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Abstract Given a c-edge-coloured multigraph, where c is a positive integer, a proper
Hamiltonian path is a path that contains all the vertices of the multigraph such that no
two adjacent edges have the same colour. In thisworkwe establish sufficient conditions
for an edge-coloured multigraph to guarantee the existence of a proper Hamiltonian
path, involving various parameters such as the number of edges, the number of colours,
the rainbow degree and the connectivity.
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1 Introduction

The study of problems modelled by edge-coloured graphs has resulted in important
developments recently. For instance, the research on long coloured cycles and paths for
edge-coloured graphs has provided interesting results [3]. Fromapractical perspective,
problems arising in molecular biology are often modelled using coloured graphs, i.e.,
graphs with coloured edges and/or vertices [9]. Given an edge-coloured graph, these
problems are equivalent to find subgraphs coloured in a specified pattern. The most
natural pattern in such a context is that of proper colourings, i.e., adjacent edges have
different colours.

In this work we give sufficient conditions involving various parameters such as
the number of edges, rainbow degree, etc., in order to guarantee the existence of
proper Hamiltonian paths in edge-coloured multigraphs where parallel edges with the
same colours are not allowed. Notice that the proper Hamiltonian path and proper
Hamiltonian cycle problems are both N P-complete in the general case. However
there are polynomial time algorithms to find a proper Hamiltonian path in c-edge-
coloured complete graphs, c ≥ 2 [7]. There are also polynomial time algorithms to
find a proper Hamiltonian cycle in 2-edge-coloured complete graphs [4], but it is still
open to determine the computational complexity for c ≥ 3 [5]. Many other results for
edge-coloured multigraphs can be found in the survey by Bang-Jensen and Gutin [2].
Results involving only degree conditions can be found in [1].

Formally, let Ic = {1, 2, . . . , c} be a set of c ≥ 2 colours. Throughout this paper,Gc

denotes a c-edge-coloured multigraph such that each edge is coloured with one colour
in Ic and no two parallel edges joining the same pair of vertices have the same colour.
Let n be the number of vertices andm be the number of edges ofGc. If H is a subgraph
ofGc, then Ni

H (x) denotes the set of vertices of H adjacent to x with an edge of colour
i . Whenever H is isomorphic to Gc, we write Ni (x) instead of Ni

Gc (x). The coloured
i-degree of a vertex x , denoted by di (x), is the cardinality of Ni (x). As usual N (x)
denotes the neighbourhood of x , d(x) its degree and δ(G) the minimum degree among
all vertices of Gc. The rainbow degree of a vertex x , denoted by rd(x), is the number
of different colours on the edges incident to x . The rainbow degree of a multigraph
Gc, denoted by rd(Gc), is the minimum rainbow degree among its vertices. An edge
with endpoints x and y is denoted by xy, and its colour by c(xy). A rainbow complete
multigraph is the one having all possible coloured edges between any pair of vertices
(its number of edges is therefore c

(n
2

)
). The complement of a multigraph Gc denoted

by Gc, is a multigraph with the same vertices as Gc and an edge vw ∈ E(Gc) on
colour i if and only if vw /∈ E(Gc) on that colour. We say that an edge xy is amissing
edge of Gc if xy ∈ E(Gc). The graph Gi is the spanning subgraph of Gc with edges
only in colour i . A subgraph of Gc is said to be properly edge-coloured if any two
adjacent edges in this subgraph differ in colour. A Hamiltonian path (cycle) is a path
(cycle) containing all vertices of the multigraph. A path is said to be compatible with
a given matching M if the edges of the path are alternatively in M and not in M . We
assume that the first and the last edge of the path are in M otherwise we just remove
one (or both) of them in order to have this property. All multigraphs are assumed to
be connected.
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This paper is organized as follows: In Sect. 2 we present some preliminary results
that will be useful for the rest of the paper. In Sect. 3 we study proper Hamiltonian
paths in 2-edge-coloured multigraphs. In Sect. 4 we study proper Hamiltonian paths
in c-edge-coloured multigraphs, for c ≥ 3.

2 Preliminary Results

Lemma 1 Let G be a connected non-coloured simple graph on n vertices, n ≥ 9. If
m ≥ (n−2

2

) + 3, then G has a matching M of size |M | = � n
2 �.

Proof One theorem in [6] states that a 2-connected graph on n ≥ 10 vertices and
m ≥ (n−2

2

) + 5 edges has a Hamiltonian cycle. So if we add a new vertex v to G
and we join it to all the vertices of G, we have that G + {v} is 2-connected adn
it has m ≥ (n−1

2

) + 5 edges. Therefore G + {v} has a Hamiltonian cycle, i.e., G
has a Hamiltonian path and this implies that there exists a matching M in G of size
|M | = � n

2 �. ��
Lemma 2 [8] Let G be a simple non-coloured graph on n ≥ 14 vertices. If m ≥(n−3

2

) + 4 and δ(G) ≥ 1, then G has a matching M of size |M | ≥ � n−2
2 	.

Lemma 3 Let Gc be a 2-edge-coloured multigraph on n ≥ 14 vertices coloured with
{r, b} (red and blue). If rd(Gc) = 2 and m ≥ (n

2

) + (n−3
2

) + 4, then Gc has two
matchings Mr and Mb of colours red and blue respectively, such that |Mr | = � n

2 �
and |Mb| ≥ � n−2

2 	 up to permutation of the colors.

Proof Let Er and Eb denote the set of edges coloured in red and blue respectively.
Set |Er | = mr and |Eb| = mb. Observe that, for every vertex x in Gc, rd(x) = 2, we
have that di (x) ≥ 1 for i ∈ {r, b}. Observe also that mi ≥ (n−3

2

) + 4 for i ∈ {r, b},
since this threshold is tight when the multigraph is complete on one of the colours.

Now, if n is odd, by Lemma 2 there exist two matchings Mr and Mb, each one
of size n−1

2 , so the result follows straightforward. Next, if n is even, suppose without

loss of generality that mr ≥ mb. Then mr ≥
((n

2

) + (n−3
2

) + 4
)

/2 >
(n−2

2

) + 3. It

is sufficient to show that Gr has a matching of size � n
2 � because Gb has one of size

� n−2
2 	 by Lemma 2. Since δ(Gr ) ≥ 1, Gr is connected, thus, Lemma 1 implies that

Gr has a matching of size � n
2 � as desired. ��

Lemma 4 Let Gc be a connected c-edge-coloured multigraph, c ≥ 2. Suppose that
Gc contains a proper path P = x1y1x2y2 . . . xp yp, p ≥ 3, such that each edge xi yi
is red. If Gc does not contain a proper cycle C such that V (C) = V (P) then there
are at least (c − 1)(2p − 2) missing edges in Gc.

Proof We show that there are at least 2p − 2 missing edges in Gc per colour dif-
ferent from red. As there are c − 1 such colours the total number of missing edges
will be at least (c − 1)(2p − 2) as claimed. Let us consider some colour, say blue,
different from red. The blue edge x1yp cannot be in Gc otherwise x1y1 . . . xp ypx1
is a proper cycle. Suppose that the blue edge x1xi is present in Gc for some
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i = 2, . . . , p. Then the blue edge yi−1yp cannot be in Gc otherwise the proper cycle
x1xi . . . yp yi−1 . . . x1 contradicts our hypothesis. Therefore for each edge yi−1xi either
the blue edge x1xi or the blue edge yi−1yp is missing. So there are p − 1 blue miss-
ing edges in Gc. Now suppose that the blue edge x1yi is present in Gc, for some
i = 2, . . . , p − 2. Then the blue edge xi+1yp cannot be at the same time with the
blue edges xi yi+1, yi−1xi+2 or yi−1yi+1, xi xi+2 in Gc, otherwise the proper cycles
x1yi xi yi+1xi+1yp . . . xi+2yi−1 . . . x1 or x1yi xi xi+2 . . . ypxi+1yi+1yi−1 . . . x1 contra-
dict again our hypothesis. Then for each edge yi xi+1, at least one of the edges xi+1yp,
x1yi ismissing inGc for i = 2, . . . , p−2.Therefore there are at least p−3bluemissing
edges.

Up to now we have 2p − 3 blue missing edges. To obtain the last missing edge
observe that one of the blue edges x2yp, x1y2, y1x3 (x2yp, x1x3, y1y2) is missing in
Gc, otherwise we obtain the proper cycle x1y2x2yp . . . x3y1x1 (x1x3 . . . ypx2y2y1x1).
We remark that the blue edges x2yp and y1x3 (y1y2) were not counted before. The
edge x1y2 (x1x3) was supposed to exist, otherwise, to obtain the last missing edge we
consider the symmetric case, i.e., using the blue edge x1yp−1 (if it exists).

In conclusion there are at least 2p − 2 blue missing edges in Gc as required. This
completes the argument and the proof. ��

Lemma 5 Let Gc be a connected c-edge-coloured multigraph, c ≥ 2. Let M
be a matching of Gc in one colour, say red, of size |M | ≥ � n−2

2 	. Let P =
x1y1x2y2 . . . xp yp, p ≥ 3, be a longest proper path compatible with M. Let f (n, c)
denote the minimum number of missing edges in Gc on colours different from red.
Then the following holds:

f (n, c) =
⎧
⎨

⎩

(2n − 4)(c − 1) if n is even, |M | = n
2 and 2p < n

(2n − 6)(c − 1) if n is odd, |M | = n−1
2 and 2p < n − 1

(2n − 8)(c − 1) if n is even, |M | = n−2
2 and 2p < n − 2

Proof Here we consider only the case when n is even, |M | = n
2 and 2p < n, as the

two other cases are similar. Observe that, as the red matching M has n
2 edges and by

hypothesis P uses p edges of M , there are precisely n−2p
2 edges of M in Gc − P . Let

us denote these edges by ei = wi zi , where wi , zi ∈ Gc − P , i = 1, . . . , n−2p
2 .

Suppose first that there is no proper C cycle such that V (C) = V (P). Let blue be
some colour different from red.ByLemma4 there are at least 2p−2 bluemissing edges
in the subgraph induced by V (P). Furthermore there are no blue edges between the
vertices x1, yp and the endpoints of every edge ei . Otherwise if such an edge exists for
some i , say x1wi , then the path ziwi x1y1 . . . xp yp contradicts the maximality property
of P . Thus, there are at least 2(n− 2p) blue missing edges. In addition, for each edge
y j x j+1, j = 1, . . . , p−1, at least two of the blue edges y jwi , y j zi , x j+1wi and x j+1zi
aremissing inGc, otherwise if at least three among them exist, we can easily find a path
longer than P , a contradiction. So, in this case there are (n−2p)(p−1) blue missing
edges. Summing up we obtain (n−2+ pn−2p2) blue missing edges in Gc. As there
are c−1 colours different from red, we finally have a total of (n−2+ pn−2p2)(c−1)
missing edges in Gc. For n and c fixed, the minimum value of this function is obtained
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for p = n−2
2 . Thus f (n, c) =

[
n − 2 + n−2

2 n − 2
( n−2

2

)2]
(c− 1) = (2n− 4)(c− 1)

as required.
Suppose next that there is a proper cycle C such that V (C) = V (P). Then every

edge (if any) between a vertex of C and the endpoints of the edges ei = wi zi should
be red. Otherwise if such a non red edge exists, say x jwi for some i and j , xi ∈ C ,
then appropriately using the segment x jwi zi along with C , we may find a path longer
than P , a contradiction. Therefore there are at least (2pn−4p2)(c−1)missing edges
in Gc. Again, by minimizing the function we obtain f (n, c) = (2n − 4)(c − 1) for
p = n−2

2 . ��

3 2-Edge-Coloured Multigraphs

In this section we study the existence of proper Hamiltonian paths in 2-edge-coloured
multigraphs. We present two main results. The first one involves the number of edges.
The second one involves both the number of edges and the rainbow degree. Both
results are tight.

Theorem 1 Let Gc be a 2-edge-coloured multigraph on n ≥ 8 vertices coloured with
{r, b}. If m ≥ (n

2

) + (n−2
2

) + 1, then Gc has a proper Hamiltonian path.

For the extremal example, n ≥ 8, consider a rainbow complete 2-edge-coloured
multigraph on n − 2 vertices, n odd. Add two new vertices x1 and x2. Then add a red
edge x1x2 and all red edges between {x1, x2} and the complete graph. Although the
resulting graph has

(n
2

) + (n−2
2

)
edges, it has no proper Hamiltonian path, since there

is no blue matching of size (n − 1)/2.

Proof By induction on n. For n = 8, 9 by a rather tedious but easy analysis the
result can be shown. Suppose now that n ≥ 10. As Gc has at least

(n
2

) + (n−2
2

) + 1
edges then |E(Gc)| ≤ 2n − 4. A theorem in [1] states that if every vertex x ∈ Gc

has dr (x) ≥ ⌈ n+1
2

⌉
and db(x) ≥ ⌈ n+1

2

⌉
, then Gc has a proper Hamiltonian path.

Thus, we can assume that there exists a vertex x ∈ Gc such that dr (x) ≤ � n+1
2 	 − 1,

otherwise there is nothing to prove.
Suppose first that there exist two distinct neighbours y, z of x such that c(xy) = b

and c(xz) = r .We then construct a newmultigraphG ′c by replacing the vertices x, y, z
with a new vertex s such that Nr (s) = Nr

Gc−{x,z}(y) and Nb(s) = Nb
Gc−{x,y}(z).

We remark that Nr
Gc−{x,z}(y) and Nb

Gc−{x,y}(z) cannot both be empty, otherwise

|E(Gc)| ≥ 3n − 5 − � n+1
2 	 > 2n − 4, a contradiction. By doing so, in the worst

case we remove at most n − 1 blue and � n+1
2 	 − 1 red edges from x , n − 3 blue edges

from y, n−3 red edges from z and one red and one blue between y and z. ThereforeG ′c
has at least

(n
2

)+(n−2
2

)+1−(n−1)−(� n+1
2 	 − 1

)−2(n−3)−2 ≥ (n−2
2

)+(n−4
2

)+1
edges. Thus by induction, G ′c has a proper Hamiltonian path P . From this path P we
can easily obtain a proper Hamiltonian path in Gc.

Suppose now that there does not exist two distinct neighbours y, z of x such that
c(xy) = b and c(xz) = r . Suppose first that both y and z exist but they are not distinct,
i.e., y = z. In this case, it is easy to observe that Gc − {x} has (n − 1)(n − 2) edges,
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i.e., it is a rainbow complete multigraph. Therefore, it contais a proper Hamiltonian
path starting at y. This path can be easily extended to a proper Hamiltonian path of Gc

by adding one of the edges xy in the appropriate colour. Suppose next that all edges
incident to x are on the same colour, say b. Observe that for every vertex w �= x , there
exists at least one red edgewu, u ∈ Gc−{x, w}, otherwise |E(Gc)| ≥ 2n−3 > 2n−4,
which is a contradiction. In the following we distinguish between two cases depending
on the neighbourhood of x . Assume first that |Nb(x)| ≤ n − 2. Consider a neighbour
y of x and remove all its blue incident edges. Then remove x from Gc and call this
multigraphG ′c. InG ′c, y ismonochromatic in red andG ′c has at least

(n−1
2

)+(n−3
2

)+1
edges. Thus by the inductive hypothesis, G ′c has a proper Hamiltonian path. This path
starts at y since it was monochromatic. So we have a proper Hamiltonian path in Gc.
Assume next that |Nb(x)| = n − 1. If for some neighbour y of x , |Nb(y)| ≤ n − 2,
we complete the argument as before. Otherwise for every vertex y, |Nb(y)| = n − 1.
It follows that the underlying blue subgraph G ′b of G ′c = Gc − {x} is complete.
Furthermore, G ′c has at least n2 − 4n + 5 edges. Now remove all the blue edges from
G ′c. This new (red) graph has n − 1 vertices and at least

(n−2
2

) + 1 edges. Therefore

as a theorem in [6] states that a graph on n vertices and at least
(n−1

2

) + 1 edges
has a Hamiltonian path, this red graph has a Hamiltonian path P . Now since G ′b is
complete, we can appropriately use some blue edges of G ′b along with the edges of
P to define a proper Hamiltonian path P ′ in G ′c that always starts with an edge on
colour red. Finally, we can join x to the first vertex of P ′ in order to obtain a proper
Hamiltonian path in Gc. ��

Theorem 2 Let Gc be a 2-edge-coloured multigraph on n ≥ 14 vertices colou-red
with {r, b}. If rd(Gc) = 2 and m ≥ (n

2

)+(n−3
2

)+4, then Gc has a proper Hamiltonian
path.

For the extremal example, n ≥ 14 odd, consider a complete blue graph, say A, on
n − 3 vertices. Add three new vertices v1, v2, v3 and join them to the same vertex v in
Awith blue edges. Finally, superpose the obtained graph with a complete red graph on
the n vertices. Although the resulting 2-edge-coloured multigraph has

(n
2

)+ (n−3
2

)+3
edges, it has no proper Hamiltonian path since one of the vertices v1, v2, v3 cannot
belong to such a path.

Proof Let us suppose that Gc does not have a proper Hamiltonian path. We will
show that Gc has more than 3n − 10 edges, i.e., Gc has less than

(n
2

) + (n−3
2

) + 4
edges, contradicting the hypothesis of the theorem. We distinguish between two cases
depending on the parity of n.

Case A n is even. By Lemma 3, Gc has two matchings Mr , Mb such that |Mr | = n
2

and |Mb| ≥ n−2
2 . Take two longest proper paths, say P = x1y1x2y2 . . . xp yp and

P ′ = x ′
1y

′
1x

′
2y

′
2 . . . x ′

p′ y′
p′ , compatible with Mr and Mb, respectively.

Notice now that if 2p = n or 2p′ = n then we are finished. In addition, if 2p′ <

n − 2, then by Lemma 5 there are at least 2n − 4 blue missing edges and 2n − 8 red
ones. This gives a total of 4n−12 > 3n−10 missing edges, which is a contradiction.
Consequently, in what follows we may suppose that 2p = 2p′ = n − 2.
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Suppose first that there exists a proper cycle C in Gc such that V (C) = V (P). Let
e = wz be the red edge of Mr − E(C). If there exists a blue edge e′ between w or
z and some vertex of C , we can easily obtain a proper Hamiltonian path considering
e, e′ and the rest of C in the appropriate direction. Otherwise as the multigraph is
connected, all edges e′ between the endpoints of e andC are red. Now as rd(Gc) = 2,
there must exist a blue edge e′′ between w and z and therefore we can obtain a proper
Hamiltonian path just as before but starting with e′′ instead of e.

Next suppose that there exists no proper cycle C in Gc such that V (C) = V (P).
By Lemma 5 there are at least 2n − 4 blue missing edges. Consider now the path P ′
and let v1, w1 be the two vertices of Gc − P ′. It is clear that if there exists a blue edge
joining v1 and w1, then |Mb| = n

2 . Thus, by symmetry on the colours there are at
least 2n − 4 red missing edges. This gives a total of 4n − 8 > 3n − 10 blue and red
missing edges, a contradiction. Otherwise, assume that there is no blue edge between
v1 and w1. In this case we will count the red missing edges assuming that we cannot
extend P ′ to a proper Hamiltonian path. If there exists no cycle C ′ in Gc such that
V (C ′) = V (P ′), then by Lemma 4 there are 2p′ − 2 = n − 4 red missing edges. By
summing up we obtain 3n − 8 > 3n − 10 missing edges, which is a contradiction.
Finally, assume that there exists a proper cycleC ′ inGc such that V (C ′) = V (P ′). Set
C = c1c2 . . . c2p′c1 where c(ci ci+1) = r for i = 1, 3, . . . , 2p′ − 1. If there are three
or more red edges between {v1, w1} and {ci , ci+1}, for some i = 1, 3, . . . , 2p′ − 1,
then either the edges v1ci and w1ci+1, or v1ci+1 and w1ci are red. Suppose v1ci
and w1ci+1 are red. In this case, the path v1ci ci−1 . . . c1c2p′ . . . ci+1w1 is a proper
Hamiltonian one. Otherwise, there are at most two red edges between {v1, w1} and
{ci , ci+1}, for all i = 1, 3, . . . , 2p′ − 1, then there are 2p′ − 2 = n − 4 red missing
edges. If we sum up, we obtain a total of 3n − 8 > 3n − 10 missing edges, which is a
contradiction.

Case B n is odd. ByLemma3Gc has twomatchingsMr ,Mb such that |Mr | = |Mb| =
n−1
2 . As in Case A, we consider two longest proper paths P and P ′ compatible with the

matchings Mr and Mb, respectively. Suppose first that 2p < n − 1 and 2p′ < n − 1.
By Lemma 5 there are at least 2n − 6 blue and 2n − 6 red missing edges. We obtain
a total of 4n − 12 > 3n − 10 missing edges, which is a contradiction.

Suppose next 2p = 2p′ = n − 1 (the cases where 2p < n − 1 and 2p′ = n − 1,
or 2p = n − 1 and 2p′ < n − 1 are similar). In the rest of the proof, we will consider
only the path P since, by symmetry, the same arguments may be applied to P ′. In
this case we will count the blue missing edges assuming that we cannot extend P to
a proper Hamiltonian path. Now let v be the unique vertex in Gc − P . It is clear that
if there is a proper cycle C in Gc such that V (C) = V (P), we can trivially obtain a
proper Hamiltonian path since the multigraph is connected. Then, as there is no proper
cycle C in Gc such that V (C) = V (P), by Lemma 4 there are 2p − 2 = n − 3 blue
missing edges. If there exists a blue edge between x1 and xi , for some i = 2, . . . , p,
then the blue edge vyi−1 cannot exist in Gc, otherwise we would obtain the proper
Hamiltonian path vyi−1 . . . x1xi . . . yp.We can complete the argument in a similar way
if both edges yp yi and vxi+1, i = 1, . . . , p − 1 exist in Gc and are on colour blue.
Note that since there is no proper cycleC inGc such that V (C) = V (P), then the blue
edges x1xi and yp yi−1, i = 2, . . . , p cannot exist simultaneously in Gc. Therefore
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there are p− 1 = n−3
2 blue missing edges. If we make the sum and multiply it by two

(since the same number of red missing edges is obtained with P ′), we conclude that
there are 3n − 9 > 3n − 10 missing edges, which is a contradiction. This completes
the argument and the proof of the theorem. ��

4 c-Edge-Coloured Multigraphs, c ≥ 3

In this section we study the existence of proper Hamiltonian paths in c-edge-coloured
multigraphs, for c ≥ 3. We present three main results that involve: (1) the number of
edges, (2) the number of edges and the connectivity of the multigraph, (3) the number
of edges and the rainbow degree. All results are tight.

In the next lemma we present a key result that reduces the case c ≥ 4 to c = 3.

Lemma 6 Let � be a positive integer. Let Gc be a c-edge-coloured connected multi-
graph on n vertices and m ≥ c �+1 edges, c ≥ 4. There exists one colour c j such that
if we colour the edges of Gc j with another colour and we delete parallel edges with the
same colour, then the resulting (c − 1)-edge-coloured multigraph Gc−1 is connected
and has m′ ≥ (c − 1)� + 1 edges. Furthermore, if Gc−1 has a proper Hamiltonian
path then Gc has one too. Also, if rd(Gc) = c, then rd(Gc−1) = c − 1.

Proof Let ci denote the colour i , for i = 1, . . . , c, and denote by |ci | the number of
edges of Gc with colour i . Let c j be the colour with the least number of edges. Colour
the edges on colour c j with another colour, say cl , and delete (if necessary) parallel
edgeswith that colour. Call thismultigraphGc−1. By this, we delete at most |c j | edges.
It is clear that this multigraph is connected since we deleted just parallel edges. Also if
Gc−1 has a proper Hamiltonian path, then this path is also proper Hamiltonian in Gc

but perhaps with some edges on colour c j (in the case that they have been recoloured
with cl ). Observe also that, if rd(Gc) = c then rd(Gc−1) = c − 1 since only the
colour c j was removed. We will show now that m′ ≥ (c − 1)� + 1. Now, if |c j | > �,
then clearly m′ ≥ (c − 1)� + 1 edges since for all i , |ci | > �. Otherwise |c j | ≤ �.
Now, m = ∑c

i=1 |ci | ≥ c � + 1 and therefore
∑c

i=1,i �= j |ci | ≥ c � − |c j | + 1 =
(c − 1)� + � − |c j | + 1. This last expression is greater than or equal to (c − 1)� + 1
since �−|c j | ≥ 0. Finally, we have thatGc−1 hasm′ ≥ (c−1)�+1 edges as desired.��

In view of Theorems 3, 4 and 5 we need the following definitions.

Definition 1 LetGc be a 3-edge-colouredmultigraph colouredwith {r, b, g}. Suppose
that there exist two distinct vertices x, y ∈ Gc such that y is a neighbour of x and
either |N (x)| = 1 or Nr (x) = Ng(x) = ∅. First remove the vertex x . Then, remove
all the edges (if any) in colours either b, r or b, g, incident to y. Finally rename the
vertex y to s. We call this process the contraction of x, y to s. Note that after this
contraction, it the graph remais connected, the vertex s is monochromatic.

Definition 2 LetGc be a 3-edge-colouredmultigraph colouredwith {r, b, g}. Suppose
that there exist three different vertices x, y, z ∈ Gc such that c(xy) = b and c(xz) = r .
Now the contraction of x, y, z is defined as follows: We replace the vertices x, y, z by
a new vertex s such that Nb(s) = Nb

Gc−{x,y}(z), Nr (s) = Nr
Gc−{x,z}(y) and Ng(s) =

Ng
Gc−{x,z}(y) ∩ Ng

Gc−{x,y}(z).
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Notice that ifG ′c is the graph obtained fromGc by either of the contractions above,
then any proper Hamiltonian path in G ′c can be easily transformed into a proper
Hamiltonian one in Gc.

Theorem 3 Let Gc be a c-edge-coloured multigraph on n vertices, n ≥ 2 and c ≥ 3.
If m ≥ c

(n−1
2

) + 1, then Gc has a proper Hamiltonian path.

For the extremal case consider a rainbow complete multigraph on n − 1 vertices
with c colours and add a new isolated vertex x . Although the resulting multigraph has
c
(n−1

2

)
edges, it contains no proper Hamiltonian path since it is not connected.

Proof By Lemma 6 we can assume that c = 3 and let {r, b, g} be the set of colours.
Assume n ≥ 6 as cases n ≤ 5 can be checked by exhaustive methods. The proof
is by induction on n. We consider two cases depending on whether Gc contains a
monochromatic vertex or not.

Case A There exists a monochromatic vertex x ∈ Gc. Assume without loss of gener-
ality that all the edges incident to x are on colour r . Suppose first that d(x) ≤ n − 2.
Consider the multigraph G ′c obtained from Gc by contracting x and one of its neigh-
bours, say y, to a vertex s as in Definition 1 considering r instead of b. By this,
we delete at most 3n − 6 edges. This multigraph G ′c has n − 1 vertices and at least
3
(n−2

2

)+1 edges. Then by inductive hypothesis it has a proper Hamiltonian path. Since
s is monochromatic, we easily extend the path with x to obtain a proper Hamiltonian
path in Gc. Suppose next that d(x) = n−1. Then the multigraph Gc −{x} has at least
3
(n−2

2

) + 1 edges and therefore by inductive hypothesis it has a proper Hamiltonian
path P = x1x2 . . . xn−1. Now if c(x1x2) �= r or c(xn−2xn−1) �= r , we are done.
Otherwise, c(x1x2) = c(xn−2xn−1) = r . If between x1 and x2 there exist the three
possible edges then the path xx1x2 . . . xn−1 is a proper Hamiltonian one by appro-
priately choosing the edge x1x2 such that c(x1x2) �= c(x2x3) and c(x1x2) �= c(xx1).
Otherwise the degree of x1 in some colour different from r , say b is at most n − 3.
Then as before, we can make the contraction with x and x1 removing the edges on
colours b and r incident to x1.

Case B There is nomonochromatic vertex in Gc. Suppose first that there exists a vertex
x such that |N (x)| = 1. Let y be its unique neighbour. Now contract x and y to a
new vertex s as in Definition 1 by deleting the edges incident to y in two appropriate
colours. That is, to have the vertex s monochromatic in a color different that at least
one of the colors of the edges between x and y. Then, we can complete the argument.
Assume therefore that |N (x)| ≥ 2 for all x ∈ Gc. Moreover wemay suppose that there
exists a vertex x such that d(x) ≤ 3n−6. Otherwise, if for all x ∈ Gc, d(x) ≥ 3n−5,
then di (x) ≥ ⌈ n

2

⌉ ∀x ∈ Gc, i ∈ {r, g, b}. Thus by a theorem in [1], Gc has a proper
Hamiltonian cycle and so a proper Hamiltonian path. Consider now Gc − {x}. This
multigraph has at least 3

(n−2
2

) + 1 edges, then by the inductive hypothesis it has a
proper Hamiltonian path P = x1x2 . . . xn−1. We try to add x to P in order to obtain a
proper Hamiltonian path in Gc. If x is adjacent to either x1 or xn−1 in any appropriate
colour we are done. Otherwise there are four missing edges incidet to x . If there are
at least five edges between x and some pair of vertices {xi , xi+1}, i = 2, . . . , n − 2,
then by choosing the appropriate edges xxi and xxi+1, the path x1 . . . xi xxi+1 . . . xn−1
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is a proper Hamiltonian one in Gc. Otherwise there are at most four edges between
x and every pair of vertices {xi , xi+1}, for i = 2, . . . , n − 2. Therefore there are at
least n − 3 ≥ 3 missing edges incident to x . It follows that the degree of x is at most
3(n − 1) − 4 − (n − 3) = 2n − 4 ≤ 3n − 10. Take now y, z ∈ N (x) and suppose
that c(xy) = b and c(xz) = r . Contract x, y, z as in Definition 2. By this operation
we remove at most 3n − 10 edges incident to x and at most 3n − 6 edges incident
to y and z in Gc − {x}. It follows that the obtained multigraph on n − 2 vertices has
at least c

(n−1
2

) + 1 − (3n − 10) − (3n − 6) ≥ c
(n−3

2

) + 1 edges. Therefore, by the
inductive hypothesis it has a proper Hamiltonian path P . Now it is easy to obtain from
P a proper Hamiltonian path in Gc. ��

Notice that in the above theorem there is no condition guaranteeing the connectivity
of the underlying graph. In view of Theorem 4 that adds this condition, we establish
the following lemma.

Lemma 7 Let Gc be a c-edge-coloured multigraph on n vertices fullfilling the con-
ditions of Theorem 4 and c ≥ 4. Then either Gc has a proper Hamiltonian path or
Gc contains a connected (c − 1)-edge-coloured multigraph Gc−1 on n vertices with
at least (c− 1)

(n−2
2

) + n edges such that if Gc−1 has a proper Hamiltonian path then
Gc has one too.

Proof Let ci denote the colour i and Ei the set of edges of Gc on colour ci , for
i = 1, . . . , c. Supposefirst that there is a colour c j such that |E j | ≤ (n−2

2

)
. Then, colour

the edges on colour c j with another colour, say cl , and delete (if necessary) parallel
edges with the same colour. Call this multigraph Gc−1. ClearlyGc−1 is connected and
it has at least (c − 1)

(n−2
2

) + n edges. Moreover if Gc−1 has a proper Hamiltonian

path, then so does Gc. Suppose next that for every colour c j , |E j | ≥ (n−2
2

) + 1. If we

proceed as above and we obtain that the multigraph Gc−1 has at least (c−1)
(n−2

2

)+n
edges, we are done. Otherwise, for each pair of colours c j , cl we have that |E j ∩El | ≥(n−2

2

)+1, that is, after colouring the edges on colour c j with colour cl , there are at least(n−2
2

)+1 parallel edges on colour cl . Now take any two colours c j , cl and consider the
uncoloured simple graph G having same vertex set as Gc and for each pair of vertices
x, y we add the uncoloured edge xy in G if and only if xy ∈ E j and xy ∈ El in Gc.
Clearly G has at least

(n−2
2

) + 1 edges. We distinguish between two cases depending
on the connectivity of G.

Suppose first that G is connected. Add a new vertex v to G and join it to all the
vertices of G. Then G + {v} has at least m ≥ (n−1

2

) + 3 edges. Therefore by [6],
G + {v} is Hamiltonian-connected, that is, each pair of vertices in G is joined by a
Hamiltonian path. In particularwe have aHamiltonian path P that starts at v. Therefore
if we remove v from P and we take its edges on alternating colours c j , cl we obtain
a proper Hamiltonian path in Gc.

Suppose next that G is disconnected. By a simple calculation on the number of
edges of G we can see that G has two components, say A and B, such that either
|A| = 1 and |B| = n − 1, or |A| = 2 and |B| = n − 2.

If |A| = 2 and |B| = n − 2, let v,w be the vertices of A. By the condition on the
number of edges, both A and B are complete. Now, as Gc is connected there exists
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one edge between v (or w) and some vertex u ∈ B on colour ck . Therefore we obtain
a proper Hamiltonian path in Gc starting with the edge wv on colour c j (or cl ), then
vu on colour ck and following any Hamiltonian path in B alternating the colours c j ,
cl .

If |A| = 1 and |B| = n−1, then let v be the unique vertex of A. Now by [6], B has
a Hamiltonian cycle unless it is isomorphic to a complete graph on n− 2 vertices plus
one vertex, say w, joint to exactly one vertex, say u, of the complete graph B − {w}.
Now if B has a Hamiltonian cycle C , then as Gc is connected, there exists one edge
between v and some vertex in B in some colour, say ck . Therefore we obtain a proper
Hamiltonian path in Gc starting at v taking this edge on colour ck , then following
C alternating the colours c j , cl . Alternatively, if B has no Hamiltonian cycle, then
B − {w} has a Hamiltonian path between every pair of vertices. As Gc is connected
there exists one edge between v and some vertex z ∈ B on some colour ck . If z �= u, w,
then taking the edge vz on colour ck , following a Hamiltonian path in B − {w} that
starts at z and ends at u alternating the colours c j , cl and taking the appropriate edge
uw we obtain a proper Hamiltonian path in Gc. If z = w, take the edge vw on colour
ck , the edge wu on colour either c j , cl and then follow any Hamiltonian path in B
starting at u, alternating the colours c j , cl , we obtain a proper Hamiltonian path in Gc.
If none of the two above cases hold, then v has only one neighbour in B and z = u.
Consider the following two cases.

Case A The edge vu exists on colour ck �= c j , cl . Then, as Gc has at least m ≥
c
(n−2

2

)+n edges and 2c < n, w has a neighbour, say x , in B −{u, w} on some colour
cs . Then we obtain a proper Hamiltonian path in Gc as follows. Take the edge vu on
colour ck and continue with the edge uw on colour c j or cl (depending on the colour
cs) and the edge wx on colour cs . Last, follow any Hamiltonian path in B − {u, w}
starting at x by appropriately alternating the colours c j , cl .

Case B The edge vu exists only on colour c j or cl , say c j , but not both. Now, by a
similar argument as in case A,w has a neighbour, say x , in B−{u, w} on some colour
cs . Let P be an alternating Hamiltonian path in B − {w} from u to x such that its first
edge is on colour cl and its last edge has colour different of cs (this is always possible
because of the number of edges of Gc). Now we obtain a proper Hamiltonian path
between v and w in Gc as follows. Add the edge vu on colour c j to P and complete
the path with the edge xw on colour cs .

This completes the argument and the proof. ��
Theorem 4 Let Gc be a connected c-edge-coloured multigraph on n vertices, n ≥ 9
and 3 ≤ c < n

2 . If m ≥ c
(n−2

2

) + n, then Gc has a proper Hamiltonian path.

For the extremal example, n ≥ 9, consider a rainbow complete multigraph on
n − 2 vertices with c colours and add two new vertices x and y. Now add the edge
xy and all edges between y and the complete multigraph, all on the same colour. The
resulting multigraph, although it has c

(n−2
2

)+n−1 edges, it does not contain a proper
Hamiltonian path as x cannot belong to such a path.

Proof By Lemma 7 we can assume that c = 3. Let {r, b, g} be the set of colours. The
proof is by induction on n. For n = 9, 10 it can be shown by case analysis that the result
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holds. Now we have two cases depending on whether Gc contains a monochromatic
vertex or not.

Case AThere exists amonochromatic vertex x ∈ Gc. Notice that among all neighbours
of x there exists at least one, say y, that is not monochromatic, otherwise we would
have a contradiction on the number of edges. Suppose that c(xy) = b. Now we will
contract x, y to a new vertex s as in Definition 1. Here the resulting multigraph on
n − 1 vertices has to be connected (as we will show later) and we need to delete at
most 3n − 8 edges for the induction hypothesis to hold.

Let us now consider db(x). Observe that if db(x) ≤ n−4, we delete at most 3n−8
edges from x and any selected neighbour y of x and we are done. Further, from [1], if
di (z) ≥ ⌈ n

2

⌉
, ∀z ∈ Gc − {x}, i ∈ {r, g, b}, then Gc − {x} has a proper Hamiltonian

cycle. This would imply a proper Hamiltonian path in Gc. Thus, we may assume that
there exists some vertex w ∈ Gc − {x} such that di (w) <

⌈ n
2

⌉
for some i ∈ {r, g, b}.

Subcase A1 db(x) = n − 1. Observe that w ∈ Nb(x). In this case, considering w

instead of y, the contraction process deletes n−1 edges from x , and at most n+ n
2 −3

from w, which is much less than 3n − 8 for n > 10.

Subcase A2 db(x) = n− 2. If there is a vertex y adjacent to x such that dbGc−{x}(y)+
drGc−{x}(y) ≤ 2n − 6 or dbGc−{x}(y) + dgGc−{x} ≤ 2n − 6, then we just take x and y

for the contraction process. Otherwise for all y adjacent to x we have dbGc−{x}(y) +
drGc−{x}(y) ≥ 2n − 5 and dbGc−{x}(y) + dgGc−{x}(y) ≥ 2n − 5. That implies di (y) ≥
⌈ n−2

2

⌉
, ∀y ∈ Gc − {x, z}, i ∈ {r, g, b}, where z is the unique non-neighbour of x .

Then by [1], Gc − {x, z} has a proper Hamiltonian cycle. Finally, we can add x and
z to the cycle using the fact that x is adjacent to every vertex on it (as it is z) by the
degree condition of the vertices of the cycle. By this we obtain a proper Hamiltonian
path in Gc.

Subcase A3 db(x) = n − 3. This case is similar to the previous one but finding a
vertex y adjacent to x such that dbGc−{x}(y) + drGc−{x}(y) ≤ 2n − 5 or dbGc−{x}(y) +
dgGc−{x}(y) ≤ 2n−5. Otherwise the multigraph Gc −{x} is rainbow complete (except
maybe for the three edges between the two non-neighbours of x), we easily find a
proper Hamiltonian cycle in Gc − {x} and then adding x , a proper Hamiltonian path
in Gc.

Case B There is no monochromatic vertex in Gc. If there exists a vertex x such that
|N (x)| = 1 we proceed as in case B of Theorem 3. In what follows we assume
that |N (x)| ≥ 2 for all x ∈ Gc. Suppose now that there exists a vertex x such that
d(x) ≤ 3n − 8. Otherwise, if for all x ∈ Gc, d(x) ≥ 3n − 7, then m ≥ n(3n−7)

2 ≥
3
(n−1

2

)+1 and by Theorem 3 the result holds. Consider nowGc−{x}. This multigraph

has at least 3
(n−3

2

) + n − 1 edges and it is clearly connected. Then by the inductive
hypothesis it has a proper Hamiltonian path P . Now we use the same argument as
in Theorem 3 to add x to P . If we cannot add it, we obtain that d(x) ≤ 3n − 15.
Finally take y, z ∈ N (x) such that c(xy) = b and c(xz) = r . Contract x, y, z to
a new vertex s as in Definition 2. By this we delete at most 6n − 21 edges, that
is, 3n − 15 edges incident to x and 3n − 6 edges incident to y and z in Gc − {x}.
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Since we can delete at most 6n − 19 edges to use the inductive hypothesis, the result
holds.

In order to complete the proof, we will show that, either we can find two or three
appropriate vertices to contract such that the obtained multigraph G ′c is connected or
Gc has a proper Hamiltonian path.

Contraction of two vertices: Consider the above contraction of the vertices x, y to s
and suppose by contradiction that G ′c is disconnected. It can be easily shown that G ′c
has two components with one vertex, say z, and n − 2 vertices, respectively. Observe
first that if z = s then x and y are both monochromatic, a contradiction with the fact
that y was chosen not monochromatic. Consequently z �= s.

Suppose first that x is not monochromatic. In this case x has y as its unique neigh-
bour. So, there are 3(n − 2) missing edges at x and 3(n − 3) missing edges at z since
z is isolated in G ′c. This gives us a total of 6n − 15 missing edges in Gc and this is
greater than |E(Gc)| = 5n − 9 which is a contradiction.

Suppose next that x is monochromatic. In Gc there are at least 2(n − 1) missing
edges at x since it is monochromatic and 3(n−3)missing edges at z since z is isolated
in G ′c. Further, there are two more missing edges between y and z since we have
the choice of which colours to delete at y. This gives us a total of 5n − 9 = |E(Gc)|
missing edges inGc. Now zmust be adjacent to x and y in colour b otherwisewe obtain
5n − 8 missing edges which is a contradiction. Therefore z is also monochromatic
and d(z) = 2. We take then z and y for the contraction (instead of x, y) but in this
case we delete just two edges at z which guarantees the connectivity of the contracted
multigraph.

Contraction of three vertices: Suppose by contradiction that after the contraction of
x, y, z to s,G ′c is disconnected. ThenG ′c has exactly two components with one vertex,
say u, and n − 3 vertices, respectively.

Suppose first that u �= s. In Gc u must have at least two different neighbours in
two different colours among the vertices x, y, z. Otherwise we would be in the case
where either u is monochromatic or u has one unique neighbour. Let y′ and z′ be two
neighbours of u among x, y, z such that c(uy′) �= c(uz′). Nowwe contract the vertices
u, y′, z′ (instead of x, y, z). Observe that at u we delete at most six edges since u has
only x, y, z as its neighbours. In addition the red edge uy, the blue edge uz and at
least one green edge among uy, uz are missing. At y′ and z′ we delete 3n−6 edges as
usual. With this contraction we delete at most 3n edges and therefore the contracted
multigraph has at least 3

(n−3
2

) + n − 9 edges which guarantees not only the inductive
hypothesis but also the connectivity for n ≥ 10.

Suppose next that u = s. Then there are no red edges between y and Gc −{x, y, z}
and no blue edges between z and Gc −{x, y, z}. Now, since we are not in the previous
cases, y has at least two different neighbours y′ and z′ such that c(yy′) �= c(yz′).
Then we contract the vertices y, y′, z′ (instead of x, y, z). In the contraction process
we delete at most 2(n − 3) edges between y and Gc − {x, y, z} (since there are no
red edges), six between y and the vertices x, z, and 3n − 6 at y′ and z′. We obtain in
total at most 5n − 6 deleted edges. Now, this new contracted multigraph has n − 2
vertices and at least 3

(n−3
2

) − n − 3 edges. Clearly, if the multigraph is connected
we are done. Otherwise, as before, it has two components with one vertex and n − 3
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vertices, respectively. We can suppose that the contracted vertex is the isolated one,
otherwise we are done as above. Observe now that the component on n − 3 vertices
has at least 3

(n−3
2

) − n − 3 edges, therefore it is almost rainbow complete. It is easy
to prove by induction that it has a proper Hamiltonian cycle. Suppose now without
losing generality that c(yy′) = b and c(yz′) = r . Now, in the original multigraph if
we cannot add y, y′, z′ to the proper cycle in order to obtain a proper Hamiltonian path
(and also using the fact that the contracted multigraph is disconnected), we obtain that
there are n − 3 red missing edges and n − 3 green missing ones at y′, n − 3 blue and
n − 3 green at z′, and n − 3 red at y. We obtain a total of 5n − 15 missing edges. If
we have any of the edges r, b or g between y′ and z′, either y has no green edges at all
to Gc − {y, y′, z′} leading us to a contradiction on the number of edges, or a proper
Hamiltonian path can be found. So, these three edges are missing. Similar arguments
can be used if we have the edge yy′ or yz′ in colour g. Therefore, two more missing
edges. Now if we have the edges yy′ in r and yz′ in b, we can do the contraction
using these colours instead of the originals. Then, either the contracted multigraph is
connected and thus we obtain a proper Hamiltonian path, or we obtain a contradiction
on the number of edges. We can conclude that at least one between these two edges
is missing obtaining a total of 5n − 9 = |E(Gc)| missing edges. That implies that
Gc − {y, y′, z′} is rainbow complete and we have all of the green and blue edges
between y and Gc − {y, y′, z′}, all of the blue between y′ and Gc − {y, y′, z′}, and all
of the red between z′ and Gc −{y, y′, z′}. In this last case, it is easy to obtain a proper
Hamiltonian path in Gc. ��

In view of Theorem 5 we prove the following lemma.

Lemma 8 Let Gc be a 3-edge-coloured multigraph on n vertices coloured with
{r, b, g} and fullfilling the conditions of Theorem 5. Then either Gc has a proper
Hamiltonian path or there exists a vertex x ∈ Gc such that d(x) ≤ 2n − 6.

Proof Let Ei be the set of edges of colour i , i ∈ {r, g, b}, and suppose without loss of
generality that |Eb| ≥ |Er |, |Eg|. Then, as the subgraph Gb has minimum degree one
and |Eb| ≥ (n−2

2

) + 3, it can be easily checked that it is connected. Thus by Lemma 1
there is a matching Mb such that |Mb| = n

2 for n even and |Mb| = n−1
2 for n odd. Let

P = x1y1x2y2 . . . xp yp be the longest proper path compatible with Mb.
Suppose first that n is odd. By Lemma 5, if there is a proper cycle C such that

V (C) = V (P), then |P| ≥ n−5. Else, if such a cycle does not exist then |P| ≥ n−7.
Otherwise in both cases we obtain a contradiction on the number of edges. Let us
consider here the case |P| = n−1 (the other cases are easier to handle, refer to [8] for
more details). Now observe that if there is a proper cycle C such that V (C) = V (P),
then the result easily follows as the unique vertex of Gc − C can be appropriately
joint to C in order to obtain a proper Hamiltonian path. Assume therefore that there
is no proper cycle C such that V (C) = V (P). Let x be the unique vertex of Gc − P .
Clearly we cannot have either the edge xx1 on colours r or g, or the edge xyp on
colours r or g, otherwise we easily obtain a proper Hamiltonian path in Gc. Now,
if there are at least three edges on colours r, g between x and some pair of vertices
{yi , xi+1}, i = 2, . . . , p − 1, then by choosing the appropriate edges xyi and xxi+1,
the path x1 . . . yi xxi+1 . . . yp is a proper Hamiltonian one in Gc. Otherwise there are
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at most two edges on colours r, g between x and every pair of vertices {yi , xi+1},
for i = 2, . . . , p − 1. Therefore dr,g(x) ≤ n − 3 and clearly d(x) ≤ 2n − 4 as
db(x) ≤ n−1. In addition, if we have two more missing edges incident to x we would
obtain that d(x) ≤ 2n − 6 as claimed. Now, we can assume the worst case, that is,
for each edge yi xi+1 in the path, i = 2, . . . , p − 1, we have both edges xyi ,xxi+1 on
the same colour of yi xi+1 (that is, r or g). Otherwise, if we suppose without losing
generality that c(xyi ) = c(xxi+1) = r and c(yi xi+1) = g then we cannot have the
blue edge xxi or xyi+1 (otherwise we would obtain either the proper Hamiltonian path
x1 . . . xi xyi . . . yp or x1 . . . xi+1xyi+1 . . . yp). Therefore, there would be two more
missing edges at x and d(x) ≤ 2n − 6. Consider now x1. Suppose that we have
any edge x1yi on colour r or g that is different of the colour of yi xi+1, for i =
1, . . . , p − 1. Taking the blue edge xxi we obtain the proper Hamiltonian path in Gc,
xxi . . . x1yi xi+1 . . . yp. Otherwise we obtain at least p− 1 = n−3

2 missing edges x1yi
on colours r or g. Suppose that we have any edge x1xi on at least one colour r or
g, for i = 2, . . . , p. Therefore taking the edge xyi−1 on colour r or g (one of both
is supposed to exist) we obtain the proper Hamiltonian path xyi−1 . . . x1xi yi . . . yp.
Otherwise the edges x1xi on colours r and g are missing for all i = 2, . . . , p, that is,
2(p−1) = n−3 additional missing edges at x1. Finally, summing up and considering
that we cannot have the edge x1yp on colours r or g (or P would also be a proper
cycle), we obtain that d(x1) ≤ 3(n − 1) − n−3

2 − (n − 3) − 2 ≤ 2n − 6 as claimed.
Suppose next thatn is even. If there is a proper cycleC such thatV (C) = V (P), then

by Lemma 5 |P| ≥ n − 2. This case is easy since either P is a proper Hamiltonian
path or we can connect the unique edge of Mb − E(P) to C in order to obtain a
proper Hamiltonian path. Assume therefore that there is no proper cycle C such that
V (C) = V (P). It follows by Lemma 5 that |P| ≥ n − 4 otherwise we obtain a
contradiction on the number of edges. Let us consider just the case |P| = n − 2
(|P| = n − 4 is easier, refer to [8] for full details). Let e = xy be the edge of
Mb − E(P). Now by similar arguments as in the odd case above, we can prove that,
either the edge e can be added to P in order to obtain a proper Hamiltonian path in
Gc, or one of the vertices x, y, x1, yp has degree at most 2n − 6 as required. ��
Theorem 5 Let Gc be a c-edge-coloured multigraph on n vertices, n ≥ 11 and c ≥ 3.

If rd(Gc) = c and m ≥ c
(n−2

2

) + 2c + 1, then Gc has a proper Hamiltonian path.

For the extremal example, n ≥ 11, consider a rainbow complete multigraph, say
A, on n − 2 vertices. Add two new vertices v1, v2 and join them to a vertex v of A
with all possible colours. The resulting c-edge-coloured multigraph has c

(n−2
2

) + 2c
edges and clearly has no proper Hamiltonian path.

Proof By Lemma 6 it is enough to prove the theorem for c = 3. Let {r, b, g} be the
set of colours. As m ≥ 3

(n−2
2

) + 7 then |E(Gc)| ≤ 6n − 16. The proof will be done
either by construction of a proper Hamiltonian path or using Theorem 4. We will do
this by contracting two or three vertices depending on whether there exists a vertex x
in Gc such that |N (x)| = 1 or not.

If there exists a vertex x ∈ Gc such that |N (x)| = 1 we contract x and its unique
neighbour y to a new vertex s as in Definition 1. By this we delete at most 2n − 1
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edges and the resultingmultigraph is still connected. Thus the conclusion follows from
Theorem 4.

Suppose next that there is no vertex x ∈ Gc such that |N (x)| = 1. It follows that
for any vertex x there are two distinct neighbours y,z in Gc such that c(xy) = b
and c(xz) = r . Now by Lemma 8 consider a vertex x such that d(x) ≤ 2n − 6. Then
contract x, y, z to a new vertex s as in Definition 2. LetG ′c be the resultingmultigraph.
In this case, as we delete at most 5n−12 (= 2n−6+3(n−3)+3) edges, it is enough
to prove that G ′c is connected to apply Theorem 4.

Suppose therefore by contradiction that G ′c is disconnected. Then it has exactly
two components with one vertex, say u, and n−3 vertices, respectively, otherwise we
arrive to a contradiction on the number of edges.

Assume first that u �= s. Then, as in the equivalent case of Theorem 4, instead of
x, y, z, we may find three other vertices u, y′, z′ to contract to a vertex s′ just deleting
3n edges. This new obtained multigraph has at least 3

(n−3
2

) − 2 edges. Then, if it is
connected we are done, otherwise there is a component with one vertex, say u′, and
another one on n − 3 vertices with at least 3

(n−3
2

) − 2 edges, i.e., almost rainbow
complete. Therefore, the biggest component contains a proper Hamiltonian cycle and
then we can easily add either the isolated vertex u′ (if u′ �= s′) or the three u, y′, z′ (if
u′ = s′) vertices to the cycle to obtain a proper Hamiltonian path in Gc.

Assume next u = s. If d(x) ≤ n + 1, then the contraction process deletes 4n −
5 edges instead of 5n − 12. Furthermore as G ′c is disconnected by hypothesis, its
component on n − 3 vertices has at least 3

(n−3
2

) − n + 3 edges. As in Theorem 4, this
component is almost rainbow complete and thus it contains a proper Hamiltonian cycle
C . This allows us to easily add x, y, z to C in order to obtain a proper Hamiltonian
path in Gc. In the sequel, we may suppose that d(x) ≥ n+2. Then x has two different
neighbours y′ and z′ with parallel edges. Consider the next two cases:

Assume first that the parallel edges are on the same two colours, say c(xy′) =
c(xz′) = {b, r} (cases with other two colours are similar). Here we can consider
two possible contractions: (1) x, y′, z′ with c(xy′) = b, c(xz′) = r and (2) x, y′, z′
with c(xy′) = r , c(xz′) = b. Now, suppose that in both contractions the multigraph
is disconnected and the contracted vertex is always the isolated one, otherwise we
are finished. We can observe that Gc has n + 3 missing edges incident to x (since
d(x) ≤ 2n − 6), n − 3 green edges and 4(n − 3) blue and red edges incident to y′
and z′ (since in both contractions the multigraph is disconnected). By this we obtain
a total of 6n − 12 > 6n − 16 missing edges, which is a contradiction.

Assumenext that the parallel edges are not on the same two colours, that is, c(xy′) =
{b, r} and c(xz′) = {b, g} (cases with other combinations are similar). Now since we
are not in the previous case, we do not have either the green edge xy′ or the red one xz′.
Try any of the three possible contractions: (1) x, y′, z′ with c(xy′) = b, c(xz′) = g,
(2) x, y′, z′ with c(xy′) = r , c(xz′) = g and (3) x, y′, z′ with c(xy′) = r , c(xz′) = b.
Then, after each of these contractions the multigraph is still disconnected and the
contracted vertex is always the isolated one. We can observe that there can exist just
the red edges between y′ and Gc − {x, y′, z′} and the green edges between z′ and
Gc − {x, y′, z′}. Now as rd(Gc) = 3 there must exist the green edge y′z′ and the
red edge y′z′. Since we are not in the previous case, the blue edge y′z′ is not present.
We find us in the situation that c(xy′) = {b, r}, c(xz′) = {b, g} and c(y′z′) = {r, g}.

123



Graphs and Combinatorics (2017) 33:617–633 633

Now, we have nine different contractions to try, three for each triplet x, y′, z′, y′, x, z′
and z′, x, y′. If in all of them we are in this same situation (the contracted multigraph
is disconnected and the isolated vertex is the contracted one) we can conclude that in
Gc there can exist just the blue edges between x and Gc − {x, y′, z′}, the red edges
between y′ and Gc − {x, y′, z′}, and the green edges between z′ and Gc − {x, y′, z′}.
This gives a total of 6(n − 3) missing edges in Gc. Finally, adding the three missing
edges xy′ in green, xz′ in red and y′z′ in blue, we obtain 6n−15 missing edges which
is a contradiction. ��
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