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Abstract
Automatic feeding systems in pig production allow for the recording of individual feeding behavior traits, which might be 
influenced by the social interactions among individuals. This study fitted mixed models to estimate the direct and social effects 
on visit duration at the feeder of group-housed pigs. The dataset included 74,413 records of each visit duration time (min) event 
at the automatic feeder from 135 pigs housed in 14 pens. The sequence of visits at the feeder was employed as a proxy for 
the social interaction between individuals. To estimate animal effects, the direct effect was apportioned to the animal feeding 
(feeding pig), and the social effect was apportioned to the animal that entered the feeder immediately after the feeding pig left 
the feeding station (follower). The data were divided into two subsets: “non-immediate replacement” time (NIRT, N = 6,256), 
where the follower pig occupied the feeder at least 600 s after the feeding pig left the feeder, and “immediate replacement” 
time (IRT, N= 58,255), where the elapsed time between replacements was less than or equal to 60 s. The marginal posterior 
distribution of the parameters was obtained by Bayesian method. Using the IRT subset, the posterior mean of the proportion 

of variance explained by the direct effect (Prp σ̂2
d) was 18% for all models. The proportion of variance explained by the follower 

social effect (Prp σ̂2
f ) was 2%, and the residual variance (σ̂2

e) decreased, suggesting an improved model fit by including the 

follower effect. Fitting the models with the NIRT subset, the estimate of Prp σ̂2
d was 20% but the Prp σ̂2

f  was almost zero and σ̂2
e  

was identical for all models. For the IRT subset, the predicted best linear unbiased predictor (BLUP) of direct (Direct BLUP) and 
social (Follower BLUP) random effects on visit duration at the feeder of an animal was calculated. Feeder visit duration time 
was not correlated with traits, such as weight gain or average feed intake (P > 0.05), whereas for the daily feeder occupation 
time, the estimated correlation was positive with the Direct BLUP ( r̂= 0.51, P < 0.05) and negative with the Follower BLUP  
( r̂= −0.26, P < 0.05). The results suggest that the visit duration of an animal at the single-space feeder was influenced by both 
direct and social effects when the replacement time between visits was less than 1 min. Finally, animals that spent a longer 
time per day at the feeder seemed to do so by shortening the meal length of the preceding individual at the feeder.
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Introduction
In swine production, electronic feeding systems allow for the 
collection of individual feed intake, feeding behavior, and growth 
data of group-housed pigs (Young and Lawrence, 1994; Nielsen 
et al., 1995; Nielsen, 1999). The analysis of these records allows 
for the estimation of genetic and phenotypic parameters of 
feeding behavior and feed intake as well as their correlation with 
performance traits and their relation to systematic experimental 
factors (Hall, 1997; Chen et al., 2010; Lu et al., 2017). The analyses 
typically use classic animal models that include the random 
effect of the animal and different systematic effects, such as 
sex, age, batch, group size, and weight. However, in electronic 
feeding systems that provide only a single feeding space for all 
individuals in a group, feeding behavior traits may be affected by 
the presence of social interactions between individuals within 
the group; for example, competition for access to the feeder can 
modify feeding patterns, feed intake, and average daily weight 
gain (Nielsen et al., 1995; Manteca and Edwards, 2009). Thus, it is 
important to use models that allow joint modeling of direct and 
social effects of individuals on feeding behavior traits.

An approach for modeling the social effect on feeding 
behavior traits analyses is by fitting social genetic effect (SGE) 
models (Griffing, 1967, 1968a, 1968b; Moore et  al., 1997; Muir, 
2005; Bijma et  al., 2007), whereby it is possible to estimate 
the direct genetic effect of an individual’s genotype on their 
phenotype and the influence of SGE of the individual on the 
phenotypic expression of their group mates. A few studies have 
reported the implementation of SGE models on feeding behavior 
traits, including daily occupation time, average daily feed intake 
(AFI), and average daily feeding rate for pig populations (Chen 
et al., 2010; Herrera Cáceres, 2016; Herrera Cáceres et al., 2019). 
Some of these studies found a partial confounding effect 
between SGE and some common environmental effects, due 
to the use of small datasets and the complexity of SGE models, 
which for some feeding behavior traits resulted in very large 
standard errors in the estimated social variance and covariance 
with direct effects. All these studies summarized the records of 
the whole feeding testing period into a single record per animal 

and proceeded to fit SGE models that assumed an average 
interaction value for all animals in the same social group.

An alternative modeling approach is to fit social effects 
of feeding behavior traits in group-housed pigs at the level 
of single feeding event records. This consists of modeling the 
record of each feeding event or visit at the feeder during the 
whole testing period, by using the sequence of visits by pigs 
in the group at the feeder as a proxy for the social interaction 
between individuals. The goal of this study was to demonstrate 
that individual automatic feeder record data can be used to 
estimate social effects on a feed behavior trait. To achieve this, 
we fit alternative mixed models to the feeding time (visit length) 
of group-housed pigs, by conditioning on the sequence of feeder 
visits and estimating the proportion of social and direct variance 
that is recovered from alternative models.

Material and Methods
All animal protocols were approved by the Institutional Animal 
Care and Use Committee (Animal Use Form number 01/17-007-
00) of Michigan State University, East Lansing, MI, 48842.

Experimental population and data set

Animals used for this study were housed at the Michigan State 
University Swine Teaching and Research Center, East Lansing, 
MI. The dataset consisted of the visit duration time (min) at the 
automatic feeder from records obtained from April 2018 until 
December 2019, from 135 crossbred pigs in the grow-finish stage 
distributed over 14 pens (2 pens per trial, 7 trials; pen dimension: 
2.44 × 4.88 m), with a mean initial weight of 34 kg (SD ± 7.29; Figure 1).  
Pigs were provided ad libitum access to feed and subjected to the 
same management. Each trial continued for different durations, 
with 30 d minimum and 75 d maximum, and there were varying 
numbers of individuals per pen (8 to 12 pigs per pen) in each trial.

Experimental pens had a single-space feed intake recording 
equipment system (FIRE Osborne Industries, KS, USA) that 
registered individual feed intake variables for each feeder visit. 
The sides of the feeder were blocked by boards so that there 
was only one way to enter and exit the feeder (Figure 1). Records 
included start and end times of visits, date, feed consumed, 
animal weight, and animal ID. The data were edited to remove 
anomalous records. Specifically, data from the first 7 d post-
occupation of the pens were deleted to allow for animals to 
adapt and to learn access to the feeders. Brief feeding events 
typically less than 2-min long usually resulted in intake not 
being recorded and/or body weight not being recorded, so those 
events were also removed. If an animal ended a feeder visit 
and shortly after reentered the feeder, we did not consider it a 
“follower” of itself, and we ignored such records. Instead, we only 
included feeding records where the feeding pig left the feeder 
and was replaced by another pig. After data editing, a total of 
74,413 records were kept for further analysis. For each feeding 
record, we added the identity of the following pig (i.e., the ID of 
the pig in the next feeding record) and the time elapsed between 
the end of the current visit and the start of the next visit (i.e., 
time to next visit or replacement time for the current visit).

In this study, we assumed that, if there was a social effect on a 
feeding duration, such an effect came from the pig that replaced 
the current pig at the feeder (we call that replacement animal 
the follower or following pig), as long as the replacement occurs 
in a short period of time. Because the goal of this study was 
to investigate the effect of the following pig on the time at the 
feeder of the feeding pig, the data were divided into two subsets 

Abbreviations 

AFI average daily feed intake
BLUP best linear unbiased predictor
Direct BLUP BLUP of direct random effects
elpd expected log pointwise predictive 

density
Follower BLUP BLUP of social random effects
FOT daily feeder occupation time
IRT immediate replacement time
M1 statistical model 1
M2 statistical model 2
M3 statistical model 3
MCMC Markov chain Monte Carlo
NIRT non-immediate replacement time
Prp variance proportion explained by 

each variance component
q quantiles of the distribution
SGE social genetic effect
WAIC widely applicable information 

criterion
WG animal weight gain
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(Table 1). The first subset contained 6,256 records consisting of 
visits where the follower occupied the feeder at least 600 s after 
the current pig left the feeder. We consider this a “null” dataset, 
where there should be no effect of the following pig on the meal 
duration of the currently feeding pig and we called this event 
a “non-immediate replacement” time (NIRT). The second subset 
contained 58,255 records, where the time elapsed between the 
end of the current visit and the start of the next visit was less than 
or equal to 60 s. We assume that when one pig replaces another 
in such a short amount of time, the effect of the following pig on 
the currently eating pig will be manifested if it exists (Figure 1), 
and we called this data “immediate replacement” time (IRT). We 
acknowledge that this division of data is arbitrary, and we will 
discuss alternative partitions later in this paper.

Statistical models and data analysis

Three mixed models were used to model visit duration (time at 
the feeder). First, we fit a model that ignores the follower and 
that only models visit duration as a function of fixed effects plus 
the random effect of the feeding pig (equation 1):

y = Xβ + Zdad + e (1)

The n × 1 vector ycontains duration of visit (in min), and X is the 
n × p incidence matrix relating the records to the vector of fixed 
effects β of order p, which included the contemporary group, 
hour of entry to the feeder, and the median weight of the pig 
as a covariate. Matrix Zd of order n × q (q = 135, i.e., the number 
of animals) relates records in y to the random vector of animal 
effects ad (q × 1), the distribution of the animal effects was 

assumed to be ad ∼ N
(
0, Iσ2

d

)
, where I is the Identity matrix, σ2

d is 
the animal variance, e (n × 1) is the vector of random errors that 
is distributed as N (0, Iσ2

e ), and σ2
e  is the error variance; both sets 

of random effects were assumed to be independent. Because of 
the lack of genetic information (such as pedigree or genomic 
markers), the analysis was limited to phenotypic animal effects. 
Identifiability for the individual effects was then attained due 
to repeated data on the same animal. The variance proportion 
explained by the animal effect (Prp σ̂2

d) for the model in equation 
1 was estimated as the ratio between the animal variance (σ2

d) 
and total phenotypic variance (σ2

P):

Prpσ̂2
d =

σ2
d

σ2
P

=
σ̂2
d

σ̂2
d + σ̂2

e

 (2)

Where σ̂2
d and σ̂2

e  are the estimated variance components for the 
direct variance and error variance, respectively.

A second model was fit to include the social effect, hereby 
named the “follower effect” to indicate the effect of the animal 
replacing (following) the current (feeding) pig at the feeder. The 
full model is represented below:

y = Xβ + Zdad + Zfaf + e (3)

Fixed, genetic direct, and error random effects were the same as 
in equation 1. Here Zf  denotes the incidence matrix associating 
the random vector effects of follower additive effects af(q × 1) to 
the data in y. The distribution of follower additive effects was 

assumed to be af ∼ N
Ä
0, Iσ2

f

ä
, with σ2

f  being the additive follower 

variance.
The third model fitted had a model equation identical to 

equation 3, except for the inclusion of a covariance structure 
between direct and follower random effects, which was specified 
by the sigma matrix Σ:

Σ =

ñ
σ2
d ρσdσf

ρσdσf σ2
f

ô

The scalar ρ  represents the within animal correlation 
between direct and follower random effects. For the models 
fitted with equation 3, the variance proportion explained by 
the direct effect (Prp σ̂2

d) and variance proportion explained by 
the follower effect (Prp σ̂2

f ) were estimated in the same way as 
equation 2, but the σ̂2

P was estimated including the follower 

Figure 1. Pen layout and interactions between animals. Panel (a) shows a top–down infrared image view of the overall pen layout with 9 pigs in it. In the upper left 

corner, a pig is inside the feeding space eating and a following pig is behind it. Panel (b) zooms into the feeder area and shows a single pig eating from the feeder. 

Panel (c) shows a sequence of two images taken moments apart and it shows a following pig mounting a feeding pig in an attempt to displace it from the feeder. 

These images were taken in the same pens used for data collection in this paper, but they were part of a different study and they are shown here for illustrations of 

the experimental setup.

Table 1. Number of individuals, number of individuals per pen, 
and number of records by each subset of data defined according to 
replacement time to the next visit at the feeder1

Item
IRT  

(≤60 s)
NIRT  

(≥600 s)
Total 

records

Number of animals 135 135 135
Number of animals per pen 10 ± 2 10 ± 2 10 ± 2
Number of records 58,255 6,256 74,413
Replacement time ≤ 60 s ≥ 600 s NA

1IRT, immediate replacement time: time between successive visits 
at the feeder < 60s; NIRT, non-immediate replacement time: time 
between successive visits at the feeder > 600s.
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variance estimate (σ̂2
f ) and two times the covariance (2ρ̂σ̂dσ̂f ).  

Bayesian procedures were used to estimate (co)variance 
parameters plus the fixed effects in β. Flat priors were 
assumed for β ∼ U (−∞,+∞), for the variance components σ2

d,  
σ2
f  ∼ U (0, 100), for the error variance σ2

e  ∼ U (0,∞), and for the ρ 
parameter U (−1, 1).

Estimation of (co)variance components

For all statistical analyses, the marginal posterior distribution of 
all unknown parameters was obtained by Markov chain Monte 
Carlo (MCMC) sampling, through the No-U-Turn sampler variant 
of Hamiltonian Monte Carlo algorithm implemented in the Stan 
program (Carpenter et  al., 2017), which is available through a 
variety of interfaces such as RStan in R. Three chains of 12,000 
samples were run in parallel, and the first 2,000 iterations by 
chain were discarded. As the thinning interval was 1, 30,000 
samples were left to assess the convergence and to obtain 
posterior estimates of the parameters.

Convergence diagnostics

To determine convergence of the Markov’s chains to a 
common stationary distribution, we employed Gelman and 
Rubin’s diagnostic (Gelman and Rubin, 1992; Gelman et  al., 
2013) and Geweke’s (1991) convergence criteria. Additionally, 
we computed autocorrelation coefficients, effective sample 
size, and Monte Carlo standard errors for all chains. In 
order to discard convergence problems, all diagnostic tests 
were calculated using the functions available in rstan, coda, 
bayesplot, and mcmcplots packages from R.  A  summary of 
the convergence diagnostics is presented in Supplementary 
Appendices 1–3. 

Model comparison

Competing models predictive accuracy was assessed through 
Bayesian model comparison with the Watanabe–Akaike widely 
available information criterion (WAIC; Watanabe, 2010), which is 
a Bayesian approach for estimating the expected log pointwise 
predictive density (elpd) (Gelman et al., 2013; Vehtari et al., 2016). 
The WAIC for each model was calculated using functions in the 
loo package of R. To compare the predicting performance of a 
pair of models, the difference in their −2*elpd and its standard 
error was computed. Although there is no “hard and fast rule,” 
the difference between alternative statistics should be greater 
than the variation due to Monte–Carlo sampling (Vehtari et al., 
2016; Whalen and Hoppitt, 2016).

Estimating Best Linear Unbiased Predictor of feeder 
visit duration time

For reasons of computational expediency, we did not save MCMC 
output on random animal effects from our Bayesian model fit 
procedure. Consequently, to obtain a quick prediction of social 
and direct effects through the Best Linear Unbiased Predictor 
(BLUP Henderson; Henderson, 1975), we used Restricted 
Maximum Likelihood (Patterson and Thompson, 1971), by 
refitting the selected model (equation 2) to an IRT dataset (N= 
58,255 records). Function lmer from package lme4 in R was used 
for this purpose.

Correlation between BLUP of direct and follower 
effects on visit duration time at the feeder and 
other traits

To investigate the relation between the predicted effects of 
feeding pig (direct) and follower pig (indirect social effects) 

to other feeding behavior and growth traits, we calculated 
Pearson’s correlation coefficients.

Weight gain

The weight gain (WG) for each individual pig was analyzed using 
74,413 records with a random regression model. Using median 
daily weight on each trial as a covariate, the model equation (in 
scalar notation) was as follows:

yikj = β0k + β1kxij + u0i + u1ixij + eikj (4)

The data yikj are the median weight for the ith animal from the 
kth group taken on the jth test day, β0k and β1k are the fixed, 
group-specific, intercept and slope, respectively, u0i is the animal 
random effect,u1i is the random slope over time for each animal, 
xij is the corresponding test day (days in test), and eikj is the 
random error, which is independent of u0i and u1i. We assumed 
the distribution of random effects as following, u0i ∼ N

(
0,σ2

u0

)
, 

u1i ∼ N(0,σ2
u1
), eikj ∼ N(0,σ2

e ), whereas the covariance structure 
between u0i and u1i is equal to:

Cov

ñ
u0

u1

ô
=

ñ
σ2
u0

σu0u1

σu0u1 σ2
u1

ô

The scalar σu0u1 is the covariance between animal and random 
slope effects. The group-corrected WG estimated for the ith pig 
was calculated as ‘WGi = û1i.

Feed intake

Raw AFI was calculated as the ratio between the total feed 
consumed (kg) by an individual and the total number of trial 
days with 74,413 records of consumption from the automatic 
feeders. The AFI was corrected by a fixed effects linear model to 
account for trial differences as follows:

yij = µj + eij (5)

The observation yij is the AFI of ith individual in the jth group, 
µj is the contemporary group mean, eij is the random error for each 
individual in each group, and êij = yij − µ̂j is the deviation for the 
AFI of the ith animal with respect to the estimated group mean.

Daily feeder occupation time

The average time per day spent eating for each animal was 
analyzed as the ratio between the sum of the total time of feeder 
occupation (in min) for each individual and the total number of 
trial days corrected by the group mean, and the statistical model 
was equal to:

yij = µj + eij (6)

The observation yij is the average of feeder occupation (minutes) 
from the ith pig in the jth group, µj is the contemporary group 
mean, eij is the random error for each individual in each group, and 
êij = yij − µ̂j is the daily feeder occupation time (FOT) as deviation of 
the ith animal with respect to the estimated group mean. 

Results and Discussion

Estimation of (co)variance components for feeder 
visit duration

Means and quantiles of the posterior distributions of the 
variance components for visit duration in each dataset, and for 
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each of the three models of analysis, are presented in Table 2. 
For the subset of data where the replacement of feeding animals 
was immediate (IRT), that is, when the time between the end of a 
visit and the start of the next visit was less than or equal to 60 s, 
the posterior mean of the proportion of variance explained by the 
feeding animal effect (Prp σ̂2

d) was approximately 18%, regardless 
of model fit, while the proportion of variance explained by the 
follower social effect (Prp σ̂2

f ) was approximately 2%, for the 
estimates from both models 2 (M2) and 3 (M3), respectively. On 
the contrary, with non-immediate visits (NIRT), the variance 
component associated with the follower effect was almost zero, 
while Prp σ̂2

d was close to 20%. The estimated posterior mean of 
the correlation between direct (feeding pig) and social (following 
pig) effects under M3, using the IRT data set, was ρ̂  = 0.12 and the 
posterior quantiles for ρ̂  at the 2.5% and 97.5% percentiles were 
−0.069 and 0.307, respectively. On the other hand, for the NIRT 
data set, the posterior mean for ρ̂  and the posterior quantiles 
at 2.5% and 97.5% were, −0.90 and 0.78, respectively. Such a 
wide dispersion in the posterior distribution of a correlation 
parameter leading to high uncertainty about the sign of the 
correlation is a hint for uncorrelated direct and social effects. 
Thus, we performed a model comparison to formally test for the 
value of the correlation between social and direct animal effects 
(see Results below).

The posterior mean of the residual variance (σ̂2
e ) for the data 

on feeding records with IRT was 43.05 for M1 and 41.90 in M2 and 
M3. Notice that the decrease in residual variance when adding 
the follower effect (M1 vs. M2) is equal to the variance of the 
follower effect, which suggests that there is not confounding 
between the animal and the follower effects. This result is in 
agreement with the model comparison, as the estimated values 
of the WAIC (Table 3) display a better fit for M2 over M1. The 
difference between these models in the expected log of the 
pointwise predictive density (elpd) was equal to −731.1 (SE = 41). 
Furthermore, when the covariance between animal and the 
follower effects was included in M3, there was no improvement 
in model fit over the one observed in M2. Therefore, the estimate 
of the difference in elpd among M2 and M3 was equal to −0.1 

(SE = 0.5). On the other hand, in the case of feeding records with 
NIRT, the posterior distribution of σ̂2

e  was virtually identical for 
the three models (Table 2), which reflects that there were no 
effects of the follower on the duration of the current animal’s 
visit at the feeder. This is reinforced by the fact that the values 
of the WAIC were similar for the three models (Table 3), which 
in turn induced a difference in elpd between M1 and M2 of −1.35 
(SE = 0.64) and between M1 and M3 of −1.35 (SE = 0.59).

In other research with group-housed pigs (Hall, 1997; Labroue 
et al., 1997; Hall et al., 1999; Chen et al., 2010; Herrera Cáceres, 
2016; Lu et al., 2017; Herrera Cáceres et al., 2019), the time of visit to 
the automatic feeder has been calculated as the sum of the total 
occupation time in the testing period divided by the number of 
days in the testing period. These researchers estimated variance 
components and genetic parameters employing an animal 
model similar to M1 (see equation 1). For example, using small 
data sets (547 < N < 1, 832) with records of time at the feeder, 
Hall (1997) and Hall et al. (1999) estimated Prp σ̂2

d of an order 8% 
of the phenotypic variance, whereas Chen et al. (2010), Herrera 
Cáceres (2016), and Herrera Cáceres et al. (2019) estimated that 
the proportion of variance of the animal effect was equal to 
38%, 39%, and 23%, respectively. In contrast, Lu et al. (2017) and 
Labroue et al. (1997) used larger data sets (3710 < N < 14901) and 
estimated Prp σ̂2

d at 71% and 40% of the phenotypic variance. 
Although, in the current study, the visit duration of each animal 
uses every recorded event in the automatic feeder from two 
different replacement times (immediate or non-immediate), our 
estimates of Prp σ̂2

d are within the range reported by the authors 
mentioned above.

A distinctive feature of our proposed analysis is to 
simultaneously assess the direct effect of the current animal 
that is eating and the indirect or social effects of the animal that 
follows the eating pig. In doing that, we used the sequence of 
visits at the feeder to apportion the social effects of each animal 
to the immediate follower by fitting M2 and M3. Our models are 
inspired by SGE models (Cantet and Cappa, 2008; Cappa and 
Cantet, 2008; Bijma, 2010) in the sense that we fit direct (feeding 
pig) and social (following pig) effects. However, we did not have 

Table 2. Posterior statistics for each variance component and variance proportion explained on visit duration time at the feeder with two 
different replacement times and three mixed models

Model Parameter1

IRT (≤60 s) NIRT (≥600 s)

Mean q 2.5% q 50% q 97.5% Mean q 2.5% q 50% q 97.5%

M1 σ̂2
d 9.664 7.458 9.555 12.530 11.51 8.515 11.34 15.41

σ̂2
e  43.050 42.560 43.05 43.54 43.50 41.99 43.49 45.07

Prp σ̂2
d 0.182 0.147 0.181 0.225 0.208 0.163 0.206 0.262

Prp σ̂2
e 0.817 0.774 0.818 0.852 0.791 0.737 0.793 0.836

M2 σ̂2
d. 9.591 7.397 9.472 12.43 11.49 8.48 11.34 15.34
σ̂2
f  1.297 0.983 1.280 1.710 0.065 0.001 0.040 0.261

σ̂2
e  41.90 41.43 41.90 42.37 43.47 41.93 43.46 45.10

Prp σ̂2
d 0.181 0.146 0.179 0.223 0.208 0.162 0.206 0.261

Prp σ̂2
f 0.024 0.018 0.024 0.033 0.0011 0.00002 0.00074 0.0047

Prp σ̂2
e 0.794 0.752 0.795 0.828 0.790 0.737 0.792 0.836

M3 σ̂2
d 9.697 7.468 9.584 12.62 11.53 8.548 11.37 15.39

σ̂2
f  1.312 0.989 1.297 1.723 0.064 0.010 0.043 0.231
ρ̂ 0.121 −0.069 0.122 0.307 −0.103 −0.903 −0.113 0.787
σ̂2
e  41.90 41.42 41.90 42.38 43.47 41.95 43.46 45.06

Prp σ̂2
d 0.182 0.147 0.181 0.226 0.208 0.163 0.207 0.261

Prp σ̂2
f 0.0248 0.018 0.024 0.032 0.0011 0.00019 0.0007 0.0042

Prp σ̂2
e 0.792 0.750 0.793 0.827 0.790 0.731 0.791 0.834

1σ̂2
d, direct genetic variance; σ̂2

f , follower variance; σ̂2
e, error variance; ρ̂ , correlation between direct and follower effects; Prp, variance proportion 

explained by each variance component; q, quantiles of the distribution. 
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information on additive relationships among animals; thus, we 
had to limit our analysis and conclusion to phenotypic direct 
and social effects. However, the most salient feature of the 
proposed analysis compared, with other social effects models, is 
that, while in traditional social effects models (Bijma et al., 2007), 
there is typically a single observation per animal and a single 
element in the incidence matrix linking the phenotypic value of 
an animal to the social effects of all group mates; in our model, 
each observation from an animal is linked to the social effect of a 
single animal in the same pen. Moreover, single feeder visit data 
collected from pigs from their entire finishing phase resulted in 
all possible combinations of feeding and following pigs in each 
social group, which helped in separating direct from follower 
effects in M2 and M3. Specifically, we did not have to apportion 
the social effect of a phenotypic observation in equal parts to all 
group mates; instead, we just apportioned the social effect of a 
particular observation to the animal immediately following the 
current pig in the feeding records. This allowed us to separate 
social variance from direct variance as we report below.

We found that the proportion of phenotypic variance 
explained by the social effect (Prp σ̂2

f = 2%) was small but 
significantly different from zero, as long as we focused on 
feeding records where the time to the next visit was less 
than or equal to 1  min. There are few investigations on the 
estimation of direct and indirect genetic effects on feeding 
behavioral traits of pigs. Initial results were from Chen et al. 
(2010) and Herrera Cáceres (2016), who fitted a classical model 
with SGE (IGE; Bijma et al., 2007) to estimate both the direct and 
indirect genetic effects for daily occupation time at the feeder. 
Chen et al. (2010) worked with a small data set and employed 
a complex model including indirect genetic effects (IGE). As a 
consequence, their estimated variance components exhibited 
large SEs. Similarly, Herrera Cáceres (2016) estimated a value 
of 61% for the proportion of variance of the social effect, 
though the SE was also large: 40% of the absolute value of the 
parameter.

The resulting estimates from M3 (Table 2) suggest that 
there is no correlation between random additive effects 
of the feeding animal and its follower effect, contrary to 
the results obtained by Herrera Cáceres (2016) and Herrera 
Cáceres et al. (2019). These authors fitted the IGE model to 
estimate the genetic correlation between direct effect and 
indirect effect for the daily occupation time at the feeder 
and estimated correlations of −0.83 and −0.78, respectively. 
An important difference between our way of modeling 
social effects and the one used by Herrera Cáceres (2016) 
and Herrera Cáceres et  al. (2019) is that, as we explained 
above, we modeled each feeding record individually and 
attributed the indirect effect only to the following pig, 
whereas Herrera Cáceres (2016) and Herrera Cáceres et al. 
(2019) used a classic social effect model that apportions 

competition or social effects equally to all pen mates. 
Moreover, while classic social effects models focus on 
modeling SGE, our modeling focused on phenotypic social 
effects, as we did not include a relationship matrix due to 
the lack of pedigree information in the commercial system 
from which measures were taken.

As mentioned above, the replacement time chosen to 
partition the data into the null dataset (NIRTs) and the dataset 
with competition for feeding space (IRTs) was arbitrary. However, 
to study the influence of the proposed splitting thresholds in 
the estimated parameters, we performed a sensitivity analysis 
by splitting the dataset into eight different subsets of data by 
using different thresholds and refitting M1 (equation 1) and M2 
(equation 3). We found that any replacement threshold between 
30 and 60  s resulted in virtually identical estimated variance 
components compared with the IRT data set (see Supplementary 
Appendix 4). Similarly, any replacement threshold above 90  s 
generated of a null dataset similar to the NIRT dataset, and 
the estimated variance components were virtually identical to 
those presented in the current paper. Our choice of splitting 
thresholds for the replacement times attempted to have a 
good balance between the number of records and the ability to 
assess our assumption. Specifically, we assumed that when the 
follower quickly replaces the feeding pig in the feeder (IRT), the 
effect of the follower (social effect of competition) will manifest 
itself by a shorter feeding time of the current pig at the feeder, 
depending on the competition ability of the following pig. On 
the other hand, when the follower enters the feeder long after 
the current feeding pig has left (NIRT), the social effect of the 
follower will not be expressed in the meal duration of the 
current feeding pig.

A potential criticism of our approach to detect following 
animals is the fact that the follower might not have caused 
the displacement of the currently eating animal from 
the feeder (competition for feeding space) but another 
pig may have caused the displacement, and the observed 
follower just entered the feeder as soon as it was vacated. 
We cannot confirm or discard this possibility because 
of the lack of behavioral observations. However, the fact 
that an animal is able to quickly occupy a vacated feeder 
is an indication of a high competition ability even when 
there are other pigs displacing the feeding animal. Thus, 
if the time at the feeder for any pig is shortened when 
compared with the average feeding time of that animal, 
the competition effect will be apportioned to the following 
pig in our model. Further confirmation of this requires 
behavioral observations of displacement at the feeder and 
feeder occupation.

The results from this study in grow-finish pigs showed 
that modeling each recorded visit to the automatic feeder 
resulted in a social phenotypic variance (or follower variance 
component) of about 13% of the direct variance. Considering 
the indirect effect of the follower on the meal duration of 
feeding pigs, the proportion of variance explained by the 
social effect was small, although we recovered more residual 
variability than when only the direct effect was included 
in the model. The differences in the results obtained with 
respect to other research carried out in feeding behavior using 
automatic feeders may be related to the way the recorded 
trait is defined and to the influence of environmental factors, 
such as space, density, and group size (Nielsen et  al., 1995; 
Hoy et al., 2012; Hyun and Ellis, 2002), which in our research 
may have allowed pigs to have equal opportunity to access 
the feeder.

Table 3. Model comparison through the WAIC on visit duration time 
at the feeder with two different replacement times 

Model

IRT (≤60 s) NIRT (≥600 s)

elpd1 pwaic WAIC elpd pwaic. WAIC

MM1 −192,339.2 181.7 384,678.4 −20,763.44 166.78 41,526.88
M2 −191,608.1 301.1 383,216.3 −20,764.91 173.81 41,529.81
M3 −191,608.3 301.3 383,216.6 −20,764.79 172.76 41,529.59

1elpd, expected log pointwise predictive density; pwaic, effective 
number of parameters. 
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Phenotypic correlation of BLUP of direct and social 
effects for the duration of visits at the feeder and 
other phenotypes

The predicted BLUP of direct and social random effects in the 
model in equation 3 with data from IRT was correlated with 
WG, AFI, and daily FOT. The estimated Pearson correlation 
coefficients ( r̂ ) between pairs of traits and their associated 
P-values are displayed in Table 4. The data on WG and AFI for 
an individual were not significantly correlated with its own 
predicted direct effect on the visit duration at the feeder 
(Direct BLUP); likewise, the predicted follower effect on visit 
duration at the feeder of an animal (Follower BLUP) was also 
uncorrelated with the WG and AFI estimates of its group 
mates. In the case of the average time the individual spent 
eating or FOT, the estimated value was high and significant 
( r̂   =  0.51) with the predicted Direct BLUP and moderately 
negative ( r̂  = −0.26) with predicted Follower BLUP for visit time 
at the feeder.

Other researchers have estimated direct genetic correlations 
between daily occupation time and average daily gain ranging 
from 0.11 to 0.46 and for daily occupation time and average feed 
intake from 0.14 to 0.35 (Hall, 1997; Labroue et al., 1997; Hall et al., 
1999; Herrera Cáceres, 2016; Lu et  al., 2017). However, Herrera 
Cáceres et al. (2019) found no genetic correlation between those 
traits, and Chen et  al. (2010) also estimated a nonsignificant 
correlation ( r̂  = 0.04) between predicted direct breeding values of 
daily occupation time and average daily gain. However, this last 
set of estimates is in agreement with our value ( r̂  = 0.09) for the 
correlation between WG and Direct BLUP for visit length time 
at the feeder. In addition, Chen et al. (2010) found a significant 
r̂  (0.33) between predicted direct breeding values of daily 
occupation time and AFI, a value that was estimated by us to 
be r̂  = 0.09. Moreover, the studies by Herrera Cáceres (2016) and 
Herrera Cáceres et  al. (2019) fitting bivariate models with IGE 
have reported estimates of genetic correlations between direct 
and indirect effects of the same order of magnitude as their SEs.

The visit duration consists of the length of a specific 
feeding event, whereas the daily FOT condenses the 
information of the daily records of feeder occupation, to 
describe the amount of time (in min) that an animal spent 
at the feeder per day. We expected that in the current study 
the correlation between Direct BLUP of visit duration at the 
feeder and FOT would be positive, which is what we observed 
( r̂= 0.51, P  <  0.05). Moreover, it is interesting to observe that 
predicted Follower BLUP for visit duration and FOT showed 
a significantly negative correlation ( r̂= −0.26, P  <  0.05). This 
result indicates that animals that spend more time per day at 
the feeder (larger FOT) caused other animals to have shorter 
meals, that is, the Follower BLUP decreases.

Conclusions
In summary, the length of visits in automatic feeders in this 
study was subject to significant direct (feeding pig) and social 
(follower) effects when the replacement time between visits was 
short (<1 min). In addition, animals that had larger FOT shortened 
the meal length of the preceding individuals at the feeder. This 
effect was clearly evident in our study due to the presence of a 
single feeder space. Further studies in multi-space feeders while 
incorporating behavioral observations are warranted to confirm 
these effects. Our proposed modeling approach can be used 
with automatic feeding records and could easily be expanded to 
incorporate genetic effects and direct behavioral observations.

Supplementary Data
Supplementary data are available at Journal of Animal Science 
online. 
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