller, N., Viannaa, M., 2020.
652	Population structure and habitat connectivity of <i>Genidens genidens</i> (Siluriformes)
653	in tropical and subtropical coasts from Southwestern Atlantic. Estuar. Coast. Shelf
654	Sci. 242, 106839.
655	Maciel, T.R., Vaz-dos-Santos, A.M., Barradas, J.R.S., Vianna, M., 2019. Sexual
656	dimorphism in the catfish Genidens genidens (Siluriformes: Ariidae) based on
657	otolith morphometry and relative growth. Neotrop. Ichthyol. 17, e180101[1]-
658	e180101[8]. https://doi.org/10.1590/1982-0224-20180101
659	Maichak de Carvalho, B., Pisonero, J., Mendez, A., Volpedo, A. V., Avigliano, E.,
660	2020. Spatial environmental variability of natural markers and habitat use of
661	Cathorops spixii in a neotropical estuary from otolith chemistry. J. Mar. Biol.
662	Assoc. UK 100, 783–793.
663	Marceniuk, A.P., 2005. Chave para identificação das espécies de bagres marinhos
664	(Siluriformes, Ariidae) da costa brasileira. Bol. do Inst. Pesca 31, 89-101.
665	Marceniuk, A.P., Menezes, N.A., 2007. Systematics of the family Ariidae
666	(Ostariophysi, Siluriformes), with a redefinition of the genera, Zootaxa.
667	https://doi.org/10.11646/zootaxa.1416.1.1
668	Mendonça, J.T., Quito, L., Jankowsky, M., Balanin, S., Neto, D.G., 2017. Diagnóstico
669	da pesca do bagre-branco (Genidens barbus e G . planifrons) NO LITORAL
670	Sudeste-sul do Nrasil: subsídios para o ordenamento. Inst. Pesca, São Paulo. 77.
671	Meniconi, M.F.G., Silva, T.A., Fonseca, M.L., Lima, S.O.F., Lima, E.F.A., Lavrado,
672	H.P., Figueiredo-Jr., A.G., 2012. Baía de Guanabara: Síntese do conhecimento
673	ambiental. Biodiversidade. Petrobras, Rio de janeiro.
674	Miller, J.A., 2009. The effects of temperature and water concentration on the otolith
675	incorporation of barium and manganese in black rockfish Sebastes melanops. J.
676	Fish Biol. 75, 39–60. https://doi.org/10.1111/j.1095-8649.2009.02262.x
677	MMA, 2014. Portaria MMA Número 445, DOU: Brasília. Brazil.
678	Mohan, J.A., Rulifson, R.A., Reide Corbett, D., Halden, N.M., 2012. Validation of
679	oligohaline elemental otolith signatures of striped bass by use of <i>in situ</i> caging
680	experiments and water chemistry. Mar. Coast. Fish. 4, 57–70.
681	https://doi.org/10.1080/19425120.2012.656533
682	Morales-Nin, B., 2000. Review of the growth regulation processes of otolith daily
683	increment formation. Fish. Res. 46, 53–67. https://doi.org/10.1016/S0165-
684	7836(00)00133-8
685	Patterson, W.F., Cowan, J.H., Wilson, C.A., Chen, Z., 2008. Temporal and spatial
686	variability in juvenile red snapper otolith elemental signatures in the Northern Gulf
687	of Mexico. Trans. Am. Fish. Soc. 137, 521–532. https://doi.org/10.157//106-264.1
688	Perin, S., Vaz-dos-Santos, A.M., 2014. Morphometry and relative growth of the
689	Brazilian sardine, Sardinella brasiliensis (Steindachner, 1879) in the southeastern
690	Brazilian bignt. Arq. 2001. $45, 65-72$.
691 602	Kanaidi, WI.WI., Gagnon, WI.WI., 2008. Zinc incorporation in the otoliths of juvenile pink
092 602	snapper (<i>Pagrus auratus</i> Forster): The influence of dietary versus waterborne
093 604	sources. J. Exp. War. D10. EC01. 500, 30–02. https://doi.org/10.1016/j.jomba.2009.02.012
094	nups.//doi.org/10.1010/J.jeni0e.2008.05.015

- 695 Reichenbacher, B., Feulner, G.R., Tanja, S.M., 2009. Geographic variation in otolith morphology among freshwater populations of Aphanius dispar (Teleostei, 696 697 Cyprinodontiformes) from the Southeastern Arabian Peninsula. J. Morphol. 270, 698 469-484. https://doi.org/10.1002/jmor.10702 Reichenbacher, B., Reichard, M., 2014. Otoliths of five extant species of the annual 699 700 killifish Nothobranchius from the east African Savannah. PLoS One 9, e112459. 701 https://doi.org/10.1371/journal.pone.0112459 Reis, E.G., 1986a. Reproduction and feeding habits of the marine catfish, Netuma barba 702 703 (Siluriformes, Ariidae), in the estuary of the Patos Lagoon (Brazil). Atlântica 8, 704 35-55. 705 Reis, E.G., 1986b. A pesca artesanal de bagres marinhos (Siluriformes: Ariidae) no 706 estuário da Lagoa dos Patos, RS, Brasil. Rio Grande. 707 Rogers, T.A., Fowler, A.J., Steer, M.A., Gillanders, B.M., 2019. Discriminating natal 708 source populations of a temperate marine fish using larval otolith chemistry. Front. Mar. Sci. 6, 1–17. https://doi.org/10.3389/fmars.2019.00711 709 710 Sea, I., Brophy, D., King, P.A., 2008. Otolith shape analysis: its application for 711 discriminating between stocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea. ICES J. Mar. Sci. 65, 1670-1675. 712 713 Soeth, M., Spach, H.L., Daros, F.A., Adelir-Alves, J., de Almeida, A.C.O., Correia, 714 A.T., 2019. Stock structure of Atlantic spadefish *Chaetodipterus faber* from Southwest Atlantic Ocean inferred from otolith elemental and shape signatures. 715 716 Fish. Res. 211, 81-90. https://doi.org/10.1016/j.fishres.2018.11.003 Sturrock, A.M., Hunter, E., Milton, J.A., Johnson, R.C., Waring, C.P., Trueman, C.N., 717 EIMF, 2015. Quantifying physiological influences on otolith microchemistry. 718 719 Methods Ecol. Evol. 6, 806-816. https://doi.org/10.1111/2041-210X.12381 Tanner, S., Reis-Santos, P., Cabral, H.N., 2015. Otolith chemistry in stock delineation: 720 721 A brief overview, current challenges and future prospects. Fish. Res. 173, 206-722 213. https://doi.org/10.1016/j.fishres.2015.07.019 723 Thomas, O.R.B., Swearer, S.E., 2019. Otolith Biochemistry—A Review. Rev. Fish. Sci. Aquac. 27, 458-489. https://doi.org/10.1080/23308249.2019.1627285 724 Tuset, V.M., Galimany, E., Farrés, A., Marco-Herrero, E., Otero-Ferrer, J.L., Lombarte, 725 726 A., Ramón, M., 2020. Recognising mollusc shell contours with enlarged spines: 727 Wavelet vs Elliptic Fourier analyses. Zoology 140, 125778. https://doi.org/10.1016/j.zool.2020.125778 728 Tuset, V.M., Lozano, I.J., Gonzlez, J.A., Pertusa, J.F., García-Díaz, M.M., 2003. Shape 729 indices to identify regional differences in otolith morphology of comber, Serranus 730 cabrilla (L., 1758). J. Appl. Ichthyol. 19, 88-93. https://doi.org/10.1046/j.1439-731 0426.2003.00344.x 732 Tuset, V.M., Parisi-Baradad, V., Lombarte, A., 2013. Application of otolith mass and 733 734 shape for discriminating scabbardfishes Aphanopus spp. in the north-eastern 735 Atlantic Ocean. J. Fish Biol. 82, 1746–1752. https://doi.org/10.1111/jfb.12101 Valentin, J.L., Tenenbaum, D.R., Bonecker, A.C.T., Bonecker, S.L.C., Nogueira, C.R., 736 Villac, M.C., 1999. O sistema planctônico da Baía de Guanabara: Síntese do 737 738 conhecimento, in: Silva, S.H.G., Lavrado, H.P. (Eds.), Ecologia dos ambientes 739 costeiros do estado do Rio de Janeiro. Oecologia Brasiliensis, Rio de Janeiro, pp. 740 35–59. https://doi.org/10.4257/oeco.1999.0701.02 Velasco, G., Reis, E.G., Vieira, J.P., 2007. Calculating growth parameters of Genidens 741 742 barbus (Siluriformes, Ariidae) using length composition and age data. J. Appl. 743 Ichthyol. 23, 64–69. https://doi.org/10.1111/j.1439-0426.2006.00793.x 744
- Vignon, M., 2018. Short-term stress for long-lasting otolith morphology brief

- embryological stress disturbance can reorient otolith ontogenetic trajectory. Can. J.
 Fish. Aquat. Sci. 75, 10. https://doi.org/10.1139/cjfas-2017-0110
- Vignon, M., 2012. Ontogenetic trajectories of otolith shape during shift in habitat use:
 Interaction between otolith growth and environment. J. Exp. Mar. Bio. Ecol. 420–
 421, 26–32. https://doi.org/10.1016/j.jembe.2012.03.021
- Vignon, M., Morat, F., 2010a. Environmental and genetic determinant of otolith shape
 revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser. 411, 231–241.
 https://doi.org/10.3354/meps08651
- Vignon, M., Morat, F., 2010b. Environmental and genetic determinant of otolith shape
 revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser. 411, 231–241.
 https://doi.org/10.3354/meps08651
- 756
- 757

- **Figure 1:** Map of the study area in the Southwest Atlantic Ocean. Red arrows indicate
- the approximate sampling region of *Genidens barbus*.
- 760
- Figure 2: Relationship between the descriptors and the accumulated Fourier Power
 Spectrum for *Genidens barbus* otoliths. The first 12 harmonics reached 99.99% of the
 accumulated power.
- 764

Figure 3: *Genidens barbus* otolith edge and core elemental ratios mean ± SD
(mmol/mol) for sampling sites. Distinct letters show significant differences between
sites (p<0.05). PSR- Paraíba do Sul River; GB- Guanabara Bay; IR- Itapanhaú River;

768 PB- Paranaguá Bay; PE- La Plata Estuary.

770	Table 1: Descriptive statistics of Genidens barbus study specimens (mean and SD)
771	used for chemical (N, sample size=72) and morphometric (N=159) analysis. The
772	specimens used for the chemical analyzes were subsampled at random from the total
773	sample pool (N=159). TL= total length (cm); W = weight (g); SD =standard deviation;
774	Age = age in years.

Site	Ν	TL ± SD	W ± SD	Age ± SD
		Chemi	stry	
Paraíba do Sul River	17	61.1 ± 7.3	2265 ± 950	13.4 ± 2.2
Guanabara Bay	22	62.2 ± 8.7	2870 ± 1445	14.0 ± 2.0
Itapanhaú River	22	61.5 ± 5.4	2371 ± 699	14.2 ± 1.9
Paranaguá Bay	6	49.9 ± 9.1	2058 ± 1201	9.8 ± 1.0
La Plata Estuary	5	65.0 ± 4.5	2861 ± 714	11.8 ± 1.1
		Elliptic Fouri	er Analysis	
Paraíba do Sul River	28	62.8 ± 11.9	2742 ± 1720	
Guanabara Bay	38	62.2 ± 11.4	2925 ± 1677	
Itapanhaú River	31	61.7 ± 7.0	2544 ± 805	
Paranaguá Bay	28	48.8 ± 7.8	2295 ± 1291	
La Plata Estuary	34	55.8 ± 6.1	1700 ± 722	

777 **Table 2** Cross-classification matrices of the discriminant analyzes based on for *Genidens barbus* otolith morphometry and microchemistry. The

numbers represent the classification percentage. N: sample size; PSR: Paraíba do Sul; GB: Guanabara; IR: Itapanhaú; PG: Itapanhaú; RDP: Río

779 de la Plata.

	Paraíba do Sul	Guanabara	Itapanhaú	Itapanhaú	Río de la Plata	Ν	Random (%)	р
		Shap	e (QDA)			C		
PSR	42.9	17.9	17.9	7.1	14.3	28	18	0.04*
GB	18.4	44.7	5.3	15.8	15.8	38	24	0.09
IR	12.9	16.1	38.7	19.4	12.9	31	19	0.17
PG	7.1	21.4	21.4	32.1	17.9	28	18	0.23
RDP	5.9	8.8	5.9	11.8	67.6	34	21	<0.0001*
Mean					45.2			
		Edge	e (QDA)	0				
PSR	41.2	23.5	29.4	5.9	0.0	17	24	0.3
GB	4.5	86.4	9.1	0.0	0.0	22	31	0.003*
IR	18.2	36.4	45.5	0.0	0.0	22	31	0.37
PG	0.0	0.0	66.7	33.3	0.0	6	8	0.22
RDP	0.0	0.0	0.0	0.0	100	5	7	0.003*
Mean					61.3			
		Core	e (QDA)					
PSR	82.4	11.8	0.0	5.9	0.0	17	24	0.003*
GB	4.5	68.2	22.7	4.5	0.0	22	31	0.003*
IR	0.0	18.2	77.3	4.5	0.0	22	31	0.003*
PG	0.0	33.3	0.0	66.7	0.0	6	8	0.03*
RDP	0.0	0.0	0.0	0.0	100	5	7	0.003*
Mean					78.9			
		Edge + S	hape (LDA)			1		

PSR	52.9	11.8	29.4	5.9	0.0	17	24	0.09
GB	14.3	66.7	14.3	4.8	0.0	22	31	0.02*
IR	13.6	27.3	54.5	4.5	0.0	22	31	0.14
PG	33.3	16.7	33.3	16.7	0.0	6	8	0.5
RDP	0.0	0.0	0.0	0.0	100	5	7	0.003*
Mean					58.2			

Spatial segregation in young and adult stages of Genidens barbus was studied.

Otolith microchemistry and shape are potential tools for stock identification.

Results suggest the presence of different management units.

High percentages of classification suggest low connectivity between some populations.

The populations should be managed as separate groups.

Journal Prevention

Declaration of interests

x The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

We have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

ournal Prort