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Abstract 21 

Chia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oils are valorized for their 22 

health benefits and both are extensively used as ingredients in different food 23 

formulations and/or processes. Their retail prices are higher than those of other edible 24 

oils and might promote fraudulent adulterations. Spectroscopic methods associated to 25 

untargeted analysis are appropriate and faster than traditional techniques, requiring less 26 

time to prepare and run the samples. In the present study Fourier transform infrared 27 

spectroscopy was used in combination with one class partial least squares and soft 28 

independent modelling by class analogy to detect the presence of four possible 29 

adulterants: corn, peanut, soybean and sunflower oils, in four different proportions 30 

(pure+adulterant: 90+10, 95+5, 98+2 and 99+1, in volume). Untargeted approaches 31 

were successful in the detection of adulterated chia and sesame oils with acceptable 32 

prediction errors ranging between 1% and 5%. 33 
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1. Introduction. 51 

Chia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oils have been 52 

gaining attention among consumers due to their nutritional and health benefits 53 

associated to their fatty acid profile and other lipophilic phytochemicals. Chia oil is rich 54 

in polyunsaturated fatty acids (PUFAs), containing about 60% of α-linolenic acid 55 

(C18:3, n-3), 20% of linoleic acid (C18:2, n-6) and 6% of oleic acid (C18:1, n-9) 56 

(Dąbrowski et al., 2017). On the other hand, sesame oil has a unique high oxidative 57 

stability and contains about 45% of oleic acid (C18:1, n-9), 40% of linoleic acid (C18:2, 58 

n-6), 9% of palmitic acid (16:0) and 6% of stearic acid (18:0) (Kamal-Eldin & 59 

Appelqvist, 1994). Chia and sesame oils have been extensively used as ingredients in 60 

different food formulations and/or processes (Perveen et al., 2014; Rojas et al., 2019; 61 

Ullah et al., 2016; Zettel & Hitzmann, 2018; Zhuang et al., 2016). Despite the health 62 

benefits of these oils, their retail prices are higher than those of other edible oils and this 63 

fact might promote fraudulent adulterations made by unscrupulous producers or 64 

suppliers. 65 

Adulteration may be achieved by adding less expensive edible oils. Therefore, 66 

several efforts have been made to detect the presence of these adulterants. Adulteration 67 

of extra-virgin and virgin olive oils is the most studied because many fraud cases have 68 

been reported in the last decades (Aparicio et al., 2013; Moore et al., 2012; Peng et al., 69 

2017). Additionally, other oils have been considered as potential targets for 70 

adulteration, such as those extracted from rapeseed, walnut, hazelnut, coconut, peanut 71 

and sesame, among others (Fadzlillah et al., 2014; Jović et al., 2016; Li et al., 2015; 72 

Ozen & Mauer, 2002; Ozulku et al., 2017; Rohman & Che Man, 2012; Rohman et al., 73 

2010; Xu et al., 2011; Zhao et al., 2015). 74 
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The official techniques to detect the presence of possible adulterants in oil 75 

samples include a separation step, typically using gas or liquid chromatography, 76 

followed by quantification of the acyl lipids and fatty acids (Aparicio et al., 2013; Lee et 77 

al., 2013; Zhang et al., 2015, Zhang et al., 2017). Some drawbacks of these techniques 78 

are the high amount of time required to prepare and run the samples, the consumption of 79 

solvents and the use of standard compounds needed in some cases for quantification 80 

purposes. In contrast, spectroscopic techniques, such as, NMR or any vibrational 81 

spectroscopy (i.e. NIR, FT-IR or Raman) require less sample preparation time, are rapid 82 

and non-destructive. In recent years, these advantages have triggered the use of 83 

vibrational spectroscopy as alternative procedure to detect the presence of adulterants in 84 

oil samples. Moreover, FT-IR in the region of mid infrared is one of the most used 85 

characterization methods of edible oils (de la Mata et al., 2012; Georgouli et al., 2017; 86 

Gurdeniz & Ozen, 2009; Jiménez-Carvelo et al., 2017; Lerma-García et al., 2010; 87 

Maggio et al., 2010). 88 

The spectral information described by FT-IR (or any vibrational spectroscopy) 89 

could be used as a fingerprint. Multivariate statistical methods (also known as 90 

chemometric methods) transforms the spectral information (i.e. the intensities at every 91 

wavelength) into new variables or class responses according to the similarities of the 92 

samples. The most used methods for exploratory analysis and classification purposes 93 

are principal component analysis, cluster analysis and any type of discriminant analysis 94 

(linear, quadratic or partial least squares, among others) (Gómez-Caravaca et al., 2016). 95 

However, discriminant analysis is considered as a targeted method, which uses the 96 

information of adulterated samples as a class previously specified by the user. In 97 

contrast, in recent years, untargeted methods are gaining attention among food scientist 98 

and chemists (Aparicio et al., 2013; Li et al., 2015; Rodionova et al., 2016; Xu et al., 99 
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2011; Zhang et al., 2015, Zhang et al., 2017). Untargeted methods, such as one class 100 

partial least squares (OC-PLS) and soft independent modelling by class analogy 101 

(SIMCA), use the spectral information to fix the boundaries of the pure oil class with a 102 

specified confidence level. Then, with the boundaries for the pure samples, a class 103 

prediction of a new sample can be done by the algorithm (Rodríguez et al., 2019). 104 

To the best of our knowledge a method to detect adulterants in chia oil has never 105 

been reported and the use of untargeted analysis for detection of adulterants in sesame 106 

oil has not been fully explored yet. The aim of the present work is to challenge FT-IR 107 

spectra as input of two different chemometric untargeted analysis (SIMCA and OC-108 

PLS) to evaluate the authenticity of chia and sesame oils, by detecting the presence of 109 

less expensive oils. 110 

 111 

2. Materials and methods. 112 

2.1 Materials. 113 

Five batches of cold pressed chia and non-roasted sesame oils were provided 114 

from a local oil producer company (Alimentos Sturla, Buenos Aires, Argetina). Pure 115 

commercial oils (corn, peanut, soybean and sunflower) were purchased in a local market 116 

in Buenos Aires, Argentina. All other reagents used were analytical grade. 117 

 118 

2.2 Specific gravity and refractive index determination. 119 

Specific gravity (apparent) and refractive index were determined by the methods 120 

described in AOAC 920.212 and AOAC 921.08, respectively, for every oil (AOAC, 121 

2016). Refractive index was measured at a temperature of 25°C, using an automatic 122 

digital refractometer (RE40D, Mettler Toledo Inc., Japan). Both determinations were 123 
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done by quintuplicate for every oil type. Specific gravity and refractive index results are 124 

reported in Table SM1 (Supplementary Material Section). 125 

 126 

2.3 Quantification of acyl lipids by gas chromatography (CG-FID). 127 

Fatty acid composition of pure oils was measured by gas chromatography, after 128 

hydrolysis of the acyl glycerols. The methyl esters for the determination of the fatty 129 

acids (FAME) were prepared according to AOCS Official Method Ce 2-66 (AOCS, 130 

2009). The separation of FAMEs was performed on a CLARUS 500 (Perkin Elmer, 131 

Norwalk, CT) gas chromatograph equipped with a flame ionization detector and 132 

automatic sampler. A polyethylene glycol phase capillary column Elite Wax (Perkin 133 

Elmer, Norwalk, CT) with a length of 30 m, 0.32 mm inner diameter and 0.25 µm film 134 

thickness was used. The analysis conditions were as follows: column temperature was 135 

set from 190 °C to 240 °C rising at 3 °C/min, injector temperature was 240 °C and 136 

detector was set at 300 °C; nitrogen was used as carrier gas at a linear velocity of 20 137 

cm/s and the injection volume was 1 µL. FAMEs were identified by comparison of their 138 

retention times versus pure standards analysed under the same conditions. They were 139 

quantified according to their percentage area, obtained by the integration of the peaks 140 

using TotalChrom software suite (Perkin Elmer, Norwalk, CT). 141 

 142 

2.4 Preparation of adulterated samples. 143 

Five replicates (one for each batch of pure oil) of each adulterated type of 144 

sample were prepared by mixing during 10 minutes at room temperature in a 10 mL 145 

glass vial with magnetic stirring the necessary volumes of pure oil (chia or sesame) with 146 

an adulterant oil (corn, peanut, soybean or sunflower). Four types of adulterated 147 
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samples were prepared using the four adulterants in four proportions (pure+adulterant: 148 

90+10, 95+5, 98+2 and 99+1 in volume) for each pure oil tested. 149 

 150 

2.5 Fourier Transform infrared spectroscopy measurements. 151 

Pure and adulterated oils samples were scanned in a FT-IR (Spectrum 400, 152 

Perkin Elmer Inc., Shelton CT, USA) with DTGS detector and an attenuated total 153 

reflectance accessory (ATR, PIKE Technologies, Inc., Madison WI, USA). A few drops 154 

of each oil sample were poured on the diamond/ ZnSe of a reflectance ATR crystal with 155 

an angle of 45°. Spectra were collected accumulating a total of 64 scans per sample with 156 

a resolution of 4 cm-1 from 600 to 4000 cm-1. Every spectrum was base-line corrected 157 

(cubic spline function method), transformed to absorbance units and normalized (min-158 

max normalization) using the Spectrum Software ver. 6.3 (Perkin Elmer, Inc.). For 159 

detailed information about the type of samples prepared and the number of 160 

measurements performed, see Table 1. 161 

 162 

2.6 Multivariate Statistical methods. 163 

Principal component analysis (PCA) is one of the most used of the multivariate 164 

methods and was well described in many studies. The data set is arranged in a matrix X 165 

with I rows (samples of oils) and J columns (FT-IR normalized absorption intensities). 166 

PCA finds new variables (also known as principal components) from X, according to X 167 

= TPT + E, where T, P are matrices containing the score vectors (related to the principal 168 

components) and the loading vectors respectively. Additionally, E is a matrix 169 

containing the residuals for each sample. Every principal component is a linear 170 

combination of scores and loading values and is related, in decreasing order, to an 171 

amount of variance of the original data (Bro & Smilde, 2014). The aim of using PCA in 172 
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the present work was to find similarities among the samples scanned with FT-IR by 173 

plotting the most relevant components to describe the data set (chia data set or sesame 174 

data set). Additionally, the analysis of the loading values was used to find the most 175 

relevant wavenumbers for the grouping of samples according to their similarities. PCA 176 

on the covariance matrix was performed on the two data sets (chia and sesame) 177 

considering the intensities at each wavenumber (normalized and in absorbance units) of 178 

the spectra as original variables and each type of sample representing a row of the 179 

original matrix data set. PCA was performed using GNU Octave for Windows ver. 180 

4.4.1. 181 

Soft independent modelling class analogy (SIMCA) is a supervised method (i.e. 182 

use the information of the samples’ class) based on PCA. A single PCA was modelled 183 

for each class (pure oils or adulterated samples) of the data set matrix. To show how a 184 

sample would fit in each class, two scalar statistics are calculated for each sample, Q-185 

residual and Hotelling’s T2. Q-residuals are calculated according to Qi = eiei
T, where ei 186 

is the residual of sample i after applying the model and it is related to the amount of 187 

original information not included in the model. In the other hand, Hotelling’s T2 is 188 

related to the information of each sample within the model according to Ti
2 = I(xi-xavg)S

-
189 

1(xi-xavg)’, where I is the number of samples, xi the multivariate measurement of the 190 

sample i, xavg the mean value and S the standard deviation. Q and T2 limit values can be 191 

calculated at a specific α (level of significance), often set at 0.05. A relevant number of 192 

components were used to set the boundaries (Q-residual limit value vs. Hotelling’s T2 193 

limit value) for the classification of the samples and then predict the class of a new 194 

sample (not included in the training step) (Luna et al., 2016). If only one class is used in 195 

the training step the approach is considered as untargeted and the boundaries can be 196 

used as an accepted/rejected limit (Rodríguez et al., 2019). SIMCA was run using 197 
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Classification Toolbox ver. 5.0 (Ballabio & Consonni, 2013) with a confidence level of 198 

95% (α = 0.05) under GNU Octave for Windows ver. 4.4.1. 199 

One class partial least squares (OC-PLS) is another untargeted approach based 200 

on PLS algorithm using a distance-based sample density measurement as the response 201 

variable. OC-PLS computes a regression as 1 = XbPLS + e, where 1 is the response 202 

vector, X is the original data set, bPLS contains the regression coefficients and e is the 203 

vector of model’s residuals. After the model is built the Hotelling’s T2 (based on score 204 

distances) and the absolute centered residual (ACR) can be calculated according to ACR 205 

= |1-yj-µe| and �� = ∑ (�����,
��)�
��,��

���� , where yj is the response of sample j, µe is the mean 206 

of the training errors, ti,avg and ��,��  are the mean and sample variance of the ith latent 207 

variable and ti, respectively; and K is the number of significant latent variables. The 208 

standard deviation of the model can be calculated as 209 

�� = �∑ (1 − �� − ��)�/(� − 1)���� , where N is the total number of left-out samples 210 

during cross validation and yi is the predicted response of the ith left-out sample. When 211 

a confidence level (α) is set the limit values for ACR and T2 can be calculated as ACRL 212 

= Zα/2 . σe and � � =	 ("���)"("��)#$(�,"��), where Zα/2 is the upper critical point of the 213 

standard normal distribution, and Fα(K,n-K) is the upper critical point of the F-distribution 214 

with (K,n-K) degrees of freedom. The plot of SD versus ACR including the limits are a 215 

useful tool to screen outlier diagnosis and predict adulterated samples from pure ones 216 

(Xu et al., 2013; Zhang et al., 2017). OC-PLS was computed using OC-PLS algorithm 217 

under Octave for Windows ver. 4.4.1, with a confidence level of 95% and a leave one 218 

out cross validation (LOOCV) to fix the number of the latent variables (LVs) (Xu et al., 219 

2014). 220 

 221 
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3. Results. 222 

3.1 Gas chromatography with flame ionization detection (GC-FID). 223 

 Table 2 recovers the GC-FID results expressed as the ratio of total areas. Chia 224 

oil major components were unsaturated fatty acids: linolenic (68.3 %) and linoleic acid 225 

(20.7 %), in agreement with other studies that indicated that linolenic acid contents 226 

might be up to 69 % (Ayerza & Coates, 2004; Ixtaina et al., 2011). The most abundant 227 

fatty acids in sesame oil were oleic, linoleic, palmitic and stearic acids with high 228 

predominance of unsaturated fatty acids. The proportions of different fatty acids are 229 

within the reported ranges (El khier et al., 2008; Thakur et al., 2017). In corn and 230 

sunflower oils, the major fatty acids were palmitic, oleic, and linoleic acids and were in 231 

the range described by FAO/WHO Codex Alimentarius Commission (Codex 232 

Alimentarius Commission CODEX STAN 210, 1999). As for peanut the oil used had 233 

oleic acid content slightly higher than the maximum stated by FAO (80%). While 234 

soybean oil presented high content of linoleic acid as compared with reported 235 

specifications (Spencer et al., 1976; Codex Alimentarius Commission CODEX STAN 236 

210, 1999). 237 

 238 

3.2 Fourier transform infrared spectroscopy (FT-IR). 239 

The assignments of the bands in the FT-IR spectra (shown in Fig. SM1 240 

(Supplementary Material Section, for the cases of adulteration of chia oil (a) and for 241 

sesame oil (b)) agreed with those previously reported in literature for many pure oil 242 

types. In this work, the relevant signals were labelled from #1 to #12. The first region of 243 

bands was associated to hydrogen’s stretching (C–H stretching) signals from about 3000 244 

to 2850 cm-1. The first band (labelled as #1) was assigned to the cis double bond =C–H 245 

stretching vibration. In addition, the signals labelled as #3 and #4 were reported as 246 
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symmetric and asymmetric (respectively) stretching vibrations of the aliphatic CH2 247 

group. The shoulder marked as #2 was associated to the symmetric stretching of the 248 

aliphatic CH3 group. The second region of signals (from about 1750 to 1650 cm-1) was 249 

previously reported as the region of double bond’s stretching. This region includes the 250 

highest band in all spectra (#5), associated to the stretching vibration of ester carbonyl 251 

groups present in the triglycerides (–C=O). Furthermore, a small signal was present (#6) 252 

and attributed to the C=C stretching vibration of the cis-oleofins. A third region of 253 

signals was denoted as the region of other bond’s deformations and bendings ranging 254 

from about 1470 to 1370 cm-1. Bands labelled as #7 and #8 were found in this region 255 

and are associated to the bending vibration of CH2 and CH3. Finally, the fourth region 256 

of signals (from about 1240 to 700 cm-1) is the so-called fingerprint region. This last 257 

region includes three bands (#9, #10 and #11) linked with the stretching vibration of the 258 

C–O ester groups. And, the last band labelled as #12, was associated to the overlapping 259 

of two vibrations, the CH2 rocking and the out-of-plane vibration of the cis-disubstituted 260 

oleofins (Guillén & Cabo, Guillén & Cabo, 1997b; Vlachos et al., 2006). 261 

The average values of the wavenumbers recovered from FTIR spectra for pure 262 

oil samples used in this work are reported in Table 3. Significant differences (one-way 263 

ANOVA, p < 0.05) were only found in signals #3, #11 and #12. In the case of the band 264 

number 3, the wavenumber value reported for chia, soybean and sunflower was 2923 265 

cm-1 and the values found in the case of sesame, corn and peanut oils were lower (2915, 266 

2917 and 2915 cm-1 respectively). The band labelled as #11 showed a lower value of 267 

1092 cm-1 for peanut oil in comparison with all other oils with values of 1096 cm-1. The 268 

last shift was observed at the band marked as #12 with a lower value of 713 cm-1 in the 269 

case of the chia oil in contrast with the value of 721 cm-1 reported for all the other oils. 270 

According to the works published by Guillen and Cabo (1997a and 1997b) and 271 
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references therein, the frequencies of the bands could change in agreement with the 272 

profile of acyl lipids of the oils. 273 

Moreover, the intensities of the bands could vary also with the type of acyl lipids 274 

and other components of the oils. In order to display a better visualization of those 275 

intensity differences, the insets in Fig. SM1(a) and (b) show different zooms of three 276 

different regions from the same spectra depicted in the main figure. FT-IR spectrum of 277 

chia oil (insets in Fig. SM1(a)) showed lower intensities for the bands marked as #2, #3, 278 

#4 and #7 and higher intensities for bands #1, #5, #6, #9, #10, #11 and #12 in 279 

comparison with all other pure oils used as adulterants (corn, peanut, soybean and 280 

sunflower). The band labelled as #8 showed lower intensities than the other oil except 281 

for peanut oil, which showed no significant difference. In the case of sesame oil (Fig. 282 

SM1(b)), the trend is more complex, intermediate intensity values for sesame oil 283 

occurred in bands #1, #2, #3, #4, #7, #11 and #12. Lower intensities were observed in 284 

the case of bands marked as #5 and #10 and higher in the case of band #9. No 285 

significant differences were found in the bands #6 and #8 with in relation to adulterant 286 

oils except for peanut, which presented lower values in both bands. 287 

 288 

3.3 Principal component analysis. 289 

FT-IR spectra of the pure oil samples and the adulterated oil samples were used 290 

as input for principal component analysis (PCA) for a better visualization and 291 

exploratory purposes of the data. Fig. SM2 (Supplementary Material Section) shows the 292 

scatter plot of the two first principal components (PC1 vs. PC2) for the case of chia (part 293 

(a)) or sesame (part (b)) and the oils used as adulterants. The visual discrimination 294 

observed in Fig. SM2(a) and (b) is quite similar and the amount of accumulated 295 

variance was 98.5% and 96.1% respectively. PCA was able to discriminate the samples 296 
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according to their similarities and separate the pure oils used as adulterants and the 297 

target oil (chia or sesame) into three well defined groups. One group of samples 298 

correspond to chia or sesame pure oils, the second one to corn, soybean and sunflower 299 

oils and the third one representing only peanut oil. 300 

PCA results obtained by FT-IR spectra are in good agreement with the results 301 

showed using GC-FID for quantification of the acyl lipids. Fig. SM3 (Supplementary 302 

Material Section) shows a PCA using as input the average relative percentage of the 303 

total chromatographic area for the five FAMEs (reported in Table 2). The similarities of 304 

the fatty acid profile match with the similarities obtained with FT-IR (Fig SM2 a) and 305 

b)), where the sample of sesame oil is near to corn, soybean and sunflower oils and 306 

distant from peanut oil. In the case of chia, the sample is located far from all others. 307 

According to Fig. SM3 a detection method based on the use of FAMEs profile would 308 

find more difficulties to detect adulteration of sesame than chia oil for three of the four 309 

adulterants used in the present work (corn, soybean and sunflower). 310 

Fig. 1(a) and (b) show the three-dimensional PCA score plot (PC1 vs. PC2 vs. 311 

PC3) for the cases of chia (88.2% of cumulative variance) and sesame (72.0% of 312 

cumulative variance) oils using FT-IR frequencies for pure and adulterated oils. Despite 313 

some samples are superimposed in some places of the plots, there is a clear trend in both 314 

cases (chia and sesame). Pure chia or sesame oil samples are grouped in a confined area 315 

of the plot and adulterated samples are placed in a different region. The proximity of 316 

adulterated samples from pure oil samples are in good agreement with the proportion 317 

used as adulterant (corn, peanut, soybean or sunflower oils). The samples with the 318 

lowest proportion of adulteration (99+1) are near the pure oil samples and the samples 319 

with the highest proportion of adulteration (90+10) are more distant. The good 320 
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discrimination results showed by PCA in both cases (chia and sesame) motivated the 321 

use of SIMCA, which is a PCA-based method. 322 

 323 

3.4 Soft independent modelling class analogy (SIMCA). 324 

 Fig. 2(a) and 3(a) show the plots of Q residuals vs. Hotelling T2 outcoming from 325 

SIMCA analysis performed for chia and sesame adulteration respectively using a 326 

confidence value of 0.05 and 3 latent variables (LVs). Using the target class (pure oils) 327 

and the confidence level, SIMCA defines the boundaries (red dotted lines), which forms 328 

the lower and left square (insets in Fig. 3a and 4a for a better visualization). Once the 329 

limits were established, prediction of the class of new samples can be done. Any sample 330 

of the target class predicted as adulterated is considered a false negative (FN), and any 331 

adulterated sample predicted as the pure oil is considered as false positives (FP). 332 

Samples with correct prediction are considered as true positives (TP) or true negatives 333 

(TN). Performance parameters can be calculated using the number of FN, FP, TP and 334 

TN. Sensitivity (SEN), also known as Type I error, is a performance parameter related 335 

to the target class and is equals to TP/(TP+FN). In contrast, specificity (SPEC), or type 336 

II error, is a parameter which gives information about the samples that do not belong to 337 

the target class and is equal to TN/(TN+FP). Using the information of the samples 338 

wrongly classified Table 4 recovers SEN and SPEC values using SIMCA for chia and 339 

sesame cases. SEN values were identical in both cases (0.967), with only 1 sample 340 

wrongly classified of a total of 30. And SPEC values were 1.00 and 0.948 (21 wrong 341 

classified samples of a total of 400) for chia and sesame respectively. SPEC values 342 

reflect the difficulties to achieve an appropriate prediction using SIMCA for the 343 

adulterated samples with a proportion of 99+1 in the case of sesame adulterated oil. 344 

 345 
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3.5 One class partial least squares (OC-PLS). 346 

 Fig. 2(b) and 3(b) represent the plot of the two classifier distances (ACR and 347 

OCPLS score distance) obtained using OC-PLS (with a confidence level of 0.05) in the 348 

cases of chia and sesame respectively. The inset inside the main graph in Fig. 3b show a 349 

zoom, for a better visualization of the pure sample limit square (limited by the red 350 

dotted lines), which is no necessary in the Fig. 3(b). The numbers of LVs (5 and 4 for 351 

chia and sesame cases respectively) were selected according to the instructions given by 352 

the developers of the algorithm using a leave-one-out cross validation method 353 

(LOOCV) (Xu et al., 2014). SEN and SPEC values were calculated following the same 354 

equations given in Section 3.4 and reported in Table 4. The use of OC-PLS shows 355 

excellent discrimination results for the prediction step with SEN values of 1.00 in both 356 

cases (chia and sesame). And SPEC values of 1.00 and 0.992 (less than 1% of error) in 357 

the cases of chia and sesame respectively. The last SPEC value of 0.992 (sesame case) 358 

represents only 3 wrongly classified samples (adulterated samples with a proportion of 359 

99+1) of a total of 400. 360 

 361 

4. Discussion. 362 

According to the results showed in this work, SIMCA and OC-PLS were 363 

successful in the detection of adulterated samples of chia oil with cheaper oils (corn, 364 

peanut, soybean and sunflower) with acceptable errors prediction at any level of 365 

adulterant proportion (90+10, 95+5, 98+2 and 99+1 in volume). In the case of sesame 366 

adulterated samples, only OC-PLS showed a successful detection for all the proportions 367 

of adulterant with lower acceptable error; while SIMCA failed only in the case of 99+1 368 

adulteration proportion with a SPEC value of 0.948 (error rate of slightly more than 369 
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5%). The difficulties observed in the detection of adulterants in the case of sesame oil 370 

could be explained by FAMEs profile similarities with the adulterants used. 371 

 The results obtained for chia and sesame oils are in good agreement and in some 372 

cases better than those found by other authors and for other materials in the literature. 373 

For example, in the case of extra virgin olive oil adulteration studies the most used 374 

methods were discriminant analysis (Linear or PLS-based) or regression based methods 375 

(partial least squares or principal component regressions) using FT-IR as the input data, 376 

and the lower proportion detected of adulterant was about 1% to 5% (Downey et al., 377 

2002; Gurdeniz & Ozen, 2009; Jiménez-Carvelo et al., 2017; Lerma-García et al., 2010; 378 

Rohman & Man, 2010; Tay et al., 2002). Moreover, discriminant analysis and 379 

regression-based methods were performed to detect adulterants in hazelnut, walnut and 380 

sesame oils with a limit of detection between 0.53 – 10% (Fadzlillah et al., 2014; Li et 381 

al., 2015; Ozen & Mauer, 2002; Ozulku et al., 2017; Rohman & Man, 2011; Zhao et al., 382 

2015). 383 

In spite of the general good adulterant detection results showed by discriminant 384 

analysis-based methods, several authors discuss about the robustness of these 385 

techniques. The main weakness is that during the optimization step, SPEC parameter 386 

(type II error) is minimized instead of the SEN parameter (type I error). Thus, 387 

discriminant-based methods are considered as a compliant approach instead of a robust 388 

approach (Granato et al., 2018; Oliveri & Downey, 2012; Rodionova et al., 2016). 389 

Based in this concept, the present work showed a better performance than other 390 

studies using untargeted analysis. OC-PLS and a partial least squares class model 391 

(PLSCM, similar to OC-PLS) were used to detect adulterants in olive, peanut and 392 

sesame oils with as much as 3% of adulterant proportion in all the cases (Deng et al., 393 

2012; Xu et al., 2011; Zhang et al., 2017). The slight better performance showed in the 394 
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present work by PLS-based algorithm (OC-PLS) in comparison to a PCA-based 395 

algorithm (SIMCA) relays on the different way the two methods fix the LVs. SIMCA 396 

calculates the components according to the direction of the maximum variance of the 397 

target class and OC-PLS calculates the LVs by maximizing the component’s correlation 398 

between the original variables and the response variable (Deng et al., 2012; Rodríguez 399 

et al., 2019; Xu et al., 2011). Moreover, another possible reason is that the use of 400 

LOOCV (or other cross validation performed in OC-PLS) leads to a higher number of 401 

LVs. In the present work the number of LVs were 5 and 4 for chia and sesame 402 

respectively using OC-PLS in comparison to 3 using SIMCA for both cases. 403 

 404 

5. Conclusions. 405 

 Both models for the analysis of FT-IR measurements (using the untargeted 406 

methods: SIMCA and OC-PLS) were able to successfully detect the presence of four 407 

adulterants (corn, peanut, soybean and sunflower oils) in chia and sesame oils. OC-PLS 408 

showed a slightly better performance than SIMCA with a limit of 99+1 (proportion of 409 

target+adulterant oils, in volume) for chia and sesame samples. The difference in the 410 

performance for both untargeted methods (OC-PLS and SIMCA) could be associated to 411 

the different way of fixing the latent variables (LVs) and the number of these used to 412 

model the data set. FT-IR coupled to untargeted chemometric analysis may be 413 

implemented to determine impurities in oils, avoiding time-consuming sample 414 

preparation, harmful reactants and expensive materials. These techniques could be also 415 

extended to ensure product authentication in other foods and ingredients and for 416 

classifying food quality into different grades, providing the corresponding validation 417 

steps are fulfilled. Food industry and control bodies would be also favoured by the 418 

expected technical and economic benefit and product’s quality improvement. 419 
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 649 

Figure captions 650 

Fig. 1. Principal component three-dimensional score plot (PC1 vs. PC2 vs. PC3) for pure 651 

and adulterated oil samples. Part (a): pure chia oil (blue dots), adulterated chia in 90+10 652 

proportion (red squares), adulterated chia in 95+5 proportion (green diamonds), 653 

adulterated chia in 98+2 proportion (black pointing down triangles) and adulterated chia 654 

in 99+1 proportion (pink pointing up triangles). Part (b): pure sesame oil (blue dots), 655 

adulterated sesame in 90+10 proportion (red squares), adulterated sesame in 95+5 656 

proportion (green diamonds), adulterated sesame in 98+2 proportion (black pointing 657 

down triangles) and adulterated sesame in 99+1 proportion (pink pointing up triangles). 658 

Variance values associated to each component are between parentheses. 659 

 660 

Fig. 2. Samples of pure chia oil (blue dots and blue crosses), adulterated chia in 90+10 661 

proportion (red squares), adulterated chia in 95+5 proportion (green diamonds), 662 

adulterated chia in 98+2 proportion (black pointing down triangles) and adulterated chia 663 

in 99+1 proportion (pink pointing up triangles) represented in a scatter plot of Q 664 
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residuals vs. Hotelling T2 values obtained using SIMCA (part (a)) and a scatter plot of 665 

centered model residuals (ACR) vs. OC-PLS score distance using OC-PLS (part (b)). 666 

 667 

Fig. 3. Samples of pure sesame oil (blue dots and blue crosses), adulterated sesame in 668 

90+10 proportion (red squares), adulterated sesame in 95+5 proportion (green 669 

diamonds), adulterated sesame in 98+2 proportion (black pointing down triangles) and 670 

adulterated sesame in 99+1 proportion (pink pointing up triangles) represented in a 671 

scatter plot of Q residuals vs. Hotelling T2 values obtained using SIMCA (part (a)) and 672 

a scatter plot of centered model residuals (ACR) vs. OC-PLS score distance using OC-673 

PLS (part (b)). 674 
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Table 1. Detailed number of measurements for each type of sample: Ch = chia oil, Se = 

sesame oil, Co =corn oil, Pe = peanut oil, So = soybean oil, Su = sunflower oil. 

 
Type of 
sample 

Number of samples per each class 
Total 

pure oils 90+10 95+5 98+2 99+1 
Ch 30*     30 

Ch+Co  25** 25** 25** 25** 100 
Ch+Pe  25** 25** 25** 25** 100 
Ch+So  25** 25** 25** 25** 100 
Ch+Su  25** 25** 25** 25** 100 

Se 30*     30 
Se+Co  25** 25** 25** 25** 100 
Se+Pe  25** 25** 25** 25** 100 
Se+So  25** 25** 25** 25** 100 
Se+Su  25** 25** 25** 25** 100 

Co 30*     30 
Pe 30*     30 
So 30*     30 
Su 30*     30 

Total 180 200 200 200 200 980 
* 6 measurements for each batch of oil (5 batches prepared). 
** 25 samples produced with all the possible combinations of 5 batches of pure oils and 
5 batches of adulterant oils. 
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Table 2. Fatty acid relative composition of pure oils expressed as percentage of total 
chromatographic area. 

Oil type 
Fatty acid relative composition (%) 

Palmitic 
(16:0) 

Stearic 
(18:0) 

Oleic 
(18:1) 

Linoleic 
(18:2) 

Linolenic 
(18:3) 

Chia 7.30 ± 0.06 3.00 ± 0.02 0.70 ± 0.01 20.70 ± 0.11 68.30 ± 0.15 
Sesame 9.50 ± 0.08 5.30 ± 0.03 43.30 ± 0.27 41.50 ± 0.23 0.40 ± 0.00 
Corn 10.10 ± 0.08 2.20 ± 0.01 33.00 ± 0.20 53.90 ±0.30 0.90 ± 0.01 

Peanut 6.10 ± 0.05 2.00 ± 0.01 85.00 ± 0.53 6.80 ± 0.01 0.20 ± 0.00 
Soybean 13.70 ± 0.11 6.00 ± 0.04 1.40 ± 0.01 69.80 ± 0.38 9.10 ± 0.02 

Sunflower 6.00 ± 0.05 3.30 ± 0.02 30.20 ± 0.19 60.40 ± 0.33 0.10 ± 0.00 
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Table 3. Mean wavenumber values in cm-1 of the twelve peaks labelled in Fig. SM1 (Supplementary Material Section) obtained from FT-IR 
spectra of the pure oil samples. 
  

Oil 
sample 

Number of the peak from the spectra 
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 

Ch 3006 ± 3a 2951 ± 
2a 

2923 ± 
3a 

2850 ± 
1a 

1742 ± 
1a 

1649 ± 2a 1456 ± 2a 1372 ± 
2a 

1233 ± 
1a 

1156 ± 
1a 

1096 ± 1a 713 ± 1a 

Se 3004 ± 2a 2949 ± 
3a 

2915 ± 
1b 

2850 ± 
1a 

1742 ± 
1a 

1652 ± 2a 1459 ± 1a 1374 ± 
1a 

1233 ± 
1a 

1156 ± 
1a 

1096 ± 1a 721 ± 1b 

Co 3004 ± 2a 2948 ± 
2a 

2917 ± 
3b 

2850 ± 
1a 

1742 ± 
1a 

1652 ± 2a 1459 ± 1a 1374 ± 
2a 

1233 ± 
1a 

1156 ± 
1a 

1096 ± 1a 721 ± 1b 

Pe 3004 ± 1a 2949 ± 
1a 

2915 ± 
1b 

2850 ± 
1a 

1742 ± 
1a 

1652 ± 1a 1459 ± 2a 1374 ± 
2a 

1233 ± 
1a 

1156 ± 
1a 

1092 ± 
2b 

721 ± 1b 

So 3004 ± 2a 2949 ± 
2a 

2923 ± 
2a 

2850 ± 
1a 

1742 ± 
1a 

1652 ± 2a 1459 ± 1a 1374 ± 
1a 

1233 ± 
1a 

1156 ± 
1a 

1096 ± 1a 721 ± 1b 

Su 3004 ± 3a 2949 ± 
4a 

2923 ± 
1a 

2850 ± 
1a 

1742 ± 
1a 

1649 ± 1a 1459 ± 2a 1374 ± 
1a 

1233 ± 
1a 

1156 ± 
1a 

1096 ± 1a 721 ± 1b 

* shared superscripts represent statistically significance differences (p < 0.05). 
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Table 4. Performance parameters recovered from SIMCA and OC-PLS results for chia 
and sesame adulterated data sets. 
 

Case Method LV’s* SEN** SPEC*** 

Chia 
SIMCA 3 0.967 1.00 
OC-PLS 5 1.00 1.00 

Sesame 
SIMCA 3 0.967 0.948 
OC-PLS 4 1.00 0.992 

* LV’s: Number of latent variables used in each case. 
** SEN: Sensitivity performance value, calculated as SEN = TP/(TP+FN), where TP is 
the number of true positives and FN is the number of false negatives. 
*** SPEC: Specificity performance value, calculated as SPEC = TN/(TN+FP), where 
TN is the number of true negatives and FP is the number of false positives. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Highlights 

• FT-IR measurements were obtained for pure oils and adulterated chia and sesame 

oils. 

• SIMCA and OC-PLS were performed as untargeted methods with an error of 

prediction below 5%. 

• An adulteration proportion as low as 99+1 could be detected with minimum error of 

prediction. 

• GC-FID explained the differences obtained by the FT-IR and untargeted methods 

for chia and sesame oil adulteration. 
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