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The periprostatic adipose tissue (PPAT) is a site of invasion of prostate cancer (PCa) and is
part of the microenvironment. It was shown that PPAT secretes factors and fatty acids
(FAs) that alter the microenvironment of the PCa. The PPAT secretome of patients with
PCa-T3 stage (PPAT-T3) has a metabolic profile enriched in several pathways related to
energy production, indicating a greater energy requirement by the tumor, when compared
to that of patients in the PCa-T2 stage (PPAT-T2). PPAT-T3 also shows enrichment in
pathways related to hormone response, polyamine synthesis, and control of protein
synthesis, through amino acid, RNA, and nucleotide metabolism. PPAT-T2 and PPAT-
BPH secretomes have less complex metabolic profile, both related with energy balance,
while PPAT-BPH has hormone response through insulin pathway. Undoubtedly, a deeper
characterization of the human PPAT will lead to a better understanding of the disease and
possibly allow new stratification factors and the design of a specific therapy that targets
crucial components of the tumor microenvironment as another way to treat or control
the disease.

Keywords: prostate cancer, metabolism, microenvironment, periprostatic adipose tissue, proteomics, secretome,
adipose tissue, benign prostatic hyperplasia
INTRODUCTION

Obesity and metabolic syndrome have been related to many different types of cancer. To our
understanding, no integrative work has been performed involving the main metabolic pathways as
possible targets for diagnosis and/or treatment. Through proteomic and database analyses from
conditioned media obtained from the periprostatic adipose tissue (PPAT) that was surgically
removed from patients with prostate cancer (PCa) at different stages of the disease, we have
compiled several metabolic and hormone signaling pathways that sound promising to be considered
as potential targets.
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ADIPOSE TISSUE AND CANCER

The adipose tissue is both ametabolically active endocrine organ and
an energy depot, which can secrete adipokines and other molecules
that contribute to paracrine and autocrine signaling networks in the
tumor microenvironment. The tumor microenvironment is critical
for cancer development, progression, metastasis, and therapeutic
response. It plays a critical role in lipidmetabolism, insulin sensitivity,
inflammation, energy balance, angiogenesis, and cell proliferation.
The adipose tissue, as a whole and its cells’ components, participates
in the metabolic interplay with neoplastic cells. They dynamically
adapt to the metabolic needs of cancer cells, thus participating in
tumorigenesis and resistance to treatments.However, the underlying
mechanisms of adipose-tissue-induced cancer initiation and
progression are still unclear and controversial.
THE PERIPROSTATIC ADIPOSE TISSUE:
KEY CONTRIBUTOR OF TUMOR
MICROENVIRONMENT

PPAT is a site of invasion of PCa and part of themicroenvironment.
It was shown that PPAT secretes protein factors and fatty acids
(FAs) (1–8) that alter the microenvironment of the PCa.
PROSTATE CANCER
METABOLIC CHANGES

The metabolism of the prostate cells exhibits unique and distinct
profiles during the different stages of the disease that leads to the
progression and metastasis of PCa (9). PCa cells do not obey the
classical Warburg effect phenotype, as seen in other solid tumors,
where the malignant cells change their dominant route of ATP
production by oxidative phosphorylation to aerobic glycolysis. In
the early phases of PCa malignant transformation and tumor
progression, both rely on lipids and other energetic molecules for
energy and not on aerobic respiration. Alterations in lipid and FA
metabolism, which are necessary for energy production, membrane
synthesis, and post-translational modification of signaling
molecules, are increasingly being recognized as vital in these
phases (10). In PCa, a malignant metabolic shift occurs, re-
establishing an intact tricarboxylic acid (TCA) cycle and
converting prostate cells from citrate-producing to citrate-
oxidizing cells, thereby enhancing glucose metabolism (11).
Through this phenotypical, more energetically favorable
metabolic switch, citrate is used for oxidative phosphorylation
and biosynthetic processes such as lipogenesis. It is only in the
late stage, with numerous mutation events, that PCa will begin to
exhibit the Warburg effect and have a higher rate of glucose uptake.
By contrast, normal prostate epithelial cells exhibit a truncated TCA
cycle to enable production of citrate, a key component of prostatic
fluid, resulting in high rates of glycolysis (12).
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METABOLISM DYSFUNCTION OF
PERIPROSTATIC ADIPOSE TISSUE IN
PROSTATE CANCER

Recently, we reported the secretome of PPAT from patients with
PCa (T2 and T3 stage) and with BPH (4) using a proteomic
approach. We found that locomotion process and extracellular
matrix, structural proteins and immune response function were
differentially regulated according to the PCa stage, while catalytic
activity, reproduction process, metabolism, and energy pathways
were in PPAT-T3. We detected enriched metabolic pathways
related to energy balance, hormone response, and control of
protein synthesis. Genes related with those pathways are shown
in Table 1. Energy pathways associated with the PPAT-T3
secretome were lipid and lipoprotein metabolism, carbohydrates
and glucose metabolism, glycolysis, gluconeogenesis, regulation of
ornithine decarboxylase (ODC), advanced glycosylation of end
products, receptor signaling, TCA cycle variation III, GDP-
glucose biosynthesis, and pyruvate fermentation to lactate.
Pathways related to hormonal response were insulin/IGF1/class
phosphoinositide 3-kinase (PI3K) signaling events mediated by
protein kinase B (Akt) pathways and hormone-sensitive lipase
(HSL)-mediated triacylglycerol hydrolysis. Among the pathways
related to protein synthesis were RNA/mRNA, nucleotides, amino
acids and derivatives metabolism, and aspartate degradation II.
PPAT-T2 secretome showed a metabolic profile with less
complexity and lesser energy requirements than in advanced
disease. Biological enriched pathways related to energy balance
were lipid digestion, mobilization and transport, lipoprotein
metabolism, and glycolysis, a well-established feature of cancer.
The secretome of PPAT in BPH patients was related to hormone
response through the insulin pathway, which was previously
reported to be associated with prostate size (13). In addition, the
secretome profile of PPAT in patients with BPH showed the
metabolic pathways related to energy production through
metabolism of lipids and lipoproteins, lipid digestion,
mobilization, and transport; all necessary for cell division.

Regarding metabolic processes, only patients with PCa in T3
stage showed an increase in the metabolic process involving
NADP and pigment when compared to PCa-T2 stage. In the
NADP metabolic process, phosphogluconate dehydrogenase
(decarboxylating) (PGD) and isocitrate dehydrogenase
(NADP) cytoplasmic (IDH1) proteins were expressed only in
advanced disease. Regarding the metabolism involved in pigment
processing, delta-aminolevulinic acid dehydratase (ALAD) and
hypoxanthine phosphoribosyltransferase-1 (HPRT1) were
detected in the same PCa stage. In addition, glycosylation was
present as one of the altered metabolic processes in PCa T3
stage with the involvement of UDP-glucose:glycoprotein
glucosyltransferase 1 isoform 2 (UGGT1). When we compared
the metabolic processes between BPH patients and PCa-T2 stage,
BPH showed an increase in NADP and pigment metabolisms
through transketolase (TKT) and hemopexin, respectively, while
patients with PCa-T2 stage had an exacerbated secondary
metabolic process through the aldo-keto reductase family 1
member C3 (AKR1C3).
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Tumor cells must adapt to survive, both satisfying their biomass
and need for fuel in an unfriendly microenvironment and, thus,
switch their metabolic functions according to microenvironment
evolution.The interactionbetween themicrovesicles releasedby the
tumor and stromal cells/adipose stem cells into the
microenvironment plays a fundamental role in facilitating the
progression of the cancer (14, 15). It is known that the
microenvironment of primary tumor and metastatic niches differ
in their cellular or acellular components, available nutrients, and
metabolites released. In addition, PCa cells could take secreted
metabolites produced in the PPATmicroenvironment by diffusion
and get them through physical crosstalk with adjacent cell
components of this depot or capture extracellular vesicles released
by neighboring cells. Thus, metabolic remodeling is not only
restricted to tumor cells but also generated in the environment
and in non-tumor cells, resulting in a feedback loop, where
microenvironmental cells drive metabolic changes in tumor cells,
thus providing essential metabolic resources for tumor growth. As
we previously reported, proteins found in the PPAT secretome
could derive not only from PPAT but also from the tumor and
further packaged into exosomes, as some proteins have not been
reported in the adipose tissue. We found that the exosome fraction
was the most represented cellular component in the PPAT
Frontiers in Endocrinology | www.frontiersin.org 3
secretome, with 209 proteins for CM-T3, 39 proteins for CM-T2,
and 34 proteins for CM-BPH, showing that the profile of protein
content changed in response to the microenvironment during
progression of the tumor and with the androgenic context (4).
Considering the relevance that AR signaling axis is being given as a
focus for prostate cancer therapy, it is key to understand how this
axis alters the protein cargo and secretion on exosomes found in the
PPAT microenvironment.

Epithelial cancer cells induce the Warburg effect (aerobic
glycolysis) in neighboring stromal fibroblasts. These cancer-
associated fibroblasts secrete lactate, which is converted to
pyruvate and utilized in the mitochondria by the better
oxygenated tumor cells (energy metabolites resulting from
aerobic glycolysis). Epithelial cancer cells could then take up these
energy-rich metabolites and use them in the mitochondrial TCA
cycle, thereby promoting efficient energy production (ATP
generation via oxidative phosphorylation), resulting in a higher
proliferative capacity, giving place to the so-called reverseWarburg
effect (16).Cancer cells that grow in the presenceof stromal cells, for
example, adipocytes, preadipocytes, or fibroblasts, will adapt their
metabolism (oxidative phosphorylation and b-oxidation) to take
full advantage of the metabolites (lactate, ketones, glutamine, and
FAs) provided by the local host cells (17). Lactate not only
TABLE 1 | Detected genes in the prostate tumor microenvironment associated with the enriched metabolic pathways.

Metabolic Pathways Genes Names

PPAT-T3
Glucose metabolism GOT1 GPI MDH1 MDH2 PGK1 PRKACB PYGL TPI1 UGP2
Glycolysis GPI PGK1 TPI1
Gluconeogenesis GOT1 GPI MDH1 MDH2 PGK1 PRKACB TPI1
GDP-glucose biosynthesis/glucose and PGM1 PGM5
glucose-1-phosphate degradation
TCA cycle variation III (eukaryotic) ACO1 MDH1 MDH2
pyruvate fermentation to lactate LDHA LDHB
Metabolism of lipids and lipoproteins A2M ACSL1 APOA1 APOB APOC3 ECI1 FABP4 GC GPD1 HSPG2 IDH1 LTA4H
Lipoprotein metabolism A2M APOA1 APOB APOC3 HSPG2 P4HB
Lipid digestion, mobilization, and transport A2M APOA1 APOB APOC3 FABP4 HSPG2 P4HB PLIN1 PRKACB
Hormone-sensitive lipase (HSL)-mediated FABP4 PLIN1 PRKACB
triacylglycerol hydrolysis
Metabolism of carbohydrates GOT1 GPI HK1 MDH1 MDH2 PGD PGK1 PRKACB PYGL SLC2A1 TPI1 UGP2
Metabolism of RNA/mRNA ELAVL1 HSPA1A HSPA1B HSPB1 PSMA1 PSMA5 PSMA6 PSMA7 PSMB1 PSMB4
Metabolism of nucleotides CAT GLRX HPRT1 PNP TXN
Regulation of ornithine decarboxylase (ODC) PSMA1 PSMA5 PSMA6 PSMA7 PSMB1 PSMB4 PSMB5
Advanced glycosylation end product receptor signaling CAPZA2 PRKCSH S100B
Metabolism of amino acids and derivatives FAH GOT1 PSMA1 PSMA5 PSMA6 PSMA7 PSMB1 PSMB4 PSMB5 QDPR
aspartate degradation II GOT1 MDH1 MDH2
Insulin pathway/IGF1 pathway/class I PI3K A2M ACTN1 ACTN4 ACTR3 ARPC5 B2M CAT CLTC COL1A1 COL1A2 CP DSP EEF2
signaling events mediated by Akt ELANE ENO1 FABP4 FGA FGB FGG FN1 GDI1 GSN HK1 HNRNPA1 HSPA1A HSPA1B

HSPA4 HSPB1 IGF2BP1 IQGAP1 IRS2 JUP LAMC1 LDHA LGALS1 LRP1 MMP9 NCAM1
NCL NPM1 PEBP1 PGK1 PGM1 PKM PLG PRDX1 PRDX3 PRKACB PTPN11 SERPINE1
SLC2A1 SORBS1 SOS1 SPTBN1 TF TLN1 TXN USO1 VASP VCL VTN YWHAG YWHAZ

PPAT-T2
Glycolysis GPI TPI1
Lipoprotein metabolism A2M APOA1 APOA2
Lipid digestion, mobilization, and transport A2M APOA1 APOA2 FABP4
PPAT-BPH
Insulin Pathway/IGF1 pathway/Class I PI3K A2M ACTN1 ACTN4 FABP4 FGA FGB FN1 JUP LGALS1 PGM1 PRDX1 SERPINE1 TF
Lipoprotein metabolism A2M APOA1 APOA2
Lipid digestion, mobilization, and transport A2M APOA1 APOA2 FABP4
PPAT-T3, PPAT periprostatic adipose tissue of patients with prostate cancer T3 stage; PPAT-T2, periprostatic adipose tissue of patients with prostate cancer stage T2; PPAT-BPH,
periprostatic adipose tissue of patients with benign prostatic hyperplasia.
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participates in metabolic processes but also contributes to
oncogenic signaling pathways.

Previous reports showed that PPATs have a different FAs
composition according to the pathological stage (8, 18), which
results in a different/altered lipid metabolism. We could observe in
PPAT-T3 secretome that the metabolism of lipids is enriched. FA
incorporation into oxidative pathways is reduced in aggressive
human cancer cells and, instead, shunted into pathways to
generate structural and signaling lipids. Cancer cells do not
solely rely on de novo lipogenesis but also utilize exogenous FAs
to generate lipids required for proliferation and pro-tumorigenic
signaling. It has been observed that palmitic acid incorporation
into complex lipids is increased in aggressive cancer cells into
glycerophospholipid, sphingolipid, and ether lipid pathways (19).
Previously, we reported the presence of palmitic acid in PPAT of
patients with tumor, and it was significantly increased when
compared to BPH (8). A study demonstrated that specific lipid
translocation takes place between human-derived adipocytes and
PC3 cells (20). The supply of FAs from adipocytes around cancer
cells is conducive to cancer growth and progression. Recently, it
was reported that PCa uses extracellular FAs as both fuel for
oxidation and as primary substrates for complex lipid synthesis
such as triacylglycerols (TAGs) and that the higher availability of
extracellular lipids further enhances FA flux in these cells. In
addition, the heterogeneity of lipid metabolism was observed in
several PCa cell lines and the potential role that obesity-associated
dyslipidemia or the host-circulating lipidome have on PCa
progression (21). A high concentration of palmitate and glucose
in vitro induces cell proliferation, migration, and oxidative stress
in PC3 cells. Palmitate presents a rapid and initial effect, while a
glucose-rich environment stimulates cells later on, maintaining
high levels of cell proliferation (22). Alterations in lipid and,
particularly, FA metabolism, necessary for energy production,
membrane synthesis, and post-translational modification of
signaling molecules, are being recognized as vital for the early
phases of malignant transformation and in tumor progression
(11). Enhanced synthesis and uptake are hallmarks of PCa cells
and are androgen regulated (23). Very recently, it was shown that
in human malignant PCa tissue, the increased uptake of FAs was
mediated by upregulation of the fatty acid translocase CD36. In
PCa mouse and human preclinical models, silencing of CD36
reduced FAs and cell proliferation and PCa severity (24).
Previously, we reported the presence of CD36 in PPAT-T3
secretome (4). Thus, inhibition of FAs uptake and/or key lipid
metabolism pathways could be a promising alternative to treat
PCa. Shrihari et al. (9) identified at least two subgroups of PCa
patients who exhibited significant poor prognosis (30%–40%
relapse within the first 72 months relative to the best prognosis
cluster that showed <20% relapse even by 120 months), which
showed considerable deregulation of pathways involved in
synthesis and catabolism of complex forms of lipids and
carbohydrates, and these were exhibited in parallel or within
glycolysis, a common form of energy production in cancer cells.

The role of glucose metabolism and PCa has not been well
elucidated yet. While glucose uptake does not appear to be
increased early in PCa cells, it does appear to be involved in the
Frontiers in Endocrinology | www.frontiersin.org 4
progression of the disease and cellular division (12). PCa is often
not glycolytic. It was shown that a glycolytic switch occurred when
PCa cancer cells were co-cultivated with adipocytes due to a twofold
increase in lactate in this condition (25). Glycolysis is an altered
pathway in the metabolism of PCa cells (11). We found that PPAT
microenvironment in a more advanced stage (T3) showed to be
enriched in gluconeogenesis, glycolysis, and pyruvate fermentation
to lactate, while in a T2 stage, glycolysis was enriched. Recently, it
was shown that microvesicles released by tumors mediated
glycometabolic reprogramming of stromal cells in oral squamous
cell carcinoma. Normal human gingival fibroblasts, primed with the
tumor microvesicles, exhibited a phenotype switch to cancer-
associated fibroblasts (CAF) and underwent a degradation of
caveolin-1 (CAV1). CAV1 degradation further induced the
metabolic switch to aerobic glycolysis in the fibroblasts. The
microvesicle-activated fibroblasts absorbed more glucose and
produced more lactate, resulting in a mechanism for tumor
progression by a crosstalk between tumor and stromal cells
through the reverse Warburg effect (15). This situation could be
assimilated to PCa-T3 stage, where PPAT cell components, like
adipose stem cell (ASC) and fibroblasts, are primed with PCa
microvesicles. PCa cell microenvironment subverts PCa patient
adipose stem cells to undergo neoplastic transformation when
primed with PCa cell conditioned media (14). Previous reports
showed that oncogene-associated metabolic signatures in PCa
support the notion that PI3K activation generally results in a
glycolytic phenotype, whereas MYC induces aberrant lipid
metabolism, with substantial heterogeneity (11). PI3K and AR
pathways are key targets in PCa, as they seem to be reciprocally
regulated. Comparing both pathways, it seems feasible to target
PI3K due to its dominant role over AR signaling. While activation
of PI3K pathway is usually associated with resistance to androgen
deprivation therapy, its inhibition is antiproliferative, whereas an
increase in AR signaling has proliferative effects. An overactivation
of the PI3K axis was seen in a subset of primary PCa and castration-
resistant prostate cancer (CRPCa), which has phosphatase and
tensin homolog (PTEN)-deficient or PI3K-activating mutations. In
addition, the activation of PI3K/Akt is critical for the induction of
epithelial–mesenchymal transition (EMT) by growth factors,
including insulin-like growth factor 1 (IGF-1), thus pinpointing
this kinase as an interesting target of consideration.

Regarding the NADP metabolic process, as detected in our
reported secretome, the 6PGD enzyme is critically important for
the pentose phosphate pathway (PPP). 6PGD was very recently
reported to enhance the stability of androgen receptor (AR)
protein, revealing a positive feedback loop between androgen
signaling and the PPP, which enhances growth and survival of
tumor cells. Suppression of 6PGD decreased lipogenesis and RNA
biosynthesis and elevated reactive oxygen species (ROS) levels in
cancer cells attenuating cell proliferation and tumor growth. Thus,
hormones and glucose metabolism in PCa would drive to a new
therapeutic target (26).

Another metabolic pathway of the PPAT-T3 secretome that
emerged from the analysis was the regulation of ornithine
decarboxylase (ODC). ODC is the rate-limiting enzyme of
polyamine synthesis. One of the first events in cell proliferation
April 2022 | Volume 13 | Article 863027
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is the induction of polyamine biosynthesis, and it is known that
overexpression of ODC, beyond a certain minimum threshold,
can induce cell transformation and tumor promotion. In
hyperplasic diseases, there is an increase in the activity of the
ODC enzyme, while polyamine pathway is altered in stages as
early as high-grade prostatic intraepithelial neoplasia. The prostate
presents high levels of polyamines, and they increase in tumor
tissues. In addition, it was shown that the inhibition of polyamine
metabolism enzymes is associated with increased adipose tissue
and weight gain in human and animal models (27). Alpha-
difluoromethylornithine, an inhibitor of ODC, depleted the
cellular polyamines and prevented triglyceride accumulation and
differentiation in 3T3-L1 cells (28). In PCa cells, ODC and
androgen receptor are mutually regulated. Overexpression of the
ODC protein causes malignant transformation through activation
of the androgen receptor axis, which, in turn, can affect different
pathways involved in cell proliferation, cell survival, and tumor
invasion (29). Recently, an analysis of in vivo metastases and
clinical data from PCa patients supports that the PGC-1a
(transcriptional co-activator peroxisome proliferator-activated
receptor gamma coactivator 1-alpha)/c-MYC/ODC1 axis
regulates polyamine biosynthesis and PCa aggressiveness (30).

Using amultiplatform (NMR+LC-MS)metabolomics approach
on serum samples to study preoperative metabolic alterations
associated with PCa recurrence showed significant alterations in
metabolic pathways, including amino acid metabolism, purine and
pyrimidine synthesis, tricarboxylic acid cycle, tryptophan
catabolism, glucose, and lactate (31), similar to what we detected
in the PPAT secretome in high-grade PCa patients.

Although our previous findings pointed toward alterations in
metabolic pathways related to energy balance and their possible
relation with tumor maintenance and progression, we must not
forget the probable outcome of cancer disease: cachexia syndrome.
Even with an unaltered caloric intake, there is muscle and fat
storage usage that will mobilize lipids and amino acids directly or
regulate glucose/glycogen metabolism (both hepatic and
muscular). Cachexia will also affect hormone/growth factor
pathways, related to adipose tissue metabolism such as insulin
or IGF-1 (as observed in our study), and cause a shift towards
beige or brown adipose tissue in other types of cancers (32),
uncoupling oxidative phosphorylation from the respiratory chain.
Although the patients involved in this study did not show signs of
cachexia, it is well known that it can no longer be considered a
consequence of end-stage tumors. Even more, tissue wasting can
be observed at very early stages of tumor development, even before
being detectable (30). In relation to this, using combined analysis
of serum and plasma samples, with diverse metabolomic
platforms, it was possible to discriminate between PCa and
Frontiers in Endocrinology | www.frontiersin.org 5
BPH, thus indicating that amino acid metabolism could be a
marker for PCa when compared to BPH (33).

A recent review by Xu et al. (34) specifically pinpoints to fatty
acid metabolism with regard to the possible connection between
prostate cancer and obesity, indicating that steps involved in this
metabolism could be targets for PCa diagnosis and treatment.
Here, we presented a broader view that involves carbohydrate,
lipid, and protein metabolisms with connection to hormone
signaling pathways.

DISCUSSION

There are key differences in PPAT metabolic behavior during PCa
onset and progression. PPAT-T3 secretome has a metabolic profile
enriched in several biological pathways related to energy balance,
probably indicating a greater energy requirement by the tumor when
compared to PPAT-T2. In addition, in tumors with high pathological
grade, the secretome of PPAT is enriched in pathways related to
hormone response, polyamine synthesis (through regulation of
ornithine decarboxylase), and control of protein synthesis, like
amino acid, RNA, and nucleotide metabolism, whose catabolic
products could be required for tumor growth. PPAT-T2 and PPAT-
BPH secretome showed a lesser complex metabolic profile. While
PPAT-T2 secretome showed biological pathways related with energy
balance, PPAT-BPHsecretomewas related toboth energybalance and
hormone response through insulin pathway. Thus, the knowledge of
the metabolic profile of PPAT microenvironment could be a useful
indicator for early diagnosis of high-risk tumors. We suggest that
exploring the metabolic reprogramming, also related with energy
interchange, has both therapeutic and diagnostic implications. The
development of therapeutic metabolic approaches must, therefore,
consider that themetabolic reprogrammingof tumor cells evolveswith
microenvironmental changes. Therefore, combined therapies that
consider these metabolic changes of the disease to attack tumor and
target cancer microenvironment should be developed.
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