
1.  Introduction
Land evaporation, or evapotranspiration (E ET  ), is the phenomenon by which water is converted from a liq-
uid into its vapor phase over land. It plays a significant role in the modulation of global climate feedbacks 

Abstract  Many remote sensing-based evapotranspiration (RSBET) algorithms have been proposed 
in the past decades and evaluated using flux tower data, mainly over North America and Europe. Model 
evaluation across South America has been done locally or using only a single algorithm at a time. Here, 
we provide the first evaluation of multiple RSBET models, at a daily scale, across a wide variety of biomes, 
climate zones, and land uses in South America. We used meteorological data from 25 flux towers to 
force four RSBET models: Priestley–Taylor Jet Propulsion Laboratory (PT-JPL), Global Land Evaporation 
Amsterdam Model (GLEAM), Penman–Monteith Mu model (PM-MOD), and Penman–Monteith Nagler 
model (PM-VI). E ET  was predicted satisfactorily by all four models, with correlations consistently higher  
( 2 0.6E R  ) for GLEAM and PT-JPL, and PM-MOD and PM-VI presenting overall better responses in 
terms of percent bias (  10 10E PBIAS  %). As for PM-VI, this outcome is expected, given that the model 
requires calibration with local data. Model skill seems to be unrelated to land-use but instead presented 
some dependency on biome and climate, with the models producing the best results for wet to moderately 
wet environments. Our findings show the suitability of individual models for a number of combinations 
of land cover types, biomes, and climates. At the same time, no model outperformed the others for all 
conditions, which emphasizes the need for adapting individual algorithms to take into account intrinsic 
characteristics of climates and ecosystems in South America.
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Key Points:
•	 �Four remote sensing 

evapotranspiration (ET) models were 
evaluated using 25 flux towers from 
across South America

•	 �Performance of all models is reduced 
in dry environments

•	 �Comparisons with flux tower-
based ET showed that Global Land 
Evaporation Amsterdam Model 
and Priestley–Taylor Jet Propulsion 
Laboratory produced higher 
correlations whereas RMSE was 
similar for all models
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being a key driver of the Earth’s carbon, energy, and water cycles at local, regional, and global scales (Cao 
et al., 2010; de Oliveira et al., 2021; Khosa et al., 2019; Tong et al., 2017; Valle Júnior et al., 2020). In situ 

E ET  measurements can be obtained from micro-meteorological methods (e.g., eddy covariance, scintillom-
etry, or Bowen ratio method) and those derived from the soil water balance (e.g., directly using lysime-
ters, or from changes in profile soil moisture content obtained gravimetrically, from neutron probes, or 
capacitance-based soil water monitoring equipment). Besides, plant physiological techniques such as sap 
flow methods, provide direct estimates of transpiration (Allen et al., 2011; Fisher et al., 2011; Verhoef & 
Campbell, 2006), but only the micro-meteorological methods provide E ET  data at the field to landscape (e.g., 
scintillometry) scale. Over the past three decades, eddy covariance (EC) systems have become the state-
of-the-art and standard in situ method to quantify land surface energy and mass fluxes for different types 
of ecosystems (Campos et al., 2019; Restrepo-Coupe et al., 2013; Rodrigues et al., 2016; Wang et al., 2020). 
However, these techniques estimate fluxes for areas of relatively limited spatial dimensions (E  1  2kmE  ) de-
pending on the heterogeneity of the landscape), and they are affected by specific local conditions, such as 
the occurrence of advection across sharp contrasts in vegetation and/or irrigation conditions, and those 
caused by topographic features, such as cold air drainage for sloping terrain (Allen et al., 2011; Mauder 
et al., 2020; Mutti et al., 2019; Rahimzadegan & Janani, 2019; Rwasoka et al., 2011).

During the 1990s and 2000s, remote sensing-based E ET  (RSBET) algorithms, using information from vis-
ible, near-infrared, and thermal infrared bands, were developed, such as the Surface Energy Balance Al-
gorithms for Land (SEBAL, Bastiaanssen et al., 1998), Simplified Surface Energy Balance Index (S-SEBI, 
Roerink et al., 2000), Surface Balance Energy System (SEBS, Su, 2002), Simplified Surface Energy Balance 
(SSEB, Senay et al., 2007), and Two-Source Energy Balance Model (TSEB, Kustas & Norman, 1999; Norman 
et al., 1995). These algorithms were developed for sub-regional applications, with a focus on irrigation or 
water resources management. Over South America, their predictive skills have been assessed quite exten-
sively, mostly for irrigated cropland (Bezerra et al., 2013, 2015; Lopes et al., 2019; Mutti et al., 2019; Olive-
ra-Guerra et al., 2017; Paiva et al., 2011; Poblete-Echeverría & Ortega-Farias, 2012; Teixeira et al., 2009). 
Studies show that these models perform well when compared to field observations of E ET  (Poblete-Echever-
ría & Ortega-Farias, 2012; Teixeira et al., 2009).

Since the late 2000s, algorithms such as PT-JPL (Fisher et al., 2008), PM-MOD (Mu et al., 2007, 2011), and 
GLEAM (Martens et al.,  2017; Miralles et al.,  2011) focused on the use of satellite-derived observations 
to create spatially coherent global E ET  estimates (Fisher et al., 2017). PT-JPL is at the core of the ECOS-
TRESS mission (Fisher et al., 2020), while PM-MOD is central to the global terrestrial MODIS E ET  product 
(MOD16). GLEAM is used for the annual State of the Climate report since 2015 (Blunden & Arndt, 2020).

Using flux tower data, previous studies conducted in South America evaluated GLEAM and MOD16 
(Moreira et al., 2019; Paca et al., 2019; Ruhoff et al., 2013). However, these studies validated off-the-shelf E ET  
datasets generated by these models, not the models themselves. Since such E ET  products are not produced 
using a common dataset of meteorological variables, a comparative evaluation cannot be made in terms of 
model structure. Rather, different model skills would be partially linked with the quality of the inputs. A 
multisite tropical study, over several continents, validating the PT-JPL model at a regional scale on a month-
ly basis was presented by Fisher et al. (2009). However, to the best of our knowledge, studies assessing the 
daily predictive skills have only been conducted at the local scale (Miranda et al., 2017; Oliveira et al., 2018; 
Souza et al., 2019; Teixeira et al., 2009, 2013).

A major challenge to verify the results of these methods is the scarcity of ground-based observations, due to 
the uneven spatio-temporal distribution of the E ET  monitoring efforts. As a result, remote sensing E ET  meth-
ods are typically evaluated or parameterized using sites located only in North America, Europe (Ershadi 
et al., 2014; McCabe et al., 2016; Michel et al., 2016; Xu et al., 2019), Australia (Martens et al., 2016), and East 
Asia (Chang et al., 2018; Jang et al., 2013; Khan et al., 2018; Li et al., 2019). For example, Mu et al. (2011) 
proposed improvements to the PM-MOD E ET  global algorithm (Mu et al., 2007), based on comparisons with 

E ET  measurements from 46 AmeriFlux sites, 45 of them located in USA and Canada. Martens et al. (2017) 
evaluated the GLEAM algorithm with 91 worldwide FLUXNET sites; however, E  65 were located in the USA 
and in Europe. Therefore, these models might not satisfactorily represent E ET  in sparsely sampled regions 
with very different climate conditions such as South America, despite this continent representing ca. 12% 
of the total Earth’s terrestrial area.
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South America spans two hemispheres, and four major climate zones, from near the equator to sub-Antarc-
tic regions, which makes it a geographically unique continent (Goymer, 2017; Trajano, 2019). Biomes in this 
continent range from tropical to deciduous forests, and contain ecoregions with high sensitivity to variabili-
ty in water (e.g., the Caatinga and Humid Pampas) and energy availability (e.g., the Amazon, Valdivian tem-
perate, and Magellanic subpolar forests) (Seddon et al., 2016). Also, five out of six of the terrestrial biomes 
not included in satellite-based E ET  algorithm evaluations at a global scale are found in South America (see 
Section 2.1). Thus, the evaluation of RSBET methods for South America offers an opportunity to reduce the 
current research gap, in particular at large spatial scales.

FLUXNET provides a common framework for the verification of ET algorithms. Nevertheless, the available 
sites in the FLUXNET2015 database are not evenly distributed around the world (Pastorello et al., 2020). 
Validating global models in South America is challenging, mainly because the data from E  90% of its FLUX-
NET registered sites are not readily available to the scientific community: less than 50% of South American 
AmeriFlux sites are available for direct access. Additionally, flux towers in woody savannas and evergreen 
broad-leaf forests account for nearly 65% of all Latin American FLUXNET sites, while some of the biomes 
are not properly represented (Villarreal & Vargas, 2021).

The identification of scientific gaps and the proposed improvements are considered a priority for the future 
development of E ET  assessment methods from remote sensing (Fisher et al., 2017). Some of them include 
merging different ET-estimation methods and the identification of their sources of uncertainty (Fisher 
et al., 2017; Paca et al., 2019; Zhang et al., 2017). Indeed, despite the recent developments of remote sensing 

E ET  methods, there are still challenges concerning the refinement of those algorithms to remedy the lack 
of information on specific surface characteristics and fluxes of undersampled climate zones and vegeta-
tion types. In this context, one of the main sources of uncertainty in global satellite-based E ET  estimates 
are the fractional vegetation cover and net radiation (Badgley et al., 2015; Ferguson et al., 2010; Vinukollu 
et al., 2011)

We evaluated the predictive skills of four satellite-based E ET  models designed for regional and continental 
scale applications, over South America. The main question we seek to answer is whether such models can 
be applied consistently to reliably capture E ET  in South America. Specific research questions include: (a) 
are the models capable of correctly estimating E ET  and its components? (b) are the models predictive skills 
affected by climate, land cover type, or biome?

2.  Study Area, Data, and Methods
2.1.  South American Biomes, Flux Tower-Based ET, and Meteorological Data

The study area encompasses five biomes (Table S1 in the Supporting Information S1): Tropical and Subtrop-
ical Moist Broadleaf Forests (TSMBF); Flooded Grasslands and Savannas (FGS); Tropical and Subtropical 
Grasslands, Savannas and Shrublands (TSGSS); Tropical and Subtropical Dry Broadleaf Forests (TSDBF), 
and Temperate Broadleaf & Mixed Forests (TBMF) (Olson et al., 2001).

We used daily meteorological data from 25 flux tower sites located across various South American biomes 
and land cover types to verify the predictive skill of the selected RSBET models (Figure 1a, Table S2 in 
Supporting Information S1). The time period considered for analysis was determined by the available time 
series for each site (Figure S1 in Supporting Information S1). Further information about each biome is pro-
vided in SM. 10 sites are from FLUXNET (Pastorello et al., 2020), AmeriFlux networks (Novick et al., 2018), 
and Large-Scale Biosphere-Atmosphere Experiment in the Amazon (LBA) project (Saleska et al., 2013), 
while the remaining data were obtained from the respective principal investigators. Concerning towers sites 
not available in global networks, data handling included standard procedures to ensure quality data, includ-
ing: detection of spikes caused by changes in the footprint or imprecise measurements; delay correction of 

2HE  O/ 2COE  in relation to the vertical wind component; correction of coordinates (2D rotation); correction 
of spectral loss; conversion of the buoyancy flux to sensible heat flux, known as SND-corrections (Schot-
anus et al.,  1983); sonic virtual temperature correction; corrections for flux density fluctuations, known 
as WPL corrections (Webb et al., 1980); and incorporated frequency response correction. Additionally, we 
performed due corrections with respect to reduction of wind velocity or turbulence increase caused by the 
shadow of the tower and the sensor. Details about procedures carried out for data processing and filtering 
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to implement these corrections can be found in Cabral et al. (2020); Campos et al. (2019); Holl et al. (2019); 
Tonti et al. (2018). We also emphasize that those data have been widely used in previously scientific publi-
cations (Arruda et al., 2016; Cabral et al., 2010, 2011; Marques et al., 2020; Restrepo-Coupe et al., 2013; Ro-
cha et al., 2009; Rodrigues et al., 2016; Silva et al., 2017). The spatial patterns of mean annual precipitation  
(E P ), air temperature (E T  ), and potential evapotranspiration (E PET  ) show that selected sites encompass a wide 
variety of climates (Figure 1b).

The closure of the energy budget (EB) is rarely observed with flux tower measurements (Foken, 2008; Wil-
son et al., 2002). Usually, the available energy flux ( E Rn G ) is greater than ( E LE H ), where E Rn is the net 
radiation, E G is the soil heat flux, E LE is the latent heat flux, and E H is the sensible heat flux. The imbalances 

Figure 1.  (a) Location of flux tower sites. Land cover types are indicated prior to tower names in the map: Croplands (CROP), Deciduous Needleaf Forest 
(DNF), Evergreen Broadleaf Forest (EBF), Grasslands (GRA), Mixed Forest (MF), Permanent Wetland (PW), and Woody Savanna (WS); Biome types (Olson 
et al., 2001) are indicated by shades of green, yellow, and blue on the map (see legend): Tropical and Subtropical Moist Broadleaf Forests (TSMBF); Tropical and 
Subtropical Dry Broadleaf Forests (TSDBF); Temperate Broadleaf and Mixed Forests (TBMF); Tropical and Subtropical Grasslands, Savannas, and Shrublands 
(TSGSS); Temperate Grasslands, Savannas, and Shrublands (TGSS); Flooded Grasslands and Savannas (FGS); Montane Grasslands and Shrublands (MGS); 
Mediterranean Forests, Woodlands, and Scrub (MFWS); Deserts and Xeric Shrublands (DXS); and Climates across South America from selected representative 
sites are indicated by patterns on the map (see legend): Tropical savanna (Aw), Tropical monsoon (Am), Hot semi-arid (BSh), Cold semi-arid (BSk), Humid 
subtropical (Cfa), Temperate oceanic (Cfb), Dry-winter subtropical highland (Cwb), and Polar Tundra (Td) (Peel et al., 2007). (b) Gridded annual average (AVG) 
and standard deviation (SD) for air temperature (E T  ), rainfall (E P ), and potential evapotranspiration (E PET  ) across South America and the monitored sites (Harris 
et al., 2020).
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in the surface energy balance, reported here as an energy balance ratio, EBR (i.e., ( ) ( )LE H Rn G /  ), 
range from 0.73 to 1.16 (mean E  0.90) (Table S2 in Supporting Information S1). It is paramount that only 
high-quality data were used to run and assess the models. We computed daily EBR for each site and exclud-
ed days with EBR  0.75E  or  1.25E  . Daily averages of meteorological variables were calculated from 30-min 
or hourly data only when at least 80% of the records per day were available. That same criterion was applied 
to sub-daily data when obtaining daytime and nighttime inputs for the MOD16 model (PM-MOD in this 
paper), we considered only days with a minimum of 20–30-min daytime records and 20 during the night. 
As in Mu et al. (2011), the shortwave incoming radiation ( E Rgs  ) was used to distinguish between daytime 
(Rgs   10 W  2mE  ) and nighttime (Rgs   10 W  2mE  ). Regarding the fluxes, we used quality-checked data 
that had not been gap-filled. Previous studies have shown that E ET  derived from the other energy balance 
fluxes, that is,   E LE Rn G H , can agree well with eddy covariance E ET  and lysimeter data (Amiro, 2009; 
Sánchez et al., 2019). Therefore, instead of using the EC-measured E LE , to represent E ET  , we derived E LE from 
the equation above. Such a validation approach (i.e., comparing model E ET  with EB-derived E LE , EBE ET  ) has 
been adopted in previous studies (Fisher et al., 2020; Stoy et al., 2013; Twine et al., 2000; Wilson et al., 2002). 
The results of using the eddy covariance E ET  ( ECE ET  ) instead can be found in the Supporting Information S1 
(see Figures S11–S13 in Supporting Information S1).

The quality control procedure described above was not adopted for the TF1 and TF2 towers (see Figure 1a). 
At those sites, horizontal advection plays an important role due to extreme weather variations throughout 
the year (Levy et al., 2020), such that the energy balance closure cannot be diagnosed by EBR, as described 
above. For instance, the SDF zone is known as an anticyclone pathway between the Pacific and Atlantic 
oceans, and TF1 and TF2 are located in the extreme southern parts of Patagonia, a region characterized by 
strong winds. Thus, for TF1 and TF2 sites, we used E ET  derived from measured E LE .

2.2.  Remote Sensing-Based Vegetation Indices

The required vegetation index (VI) to run PT-JPL, PM-MOD, and PM-VI is the Enhanced Vegetation Index 
(E EVI ). Vegetation Optical Depth (E VOD ) is used in GLEAM. E EVI was derived from the 16-day Level 3 Global 
product of the MODerate Resolution Imaging Spectroradiometer (MODIS), aboard the Terra and Aqua 
satellites (Huete et al., 2002). We used both MODIS VI products, that is, MOD13Q1 (Terra) and MYD13Q1 
(Aqua), at 250 m resolution, to derive daily composites of E EVI . E VOD was extracted from the product de-
scribed in Moesinger et al. (2020). Fisher et al. (2008) used the Soil Adjusted Vegetation Index (E SAVI ) in-
stead of E EVI because the former does not require the blue reflectance (0.45–0.51 E  m), however, the authors 
recognize that both indices are very similar. As we are interested in assessing the E ET  models rather than 
the products resulting from different forcing data, we used E EVI in Fisher’s model (PT-JPL). Leaf area index  
(E LAI ) and other vegetation-related variables (e.g., fraction of Absorbed Photosynthetically Active Radiation, 

PARE f  ) are handled differently in each model. For example, in PT-JPL, E LAI is obtained from total fractional 
vegetation cover, whereas in PM-MOD the 1-km MODIS E LAI (MOD15) product is adopted. The original 
procedures to obtain those variables were not changed here. The following treatment was applied to the 
MODIS-derived data. “Good quality” pixels were selected, based on the quality assurance (QA) flags. Next, 
an autoregressive model was applied to fill in the gaps (Akaike, 1969). The gap-filling procedure was applied 
to gaps smaller than 16 days, while gaps of longer periods were excluded from the analysis. Finally, we im-
plemented a temporal filter to improve the PARE f  and E LAI time series to reproduce precisely all preprocessing 
steps of the standard PM-MOD algorithm (Mu et al., 2011). Filtering of PARE f  and E LAI allowed for the cor-
rection of underestimated values (abrupt and unrealistic decreases in the time series) that mostly originate 
from cloud contamination effects, which were not correctly identified in the quality control fields.

2.3.  Summary of Remote Sensing-Based ET Models

2.3.1.  GLEAM

GLEAM is a semi-empirical/process-based model that estimates the total evaporative flux and its compo-
nents. In this study, version 3 of the algorithm is used (Martens et al., 2017). The main aspects of the model 
are described briefly, while for details we refer to Miralles et al. (2011) and Martens et al. (2017). The model 
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calculates potential evaporation for four sub-grid land cover fractions: (a) open water, (b) low vegetation, (c) 
tall vegetation, and (d) bare soil using the Priestley and Taylor (1972) equation. For tall and low vegetation 
cover fractions, potential transpiration is constrained using an empirical evaporative stress factor, which is 
calculated as a function of soil moisture at root-zone depth and microwave E VOD as described in Martens 
et al. (2017). E VOD (Vegetation Optical Depth) accounts for the attenuation of microwaves through vege-
tation and can be used as a proxy for vegetation phenology. Thus, E VOD is a microwave parameter closely 
linked to vegetation water content (Liu et al., 2013) and in GLEAM it is used to represent phenological 
changes in vegetation. The soil moisture in the root-zone is calculated with a multi-layer water-balance 
model forced by precipitation and satellite surface soil moisture retrievals. For bare soil, the evaporative 
stress factor is calculated as a function of surface soil moisture only, whereas for open water evaporation, 
no stress factor is applied. For the tall vegetation cover fraction, rainfall interception loss is estimated with 
Gash’s analytical model (Gash, 1979; Miralles et al., 2010; Valente et al., 1997). The ET is then calculated 
as the sum of low and tall vegetation transpiration, rainfall interception loss, bare soil evaporation, and 
open-water evaporation with each weighted by the respective fraction.

2.3.2.  PT-JPL

The global ET model proposed by Fisher et al. (2008) is based on the Priestley and Taylor equation for poten-
tial E ET  , which is partitioned into actual plant transpiration, soil evaporation, and interception evaporation, 
that is,  trans soil intE E E E  . To reduce potential E ET  to actual E ET  , the PT-JPL model applies ecophysiologi-
cal constraints based on land surface information such as vegetation properties and humidity/water vapor 
pressure deficit (E VPD ). Fisher et al. (2008) used E NDVI and E SAVI as a proxy for plant physiological status. 
We used E EVI because it provides a better indication of green vegetation cover than E NDVI , as acknowledged 
by Fisher et al. (2008). The model partitions available energy flux using four plant-related constraints: E LAI , 
green canopy fraction, plant temperature, and plant moisture. Similar to PM-MOD (see next subsection), 
vegetation cover, canopy wetness, etc. determine how the available energy flux is partitioned among the 
ET terms. A unique aspect related to the plant temperature constraint is the determination of an optimal 
temperature, optE T  (Potter et al., 1993), which corresponds to an optimal stomatal conductance. The latter 
codetermines transE E  .

2.3.3.  PM-MOD

The MOD16 ET model (PM-MOD) is based on the Penman-Monteith equation to produce a daily global 
ET product summing up daytime and nighttime E ET  (Mu et al., 2011). In this model, total E ET  is partitioned 
into soilE E  , intE E  , and transE E  . To compute soilE E  , PM-MOD uses potential soil evaporation and a soil moisture 
constraint function based on E VPD and air relative humidity (E RH ) (Fisher et  al.,  2008). The evaporation 
of the water intercepted by the canopy, intE E  , is calculated using the relevant equations from a revised ver-
sion of the Biome-BGC model (Thornton, 1998). The PM-MOD assumes that intE E  occurs when the vegeta-
tion is covered with water, i.e., when the water cover fraction ( wetE f  )  0E  , which is constrained by E RH (Mu 
et al., 2011). In the PM-MOD model, wetE f  is calculated as in the PT-JPL model: wetE f  is set to 0 if 70E RH  % and 
f RH
wet

 ( )/100
4 if 70 100 RH  % (Running et al., 2019). The PM-MOD model is designed to allow transE E  

to occur during daytime and nighttime, by adding constraints to stomatal conductance for E VPD and mini-
mum air temperature, and ignoring constraints relating to high air temperature (Running et al., 2019). The 
partitioning of available energy flux into soil or interception evaporation is based on vegetation cover (E Fc ), 
which is assumed to be equal to PARE f  from the MODIS product MOD15A2 (Mu et al., 2011). Although this 
method is based on the PM equation, PM-MOD does neither require wind speed nor soil moisture data for 
the parameterization of aerodynamic and surface resistance. Further details about PM-MOD can be found 
in Mu et al. (2011) and Running et al. (2019). Note that some updates have been implemented in PM-MOD 
since Mu et al. (2011), which can be found in Running et al. (2019). These were also considered here in the 
implementation of PM-MOD.

2.3.4.  PM-VI

This model relies upon the hypothesis that E ET  is mostly controlled by specific dominant processes, such 
as transpiration and photosynthesis, hence a good correlation between such processes and E ET  is neces-
sary for good model performance (Nagler et al., 2007). There are several formulations to estimate E ET  from 
VIs (Nagler et al., 2005, 2009). In this study, we selected the algorithm proposed by Nagler et al. (2013),  
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which estimates E ET  using the reference crop evapotranspiration, E ETo , from the FAO-56 Penman-Monte-
ith (PM) equation (Allen et al., 1998), and a crop coefficient, VIE Kc  , derived from a vegetation index. VIE Kc  
can be calculated in different ways (Nagler et al., 2005, 2013). Following Nouri et al. (2016) and Oliveira 
et al. (2015), VIE Kc  was calculated as:

Kc a e c
VI

b EVI   
( )1� (1)

where E a , E b , and E c are fitted coefficients. We used a parameter optimization tool based on a genetic algorithm 
to optimize the coefficients to estimate ET values close to the measured ones (Oliveira et al., 2015). The 
fitting procedure minimizes the objective function (E OF ) given by the sum of squared differences between 
tower-based E ET  ( obsE ET  ) and E ET  estimates from the models ( simE ET  ) at time  :

 


   
2

1
( )

n
obs sim

i
OF ET i ET i� (2)

This model, herein referred to as PM-VI, has frequently been employed to estimate ET at local and regional 
scales (Jarchow et al., 2017; Nouri et al., 2016; Oliveira et al., 2015). Although obtaining E ETo requires a 
considerable amount of meteorological variables, the PM-VI implementation is easier and has a lower com-
putational cost compared to other models. Unlike the three other models, PM-VI requires the calibration 
of the fitting coefficients, which can be a major issue for regions where E ET  and VI are poorly correlated or 
when correlations change over time (Chong et al., 1993). To calibrate the fitting coefficients, we randomly 
selected 20% of the available data at each site and used the remaining 80% to validate the model.

2.4.  Quantifying Model Reliability

The model predictive skill was visually evaluated with scatter plots of measured versus modeled E ET , as well as 
through the coefficient of determination ( 2E R  ), root mean square error (E RMSE ), percent bias (E PBIAS ), concord-
ance correlation coefficient (E  ), slope (E m ), and intercept (E b ) of the linear regression. The data used in the analysis 
were filtered for rainy days (  0.5E P   mm). Our analysis proceeded from a general (no distinction among sites) to 
a site-by-site and group level analysis, that is, per biome, climate, or land use. The number of flux towers assigned 
to each subgroup (i.e., the different biomes, climate, and land use classes) varied, and so did the record length 
per subgroup. To account for the different sizes, the following sampling procedure was performed, in which we 
computed the variability of each performance metrics for each group analysis (i.e., across its different subgroups): 
(a) A sample size N was defined as half of the record length of the shortest subgroup, among all models; (b) for 
each model, samples of length N were taken from within each subgroup, and the performance metrics were com-
puted; (c) This procedure was repeated 1,000 times, yielding a mean and standard deviation (SD) of the metrics 
at each subgroup, per model. The resulting SD are likely to be influenced by the choice of N, and other rationale 
for its choice could have been made. In this way, the confidence bands reported here are to be seen as measures 
of relative variability, that is, the variability between the models, and not as absolute uncertainty bounds for each 
of them. To establish a relationship between model predictive skill and water availability at individual tower sites, 
we obtained the aridity index (AI P ETo /  ) from the global dataset provided by Trabucco and Zomer (2019). 
For many tower sites, the available meteorological data (even from nearby meteorological stations) were not 
sufficient to provide a reliable E AI ; hence the choice for a global dataset.

3.  Results
3.1.  ET Partitioning

Partitioning of E ET  among the three components ( transE E  , intE E  , and soilE E  ) exhibited more variation for the 
PT-JPL and PM-MOD models. On average, transE E  accounted for 60% (PT-JPL) and 56% (PM-MOD) of E ET  
but, across sites, it presented a smaller range (30%–85%) for PT-JPL than for PM-MOD (20%–90%) (Fig-
ure 2, Table 1). GLEAM transE E  accounted for 82% of E ET  on average, varying between 60% and 95% across 
sites. Average interception across sites reached 9% (GLEAM), 13% (PT-JPL), and 24% (PM-MOD) of total 

E ET  . intE E  fractions range were similar for GLEAM and PT-JPL ( E SD  9%), whereas PM-MOD intE E  varied 
more among sites ( E SD  18%). intE E  was often correlated with E LAI , especially for the GLEAM estimates  



Water Resources Research

MELO ET AL.

10.1029/2020WR028752

8 of 23

( 2 0.57E R  , Figure S2 in Supporting Information S1). PT-JPL soilE E  estimates exceeded the other models, 
particularly for sites with low E LAI values (e.g., ESEC, CST, and USR).

3.2.  Overall Model Skills

Since each model requires a different input dataset (Table S3 in Supporting Information S1), the data avail-
able to run and validate each model varied. GLEAM and PT-JPL provided a significantly greater number 
of daily outputs: 7301 (GLEAM), 7277 (PT-JPL), 5905 (PM-MOD), and 6638 (PM-VI). The complete dataset 
was used to produce scatter plots of E ET  records and model simulations for each location (See Figures S4–S7 
in Supporting Information S1). To allow a fair analysis, the results shown in the main text were obtained 
using data from days that were common across models, resulting in 4,718 data points.

To illustrate the relative contribution of each site to the scatter plots in Figure 3, we display the regression 
lines (light gray lines) between model and tower-based E ET  for each tower site, and the mean metrics across 
individual sites. In general, E ET  was reasonably predicted by all models, as suggested by the relatively low 
spread of most points in the scatter plots, many regression lines close to the 1:1 line, mean determination 
coefficient, R2  , mean concordance correlation coefficient, E  , mostly above 0.65, and mean root mean square 
error (RMSE  ) below 1 mm  1dE  (Figure 3). Nevertheless there is some spread for a few sites, for example, in 
the PT-JPL scatter plot that displays a few sites with large bias despite strong overall correlation and E  .

Figure 2.  Evaporation fractions estimated by the models at each site (stacked bars) and average partitioning of land 
evaporation per model (pie diagram). Black dots: E LAI scaled between 0 and 1 based on the minimum and maximum 
values of E LAI (from MODerate Resolution Imaging Spectroradiometer MDC15A2 product). Red E  : the concordance 
correlation coefficient between observed and simulated daily evapotranspiration (ET).
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The models slightly overestimate E ET  as suggested by higher density of points below the 1:1 line, except for 
GLEAM, which slightly underestimates. Correlations were similar between GLEAM and PT-JPL, with an 
average value of E  0.65 and the highest values at individual sites reaching close to 0.9, as indicated by the 
standard deviations (0.19 and 0.18, respectively). From Figures 3 and 4, it becomes evident that, despite the 
relatively lower spread of points for PM-VI, compared to the other models, this model (PM-VI) presented a 
less consistent performance across towers, as suggested by the contrasting slopes presented by the regres-
sion lines in that plot (e.g., reversed trend line at K77); hence the lower average determination coefficient  
(R2  ) and E  . . Such a contrasting aspect of the PM-VI model is also noted by the fact that a wide range of 2E R  
was found despite the similarity between mean simulated and observed ET (Figure 4).

3.3.  Model Skills Per Biome, Land Use, and Climate

Figure 5 presents E  , E RMSE , E PBIAS , and 2E R  for each model across six biomes, eight land use types, and sev-
en climate classes in South America. Error bars are shown for all metrics and they represent the standard 
deviation resulting from the resampling procedure outlined in Section 2.4. Note that the analysis about the 
FGS and TBMF biomes are based on one and three towers, respectively. For most biomes, E RMSE and 2E R  did 
not significantly diverge. In general, TSGSS showed the best overall metrics for all models, while PM-VI 
in FGS (NPW site) presented the poorest (0.5E  , 1.5E RMSE   mm  1dE  , and 2 0.25E R  ). Model performance 

LULC

transE E  (%) soilE E  (%) intE E  (%)

ReferencesFE GLEAM PT-JPL
PM-

MOD FE GLEAM PT-JPL
PM-

MOD FE GLEAM PT-JPL
PM-

MOD

EBF* 80–84 74–79 47–63 31–88 NA 4–6 18–24 5–20 15–25 17–20 18–29 7–58 Leopoldo 
et al. (1995); 
Shuttleworth 

and 
Pereira (1988)

DNF* 50–81 84–94 64–84 78–90 NA 8–14 14–24 8–18 10 1–2 2–5 2–4 de Queiroz 
et al. (2020); 

Gaj 
et al. (2016); 

Sun 
et al. (2019)

CROP* NA 93 63 70 20–4 6 31 21 10 1 6 9 Cabral 
et al. (2012); 

Denmead 
et al. (1997)

CROP* 85 88 55 69 NA 3 20 4 13 9 25 27 Cabral 
et al. (2010)

WS* NA 86 76 78 NA 2 17 5 8 13 7 17 Cabral 
et al. (2015)

GRA 50–78 69–73 47–49 33–54 NA 25–30 32–46 30–52 NA 1–2 7–18 15–16 Ferretti 
et al. (2003); 

Sutanto 
et al. (2012); 

Wang 
et al. (2014)

MF 36–74 82–88 63–75 58–71 19 11–16 23–30 28–29 NA 1 2–7 1–14 Aron et al. (2020); 
Paul-Limoges 
et al. (2020)

PW 33–38 73–86 28–57 34–41 NA 0–20 32–57 16–54 NA 3–14 6–16 21–43 Zhang 
et al. (2018)

Note. FE = field estimates. Land covers that present field data from the same modeling sites or same geographical region are indicated with “*”.

Table 1 
Comparison of Evaporation Fractions for Several Land Uses Between This Study and Field-Based Estimates
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across towers within each biome did not vary much, as suggested by the relatively low range of the error 
bars for all metrics.

The central panels in Figure 5 provide evidence for the high variability of model predictive skills across 
different land uses (LU), which suggest that: (a) no model outperforms the others for all LU types and (b) 
each model has intrinsic and in some cases exclusive characteristic that makes it more suitable for certain 
LU. Only for croplands (CROP) we found similar metrics among models ( E  0.8,  0.8 1.2E RMSE   mm 

1dE  ,  20% 10E PBIAS  %,  20.6 0.8E R  ). Conversely, for most LU, the metrics variation is remarkable (e.g., 
DBF:  0.4 0.9E  ,   50% 10E PBIAS  %,  20.25 0.80E R  ). On average, each model has the best skills 

Figure 3.  Scatter plots of observed versus simulated daily evapotranspiration at all flux tower sites, for each model. The light gray lines show the regression 
slope of individual sites. The coefficient of determination ( 2E R  ), root mean square error (E RMSE ) and concordance correlation coefficient (E  ) were averaged across 
towers and are displayed on the plots (N = 4,718).
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for two LU; for example, E ET  prediction for GRA and DBF was best with PT-JPL ( E   0.9,  0.5E RMSE   mm 
1dE  ,  0E PBIAS  %, 2 0.75E R  ) whereas PM-VI presented similar skills for estimation of ET for CROP and PW. 

Likewise, model skill is related to the climate type. The analysis of E  and 2E R  over semi-arid regions (BSk and 
BSh) indicates a relatively poor skill of all models (except PM-MOD for BSh climate). This is in contrast to 
the overall good performance over more humid environments (e.g., Aw and Cwb). The greatest divergence 
among model performances was found for the Polar Tundra (Td) climate zone, for which PM-VI presented 
the highest E  and 2E R  (both  0.75E  ), lowest E RMSE ( 0.5E   mm  1dE  ) and E PBIAS ( 10E  %).

3.4.  Individual Sites

In this section, we explore the model performance at individual towers. Model skills for all individual sites 
are depicted in Figure 6. Sites with E N  30 (CAX and MCR) are not discussed here but are considered in the 
scatter plots shown in the SM (Figures S4–S7 in Supporting Information S1). To facilitate the comparison 
of our results with previous analyses using the same models, only three statistics are shown in Figure 6: 

E RMSE , E PBIAS , and 2E R  . Other metrics are displayed in the scatter plots in Figures S4–S7 in the Support-
ing Information S1. In Figure 6, the metrics for the various towers are displayed in order of increasing arid-

Figure 4.  Comparison of mean observed and simulated evapotranspiration (E ET  ). Square colors vary according to individual model 2E R  .
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ity (varying from E  3 to 0, left to right), as suggested by the AI as described in Section 2.4. In general, there 
is a good agreement between the PM-based models in terms of E RMSE and E PBIAS .

In terms of individual metrics, E RMSE values varied between E  0.5 and E  1.5  mm  1dE  for all models, with 
E RMSE  1 mm 1dE  for most sites. The boxplots show that E RMSE variation is similar among models, except 

Figure 5.  Model performance per biome, land use, and climate. The error bars represent the standard deviation of 
the metrics within each class. Biome types: Tropical and Subtropical Moist Broadleaf Forests (TSMBF); Tropical and 
Subtropical Dry Broadleaf Forests (TSDBF); Temperate Grasslands, Savannas, and Shrublands (TGSS); Temperate 
Broadleaf and Mixed Forests (TBMF); Tropical and Subtropical Grasslands, Savannas, and Shrublands (TSGSS); 
Flooded Grasslands and Savannas (FGS); Land use types: Cropland (CROP); Woodland Savanna (WS); Deciduous 
Needleleaf Forest (DNF); Evergreen Broadleaf Forest (EBF); Grasslands (GRA); Mixed Forest (MF); Permanent Wetland 
(PW); Deciduous Broadleaf Forest (DBF). Climate Zones: Tropical monsoon (Am); Tropical savanna (Aw); Hot semi-
arid (BSh); Cold semi-arid (BSk); Temperate oceanic (Cfb); Dry-winter subtropical highland (Cwb) and; Polar Tundra 
(Td). The sample size of each class is indicated in the x-axis.
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for PT-JPL, which presents the lowest E RMSE (e.g., K67). Figure 6 shows that E PBIAS for PM-VI varies around 
zero across sites, which is expected given the model requires calibration with local data. However, based on 

2E R  , it is apparent that this model’s skill is quite limited for  E AI  1.2 and E AI  0.5. In general, the PT-based 
models showed larger biases, with PT-JPL and GLEAM consistently overestimating and underestimating 

E ET  , respectively. In terms of 2E R  , the PT-models ranked better than the PM-models for more than E  50% of 
the towers.

Figure 6.  Comparison of statistics of the models in estimating evapotranspiration (E ET  ) for the various flux towers used. (a) Sample size (E N ) used to compute 
the statistics; (b) E RMSE  = Root Mean Square Error; (c) Percent Bias (E PBIAS ); (d) 2E R   = coefficient of determination. A summary of each model’s statistics is 
depicted in the boxplots: (e) E RMSE ; (f) E PBIAS ; and (g) 2E R  . Flux towers are arranged according to the aridity index (with aridity increasing from left to right). 
Sites with E N  30 (CAX and MCR) are not shown here.
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4.  Discussion
4.1.  General Implications

We conducted the first multi-remote sensing ET model analysis in South America (SA) using a common 
set of forcing and validation data located on flux tower sites across a diverse range of land covers, climates, 
and biomes. Forcing data include both in situ (e.g., temperature and net radiation) and remote sensing data, 
mainly related to vegetation (e.g., E LAI and E EVI ). To evaluate the models, energy balance-derived E ET  ( EBE ET  ) 
was used as observation, instead of eddy covariance E ET  ( ECE ET  ). Given the benefits and drawbacks of using 
either EBE ET  or ECE ET  , we compared both measures to verify whether such choices would lead to different 
results. As shown in the SM, for the great majority of tower sites, ECE ET  and EBE ET  are similar (Figure S10 in 
Supporting Information S1) and model statistics ( 2E R  , E RMSE , and E  ) remained the same regardless of the E ET  
approach or indicate a better performance when EBE ET  was used (Figures S11–S13 in the Supporting Infor-
mation S1). Many of the tower sites considered here are not yet available in flux network databases, includ-
ing sites with land cover (deciduous needle-leaf forests, DNF), a biome (FGS), and two climate types (polar 
tundra and hot semi-arid) that have not been previously assessed in other regional studies on the perfor-
mance of satellite-based E ET  models. Moreover, some classes included here were considered for validation of 
individual models only (e.g., semi-arid and tropical climate types, and TSDBF biome).

The fulfillment of such gaps (i.e., model evaluation across uncharted regions) is an important step because 
it allows a multitude of applications and studies relying on large scale ET mapping, such as: drought moni-
toring (Anderson et al., 2011, 2016), agricultural water management (Anderson et al., 2012), and diagnosis 
of climate change (Mao et al., 2015). The current ability to map ET remotely at various spatial and temporal 
scales, could only be evaluated thanks to the vast number of eddy covariance towers available in continental 
and global flux networks. As shown in this study, a thorough assessment of RBSET models based solely on 
data from such networks would be challenging or insufficient for some regions or continents; hence the 
relevance of this study. Our analysis provides essential information to identify model strengths and lim-
itations across SA, allowing the users to identify which model is more suitable for them. Knowing under 
what circumstances (e.g., land use or climate) each model is more reliable is necessary to address remaining 
research and applied science gaps relative to E ET  at local, regional, and global scales (Fisher et al., 2017). De-
spite the value of tower-based E ET  across SA, many of those questions persist due to our limited observation-
al capabilities. According to Fisher et al. (2017), the way to begin answering those questions is producing 
high quality E ET  estimates, which includes acquiring accurate E ET  information at high temporal and spatial 
resolution with large spatial coverage for a sufficient long period.

4.2.  Model Performance, Sources of Errors, and ET Partitioning

Generally, model predictive skill over SA resembles what has been reported for other continents, including 
satisfactory values of coefficient of determination ( 2E R  0.6) of the models (except PM-VI) for most vali-
dation sites, and consistently better results for the GLEAM and PT-JPL models, with E RMSE ranging from 
E  0.5–1.5 mm 1dE  (McCabe et al., 2016). Also, in accordance with previous analysis, GLEAM and PT-JPL 
presented somewhat higher E RMSE than PM-MOD but no clear evidence indicates decreasing performance 
with increasing aridity, as reported by McCabe et  al.  (2016); and Michel et  al.  (2016). Nonetheless, the 
general analysis (Section 3.2) indicates that all models can be used reliably over most of the environmental 
conditions in SA covered in our study. The analysis across towers and groups (i.e., biome, land use type, and 
climate, Section 3.3, Figure 5) identified considerable differences in terms of model skill.

Our results agree with previous studies from (Ershadi et al., 2014; McCabe et al., 2016; Michel et al., 2016; 
Miralles et al., 2016) who applied PM-MOD, GLEAM (except Ershadi et al., 2014), and PT-JPL to sites locat-
ed in Africa, Asia, Australia, Europe, and Middle East and reported that PM-MOD showed, for most sites, 
lower correlations with measured E ET  compared to GLEAM and PT-JPL. Unlike previous analysis, our study 
agrees with Michel et al. (2016) in the sense that model skill seems to be unrelated to land cover. Michel 
et al.  (2016) also reported a wide variation of 2E R  (0.2–0.8) and E RMSE (0.8–2 mm 1dE  ), for different sites 
under mixed forests. Conversely, contrasting results between our results and previous studies were found 
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for woodland savanna. While we found  20.5 0.8E R  and  0.7 1.5E RMSE    mm  1dE  , Michel et al. (2016) 
reported 2 0.2E R  and  1 3E RMSE   mm 1dE  .

Overall, our group-wise analysis based on climate agrees with previous studies. For example, the poor mod-
el skill found here for the cold semi-arid (Bsk) climate (  20.1 0.5E R  ) resembles that found by McCabe 
et al. (2016) and Michel et al. (2016) for several sites in the United States. While aridity could have played 
a role here, it could also be caused by the fact that semi-arid sites are covered with sparse canopies. Such 
canopies present challenges when it comes to the description of aerodynamic transfer for example and radi-
ation partitioning (see e. g., Verhoef & Allen, 2000). Our findings also show a poor to moderate model skill 
for E ET  predictions for sites located in the Cfb climate zone, with PM-MOD having the worst performance. 
Conversely, PM-MOD presented the best predictive skill for the BSh climate, according to most metrics.

Besides the three RSBET models commonly assessed (GLEAM, PT-JPL, and PM-MOD), our analysis in-
cluded the PM-VI model, which has been validated mostly for cropland or riparian ecosystems (Jarchow 
et al., 2017; Nagler et al., 2005, 2009, 2013). Here, we tested PM-VI for a much wider variety of biomes, 
climates, and land uses, and found a poor predictive skill for several sites with E AI  1.2 (e.g., K67, K77, and 
K83) or E AI  0.5 (e.g., CAA and SLU), even though the model accounts for a site-specific calibration. Con-
sidering the good results obtained for E  50% of the towers and the fact that, compared to the other models, 
PM-VI has a much simpler implementation, this model does have potential as long as sufficient data are 
available for calibration or, at least, validation. However, the need for local calibration is a hurdle for its 
implementation for most regions that are unsampled; therefore future studies are necessary to investigate 
which factors are most relevant in the determination of the model fitting coefficients, and to provide distrib-
uted reference values for its coefficients (e.g., based on land use dynamics).

We were able to identify a number of probable causes for poor model performance at individual sites, in-
cluding (i) patch-scale heterogeneities; (ii) “mixed pixels,” that is, mixed response of different vegetation 
types within a pixel; (iii) time-lag between obsE ET  and E EVI ; (iv) low correlation between E ET  and vegetation 
indices; and (v) model sensitivity to individual inputs (see Section 3.0 in the Supporting Information S1 for 
more details). Although we did not verify this in our study, we did not dismiss the possibility that known 
uncertainties in the estimation of site-specific vegetation characteristics (e.g., PARE f  and leaf stomatal con-
ductance in the PM-MOD; Ershadi et al., 2014); are further causes of lower model performance.

In our study, we used soil heat flux (E G ), which is generally measured below ground (usually at 5–20 cm 
deep) using soil heat flux plates. It could be argued that not correcting E G for the heat storage between the 
plate and the soil surface could lead to sub-optimal estimates of E ET  when E LE is calculated as the residual 
of the energy balance, especially for towers where the soil is bare or covered by sparse vegetation, where 

E G can be relatively large. This, in turn, could lead to the conclusion that the models are performing worse 
than is actually the case. Although desirable, correcting G for heat storage is rarely possible due to data un-
availability (few sites only measure soil moisture and temperature, which are required to estimate soil heat 
capacity and heat storage using the calorimetric method). Moreover, at daily scales and for most sites, G is 
either negligible in SA (summer or winter, when the amount of heat stored during the day roughly equals 
that lost during the night) or represents a minor portion only (spring and autumn) of the energy balance. As 
detailed and discussed in Section 3.0 and Figure S7 in Supporting Information S1, it is highly unlikely that 
neglecting such corrections will have affected the results.

There are, however, some issues worth mentioning here. Cause (v), for instance, is a major issue for PM-VI, 
as expected because the model is highly dependent on VI dynamics (see Section 2.4) (Nagler et al., 2005). 
Regarding cause, the superior performance of the PT models over PM-MOD at most sites is probably linked 
to uncertainties resulting from the estimation of aerodynamic resistance (Ershadi et al., 2014). In PM-MOD, 
the aerodynamic and surface resistances of each E ET  component (soil, interception, and transpiration) are 
parametrized based on biome-specific values of leaf-scale boundary layer conductance, for example (Mu 
et al., 2011). Compared to the previous version of PM-MOD (Mu et al., 2007), this new approach resulted 
in a perceptible improvement only for cropland and deciduous broadleaf forest flux tower sites, whereas for 
other land uses no meaningful change was reported (Ershadi et al., 2015). Conversely, PT models are highly 
dependent on E Rn (causes iv and v); hence they often fail in dry environments (see metrics for E AI  0.6 in 
Figure 6), where E ET  seasonality is dictated by E P more than radiation, or in regions with low E Rn (e.g., TF2). 
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Poor model responses at K77 (cropland, Figure S9 in Supporting Information S1) were attributed to causes 
(i) and (ii), as remnants of forest and shrubs were identified within the tower footprint and within MODIS 
pixel. VI products with higher resolution than MODIS exist and have been used to estimate E ET  (Aragon 
et al., 2018; Fisher et al., 2020); thus offering a possible solution for causes (i) and (ii). Time lag between E ET  
and EVI (cause iii) was identified at EUC, where EVI followed the decline of E ET  after E  1–2 months.

Regardless of all those potential causes for poor model response, it is also important to consider to role 
of the core formulation upon which those RBSET models are based, that is, Penman-Monteith (PM) and 
Priestley and Taylor (PT) equations. A major problem of the PM equation refers to the linearization of the 
Clausius-Clapeyron relation, which has been addressed in a new version of that equation (McColl, 2020). 
The PT equation, in turn, implicitly assumes E Rn and surface temperature ( sE T  ) to be independent of evapora-
tion. In reality, as shown by Yang and Roderick (2019), E Rn not only decreases with increasing sE T  (due to an 
increase of outgoing longwave radiation) but also a greater fraction of E Rn becomes available for evaporation. 
Some of the deviations from the observations found in our analysis may happen due to such inconsisten-
cies or simplifications. Here, we provide evidence to consider revisiting not just parameter values but the 
governing equations themselves and, ultimately, evaluate the benefits of such potential improvements in 
RBSET models.

Remote sensing based E ET  partitioning is expected to present some divergences from ground based meas-
urements. This is the case especially for soilE E  , because of the difficulty in obtaining remote sensing informa-
tion on soil characteristics that drive soilE E  , such as soil moisture and temperature (Talsma, Good, Jimenez, 
et al., 2018; Talsma, Good, Miralles, et al., 2018), in particular at high vegetation cover fractions. Globally, 
transpiration has been reported to account for 57%–90% of global E ET  , based on in situ data and model 
outputs (Jasechko et al., 2013; Paschalis et al., 2018; Wei et al., 2017). Although these are global estimates, 
we expected transE E  to be the largest E ET  component also in SA due to its prevailing tropical climate and cor-
responding vegetation types. Our results show that this was indeed the case for GLEAM with an /transE E ET  
ratio of E  80%, and for PT-JPL and PM-MOD with values of 57% and 60%, respectively. Nonetheless, based 
on our findings, model predictive skill in estimating total E ET  is not necessarily associated with its ability to 
partition E ET  accurately.

Concomitantly, inconsistencies in E ET  partitioning do not necessarily translate into inaccurate model esti-
mates of total E ET  : this depends on the modelling approach. On the one hand, if total E ET  results from the 
sum of E ET  components independently, then an under- or overestimation of E ET  components can reduce 
the overall model skill, or reasonable E ET  estimates can be achieved as the consequence of an occasional 
compensation of errors in transE E  , soilE E  , and intE E  . On the other hand, if the E ET  partitioning is derived from the 
estimate of a proxy value for total E ET  , such as available energy flux (as in PM-MOD and PT-JPL), the E ET  
partitioning is unlikely to influence the total E ET  estimates. Moreover, E ET  partitioning may be sensitive to 
certain model inputs. For example, contrasting E ET  fractions were estimated by PM-MOD for similar rain 
forest sites, i.e., K67 and K83 (Figure 2). The reason PM-MOD is returning that difference is because E RH 
was estimated from actual ( aE e  ) and saturation vapor pressure ( sE e  ) data, as E RH data is not available in the K83 
dataset. As a result, the difference between aE e  -derived daytime and nighttime RH for K83 is greater than that 
for K67. In terms of daily averages, aE e  -derived E RH and measured E RH are quite similar, which explains why 
the fractions for GLEAM and PT-JPL, at those two towers, are similar. Still, good estimates of E ET  compo-
nents are important to differentiate the roles of vegetation and soil, that is, how they contribute to vertical 
soil water fluxes and changes in profile soil water content. Reliable knowledge of the distribution between 

soilE E  and transE E  is also important when this information is used in hydrological models to calculate other 
water balance components, such as runoff.

Ground-based E ET  partitioning data are generally not widely available. This also goes for most land cover 
types included in this study. We compared the models' outputs with field experiment studies that measured 
one or more E ET  components either at the same sites as those used here or within the same region (Table 1). 

E ET  partitioning values derived from GLEAM seem to be more consistent with ground-based information 
available for tropical rain forests, croplands and grasslands than for wetlands, and mixed and deciduous nee-
dle-leaf forests (Table 1). This also applies to PT-JPL with its E ET  partitioning agreeing reasonably well with 
observations made for both tropical rain and dry forests. Note that PT-JPL (as well as PM-MOD) constrain 

transE E  based on wetE f  . Hence, compared to GLEAM, transpiration will be lower under high E RH in the model 
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but E ET  can be high due to water availability in the soil and intercepted rainfall. Nonetheless, the overall pre-
dictive skill of PT-JPL was satisfactory at such sites (Figure 6 and Figure S4 in Supporting Information S1). 
Regarding PM-MOD, the main inconsistency is the interE E  for tropical forests (Table  1). Despite the wide 
variability in E ET

trans
/  among models, their overall predictive skill was satisfactory, that is, not associated 

with their capability to correctly estimate each E ET  component individually (see Supporting Information S1 
for further discussion). No model was able to consistently capture the E ET  partitioning across all sites cor-
rectly, which is expected given the uncertainty of each E ET  component and the climate and land-cover varia-
bility in SA. However, the joint estimates of all models covered totally or partially all field-derived evidence 
on E ET  partitioning. This suggests that continental E ET  estimates for understudied regions, such as the SA, 
would benefit from merging E ET  outputs from models that are based on different methods (Paca et al., 2019).

Despite our efforts to gather as much tower data as possible, with the goal of having a common dataset for 
all models, we faced several limitations including: differences in lengths of observational time series across 
towers (up to 3 years), as well as lack in overlap of these time series; uneven distribution of towers across 
groups (e.g., biomes); and, finally, South American geographical features that were not considered in this 
study (e.g., MGS biome or desert climate type, BWk). Thus, it was not possible to assess, for all towers, 
model responses during all seasons. Nonetheless, the fact that our dataset encompasses a wide variety of 
climates enabled us to evaluate, to a reasonable extent, model responses for contrasting seasons and fill in 
the gaps flagged by the literature, such as the absence, in a similar analysis, of towers in the tropical climate 
zone pointed out by McCabe et al. (2016).

5.  Conclusion
Our results show that, in general, E ET  can be reasonably well predicted by all four models, despite an overall 
tendency of overestimation by PT-JPL and PM-MOD, and underestimation by GLEAM. Contrasting with 
results from other continents, we found no clear evidence linking model predictive skill with aridity. Our 
analysis emphasizes the need of improving model E ET  partitioning, although the link between flawed E ET  
partitioning and poor model skill is not evident based on our results. Having reliable E ET  partitioning co-
efficients as part of the FLUXNET-type datasets would be valuable in this respect, but unfortunately such 
data are difficult to obtain, as they require labor-intensive and costly methods (such as sapflow gauges and 
lysimeters), that also present problems with regards to upscaling from plot to field-scale.

Correlations are consistently higher for GLEAM and PT-JPL, with 2 0.5E R  for most sites, whereas PM-
MOD and PM-VI presented better performances in terms of PBIAS (  10 10E PBIAS  % for most sites). As 
for PM-VI, the low PBIAS is expected, given the model requires calibration with local data.

The model skill for the various models seems to be unrelated to land cover type as we found a wide varia-
bility of metric values within the same class and across models. Conversely, a relatively lower performance 
was observed for most models in semi-arid regions (e.g., BSk climate type), compared to an overall good 
performance for more humid environments (e.g., Aw climate type). Except for the FGS biome, we found 
that skill across models was mostly similar within the same biome.

Despite the relatively high number of towers (compared to previous global analyses that used a similar 
amount of sites), gathering a balanced amount of data and uniform distribution of towers across different 
biomes and climate zones across the whole continent was challenging. Thus, there is a need to expand the 
flux tower network in South America as well as the formation of bilateral collaboration for future contri-
butions. Previous studies (McCabe et al., 2016; Michel et al., 2016) have expressed the need to extend the 
evaluation of RSBET models to uncharted biomes and climate conditions. Our analysis fills this gap by 
assessing the reliability of four RSBET models over South America. We provide benchmarking metrics that 
can serve the improvement of E ET  models for improved capturing of E ET  over this continent.

Data Availability Statement
The data used in this study is available at https://doi.org/10.5281/zenodo.5549321.
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