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Abstract 

Precipitation plays a crucial role from a social and economic perspective in Subtropical Argentina 

(STAr). Therefore, it renders the need for continuous and reliable precipitation records to develop 

serious climatological researches. However, precipitation records in this region are frequently 

inhomogeneous and scarce, which makes it necessary to deal with data filling methods. Choosing 

the best method to complete precipitation data series relies on rain gauge network density and on 

the complexity of orography, among other factors. Most comparative-method studies in the 

literature are focused on dense station networks while, contrastingly, the STAr‟s station network 

density is remarkably poor (between 10 and 1000 times lower). The research aims at assessing the 

performance of several interpolation methods in STAr. In this sense, the performance of a large 

number of interpolation methods was evaluated for dry and wet seasons, interpolating raw 

monthly data and their anomalies applied to different time-series subsets. In general, most methods 

performances improve when applied to anomalies in the seasonal time-series subset. Multiple 

Linear Regression (MLR) stands out as the method with the best performance for infilling 
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precipitation records for most of the regions regardless of orography or season. Despite the 

bibliography invokes that kriging interpolation methods are the best ones, in this work the 

performance of kriging methods was similar to the one of the Inverse Distance Weighted method 

(IDW) and the Angular Distance Weighted method (ADW, the method used to generate CRU 

precipitation dataset). 

 

Keywords: Interpolation methods; missing data; monthly precipitation; time series; scarce data 

 

1.1 1. Introduction 

Subtropical Argentina (STAr) extends from central to north Argentina, east of the Andes, 

roughly to the north of 34°S. In STAr the economic production represents more than 80%  of the 

national gross domestic product. Its climate encompasses six different climate regimes, ranging 

from a monsoon-influenced humid subtropical climate in the east to a desertic climate in the west 

(Beck et al., 2018). STAr is located inside the southern “La Plata” basin where most of the national 

hydroelectric energy production takes place and it is also one of the major food production regions 

all over the world (Magrin et al., 2005, Penalba and Vargas, 2008, Cuya et al., 2013). In the last 

years, it has been observed that the hydropower and electricity produced in LPB, which represent 

about 73%  of the demand, have been strongly modified not only by the population growth but 

also by climate change (Popescu et al., 2014). In addition, a significant reduction of about 30%  of 

the hydropower production is expected for Argentina according to projections for 2100 and for the 

worst scenario of climate change, which could entail a cost in investments of the order of 30 billion 

dollars (Turner et al., 2017). Moreover, crop production has been altered by climate change 

(Magrin et al., 2005) while large uncertainty exists in regard to its projected changes for both the 

near and far future (Rolla et al., 2018). This makes the development of adaptation strategies remain 

a challenge under study, in particular for large periods of drought (Wehbe et al., 2018). Thus, 

continuous and homogeneous precipitation data records are necessary to correctly characterize the 

changes that precipitation has suffered due to climate change and so planning policies that allow 

the efficient use of hydrological resources (Kalteh and Berndtsson, 2007, Sattari et al., 2017). 

However, precipitation data records in STAr show several missing values, and even gaps, which is 

a drawback that extends to the whole of South America‟s network of stations (Skansi et al., 2013). 
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Therefore, in order to achieve a complete dataset, missing values should be infilled, for example, 

via interpolation methods. 

There exist several interpolation methods that we classified into three big groups: spatial 

methods (based on spatial variations), temporal methods (which use the co-variability between 

time series) and spatio-temporal methods (a combination of the above, see Kyriakidis and Journel, 

1999, for a review on space-time methods). The suitability of any of the well-known and 

commonly used interpolation methods is not guaranteed for every region of the globe (de Amorim 

Borges et al., 2016), and the choice of the technique is key since poorly performing interpolation 

methods could introduce significant errors in hydrological model outputs (such as water balances, 

streamflow and runoff; Vieux, 2001, Bárdossy and Pegram, 2014), in environmental model 

simulations (such as crop yield estimations and drought severity; Kajornrit et al., 2012) and may 

lead to an inadequate climatological analysis (Price et al., 2000) 

 

1.1.11.1. Motivation 

The literature is plenty of interpolation method studies and a few of them assess 

intercomparison of methods for monthly precipitation data. In our exploration, some 

peer-reviewed research works were selected for relevance in order to assess such a goal and are 

displayed in Table 1. For the sake of summarizing their main outcomes, location of study regions, 

density of stations per study region as well as best selected methods found by each study are shown 

in Figure 1. Methods and their acronyms are displayed in Table 2. It is apparent that Kriging‟s 

family of methods is mostly chosen among the best (i.e., OK, KED, CoK, RK, SKlm and KEM), 

followed by the methods: MLR, IDW and NR. It is also evident that the good performance of a 

method is dependent on the study region and network density. Though there is no consensus about 

the best performance interpolation method for a region, it has been already accepted that regardless 

of the method type, the performance of a method depends on the sample density, sample design, 

climatological characteristics and topography (Collins, 1995, De Silva et al., 2007, Li and Heap, 

2008, Di Piazza et al., 2011, Burrough et al., 2015). Therefore, specific local studies are necessary 

to determine the most indicated interpolation method since generalization is not plausible 

(Aguilera et al., 2020). 
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Papers listed in Table 1 show a wide range of network density with differences of up to 

four orders of magnitude (see Fig. S1). Most of the studies were carried out on regions with more 

than 1 station per 21000km . The study of Mair and Fares (2010) depicts the densest network for 

the Makhaka Valley (ca. 76 stations per 21000km ). In the opposite extreme, the study of Sattari et 

al. (2017) depicts the least dense network for southern Iran (ca. 0.08 stations per 21000km ). The 

network density of STAr exhibits a mean network density of about 0.03 stations per 21000km  

which is less than half of the network density used in Sattari et al. (2017). This represents a real 

challenge since the interpolation of precipitation in scarce measurement areas is not only more 

important but also more difficult (Wagner et al., 2012). 

To our knowledge, a few studies assessing the performance of interpolation methods for 

precipitation belongs to the Southern Hemisphere, and less in particular, focused on precipitation 

networks in South America. One example is the study of Barrios et al. (2018) who examined a high 

network density in the region of central Chile (which is two orders of magnitude higher than the 

one in STAr). Another example is the study of de Amorim Borges et al. (2016) who assessed a 

quite dense network within the Distrito Federal of Brazil (which is one order of magnitude higher 

than the one in STAr). Note that despite some other researchers have used interpolation methods 

either to infill station data or to generate gridded precipitation datasets in South America (see, for 

example, Liebmann and Allured, 2005, Zotelo et al., 2008, González et al., 2012, Jones et al., 

2013), none of them have conducted a comparative analysis of at least two different methods‟ 

performance. 

 

Table 1: List of research works that study the performance of different interpolation methods. 

Corresponding study region and reference number (#) from Figure 1. Acronyms of the best 

methods found by every work (see the acronyms in Table 2). The current research is also included 

in the list. 

# Research work Study region Best methods 

1 Bárdossy and Pegram (2014) Southern Cape (South Africa) CP and MLR 

2 Barrios et al. (2018) Biobio basin (Chile) ANN, MLR and 

IDW_h 

3 de Amorim Borges et al. (2016) Distrito Federal (Brazil) OK, IDW, RK and 
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RIDW 

4 Delbari et al. (2013) northeast of Iran KED, OK and CoK 

5 De Silva et al. (2007) Sri Lanka IDW, NR and AA 

6 Di Piazza et al. (2011) Sicily (Italy) RK 

7 Hwang et al. (2012) Animas and Alapaha basin (USA) MLR 

8 Kurtzman et al. (2009) Yarkon-Taninim Basin (Israel) IDW 

9 Mair and Fares (2010) Mākaha Valley (USA) NR 

10 Morales et al. (2019) Tabasco state (Mexico) GCIDW 

11 Pellicone et al. (2018) Calabria region (Italy) KED 

12 Presti et al. (2010) Candelaro River Basin (Italy) TSLR and SBE 

13 Sattari et al. (2017) Southern Iran AA, MLR and 

NIPALS 

14 Tang et al. (1996) Klang River basin (Malaysia) NR, MNR and IDW 

15 Teegavarapu and Chandramouli 

(2005) 

Kentucky (USA) CWM, ANN and 

KEM 

16 Teegavarapu et al. (2009) Kentucky (USA) FFSGAM 

17 Terzi (2012) Turkey MLR 

18 Wagner et al. (2012) Mula and the Mutha Rivers (India) RIDW 

19 Westerberg et al. (2010) Choluteca River basin (Honduras) UK and CWM 

20 Xia et al. (1999) Bavaria (Germany) UK and MLR 

21 Xu et al. (2015) Sichuan Province (China) OK and CoK 

22 Yavuz and Erdoğan (2012) Turkey OK 

23 Young (1992) Arizona and New Mexico (United 

States) 

MDA 

24 Yozgatligil et al. (2013) Turkey NR, MP and MCMC 

25 Zhang and Srinivasan (2009) Luohe Rive (China) KED and Sklm 

26 Current research work Subtropical Argentina  

 

Figure 1: Global map with the 25 peer-reviewed research works assessed in the current research, as 

displayed in Table 1. Dot-marker denotes the study region corresponding to every research work. 

The marker size is proportional to the natural logarithm of the amount of stations per 21000km  for 
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each region. Numbers around markers refer to numbered works displayed in Table 1. Gray inset 

roughly corresponds to the STAr region. 

 

In addition, the requirements of continuity and homogeneity for precipitation time series 

are not achieved in most of the precipitation rain gauge records of STAr whose rain gauge stations 

are insufficient, sparse (see Fig. 1, Kidd et al., 2017) and, in general, inhomogeneous (Hurtado et 

al., 2020b). Regarding the latter, Hurtado et al. (2020b) found that from all the observed 

inhomogeneities in the precipitation time series of STAr, only two can be certainly identified as 

climatic jumps (corresponding to the 1950s and 1970s) while the remaining breakpoints could be 

erratic in essence. Even more, the authors discourage the use of one station located in the north of 

STAr to carry out climatological studies because they suspect that its records are not trustful in 

almost the whole period, but primarily in the early period. 

In summary, to the best knowledge of the authors, so far there has been no research work 

assessing the performance of interpolation methods neither in STAr nor in any region that 

comprises it. Moreover, in the revised literature no research work presents a region with such poor 

network density as the one of STAr, which could be an important factor in the interpolation 

method performance (Wagner et al., 2012). Therefore, the present work aims at complementing 

Hurtado et al. (2020b)‟ results from a data-quality-control perspective through the data filling 

analysis of precipitation time series in STAr. This is performed by assessing the best method for 

interpolating missing values of monthly precipitation records in STAr. With this aim, the 

performances of 19 different methods and 32 different sub-methods are compared. The evaluated 

interpolation methods are a selection of the most commonly used for precipitation, plus a selection 

of methods that, to the authors‟ knowledge, has not been assessed yet for interpolating missing 

precipitation data, such as GAM or RMLR. Secondly, an open-source R package was designed 

with all the used methodologies in this work to make them available to anybody for future 

applications to any dataset. In Section 2, the used data are presented and the different methods and 

sub-methods are described; the errors of each method are evaluated in Section 3.1; the variability 

is analyzed in Section 3.2; the spatial distribution of errors for MLR is presented in Section 3.3; the 

method‟s errors in the extremes precipitation values are analyzed in Section 3.4; a discussion of 

the results is offered in Section 4; and, finally, a summary and conclusions are presented in Section 

5. 
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Table 2: Interpolation method, its acronym, brief description and corresponding reference. 

Methods used in the current work are highlighted in bold. 

Method Acronym Description References 

Nearest Neighbor NN The nearest neighbor value. Sattari et al. (2017) 

Single Best Estimator SBE The value of the neighbor station with 

the highest linear correlation. 

Teegavarapu and 

Chandramouli (2005) 

Arithmetic Average AA The spatial average of nearby stations. Sattari et al. (2017) 

Climatological Mean Clim_AA Monthly mean of all records for the 

same month. 

 

Arithmetic Median AM The spatial median of nearby stations.  

United Kingdom 

traditional method 

UK As SBE but multiplied by the ratio of 

the mean precipitation at the target 

station and the reference station. 

Sattari et al. (2017) 

Normal Ratio (original) NR_1952 The mean of the spatial precipitation 

values weighted by the ratio of the 

mean precipitation at the target station 

and each reference station. 

Paulhus and Kohler 

(1952) 

Normal Ratio (modified) NR The mean of the spatial precipitation 

values weighted by the student t 

statistic of the correlation between the 

target station and each reference 

station. 

Young (1992) 

Correlation Weighting 

Method 

CWM The mean of the spatial precipitation 

values weighted by the correlation 

between the target station and each 

reference station. 

Teegavarapu and 

Chandramouli (2005) 

Inverse Distance 

Weighting Method 

IDW The mean of the spatial precipitation 

values weighted by the inverse of the 

distance between the target station and 

each reference station elevated to K. 

Di Piazza et al. (2011) 
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Angular Distance 

Weighted 

ADW Similar to IDW but add a weight 

corresponding to isolation of station in 

a direction 

New et al. (2000), 

Harris et al. (2020) 

Revised Nearest Neighbor 

Weighting Method 

RNNW

M 

As IDW but with a redefined measure 

of distance. 

Teegavarapu and 

Chandramouli (2005) 

Ordinary Kriging OK Weighted mean method based on the 

spatial dependence structure of the 

data. The weights are given by a 

theoretical variogram model fitted to 

the semivariogram of the data. 

Erxleben et al. 

(2002), 

Vicente-Serrano et al. 

(2003) 

Kriging with External 

Drift 

KED The KED assumes that the interest 

variable mean depends on auxiliary 

variables. It is useful when the variable 

itself is related to other spatially 

known variables, such as elevation. 

Snepvangers et al. 

(2003), 

Vicente-Serrano et al. 

(2003) 

Theil Sehn Linear 

Regression 

TSLR Linear regression that estimates the 

slope by the median of the slopes of all 

lines through all pairs of points. 

Sen (1968), Theil 

(1992) 

Multi-Linear Regression MLR Multi-linear regression based on 

ordinary least squares. 

Young (1992), 

Simolo et al. (2010) 

Robust Multi-Linear 

Regression 

RMLR Multi-linear regression based on the 

MM-estimator. 

Hampel et al. (2011), 

Venables and Ripley 

(2013) 

Generalized Additive 

Model 

GAM Statistical model that combines the 

essence of General Linear Models and 

Additive models. 

Hastie and Tibshirani 

(1987) 

Optimal Interpolation OI Statistical model based on the 

estimation of a first guest value to each 

station and then the computation of the 

weighted mean of the first guest error 

to correct the estimated value. 

Eischeid et al. (2000) 
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Artificial Neural Network ANN Methods based on neural networks Teegavarapu and 

Chandramouli (2005) 

Co-Kriging CoK The CoK assumes that the interest 

variable mean depends on auxiliary 

variables, such as elevation. 

Delbari et al. (2013) 

Copula Based CP Method based on multivariate 

cumulative distribution functions. 

Bárdossy and Pegram 

(2014) 

Fixed function set genetic 

algorithm method 

FFSGAM Method based on predefined 

functional forms whose coefficients 

are then estimated by optimization 

procedures. 

Teegavarapu et al. 

(2009) 

Generalization of the 

modified correlation 

coefficient with the 

inverse distance weighting 

method 

GCIDW Generalization of IDW modified to 

add height 

Morales et al. (2019) 

IDW modified to add 

height 

IDW_h IDW modified to add height Barrios et al. (2018) 

Locally Weighted 

Polynomial regression 

LWP Spatial regression based on nearest 

neighbors 

Hwang et al. (2012) 

Monte Carlo Markov 

Chain 

MCMC Method based on multiple imputations 

making a Markov Chain. 

Yozgatligil et al. 

(2013) 

Multiple Discriminant 

Analysis 

MDA Method based on empirical orthogonal 

functions 

Young (1992) 

Modified Normal Ratio MNR NR modified with a weighted 

parameter 

Singh (1988) 

Multilayer Perceptron MP Specific Neural Network Yozgatligil et al. 

(2013) 

Nonlinear estimation by 

Iterative Partial Least 

Square 

NIPALS Iterative method based on Principal 

Component Analysis 

Sattari et al. (2017) 
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Residual IDW RIDW IDW applied over the residuals of 

another method. 

Wagner et al. (2012) 

Residual Kriging RK OK applied over the residuals of 

another method. 

Di Piazza et al. (2011) 

Simple Kriging with Local 

Means 

SKlm Simple Kriging applied over the 

residuals of another method. 

Zhang and Srinivasan 

(2009) 

Kriging Estimation 

Method 

KEM Normally KEM is referred to OK or 

Simple Kriging. 

 

 

1.2 2. Data and Methods 

1.2.12.1. Data and study region 

Monthly precipitation records from a total of sixty-two weather stations provided by the 

Argentine National Meteorological Service (SMN, after its Spanish abbreviation, 

https://www.smn.gob.ar/) were used (see Table 3). These weather stations follow the World 

Meteorological Organization (WMO) standards and they are part of the WMO Global 

Telecommunication System (GTS). As it is shown in Figure 2, the stations are distributed all over 

STAr. The records started between the end of the 19th  century and the end of the 20th  century. 

The study region is characterized by a low weather station density (62 weather stations in an area 

of about 21,541,898km ), which represents a density of one weather station per 224,869km . Two 

stations (87127 and 87360, see Table 3) were not used to analyze its interpolated time series since 

they have less than 100 records. 

Most of the stations present a marked wet season from October to April and a dry one from 

May to September (see Fig. S2, and Hurtado et al., 2020a,b). Besides, a zonal gradient of annual 

accumulated precipitation is observed, presenting drier conditions to the west and wetter 

conditions to the east (Barros and Silvestri, 2002). According to the global climate classification 

from Beck et al. (2018), the region encompasses monsoon-influenced humid subtropical climate 

(CWa), humid subtropical climate (CFa), cold semi-arid climate (BSk), hot semi-arid climate 

(BSh), cold desert climate (BWk), and hot desert climate (BWh). 

 

Table 3: Subtropical Argentina Rain Gauge Stations 
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Stations OMM number Lat Lon Z (m) 

La Quiaca Obs. 87007 -22°6‟ -65°36‟ 3459 

Orán Aero 87016 -23°9‟ -64°19‟ 357 

Tartagal Aero 87022 -22°39‟ -63°49‟ 450 

Jujuy UN 87043 -24°10‟ -65°11‟ 1302 

Jujuy Aero 87046 -24°23‟ -65°5‟ 905 

Salta Aero 87047 -24°51‟ -65°29‟ 1221 

Metán 87050 -25°29‟ -64°48‟ 855 

Rivadavia 87065 -24°10‟ -62°54‟ 205 

Las Lomitas 87078 -24°42‟ -60°35‟ 130 

Iguazú Aero 87097 -25°44‟ -54°28‟ 270 

Tucumán Aero 87121 -26°51‟ -65°6‟ 450 

Termas de Río Hondo 87127 -27°29‟ -64°56‟ 280 

Santiago del Estero Aero 87129 -27°46‟ -64°18‟ 199 

Presidencia Roque Sáenz Peña 87148 -26°45‟ -60°24‟ 93 

Resistencia Aero 87155 -27°27‟ -59°3‟ 52 

Formosa Aero 87162 -26°12‟ -58°14‟ 60 

Bernardo de Irigoyen 87163 -26°15‟ -53°39‟ 815 

Corrientes Aero 87166 -27°27‟ -58°46‟ 62 

Ituzaingó 87173 -27°35‟ -56°40‟ 72 

Posadas Aero 87178 -27°22‟ -55°58‟ 125 

Oberá Aero 87187 -27°29‟ -55°8‟ 303 

Tinogasta 87211 -28°4‟ -67°34‟ 1201 

Chilecito Aero 87213 -29°14‟ -67°26‟ 947 

La Rioja Aero 87217 -29°23‟ -66°49‟ 429 

Catamarca Aero 87222 -28°36‟ -65°46‟ 454 

Villa María del Río Seco 87244 -29°54‟ -63°41‟ 341 

Ceres Aero 87257 -29°53‟ -61°57‟ 88 

Reconquista Aero 87270 -29°11‟ -59°42‟ 53 

Mercedes 87281 -29°13‟ -58°6‟ 107 

Paso de los Libres Aero 87289 -29°41‟ -57°9‟ 70 
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Jáchal 87305 -30°14‟ -68°45‟ 1175 

San Juan Aero 87311 -31°34‟ -68°25‟ 598 

Chamical Aero 87320 -30°22‟ -66°17‟ 461 

Chepes 87322 -31°20‟ -66°36‟ 658 

Villa Dolores Aero 87328 -31°57‟ -65°8‟ 566 

Córdoba Aero 87344 -31°18‟ -64°12‟ 495 

Córdoba Observatorio 87345 -31°24‟ -64°11‟ 425 

Escuela Aviación Militar 87347 -31°27‟ -64°16‟ 502 

Pilar Observatorio 87349 -31°40‟ -63°53‟ 338 

Sunchales 87356 -30°58‟ -61°20‟ 92 

Rafaela 87360 -31°16‟ -61°30‟ 99 

Sauce Viejo / Santa Fe Aero 87371 -31°42‟ -60°49‟ 18 

Paraná Aero 87374 -31°47‟ -60°29‟ 78 

Monte Caseros Aero 87393 -30°16‟ -57°39‟ 54 

Concordia Aero 87395 -31°18‟ -58°1‟ 38 

Uspallata 87405 -32°36‟ -69°20‟ 1891 

San Carlos 87412 -33°46‟ -69°2‟ 940 

San Martín 87416 -33°5‟ -68°25‟ 653 

Mendoza Aero 87418 -32°50‟ -68°47‟ 704 

Mendoza Observatorio 87420 -32°53‟ -68°51‟ 827 

San Luis Aero 87436 -33°16‟ -66°21‟ 713 

Santa Rosa de Conlara Aero 87444 -32°23‟ -65°11‟ 620 

Villa Reynolds Aero 87448 -33°44‟ -65°23‟ 486 

Río Cuarto Aero 87453 -33°7‟ -64°14‟ 421 

Marcos Juárez Aero 87467 -32°42‟ -62°9‟ 114 

Venado Tuerto 87468 -33°40‟ -61°58‟ 112 

El Trébol 87470 -32°12‟ -61°40‟ 96 

Rosario Aero 87480 -32°55‟ -60°47‟ 25 

Gualeguaychú Aero 87497 -33°0‟ -58°37‟ 23 

Malargüe Aero 87506 -35°30‟ -69°35‟ 1425 

San Rafael Aero 87509 -34°35‟ -68°24‟ 748 
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Laboulaye Aero 87534 -34°8‟ -63°22‟ 137 

 

Figure 2: Location of the 62 weather stations (open dots) in Subtropical Argentina and its elevation 

( Z ). Red squares mark three regions that are evaluated in Section 4. 

 

1.2.22.2. Preprocessing data treatment 

Before analyzing the interpolation method performances, a thorough quality control 

analysis was performed. First, values greater than the median plus three times the interquartile 

range were regarded as atypically extreme. These extremes, as well as zero values, were verified 

by contrasting records with their neighbors‟ stations. For data after 1979, this verification included 

also the inspection of monthly outgoing longwave radiation anomalies to assess its reliability (not 

shown). From this analysis, few records were considered as errors and so were set as missing 

values. It is also relevant to make a breakpoint analysis to guarantee the homogeneity of the 

precipitation time-series, which is an essential requirement for the interpolation procedures 

(Štěpánek et al., 2009). Otherwise, breakpoints in time-series will alter the co-variability of the 

data and, consequently, the performance of the interpolation methods would be impaired. The 

breakpoint analysis for the current precipitation dataset in STAr was performed by Hurtado et al. 

(2020b). As was mentioned in the introduction, the authors have shown two main climate jumps 

(natural breakpoints) in 1956 and other in 1976. Given these climatic jumps and the fact that the 

data records are scarce in the earlier periods of the records in STAr, the current research was 

carried out by using the data only from 1979 to 2017. 

 

1.2.32.3. Interpolation Methods 

Table 2 shows the interpolation methods considered in this work with a brief explanation 

of each one, corresponding acronyms used hereinafter and the reference of some works that 

applied them. The Kriging methods (OK and KED) need to fit a theoretical variogram to the 

empirical variogram in order to perform the interpolation. So, four theoretical variogram models 

were used: Gaussian (Gau), Exponential (Exp), Spherical (Sph) and Matern (Mat). Both OK and 

KED methods were used in five different forms, selecting the best fit to the empirical variogram 

using maximum likelihood (referred as OK and KED) and using one of the fixed models 
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mentioned above (referred as OK_model and KED_model, in combination with Exp, Gau, Mat, 

and Sph). For KED, the secondary variable used was elevation since Ly et al. (2013) found that 

KED applied with elevation outperforms the other methods. Kriging methods were not used to 

interpolate precipitation values in "La Quiaca Obs." station (see Table 3) since there are few 

stations in the surroundings and the computation systematically failed. 

Considering that the OI method requires a first guest estimator, two different estimators 

NN (OI_NN) and SBE (OI_SBE) were used. The regression methods (MLR, TSLR, and RMLR) 

were computed through the raw data as well as with the ranked-data, which produces a ranked 

regression (Presti et al., 2010). These variations in the regression methods are denoted as MLR_rk, 

TSLR_rk, and RMLR_rk. 

 

1.2.42.4. Statistical Analysis 

Statistical and mathematical analysis and the different graphics presented in this work were 

all made in R. Among the R‟s packages used we can mention ggplot2 (Wickham, 2016), ggsn and 

knitr ((Xie, 2014, 2015) for visualization, and gam (Hastie, 2011), MASS (Venables and Ripley, 

2013), sp (Pebesma and Bivand, 2005, Bivand et al., 2013), RobustLinearReg (Hurtado, 2020) and 

gstat (Pebesma, 2004, Pebesma and Heuvelink, 2016) for calculus. All the computed methods 

were documented in an open-source R package made for this research work, available in the 

following link: https://github.com/santiagoh719/MissingData. 

Every observed value of each station was interpolated with every method in order to 

calculate the error of each one, implementing a Leave-One-Out Cross-Validation (LOOCV) 

method (Sammut and Webb, 2010). Since precipitation can not be negative, all the negative 

interpolated values were set to zero. To assess the performance of each method the Standardized 

Root Mean Square Error (SRMSE) and the Standardized Mean Error (SME, Haberlandt, 2007) 

were used as measure of error: 
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Being Obs the observed value and Int the estimated value by the interpolation method with i  

corresponding to the i-th station, j  the j-th interpolation method and 
tn  is the length (time steps) 

of Obs and Int. 

The election of the SRMSE lies in the fact that not onlyis it a typical measure of error, but 

also it provides an estimation of the average error. The SME was selected in order to assess the 

bias of the methodologies, since it gives a notion of the systematic over- (under-) estimation error. 

In order to apply an interpolation method, a subset of data (predictors) must be selected. 

The subset is usually taken from stations near the targeted station. To objectively select the best 

subset of predictors for every targeted station and method, 5 different subsets of predictor stations 

were used, consisting of all the stations at a distance lower than 100km, 200km, 300km, 400km 

and 500km, respectively. Then, for every method and targeted station, the subset with the lowest 

SRMSE was selected. In addition, IDW, ADW and RNNWM methods depend on a free parameter 

k. To select the best k for each station and method, they were computed with k varying from 0.1 to 

10 with a step of 0.1, and then the subset and k value with the lowest SRMSE was selected for that 

method and station. Moreover, ADW was also applied with the parameters used in the globally 

monthly precipitation dataset CRU (Harris et al., 2020), which is = 4k , and a search radius of 

450km , this is noted in the manuscript as ADW_CRU. 

For clarity, the interpolation methods were separated and ordered into groups: regression 

methods (MLR, RMLR, TSLR, MLR_rk, RMLR_rk and TSLR_rk), GAM, single estimation 

(NN, SBE and UK), average estimation (AA, AM, Clim_AA), inverse distance (ADW, 

ADW_CRU and IDW), weighted mean (RNNWM, CWM, NR and NR_1952), Optimal 

Interpolation (OI_NN and OI_SBE), kriging with external drift (KED, KED_Gau, KED_Exp, 

KED_Sph and KED_Mat) and ordinary kriging (OK, OK_Gau, OK_Exp, OK_Sph and OK_Mat). 

Furthermore, the interpolation methods were applied to four different time series for every 

season (dry and wet): the full-year observed data (absolute value) time series (denoted in the text 

as "Full-yr. Series"), the seasonal subset of the observed data (absolute value) time series (denoted 

in the text as "Season Subset") and their corresponding time series of anomalies (absolute values 
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minus monthly means of the 30 yr. period 1980-2010). Thus, on the one hand, we obtain two sets 

of interpolation coefficients: one for the observed full-year time series and another for their 

anomalies, which are the same sets used to evaluate in both wet and dry seasons. On the other 

hand, we obtain two sets of interpolation coefficients: one for the wet subset time series and 

another for the dry subset times series; and two more sets for their corresponding time series of 

anomalies. 

To further explore the interpolation methods performances, Pearson‟s first-moment 

correlation coefficient between the interpolated data and the observations was calculated. Also, the 

Kolmogorov-Smirnov test (Conover and Conover, 1980) was used to assess the difference 

between the empirical probability distribution of the observed and the interpolated data. Its null 

hypothesis states that both the theoretical (interpolated) and the real (observed) data follow the 

same probability distribution. 

Finally, to investigate the regional performance of Kriging methods, the Moran‟s I (Moran, 

1950), a measure of the spatial autocorrelation, was computed to test if the data are either spatially 

autocorrelated or randomly distributed. 

 

1.3 3. Results 

1.3.13.1. Methods error 

In Figure 3 it is shown the method‟s SRMSE boxplot for every applied time-series and 

season. It can be noticed that in general, the SRMSE is greater for the dry season, where the error 

can be 10 times greater than the mean value. The methods MLR, MLR_rk, RMLR and RMLR_rk 

(NN, SBE, OI_NN, OI_SBE, RNNWM and Clim_AA) present the best (worst) performance in all 

cases, being the SRMSE values in general lower (greater) than 0.5 for the wet season and lower 

(greater) than 0.7 (1) in median for the dry season. In addition, GAM presents a notable 

improvement when the anomalies‟ series are used while methods like NR_1952 and UK worsen. 

In general, the use of anomalies for interpolation gets smaller SRMSE high values, especially in 

spatial methods such as IDW, ADW and Kriging methods, but does not present much difference in 

regression methods (see for example MLR or RMLR). Further, regardless of the time series used 

as input, there are no many differences between AA, AM, IDW, ADW, ADW_CRU and Kriging 

methods. The only relevant difference is that Kriging methods, in comparison, present greater 
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(lower) high values in the wet (dry) season. Note that, for both wet and dry season MLR followed 

by GAM present the lowest SRMSE values, when applied with the season subset over anomalies, 

presenting SRMSE values mostly between 0.3 0.5  ( 0.3 0.8 ) for the wet (dry) season. 

 

Figure 3: Boxplot of the spatial variation of the Standardized Root Mean Square Error (SRMSE), 

discriminating each method described in Table 2, wet and dry seasons, the used time-series (the 

full-yr. time-series or the season subset time series) and if computation was made using observed 

data (raw) or their anomaly. The scale is logarithmic for better visualization. The filled colors of 

boxes represent each method group. Vertical black dashed lines separate the method groups. 

 

Figure 4, alike Figure 3 but with SME instead of SRMSE. In this case, for SME, the usage 

of anomalies represents an outstanding improvement, for almost all methods, reducing the error 

variability around zero with respect to the observed series. The methods that stand out for their 

good performance, in most cases, are GAM, MLR, NR_1952, UK and Clim_AA. The almost zero 

value of SME for Clim_AA is expected, given the methods‟ characteristics. However, all methods 

present difficulties in reproducing monthly precipitation for the dry season, in concordance with 

the results for SRMSE (see Fig. 3). In this sense, almost all methods tend to overestimate the 

precipitation values showing bias up to 0.1 SME in median, with the exception of the robust 

regression ones (MLR_rk, RMLR, RMLR_rk, TSLR, TSLR_rk) and AM that tend to 

underestimate the real values, reaching up values lower than 0.5 SME of median. 

 

Figure 4: As Figure 3, but showing the Standardized Mean Error (SME) and using an 

arcosinushiperbolic scale. The scale is for better visualization. It is used in place of the logarithmic 

scale since the latter is not defined for negative values and it shows problems with values close to 

zero. 

 

In summary, from Figures 3 and 4, it can be seen that in general the methods perform better 

when they are applied with series of anomalies to the corresponding season time series. The 

regression-based methods (MLR, MLR_rk, RMLR, RMLR_rk, TSLR and TSLR_rk) show little 

differences between the usage of the anomaly or the observed data. MLR outperforms the other 

methods for the wet season, except for GAM that shows a better performance in terms of SME. For 
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the dry season, MLR and, in general, GAM present the best performance when the seasonal time 

series are considered as input. In addition, in almost all the stations, MLR presents the lowest 

SRMSE being the method that is selected most times as the best while GAM is the second-best for 

the anomalies‟ case (see Fig. S3). Since the usage of the full-yr. time-series for the dry season 

presents greater errors regardless of the method used (see Fig. S4), henceforth the analysis of the 

methods‟ performance using the full-yr. time-series will not be considered for the dry season. 

 

1.3.23.2. Variability 

For climatology studies, it is imperative that the infilled values reproduce the time series‟ 

variability. To assess this, the correlation between the interpolated time series and the real-time 

series was computed (see Fig. 5). In general, the most of the methods present correlations greater 

than 0.6 in median. MLR, and its ranked version, show a good performance reproducing the 

precipitation variability independently of the considered time series (anomalies or observed) and 

on the season. Moreover, MLR presents correlation values over 0.8 for more than 50%  of the 

stations for all cases, which represent more than 64%  of explained variability. Besides, GAM 

presents very high correlation values (around 0.8) for the anomaly time series. On the other hand, 

lower correlations are observed especially for Clim_AA, that present correlations mostly under 

0.4, and also for the methods NR_1952 and UK when applied to the anomalies time series, 

showing in general correlations under 0.4. RNNWM presents a poor performance in all cases, 

reaching negative correlations for several studied stations. Finally, little or no difference is shown 

among the performance of the other methods. In general, the median of the correlation is around 

0.7 for the remaining methods, which implies around 50%  of explained variance. 

 

Figure 5: Boxplot of the correlation between the interpolated time series and the observed ones for 

each method, each box contains one value per weather station showing spatial variations. Results 

for observed input are shown in the left column and for anomalies in the right column. Rows in the 

upper (lower) panels correspond to wet (dry) season using the season subset time-series and the 

full-yr. time-series subset as input; for dry season only for the season subset was used as input. The 

filled colors of the boxes represent each method group. Vertical black dashed lines separate the 

method groups. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

To complete the previous analysis, Figure 6 shows the percentage of stations in which the 

Kolmogorov-Smirnov‟s test null hypothesis was rejected for each method at different significance 

levels. The better (worse) the method, the less (more) times the null hypothesis is rejected. As 

expected, the higher the level of significance, the lower the percentage of stations where the null 

hypothesis is rejected, being more evident for the anomaly precipitation series. It can be seen that 

most of the methods have difficulties reproducing the distribution of the precipitation time series 

for the dry season, particularly for the observed one. Contrastingly, NR_1952 and UK show a 

higher level of rejection for the anomalies‟ time series. In general, MLR, GAM and RMLR present 

the best performances. 

 

Figure 6: Heatmap of the percentage of stations in which the null hypothesis of the 

Kolmogorov-Smirnov test is rejected at a significance level of 0.01%  (first row), 0.05%  

(second row) and 0.1%  (third row), type of serie and season. The values over 40%  are filled 

with black. Vertical white dashed lines separate the method groups. 

 

1.3.33.3. Spatial distribution of MLR’s SRMSE 

In this section, the spatial distribution of MLR‟s SRMSE is analyzed since it is the method 

that presents the best performance. Figure 7 (left panels) shows the MLR‟s SRMSE presenting a 

marked difference between the west and east region. Lower errors are found in the east region (in 

general bellow 0.4) and higher toward the west near the Andes (reaching values greater than 0.8). 

Larger errors are observed for the dry season rather than for the wet season. SRMSE presents high 

values (that can reach values up to ca. 3) in the north-western region for the dry season, while for 

the wet season the greatest errors are located in the central-western and south-western of STAr. 

The lowest errors (lower than 0.3) are around 32o S  and between 65 60o oW . When selecting 

the best implementation option ("Anomaly" and "Season Subset"), in wet season, the SRMSE is 

always lower than 1.1, and in dry season lower than 1.5 with the exception of "La Quiaca Obs." 

station. Moreover, for the wet (dry) season the SRMSE is greater than 0.8 (1.1) only in four 

stations and it is mostly under 0.4 (0.6) being the median 0.37 (0.48). 
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"La Quiaca Obs" presents large SRMSE values in the dry season for all methods, being the 

lowest of 2.93 for MLR, applied with "Season Subset" over anomalies. SRMSE values in "La 

Quiaca Obs" in dry season are greater than 10 for half of the methods and greater than 5 for 

three-quarters of them. These large SRMSE values are due to the actual lack of rainfall in the dry 

season for this particular station (1.15mm  of the monthly mean for dry season), making errors of 

3mm  be really huge relative errors. 

Moreover, in the right panels, it is shown the average value of SRMSE for each station 

regarding all methods divided by the MLR‟s SRMSE, in order to detect the regions where MLR 

represents an improvement in comparison with the other methods. It can be observed that MLR 

represents a considerable improvement in the whole region, especially in central-western STAr 

from the Andes to the Córdoba mountain range, outstanding in the dry season, where the average 

SRMSE of the other methods can exceed for more than 2 times the MLR‟s error. It is worth saying 

that the spatial distribution of GAM‟s SRMSE is as the one of MLR but with greater values, 

especially in central and south-central STAr (see Fig. S5). 

 

Figure 7: Map of the MLR‟s SRMSE (left panels) and the ratio of the average SRMSE of all 

methods for each station and the MLR SRMSE (right panels) for every form of application and 

season. Discrete color scales displayed the ratio (upper scale) and the MLR‟s SRMSE (lower 

scale). „La Quiaca Obs.‟ station is denoted by an asterisk marker. Stations with values of the ratio 

lower than 1.25 are not shown. 

 

1.3.43.4. Errors in observed extremes 

Every method‟s errors were analyzed for high and low extremes since all interpolation 

methods tend to underestimate (overestimate) high (low) extremes (Teegavarapu, 2014). In order 

to summarize, each method was evaluated using the best configuration (observed or anomalous 

time series, full yr. or season subset time series) according to the results found in previous sections. 

Figure 8 shows the global (considering all interpolated values) root mean squared error (RMSE; 

panel a) and also the global mean error (ME; panel b) for different subsets of data according to the 

percentile of observed values. It is notable that for both wet and dry seasons, MLR (GAM) has the 

lowest (second lowest) global RMSE considering all the data and also considering only observed 
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values over the percentile 75th  and 90th . For low precipitation values (observed precipitation 

lower than the percentile 25th  and 10th ), MLR_rk stands out with the lowest RMSE values 

followed by RMLR_rk for both dry and wet seasons. In general, MLR and GAM present the best 

results (in terms of RMSE), with values among the five lowest in all cases, followed by MLR_rk, 

RMLR and RMLR_rk. The ME for all methods are positive for low observed precipitation values 

(overestimate low extremes) and is negative for high observed values (underestimate high 

extremes), in concordance with Teegavarapu (2014). For the low precipitation values, the ME 

values are in general similar and with little differences among methods, but for both dry and wet 

season UK, Clim_AA, RNNWM and NR_1952 stand out with large ME values. Also, for the low 

precipitation values the ME values MLR, RMLR, MLR_rk and RMLR_rk show the lowest ME 

values for both seasons. For high precipitation values, MLR, OI_NN, OI_SBE, NN and SBE 

present the best ME values followed by GAM (which is the 6th  best value, not marked) for both 

seasons. Despite the good performance in terms of ME of these methods, MLR and GAM are the 

only ones that present a good performance in terms of global RMSE (see Fig. 8 panel a) and also in 

terms of SRMSE (see Fig. 3). 

 

Figure 8: Global root mean squared error (RMSE, panel a) and global mean error (ME, panel b) of 

each method for dry (left panels) and wet (right panels) season. The RMSE and ME were 

calculated for the best configuration (observed or anomalous time series, full yr. or season subset 

time series) for each method. The markers denote the five best values (those that are closest to 

cero). Each color line refers to a different subset of data used to compute the RMSE, being <P10 

(<P25) the subset of observed values lower than the 10th  ( 25th ) percentile, >P75 (>P90) the 

subset of observed values greater than the 75th  (90th ) percentile, and All no subset. 

 

Figure 9 shows the smooth curves of absolute error corresponding to the observed values. 

The smoothing method used was general additive models, implemented in the package mgcv 

(Wood, 2011). The GAM, MLR, MLR_rk, RMLR and RMLR_rk methods are in color to highlight 

that they have presented the best global RMSE values (see Fig. 8). In general, MLR tends to have 

the lowest absolute errors, followed by GAM and RMLR. In fact, for the wet (dry) season, it can be 

observed that MLR‟s absolute errors are the lowest for observed values greater than 155 (30) mm. 

As expected, MLR_rk and RMLR_rk present the lowest errors for the low observed values (see the 
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zoom panels). Furthermore, the inter-method spread is greater (lower) for the wet season than for 

the dry season for low (high) observed values. This implies that there are less differences between 

the methods‟ error for low (high) precipitation values in the dry (wet) season. 

 

Figure 9: Smooth curves for each method of absolute errors regarding the true observed value. The 

smooths were calculated for the best configuration (observed or anomalous time series, full yr. or 

season subset time series) for each method. In colors, the GAM, MLR, MLR_rk, RMLR and 

RMLR_rk methods are highlighted. Lower panels show a zoom of the lowest precipitation values. 

 

1.4 4. Discussion 

Previous studies found that Kriging methods, in particular methods with elevation as a drift 

variable such as KED or CoK, are among the best interpolation methods (Teegavarapu and 

Chandramouli, 2005, Li and Heap, 2011, Di Piazza et al., 2011, Ly et al., 2013, ; see Table 1). 

Other works emphasize the inclusion of elevation as a secondary variable in low network density 

areas (Di Piazza et al., 2011, de Amorim Borges et al., 2016). However, according to our results 

for STAr, Kriging methods do not show an outstanding performance in comparison with the other 

spatial methods and have similar performance to IDW, ADW and even AA. All these spatial 

methods present poor performances with mean SRMSE values around 0.45 (0.8) for the wet (dry) 

season. 

Furthermore, there was no much difference between OK and KED (with height as a 

secondary variable). And even, OK outperformed KED in regions of complex orography (see Fig. 

10). These results are supported by the findings of Kajornrit et al. (2011), who showed that OK 

performs, in general, better than CoK with elevation as a secondary variable. In addition, the 

different statistics analyzed in the present work show that the best-fit variogram model used for 

Kriging methods does not guarantee the best performance, being the exponential variogram model 

the best one (see Fig. 10 and Fig. 3, 4, and 5). 

 

Figure 10: Map of the SRMSE difference between KED_Exp and OK_Exp (left panels), KED and 

OK (mitle panels), and OK and OK_Exp (right panels) for each season applied over anomalies 

because it shows lower errors than applied over the observed data (see Fig. 3, 4). 
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A factor that could threaten the good performance of Kriging methods in STAr (and also of 

spatial methods) could be the low spatial autocorrelation of precipitation in the region. In Figure 

11 it is shown the Moran‟s I (spatial autocorrelation) calculated for every month and for three 

different regions within STAr: region 1 (R1) at the south, region 2 (R2) at the northeast and region 

3 (R3) at the northwest of STAr (all these regions are marked in Fig. 2). These domains represent 

different regions in terms of orography; R1 in the Córdoba mountain range, R2 in the subtropical 

plains, and R3 in the Andes. According to Figure 11, precipitation time series are not spatially 

autocorrelated for any month at confidence levels of 99% , 95%  or 90%  for regions R2 and R3, 

while for R1 only a few months present significant spatial autocorrelations but most do not. Thus, 

such poor spatial autocorrelations of observed precipitation could be due to the poor station 

network density, and perhaps to the climatological characteristics typical of the STAr‟s 

precipitation. In this sense, better performances of the Kriging methods, as good as those shown by 

previous works, could be expected if the station network were denser than it currently is. 

 

Figure 11: Boxplot of the p-value of the Moran‟s I spatial autocorrelation of monthly precipitation 

for all months in the period 1979-2017, in the regions R1, R2 and R3 shown in Figure 2. The three 

dashed lines are the boundaries for confidence levels of 90% , 95%  and 99% . 

 

1.5 5. Summary and Conclusions 

This work completed the data-quality-control analysis of precipitation time series in STAr 

started by Hurtado et al. (2020b). An exhaustive comparative analysis has been done in STAr, a 

region with few stations and scarce data. The performances of 19 different methods and 32 

different sub-methods to fill missing values of monthly precipitation records have been assessed. 

Our results show that the evaluated interpolation methods present better performance for 

wet season and in wet regions than for dry season and in dry regions (see Fig. 3, Fig. 7, Fig. S4, 

Fig. S5). In general, most methods perform better when applied to precipitation anomalies using 

the corresponding season‟s time series subset, in concordance with the findings of New et al. 

(2000). 
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Overall MLR presents the best performance in terms of SRMSE, SME, correlation, and KS 

test. In addition, GAM shows a good performance mostly when precipitation anomalies are 

considered and has proven to be good at reproducing the monthly precipitation distribution (Fig. 

6). The good performance of GAM is remarkable since, to the best of our knowledge, until the date 

there has not been any research work that has analyzed GAM‟s capacity at interpolating missing 

precipitation records. Analysis of GAM performance in other regions is encouraged since not only 

presents an outstanding performance but also its implementation is effortless. MLR_rk, RMLR 

and RMLR_rk also present good performances but their implementation requires a greater 

computational effort. Even though MLR is the method with the lowest errors, it presents SRMSE 

values around 0.37 (0.48) that represent the 37%  ( 48% ) of the observed monthly mean 

precipitation for the wet (dry) season. Considering these large errors (especially for the dry 

season), in future works the usage of satellite and reanalysis data for interpolating missing values 

in rain gauges will be examined. 

The methods that were shown to be the most efficient in reproducing monthly 

precipitation, i. e. MLR and GAM, can only be used to interpolate station data but they are unable 

to generate a gridded dataset. From the analyzed methods that allow the generation of regional 

gridded datasets, there is no clear overall preference among IDW, ADW and Kriging methods. 

Thus, choosing among these methods will depend on the study season, since IDW and ADW have 

a lower maximum SRMSE value than Kriging method for wet season, and the opposite occurs for 

dry season (see Fig. 3). On the other hand, according to Ruelland et al. (2008) it may be preferable 

to use IDW rather than OK for hydrological modeling since they found that these methods are the 

most efficient for imputing monthly precipitation records but that IDW yields the most realistic 

model results. Nevertheless, it is notable that the SRMSE values for these methods are, in general, 

rather large being the median around 0.45 (0.8) and the 75th  percentile around 0.6 (1.1) for the 

wet (dry) season. 

On balance, the current study has done a thorough analysis of interpolation methods for 

infilling monthly precipitation records using a weather station network located in STAr, which 

shows a low and heterogeneous spatial distribution. The aforementioned methods performances 

could differ if the study is replicated using different region data and/or through the use of a denser 

station network. Hurtado et al. (2020b) and the present work were carried out to generate 

continuous, homogeneous and reliable precipitation data records in the subtropics of Argentina. 
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Future works will examine the spatial and temporal variability of precipitation patterns, their 

potential climate forcing mechanisms, which would complement previous works such as Hurtado 

and Agosta (2020). 
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1.7 Supplementary Materials 

 

Figure S1: Boxplot of density of stations (amount of stations per 21000km ) in the peer-reviewed 

works from Table 1 (marked as “Other Studies”), and the density of stations in subtropical 

Argentina calculated for each station with a radius of 500km (marked as "500km Ratio"). The 

graph is in logarithmic scale for better visualization. 

 

Figure S2: Monthly mean precipitation (annual cycle) for every station used in this study from 

Subtropical Argentina. Solid curve in color represents the annual cycle for each station. Each 

boxplot for the spatial distribution of monthly mean precipitation among stations is shown. 

 

Figure S3: Percentage of the total number of times, regarding all stations, in which each method 

has been selected as the best (in red color), the second-best (in yellow color), the third-best (in 

green color), the third-worst (in cyan color), the second-worst (in pink color) and the worst (in blue 
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color) in every station according to the SRMSE. Vertical black dashed lines separate the method 

groups. 

 

Figure S4: Boxplot of the minimum SRMSE regarding all methods for each station, for each 

season and form of application. The graph is in logarithmic scale for better visualization. 

 

Figure S5: Map of SRMSE of GAM for every form of application and season. The GAM SRMSE 

is represented by the discrete color-dots scale. 
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