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Abstract

Precipitation plays a crucial role from a soci..” and economic perspective in Subtropical Argentina
(STAr). Therefore, it renders the need for ~ontinuous and reliable precipitation records to develop
serious climatological researches. Ho\ /e'er, precipitation records in this region are frequently
inhomogeneous and scarce, which makes it necessary to deal with data filling methods. Choosing
the best method to complete piociitation data series relies on rain gauge network density and on
the complexity of orogr~u.V, among other factors. Most comparative-method studies in the
literature are focused 0. de..s€ station networks while, contrastingly, the STAr’s station network
density is remarkably pour (between 10 and 1000 times lower). The research aims at assessing the
performance of several interpolation methods in STAr. In this sense, the performance of a large
number of interpolation methods was evaluated for dry and wet seasons, interpolating raw
monthly data and their anomalies applied to different time-series subsets. In general, most methods
performances improve when applied to anomalies in the seasonal time-series subset. Multiple

Linear Regression (MLR) stands out as the method with the best performance for infilling
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precipitation records for most of the regions regardless of orography or season. Despite the
bibliography invokes that kriging interpolation methods are the best ones, in this work the
performance of kriging methods was similar to the one of the Inverse Distance Weighted method
(IDW) and the Angular Distance Weighted method (ADW, the method used to generate CRU

precipitation dataset).

Keywords: Interpolation methods; missing data; monthly precipitation; time series; scarce data

1.1 1. Introduction

Subtropical Argentina (STAr) extends from central t¢ noi *h Argentina, east of the Andes,
roughly to the north of 34°S. In STAr the economic prodicun represents more than 80% of the
national gross domestic product. Its climate encompass.= <ix different climate regimes, ranging
from a monsoon-influenced humid subtropical clir.ia-2 in the east to a desertic climate in the west
(Beck et al., 2018). STAr is located inside the so. thern “La Plata” basin where most of the national
hydroelectric energy production takes placc ardJ it is also one of the major food production regions
all over the world (Magrin et al., 2005, Penalba and Vargas, 2008, Cuya et al., 2013). In the last
years, it has been observed that the hy dro,>swer and electricity produced in LPB, which represent
about 73% of the demand, have nee:. strongly modified not only by the population growth but
also by climate change (Popescu w* al., 2014). In addition, a significant reduction of about 30% of
the hydropower production is >xr.ected for Argentina according to projections for 2100 and for the
worst scenario of clinr.*e (har.ge, which could entail a cost in investments of the order of 30 billion
dollars (Turner et al., 20.7). Moreover, crop production has been altered by climate change
(Magrin et al., 2005) while large uncertainty exists in regard to its projected changes for both the
near and far future (Rolla et al., 2018). This makes the development of adaptation strategies remain
a challenge under study, in particular for large periods of drought (Wehbe et al., 2018). Thus,
continuous and homogeneous precipitation data records are necessary to correctly characterize the
changes that precipitation has suffered due to climate change and so planning policies that allow
the efficient use of hydrological resources (Kalteh and Berndtsson, 2007, Sattari et al., 2017).
However, precipitation data records in STAr show several missing values, and even gaps, which is

a drawback that extends to the whole of South America’s network of stations (Skansi et al., 2013).



Therefore, in order to achieve a complete dataset, missing values should be infilled, for example,
via interpolation methods.

There exist several interpolation methods that we classified into three big groups: spatial
methods (based on spatial variations), temporal methods (which use the co-variability between
time series) and spatio-temporal methods (a combination of the above, see Kyriakidis and Journel,
1999, for a review on space-time methods). The suitability of any of the well-known and
commonly used interpolation methods is not guaranteed for every region of the globe (de Amorim
Borges et al., 2016), and the choice of the technique is key since poorly performing interpolation
methods could introduce significant errors in hydrological model ouhuts (such as water balances,
streamflow and runoff; Vieux, 2001, Bardossy and Pegram, ?01..), in environmental model
simulations (such as crop yield estimations and drought seve “ity: Kajornrit et al., 2012) and may
lead to an inadequate climatological analysis (Price et al , 20C9)

1.1.11.1. Motivation

The literature is plenty of interpnla’ion method studies and a few of them assess
intercomparison of methods for maonthly precipitation data. In our exploration, some
peer-reviewed research works were s:lectey for relevance in order to assess such a goal and are
displayed in Table 1. For the sake )f sc'mmarizing their main outcomes, location of study regions,
density of stations per study remcn as well as best selected methods found by each study are shown
in Figure 1. Methods and thoir ecronyms are displayed in Table 2. It is apparent that Kriging’s
family of methods is mos'ly c.10sen among the best (i.e., OK, KED, CoK, RK, SKIm and KEM),
followed by the methods: MLR, IDW and NR. It is also evident that the good performance of a
method is dependent on the study region and network density. Though there is no consensus about
the best performance interpolation method for a region, it has been already accepted that regardless
of the method type, the performance of a method depends on the sample density, sample design,
climatological characteristics and topography (Collins, 1995, De Silva et al., 2007, Li and Heap,
2008, Di Piazzaet al., 2011, Burrough et al., 2015). Therefore, specific local studies are necessary
to determine the most indicated interpolation method since generalization is not plausible
(Aguilera et al., 2020).



Papers listed in Table 1 show a wide range of network density with differences of up to

four orders of magnitude (see Fig. S1). Most of the studies were carried out on regions with more
than 1 station per 1000km®. The study of Mair and Fares (2010) depicts the densest network for
the Makhaka Valley (ca. 76 stations per 1000km?). In the opposite extreme, the study of Sattari et
al. (2017) depicts the least dense network for southern Iran (ca. 0.08 stations per 1000km?). The

network density of STAr exhibits a mean network density of about 0.03 stations per 1000km?
which is less than half of the network density used in Sattari et al. (2017). This represents a real
challenge since the interpolation of precipitation in scarce meastrement areas is not only more
important but also more difficult (Wagner et al., 2012).

To our knowledge, a few studies assessing the perfor~:~nic2 of interpolation methods for
precipitation belongs to the Southern Hemisphere, and less in o2:ticular, focused on precipitation
networks in South America. One example is the study of Bai "ios et al. (2018) who examined a high
network density in the region of central Chile (which 7, two orders of magnitude higher than the
one in STAr). Another example is the study of 4¢ Ar.orim Borges et al. (2016) who assessed a
quite dense network within the Distrito Fed:ra, ot 3razil (which is one order of magnitude higher
than the one in STAr). Note that despite som. other researchers have used interpolation methods
either to infill station data or to generat~ gi:1ded precipitation datasets in South America (see, for
example, Liebmann and Allured, >"0L otelo et al., 2008, Gonzalez et al., 2012, Jones et al.,
2013), none of them have condici .1 a comparative analysis of at least two different methods’

performance.

Table 1: List of researci. works that study the performance of different interpolation methods.
Corresponding study region and reference number (#) from Figure 1. Acronyms of the best
methods found by every work (see the acronyms in Table 2). The current research is also included

in the list.

# Research work Study region Best methods

1 Bardossy and Pegram (2014)  Southern Cape (South Africa) CP and MLR

2 Barrios et al. (2018) Biobio basin (Chile) ANN, MLR and
IDW_h

3 de Amorim Borges et al. (2016) Distrito Federal (Brazil) OK, IDW, RK and
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Delbari et al. (2013)
De Silva et al. (2007)
Di Piazza et al. (2011)
Hwang et al. (2012)
Kurtzman et al. (2009)
Mair and Fares (2010)
Morales et al. (2019)
Pellicone et al. (2018)
Presti et al. (2010)
Sattari et al. (2017)

Tang et al. (1996)

Teegavarapu and Chandramouli

(2005)

Teegavarapu et al. (2009)

Terzi (2012)
Wagner et al. (2012)

Westerberg et al. (2010)

Xia et al. (1999)
Xu et al. (2015)

Yavuz and Eruc i, 2012)

Young (1992)

Yozgatligil et al. (2013)
Zhang and Srinivasan (2009)

Current research work

RIDW
northeast of Iran KED, OK and CoK
Sri Lanka IDW, NR and AA
Sicily (Italy) RK
Animas and Alapaha basin (USA) MLR
Yarkon-Taninim Basin (Israel) IDW

Makaha Valley (USA) NR

Tabasco state (Mexico) GCIDW

Calabria region (Italy) KED

Candelaro River Basin ('talv) TSLR and SBE

Southern Iran AA, MLR and
NIPALS

Klang River basi. (Malaysia) NR, MNR and IDW

Kentucky (1'34) CWM, ANN and
KEM

Ke:.t.cky (USA) FFSGAM

Tirkey MLR
Mula and the Mutha Rivers (India) RIDW
Choluteca River basin (Honduras) UK and CWM

Bavaria (Germany) UK and MLR
Sichuan Province (China) OK and CoK
Turkey OK

Arizona and New Mexico (United MDA

States)

Turkey NR, MP and MCMC
Luohe Rive (China) KED and Skim

Subtropical Argentina

Figure 1: Global map with the 25 peer-reviewed research works assessed in the current research, as

displayed in Table 1. Dot-marker denotes the study region corresponding to every research work.

The marker size is proportional to the natural logarithm of the amount of stations per 1000km?* for



each region. Numbers around markers refer to numbered works displayed in Table 1. Gray inset

roughly corresponds to the STAr region.

In addition, the requirements of continuity and homogeneity for precipitation time series
are not achieved in most of the precipitation rain gauge records of STAr whose rain gauge stations
are insufficient, sparse (see Fig. 1, Kidd et al., 2017) and, in general, inhomogeneous (Hurtado et
al., 2020b). Regarding the latter, Hurtado et al. (2020b) found that from all the observed
inhomogeneities in the precipitation time series of STAr, only two can be certainly identified as
climatic jumps (corresponding to the 1950s and 1970s) while the rei~aining breakpoints could be
erratic in essence. Even more, the authors discourage the use of cne <:ation located in the north of
STAr to carry out climatological studies because they suspe ~t that its records are not trustful in
almost the whole period, but primarily in the early perio~.

In summary, to the best knowledge of the authors, so far there has been no research work
assessing the performance of interpolation metlons neither in STAr nor in any region that
comprises it. Moreover, in the revised literat'== 1.2 research work presents a region with such poor
network density as the one of STAr, whic® could be an important factor in the interpolation
method performance (Wagner et al., 20.”). Therefore, the present work aims at complementing
Hurtado et al. (2020b)’ results from e daa-quality-control perspective through the data filling
analysis of precipitation time serics in STAr. This is performed by assessing the best method for
interpolating missing values ~t monthly precipitation records in STAr. With this aim, the
performances of 19 differe~t 1,:~.nods and 32 different sub-methods are compared. The evaluated
interpolation methodc « e « ~1ection of the most commonly used for precipitation, plus a selection
of methods that, to the ~.chors’ knowledge, has not been assessed yet for interpolating missing
precipitation data, such as GAM or RMLR. Secondly, an open-source R package was designed
with all the used methodologies in this work to make them available to anybody for future
applications to any dataset. In Section 2, the used data are presented and the different methods and
sub-methods are described; the errors of each method are evaluated in Section 3.1; the variability
is analyzed in Section 3.2; the spatial distribution of errors for MLR is presented in Section 3.3; the
method’s errors in the extremes precipitation values are analyzed in Section 3.4; a discussion of
the results is offered in Section 4; and, finally, a summary and conclusions are presented in Section
5.



Table 2: Interpolation method, its acronym, brief description and corresponding reference.

Methods used in the current work are highlighted in bold.

Method Acronym Description References
Nearest Neighbor NN The nearest neighbor value. Sattari et al. (2017)
Single Best Estimator SBE The value of the neighbor station with Teegavarapu and

the highest linear correlation. Chandramouli (2005)
Arithmetic Average AA The spatial average of nearby stations. Sattari et al. (2017)
Climatological Mean Clim_AAMonthly mean of all records fo. the

same month.
Arithmetic Median AM The spatial median of nearby stations.
United Kingdom UK As SBE but multip’.c v the ratio of Sattari et al. (2017)
traditional method the mean precipitatic.- at the target

station and tr = *efzrence station.
Normal Ratio (original) NR_1952 The meZ o. the spatial precipitation Paulhus and Kohler
values ."cighted by the ratio of the  (1952)
mea,> Drecipitation at the target station
al J each reference station.
Normal Ratio (modified) NR Tie mean of the spatial precipitation Young (1992)
values weighted by the student t
statistic of the correlation between the
target station and each reference
station.
Correlation Weighting CWM  The mean of the spatial precipitation Teegavarapu and
Method values weighted by the correlation ~ Chandramouli (2005)
between the target station and each
reference station.
Inverse Distance IDW The mean of the spatial precipitation Di Piazzaetal. (2011)
Weighting Method values weighted by the inverse of the
distance between the target station and

each reference station elevated to K.



Angular Distance
Weighted

Revised Nearest Neighbor RNNW

Weighting Method
Ordinary Kriging

Kriging with External
Drift

Theil Sehn Linear

Regression

Multi-Linear Regression

Robust Multi-Linear

Regression

Generalized Additive
Model

Optimal Interpolation

ADW

M
OK

KED

TSLR

MLR

Ol R

GAM

0]

Similar to IDW but add a weight New et al. (2000),
corresponding to isolation of station inHarris et al. (2020)

a direction

As IDW but with a redefined measure Teegavarapu and
Chandramouli (2005)
Weighted mean method based on the Erxleben et al.
(2002),
Vicente-Serrano et al.

of distance.

spatial dependence structure of the
data. The weights are given by a
theoretical variogram model fa.~d to  (2003)
the semivariogram of the d*a.

The KED assumes that \"e ir.terest ~ Snepvangers et al.

variable mean depe~.Js 1 auxiliary  (2003),
variables. It is usefin ~nen the variableVicente-Serrano et al.
itself is relate d *o 2ther spatially (2003)

known *~richles, such as elevation.
Linear "= gression that estimates the  Sen (1968), Theil
slop > by the median of the slopes of all(1992)

lires wirough all pairs of points.
Multi-linear regression based on Young (1992),
Simolo et al. (2010)

Multi-linear regression based on the Hampel et al. (2011),

ordinary least squares.
MM-estimator. Venables and Ripley
(2013)

Statistical model that combines the  Hastie and Tibshirani
essence of General Linear Models and (1987)

Additive models.

Statistical model based on the Eischeid et al. (2000)
estimation of a first guest value to each

station and then the computation of the

weighted mean of the first guest error

to correct the estimated value.



Artificial Neural Network ANN

Co-Kriging CoK

Copula Based CP

Fixed function set genetic FFSGAM Method based on predefined

algorithm method

Generalization of the GCIDW
modified correlation
coefficient with the

inverse distance weighting

method

IDW modified to add IDW_h
height

Locally Weighted LWP
Polynomial regression

Monte Carlo Markov MM
Chain

Multiple Discriminant ~ MDA
Analysis

Modified Normal Ratio MNR
Multilayer Perceptron MP
Nonlinear estimation by NIPALS

Iterative Partial Least

Square

Methods based on neural networks  Teegavarapu and
Chandramouli (2005)
The CoK assumes that the interest ~ Delbari et al. (2013)
variable mean depends on auxiliary

variables, such as elevation.

Method based on multivariate Bardossy and Pegram

cumulative distribution functions. (2014)
Teegavarapu et al.
functional forms whose coeffic.~nts  (2009)

are then estimated by optim.‘zat on
procedures.

Generalization of 12"/, ~odified to
add height

Morales et al. (2019)

IDv." modified to add height Barrios et al. (2018)

Spatial regression based on nearest  Hwang et al. (2012)
neighbors

Method based on multiple imputationsYozgatligil et al.
(2013)

Method based on empirical orthogonal Young (1992)

making a Markov Chain.

functions

NR modified with a weighted Singh (1988)
parameter

Specific Neural Network Yozgatligil et al.
(2013)

Iterative method based on Principal ~ Sattari et al. (2017)

Component Analysis



Residual IDW RIDW  IDW applied over the residuals of ~ Wagner et al. (2012)
another method.

Residual Kriging RK OK applied over the residuals of Di Piazzaetal. (2011)
another method.

Simple Kriging with LocalSKIm  Simple Kriging applied over the Zhang and Srinivasan

Means residuals of another method. (2009)
Kriging Estimation KEM Normally KEM is referred to OK or
Method Simple Kriging.

1.2 2. Data and Methods

1.2.12.1. Data and study region

Monthly precipitation records from a total of s.xty-*wo weather stations provided by the
Argentine National Meteorological Service (S'/MN, after its Spanish abbreviation,
https://www.smn.gob.ar/) were used (see ‘rawle 2). These weather stations follow the World
Meteorological Organization (WMO) stanards and they are part of the WMO Global

Telecommunication System (GTS). As it 1. shown in Figure 2, the stations are distributed all over

STAr. The records started betweer the ~d of the 19" century and the end of the 20" century.
The study region is characterize«( by 2 low weather station density (62 weather stations in an area
of about 1,541,898km?), which 2presents a density of one weather station per 24,869km?*. Two
stations (87127 and 8736 Y, se Table 3) were not used to analyze its interpolated time series since
they have less than 100 re. ords.

Most of the stations present a marked wet season from October to April and a dry one from
May to September (see Fig. S2, and Hurtado et al., 2020a,b). Besides, a zonal gradient of annual
accumulated precipitation is observed, presenting drier conditions to the west and wetter
conditions to the east (Barros and Silvestri, 2002). According to the global climate classification
from Beck et al. (2018), the region encompasses monsoon-influenced humid subtropical climate
(CWa), humid subtropical climate (CFa), cold semi-arid climate (BSk), hot semi-arid climate
(BSh), cold desert climate (BWK), and hot desert climate (BWh).

Table 3: Subtropical Argentina Rain Gauge Stations



Journal Pre-proof

Stations OMM number Lat Lon Z (m)
La Quiaca Obs. 87007 -22°6>  -65°36° 3459

Tartagal Aero 87022 -22°39°  -63°49° 450

Jujuy Aero 87046 -24°23°  -65°5° 905

Metén 87050 -25°29°  -64°48° 855

I

Las Lomitas 87078 -24°42>  -60°35° 130

Tucuman Aero 87127 -26°51° -65°6> 450

S
{

Santiago del Estero Aero 87179 -27°46°  -64°18° 199
93
Resistencia Aero 87155 -27°27° -59°3> 52

| )

Bernardo de Irigoyen 87163 -26°15” -53°39° 815

Ituzaingo 87173 -27°35°  -56°40° 72

i
d

87187 -27°29°  -55°8° 303

@)
o
D
o
[N
>
D
=
o

87213 -29°14°  -67°26° 947

@]
=
@
o
=
)
>
@
@
o

Catamarca Aero 87222 -28°36° -65°46° 454

Ceres Aero 87257 -29°53° -61°57° 88

Mercedes 87281 -29°13° -58°6° 107
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Jachal 87305 -30°14> -68°45> 1175
Chamical Aero 87320 -30°22° -66°17° 461
Villa Dolores Aero 87328 -31°57° -65°8” 566
Coérdoba Observatorio 87345 -31°24> -64°11° 425
Pilar Observatorio 87349 -31°40° -63°53" 338
e N
Rafaela 87360 -31°16> -61°30° 99
e Ny
Parana Aero 87374 -31°47° -60°29° 78
e T
Concordia Aero 87395 -31°18> -58°1° 38
X

San Carlos 87412 -33°46> -69°2° 940
Mendoza Aero . 87418 -32°50° -68°47° 704
San Luis Aero ‘ 87436 -33°16° -66°21° 713

NNY
Villa Reynolds Aero 87448 -33°44>  -65°23° 486
Marcos Juarez Aero 87467 -32°42° -62°9° 114

El Trébol 87470 -32°12°  -61°40° 96

Gualeguaychu Aero 87497 -33°0°  -58°37° 23

San Rafael Aero 87509 -34°35 -68°24> 748



Laboulaye Aero 87534 -34°8> -63°22° 137

Figure 2: Location of the 62 weather stations (open dots) in Subtropical Argentina and its elevation

(Z). Red squares mark three regions that are evaluated in Section 4.

1.2.22.2. Preprocessing data treatment

Before analyzing the interpolation method performances, a thorough quality control
analysis was performed. First, values greater than the median plu: three times the interquartile
range were regarded as atypically extreme. These extremes, as \ /ell s zero values, were verified
by contrasting records with their neighbors’ stations. For data afte 1979, this verification included
also the inspection of monthly outgoing longwave radiation ~nomalies to assess its reliability (not
shown). From this analysis, few records were conside: > 4s errors and so were set as missing
values. It is also relevant to make a breakpoint - .lysis to guarantee the homogeneity of the
precipitation time-series, which is an essentic! reyuirement for the interpolation procedures
(Stpanek et al., 2009). Otherwise, breaki.nin’s in time-series will alter the co-variability of the
data and, consequently, the performar.ce of the interpolation methods would be impaired. The
breakpoint analysis for the current pr.:c’, *ation dataset in STAr was performed by Hurtado et al.
(2020b). As was mentioned in the inunauction, the authors have shown two main climate jumps
(natural breakpoints) in 1956 an.' other in 1976. Given these climatic jumps and the fact that the
data records are scarce in ti.~ erlier periods of the records in STAr, the current research was

carried out by using tF~ ata cnly from 1979 to 2017.

1.2.32.3. Interpolation Methods

Table 2 shows the interpolation methods considered in this work with a brief explanation
of each one, corresponding acronyms used hereinafter and the reference of some works that
applied them. The Kriging methods (OK and KED) need to fit a theoretical variogram to the
empirical variogram in order to perform the interpolation. So, four theoretical variogram models
were used: Gaussian (Gau), Exponential (Exp), Spherical (Sph) and Matern (Mat). Both OK and
KED methods were used in five different forms, selecting the best fit to the empirical variogram

using maximum likelihood (referred as OK and KED) and using one of the fixed models



mentioned above (referred as OK_model and KED_model, in combination with Exp, Gau, Mat,
and Sph). For KED, the secondary variable used was elevation since Ly et al. (2013) found that
KED applied with elevation outperforms the other methods. Kriging methods were not used to
interpolate precipitation values in "La Quiaca Obs." station (see Table 3) since there are few
stations in the surroundings and the computation systematically failed.

Considering that the Ol method requires a first guest estimator, two different estimators
NN (O1_NN) and SBE (Ol_SBE) were used. The regression methods (MLR, TSLR, and RMLR)
were computed through the raw data as well as with the ranked-data, which produces a ranked
regression (Presti et al., 2010). These variations in the regression mewads are denoted as MLR_rk,
TSLR_rk, and RMLR_rk.

1.2.42.4. Statistical Analysis

Statistical and mathematical analysis and th< J'itferent graphics presented in this work were
all made in R. Among the R’s packages used wc <an wention ggplot2 (Wickham, 2016), ggsn and
knitr ((Xie, 2014, 2015) for visualization, and gam (Hastie, 2011), MASS (Venables and Ripley,
2013), sp (Pebesma and Bivand, 2005, Civand et al., 2013), RobustLinearReg (Hurtado, 2020) and
gstat (Pebesma, 2004, Pebesma and dz.velink, 2016) for calculus. All the computed methods
were documented in an open-soticce R package made for this research work, available in the
following link: https://github.co:./saritiagoh719/MissingData.

Every observed valu> ot each station was interpolated with every method in order to
calculate the error of ew~h r.ne, implementing a Leave-One-Out Cross-Validation (LOOCV)
method (Sammut and Wt bb, 2010). Since precipitation can not be negative, all the negative
interpolated values were set to zero. To assess the performance of each method the Standardized
Root Mean Square Error (SRMSE) and the Standardized Mean Error (SME, Haberlandt, 2007)

were used as measure of error:

\/zt”;[lnti,,-(t)—Obsi OF
SRMSE, , =

n
‘ 1
> Obs (1) @

n

t



> It (t)—Obs, (t)

n,
SME, , = )

Z”I Obs, (t)

n

t
Being Obs the observed value and Int the estimated value by the interpolation method with i

corresponding to the i-th station, j the j-th interpolation method and n, is the length (time steps)

of Obs and Int.

The election of the SRMSE lies in the fact that not onlyis i* a typical measure of error, but
also it provides an estimation of the average error. The SME wez <eiwccted in order to assess the
bias of the methodologies, since it gives a notion of the systemz*ic = er- (under-) estimation error.

In order to apply an interpolation method, a subset 01 Jz.a (predictors) must be selected.
The subset is usually taken from stations near the targ=cea -tation. To objectively select the best
subset of predictors for every targeted station and methud, < different subsets of predictor stations
were used, consisting of all the stations at a dista ~e 'ower than 1200km, 200km, 300km, 400km
and 500km, respectively. Then, for every m.ett 2d «nd targeted station, the subset with the lowest
SRMSE was selected. In addition, IDW, ADV.' and RNNWM methods depend on a free parameter
k. To select the best k for each station #~d 1.,~athod, they were computed with k varying from 0.1 to
10 with a step of 0.1, and then the s':hse* #.nd k value with the lowest SRMSE was selected for that
method and station. Moreover, AL\ was also applied with the parameters used in the globally
monthly precipitation dataset C.°L (Harris et al., 2020), which is k =4, and a search radius of
450km, this is noted in the n.anuscript as ADW_CRU.

For clarity, the in.~rpolation methods were separated and ordered into groups: regression
methods (MLR, RMLR, TSLR, MLR_rk, RMLR _rk and TSLR_rk), GAM, single estimation
(NN, SBE and UK), average estimation (AA, AM, Clim_AA), inverse distance (ADW,
ADW_CRU and IDW), weighted mean (RNNWM, CWM, NR and NR_1952), Optimal
Interpolation (OI_NN and OI_SBE), kriging with external drift (KED, KED_Gau, KED_Exp,
KED_Sph and KED_Mat) and ordinary kriging (OK, OK_Gau, OK_Exp, OK_Sph and OK_Mat).

Furthermore, the interpolation methods were applied to four different time series for every
season (dry and wet): the full-year observed data (absolute value) time series (denoted in the text
as "Full-yr. Series"), the seasonal subset of the observed data (absolute value) time series (denoted

in the text as "Season Subset") and their corresponding time series of anomalies (absolute values



minus monthly means of the 30 yr. period 1980-2010). Thus, on the one hand, we obtain two sets
of interpolation coefficients: one for the observed full-year time series and another for their
anomalies, which are the same sets used to evaluate in both wet and dry seasons. On the other
hand, we obtain two sets of interpolation coefficients: one for the wet subset time series and
another for the dry subset times series; and two more sets for their corresponding time series of
anomalies.

To further explore the interpolation methods performances, Pearson’s first-moment
correlation coefficient between the interpolated data and the observations was calculated. Also, the
Kolmogorov-Smirnov test (Conover and Conover, 1980) was u.~d to assess the difference
between the empirical probability distribution of the observed «nd t1e interpolated data. Its null
hypothesis states that both the theoretical (interpolated) ara the real (observed) data follow the
same probability distribution.

Finally, to investigate the regional performance o1 .“(iging methods, the Moran’s | (Moran,
1950), a measure of the spatial autocorrelation, we s computed to test if the data are either spatially

autocorrelated or randomly distributed.

1.3 3. Results

1.3.13.1. Methods e¥1or

In Figure 3 it is shown the method’s SRMSE boxplot for every applied time-series and
season. It can be noticed *nav in general, the SRMSE is greater for the dry season, where the error
can be 10 times greater 1. an the mean value. The methods MLR, MLR_rk, RMLR and RMLR_rk
(NN, SBE, OI_NN, Ol_SBE, RNNWM and Clim_AA) present the best (worst) performance in all
cases, being the SRMSE values in general lower (greater) than 0.5 for the wet season and lower
(greater) than 0.7 (1) in median for the dry season. In addition, GAM presents a notable
improvement when the anomalies’ series are used while methods like NR_1952 and UK worsen.
In general, the use of anomalies for interpolation gets smaller SRMSE high values, especially in
spatial methods such as IDW, ADW and Kriging methods, but does not present much difference in
regression methods (see for example MLR or RMLR). Further, regardless of the time series used
as input, there are no many differences between AA, AM, IDW, ADW, ADW_CRU and Kriging
methods. The only relevant difference is that Kriging methods, in comparison, present greater



(lower) high values in the wet (dry) season. Note that, for both wet and dry season MLR followed
by GAM present the lowest SRMSE values, when applied with the season subset over anomalies,

presenting SRMSE values mostly between 0.3—0.5 (0.3—0.8) for the wet (dry) season.

Figure 3: Boxplot of the spatial variation of the Standardized Root Mean Square Error (SRMSE),
discriminating each method described in Table 2, wet and dry seasons, the used time-series (the
full-yr. time-series or the season subset time series) and if computation was made using observed
data (raw) or their anomaly. The scale is logarithmic for better visualization. The filled colors of

boxes represent each method group. Vertical black dashed lines seuaate the method groups.

Figure 4, alike Figure 3 but with SME instead of SRN.SE. In this case, for SME, the usage
of anomalies represents an outstanding improvement, fr.. ~ui,~ost all methods, reducing the error
variability around zero with respect to the observed seric.  The methods that stand out for their
good performance, in most cases, are GAM, MLR NR 1952, UK and Clim_AA. The almost zero
value of SME for Clim_AA is expected, give: the methods’ characteristics. However, all methods
present difficulties in reproducing monthly  ecipitation for the dry season, in concordance with
the results for SRMSE (see Fig. 3). In nis sense, almost all methods tend to overestimate the
precipitation values showing bias ur 0 ,.1 SME in median, with the exception of the robust
regression ones (MLR_rk, RM. R, RMLR_rk, TSLR, TSLR rk) and AM that tend to

underestimate the real values, .~acing up values lower than 0.5 SME of median.

Figure 4: As Figurc ?. 2uc showing the Standardized Mean Error (SME) and using an
arcosinushiperbolic scalz. The scale is for better visualization. It is used in place of the logarithmic
scale since the latter is not defined for negative values and it shows problems with values close to

Zero.

In summary, from Figures 3 and 4, it can be seen that in general the methods perform better
when they are applied with series of anomalies to the corresponding season time series. The
regression-based methods (MLR, MLR_rk, RMLR, RMLR_rk, TSLR and TSLR_rk) show little
differences between the usage of the anomaly or the observed data. MLR outperforms the other

methods for the wet season, except for GAM that shows a better performance in terms of SME. For



the dry season, MLR and, in general, GAM present the best performance when the seasonal time
series are considered as input. In addition, in almost all the stations, MLR presents the lowest
SRMSE being the method that is selected most times as the best while GAM is the second-best for
the anomalies’ case (see Fig. S3). Since the usage of the full-yr. time-series for the dry season
presents greater errors regardless of the method used (see Fig. S4), henceforth the analysis of the

methods’ performance using the full-yr. time-series will not be considered for the dry season.

1.3.23.2. Variability

For climatology studies, it is imperative that the infilled salu>s reproduce the time series’
variability. To assess this, the correlation between the interfola.>d time series and the real-time
series was computed (see Fig. 5). In general, the most of th. methods present correlations greater
than 0.6 in median. MLR, and its ranked version, shuwv 7. good performance reproducing the
precipitation variability independently of the cons’u. ved time series (anomalies or observed) and
on the season. Moreover, MLR presents corre! tion values over 0.8 for more than 50% of the
stations for all cases, which represent mc.= than 64% of explained variability. Besides, GAM
presents very high correlation values (a. ~und 0.8) for the anomaly time series. On the other hand,
lower correlations are observed espe :i=.n  Tor Clim_AA, that present correlations mostly under
0.4, and also for the methods NRR_.252 and UK when applied to the anomalies time series,
showing in general correlations "nder 0.4. RNNWM presents a poor performance in all cases,
reaching negative correlatior. fo- several studied stations. Finally, little or no difference is shown
among the performan~.= ¢ thr, other methods. In general, the median of the correlation is around

0.7 for the remaining metr ods, which implies around 50% of explained variance.

Figure 5: Boxplot of the correlation between the interpolated time series and the observed ones for
each method, each box contains one value per weather station showing spatial variations. Results
for observed input are shown in the left column and for anomalies in the right column. Rows in the
upper (lower) panels correspond to wet (dry) season using the season subset time-series and the
full-yr. time-series subset as input; for dry season only for the season subset was used as input. The
filled colors of the boxes represent each method group. Vertical black dashed lines separate the

method groups.



To complete the previous analysis, Figure 6 shows the percentage of stations in which the
Kolmogorov-Smirnov’s test null hypothesis was rejected for each method at different significance
levels. The better (worse) the method, the less (more) times the null hypothesis is rejected. As
expected, the higher the level of significance, the lower the percentage of stations where the null
hypothesis is rejected, being more evident for the anomaly precipitation series. It can be seen that
most of the methods have difficulties reproducing the distribution of the precipitation time series
for the dry season, particularly for the observed one. Contrastingly, NR_1952 and UK show a
higher level of rejection for the anomalies’ time series. In general, My R, GAM and RMLR present

the best performances.

Figure 6: Heatmap of the percentage of stations i v.hich the null hypothesis of the
Kolmogorov-Smirnov test is rejected at a significance wevel of 0.01% (first row), 0.05%
(second row) and 0.1% (third row), type of seri: ~nd season. The values over 40% are filled

with black. Vertical white dashed lines separz:= w2 method groups.

1.3.33.3. Spatial distribt ac.> 0 MLR’s SRMSE

In this section, the spatial Aisti.,"ution of MLR’s SRMSE is analyzed since it is the method
that presents the best performanc~. Figure 7 (left panels) shows the MLR’s SRMSE presenting a
marked difference between .~ west and east region. Lower errors are found in the east region (in
general bellow 0.4) ar Y h.ahe. toward the west near the Andes (reaching values greater than 0.8).
Larger errors are observeo for the dry season rather than for the wet season. SRMSE presents high
values (that can reach values up to ca. 3) in the north-western region for the dry season, while for
the wet season the greatest errors are located in the central-western and south-western of STAr.
The lowest errors (lower than 0.3) are around 32°S and between 65° —60°W . When selecting
the best implementation option ("Anomaly" and "Season Subset™), in wet season, the SRMSE is
always lower than 1.1, and in dry season lower than 1.5 with the exception of "La Quiaca Obs."
station. Moreover, for the wet (dry) season the SRMSE is greater than 0.8 (1.1) only in four
stations and it is mostly under 0.4 (0.6) being the median 0.37 (0.48).



"La Quiaca Obs" presents large SRMSE values in the dry season for all methods, being the
lowest of 2.93 for MLR, applied with "Season Subset" over anomalies. SRMSE values in "La
Quiaca Obs" in dry season are greater than 10 for half of the methods and greater than 5 for
three-quarters of them. These large SRMSE values are due to the actual lack of rainfall in the dry
season for this particular station (1.15mm of the monthly mean for dry season), making errors of
3mm be really huge relative errors.

Moreover, in the right panels, it is shown the average value of SRMSE for each station
regarding all methods divided by the MLR’s SRMSE, in order to detect the regions where MLR
represents an improvement in comparison with the other methods. ¢ can be observed that MLR
represents a considerable improvement in the whole region, esy.<cizIly in central-western STAr
from the Andes to the Cérdoba mountain range, outstandins .1 th2 dry season, where the average
SRMSE of the other methods can exceed for more than 2 wme2 the MLR’s error. It is worth saying
that the spatial distribution of GAM’s SRMSE is as the 9one of MLR but with greater values,

especially in central and south-central STAr (see Fic. £5).

Figure 7: Map of the MLR’s SRMSE (le1. "«anels) and the ratio of the average SRMSE of all
methods for each station and the MLR S RMSE (right panels) for every form of application and
season. Discrete color scales displaye « tne ratio (upper scale) and the MLR’s SRMSE (lower
scale). ‘La Quiaca Obs.” station is Yenoced by an asterisk marker. Stations with values of the ratio
lower than 1.25 are not shown.

1.3.43.4. Errors in observed extremes

Every method’s errors were analyzed for high and low extremes since all interpolation
methods tend to underestimate (overestimate) high (low) extremes (Teegavarapu, 2014). In order
to summarize, each method was evaluated using the best configuration (observed or anomalous
time series, full yr. or season subset time series) according to the results found in previous sections.
Figure 8 shows the global (considering all interpolated values) root mean squared error (RMSE;
panel a) and also the global mean error (ME; panel b) for different subsets of data according to the
percentile of observed values. It is notable that for both wet and dry seasons, MLR (GAM) has the
lowest (second lowest) global RMSE considering all the data and also considering only observed



values over the percentile 75" and 90". For low precipitation values (observed precipitation

lower than the percentile 25" and 10"), MLR_rk stands out with the lowest RMSE values
followed by RMLR_rk for both dry and wet seasons. In general, MLR and GAM present the best
results (in terms of RMSE), with values among the five lowest in all cases, followed by MLR_rk,
RMLR and RMLR_rk. The ME for all methods are positive for low observed precipitation values
(overestimate low extremes) and is negative for high observed values (underestimate high
extremes), in concordance with Teegavarapu (2014). For the low precipitation values, the ME
values are in general similar and with little differences among methods, but for both dry and wet
season UK, Clim_AA, RNNWM and NR_1952 stand out with larne 1 ."E values. Also, for the low
precipitation values the ME values MLR, RMLR, MLR_rk and ”M.LR_rk show the lowest ME
values for both seasons. For high precipitation values, ML,> @1 _NN, Ol _SBE, NN and SBE

present the best ME values followed by GAM (which is the o™ best value, not marked) for both
seasons. Despite the good performance in terms of ME of .>ese methods, MLR and GAM are the
only ones that present a good performance in terms ¢ 0.obal RMSE (see Fig. 8 panel a) and also in
terms of SRMSE (see Fig. 3).

Figure 8: Global root mean squared errnr ("MSE, panel a) and global mean error (ME, panel b) of
each method for dry (left panels) an1 'wet (right panels) season. The RMSE and ME were
calculated for the best configura’io.> (observed or anomalous time series, full yr. or season subset
time series) for each method. e markers denote the five best values (those that are closest to
cero). Each color line refrss (1 a different subset of data used to compute the RMSE, being <P10

(<P25) the subset of oucerved values lower than the 10™ (25™) percentile, >P75 (>P90) the

subset of observed values greater than the 75" (90™) percentile, and All no subset.

Figure 9 shows the smooth curves of absolute error corresponding to the observed values.
The smoothing method used was general additive models, implemented in the package mgcv
(Wood, 2011). The GAM, MLR, MLR_rk, RMLR and RMLR_rk methods are in color to highlight
that they have presented the best global RMSE values (see Fig. 8). In general, MLR tends to have
the lowest absolute errors, followed by GAM and RMLR. In fact, for the wet (dry) season, it can be
observed that MLR’s absolute errors are the lowest for observed values greater than 155 (30) mm.

As expected, MLR_rk and RMLR _rk present the lowest errors for the low observed values (see the



zoom panels). Furthermore, the inter-method spread is greater (lower) for the wet season than for
the dry season for low (high) observed values. This implies that there are less differences between

the methods’ error for low (high) precipitation values in the dry (wet) season.

Figure 9: Smooth curves for each method of absolute errors regarding the true observed value. The
smooths were calculated for the best configuration (observed or anomalous time series, full yr. or
season subset time series) for each method. In colors, the GAM, MLR, MLR_rk, RMLR and
RMLR_rk methods are highlighted. Lower panels show a zoom of the lowest precipitation values.

1.4 4. Discussion

Previous studies found that Kriging methods, in paru-ular methods with elevation as a drift
variable such as KED or CoK, are among the best . ~terpolation methods (Teegavarapu and
Chandramouli, 2005, Li and Heap, 2011, Di Piazza 2t al., 2011, Ly et al., 2013, ; see Table 1).
Other works emphasize the inclusion of elevaticn as a secondary variable in low network density
areas (Di Piazza et al., 2011, de Amorim 'orr,es et al., 2016). However, according to our results
for STAr, Kriging methods do not shov. an outstanding performance in comparison with the other
spatial methods and have similar pe fc,mance to IDW, ADW and even AA. All these spatial
methods present poor performances wth mean SRMSE values around 0.45 (0.8) for the wet (dry)
season.

Furthermore, there v.as no much difference between OK and KED (with height as a
secondary variable). 2And ~ver, OK outperformed KED in regions of complex orography (see Fig.
10). These results are suported by the findings of Kajornrit et al. (2011), who showed that OK
performs, in general, better than CoK with elevation as a secondary variable. In addition, the
different statistics analyzed in the present work show that the best-fit variogram model used for
Kriging methods does not guarantee the best performance, being the exponential variogram model
the best one (see Fig. 10 and Fig. 3, 4, and 5).

Figure 10: Map of the SRMSE difference between KED_Exp and OK_Exp (left panels), KED and
OK (mitle panels), and OK and OK_Exp (right panels) for each season applied over anomalies

because it shows lower errors than applied over the observed data (see Fig. 3, 4).



A factor that could threaten the good performance of Kriging methods in STAr (and also of
spatial methods) could be the low spatial autocorrelation of precipitation in the region. In Figure
11 it is shown the Moran’s | (spatial autocorrelation) calculated for every month and for three
different regions within STAr: region 1 (R1) at the south, region 2 (R2) at the northeast and region
3 (R3) at the northwest of STAr (all these regions are marked in Fig. 2). These domains represent
different regions in terms of orography; R1 in the Cérdoba mountain range, R2 in the subtropical
plains, and R3 in the Andes. According to Figure 11, precipitation time series are not spatially
autocorrelated for any month at confidence levels of 99%, 95% or 0% for regions R2 and R3,
while for R1 only a few months present significant spatial autocc rel:.tions but most do not. Thus,
such poor spatial autocorrelations of observed precipitatio. could be due to the poor station
network density, and perhaps to the climatological .ha.acteristics typical of the STAr’s
precipitation. In this sense, better performances of the Kriy -1g methods, as good as those shown by
previous works, could be expected if the station nc tv,0"k were denser than it currently is.

Figure 11: Boxplot of the p-value of the Mo, ~ 1’s | spatial autocorrelation of monthly precipitation
for all months in the period 1979-2017, u. the regions R1, R2 and R3 shown in Figure 2. The three

dashed lines are the boundaries for con’10=nce levels of 90%, 95% and 99%.

15 5. Sumr.ary and Conclusions

This work cor.nle:ad tne data-quality-control analysis of precipitation time series in STAr
started by Hurtado et al. (2020b). An exhaustive comparative analysis has been done in STAr, a
region with few stations and scarce data. The performances of 19 different methods and 32
different sub-methods to fill missing values of monthly precipitation records have been assessed.

Our results show that the evaluated interpolation methods present better performance for
wet season and in wet regions than for dry season and in dry regions (see Fig. 3, Fig. 7, Fig. S4,
Fig. S5). In general, most methods perform better when applied to precipitation anomalies using

the corresponding season’s time series subset, in concordance with the findings of New et al.
(2000).



Overall MLR presents the best performance in terms of SRMSE, SME, correlation, and KS
test. In addition, GAM shows a good performance mostly when precipitation anomalies are
considered and has proven to be good at reproducing the monthly precipitation distribution (Fig.
6). The good performance of GAM is remarkable since, to the best of our knowledge, until the date
there has not been any research work that has analyzed GAM’s capacity at interpolating missing
precipitation records. Analysis of GAM performance in other regions is encouraged since not only
presents an outstanding performance but also its implementation is effortless. MLR_rk, RMLR
and RMLR_rk also present good performances but their implementation requires a greater
computational effort. Even though MLR is the method with the lovwt errors, it presents SRMSE
values around 0.37 (0.48) that represent the 37% (48% ) of the observed monthly mean
precipitation for the wet (dry) season. Considering these .2rge errors (especially for the dry
season), in future works the usage of satellite and reanal’,.*s Jata for interpolating missing values
in rain gauges will be examined.

The methods that were shown to be th: most efficient in reproducing monthly
precipitation, i. e. MLR and GAM, can only £~ u.~d to interpolate station data but they are unable
to generate a gridded dataset. From the an.".zed methods that allow the generation of regional
gridded datasets, there is no clear overa.' preference among IDW, ADW and Kriging methods.
Thus, choosing among these methods v 1l uepend on the study season, since IDW and ADW have
a lower maximum SRMSE value . an Kriging method for wet season, and the opposite occurs for
dry season (see Fig. 3). On the ~thcr hand, according to Ruelland et al. (2008) it may be preferable
to use IDW rather than OK. fo “ydrological modeling since they found that these methods are the
most efficient for impuing "ionthly precipitation records but that IDW yields the most realistic
model results. Neverthel-.s, it is notable that the SRMSE values for these methods are, in general,
rather large being the median around 0.45 (0.8) and the 75" percentile around 0.6 (1.1) for the
wet (dry) season.

On balance, the current study has done a thorough analysis of interpolation methods for
infilling monthly precipitation records using a weather station network located in STAr, which
shows a low and heterogeneous spatial distribution. The aforementioned methods performances
could differ if the study is replicated using different region data and/or through the use of a denser
station network. Hurtado et al. (2020b) and the present work were carried out to generate

continuous, homogeneous and reliable precipitation data records in the subtropics of Argentina.



Future works will examine the spatial and temporal variability of precipitation patterns, their
potential climate forcing mechanisms, which would complement previous works such as Hurtado
and Agosta (2020).
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1.7 Supplementary Mate’ 1c 's

Figure S1: Boxplot of density o1 ~tations (amount of stations per 1000km?) in the peer-reviewed
works from Table 1 (marked a5 “Other Studies”), and the density of stations in subtropical
Argentina calculated 7or ~ack station with a radius of 500km (marked as "500km Ratio"). The

graph is in logarithmic scr.e for better visualization.

Figure S2: Monthly mean precipitation (annual cycle) for every station used in this study from
Subtropical Argentina. Solid curve in color represents the annual cycle for each station. Each

boxplot for the spatial distribution of monthly mean precipitation among stations is shown.

Figure S3: Percentage of the total number of times, regarding all stations, in which each method
has been selected as the best (in red color), the second-best (in yellow color), the third-best (in

green color), the third-worst (in cyan color), the second-worst (in pink color) and the worst (in blue



color) in every station according to the SRMSE. Vertical black dashed lines separate the method

groups.

Figure S4: Boxplot of the minimum SRMSE regarding all methods for each station, for each

season and form of application. The graph is in logarithmic scale for better visualization.

Figure S5: Map of SRMSE of GAM for every form of application and season. The GAM SRMSE
is represented by the discrete color-dots scale.



