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Abstract 

A significant source of uncertainty in biodiesel production is the variability of feed 

composition since the percentage and type of triglycerides varies considerably across 

different raw materials. Also, due to the complexity of both transesterification and 

saponification kinetics, first-principles models of biodiesel production typically have 

built-in errors (structural and parametric uncertainty) which give rise to the need for 

obtaining relevant data through experimental design in modeling for optimization.  A 

run-to-run optimization strategy which integrates tendency models with Bayesian active 

learning is proposed. Parameter distributions in a probabilistic model of process 

performance are re-estimated using data from experiments designed for maximizing 

information and performance. Results obtained highlight that Bayesian optimal design 

of experiments using a probabilistic tendency model is effective in achieving the 

maximum ester content and yield in biodiesel production even though significant 

uncertainty in feed composition and modeling errors are present.   
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1. Introduction 

Biodiesel is an alternative fuel produced from renewable vegetable oils, animal fats or 

recycled cooking oils whose transesterification with methanol produces glycerol and 

methyl esters (Ma and Hanna, 1999). Biodiesel would be an ideal substitute for the 

conventional diesel fuel if only it was more competitive economically. Efforts have 

been made to reduce its production cost by optimizing biodiesel yield in the face of 

different sources of uncertainty (Leung and Guo, 2006; Eevera, et al., 2009). In order to 

make biodiesel more competitive, oil conversion into methyl esters is of paramount 

importance since in  biodiesel production the most contributing factor to the total 

manufacturing cost is the raw material which represents between 80 and 90% of the 

total estimate production cost (Benavides and Diwekar, 2012a). Several controllable 

factors can affect the productivity of alkaline-catalyzed transesterification in terms of 

yield and biodiesel final concentration. Among these factors, the most relevant are: the 

alcohol ratio, catalyst concentration, reaction temperature, and reaction time. The 

optimal values of these parameters for achieving maximum conversion of triglycerides 

to esters depend on the chemical and physical properties of the feedstock oils and the 

kinetics of alkali catalyzed alcoholysis. However, in optimizing the operating policy, 

there are inherent uncertainties that can have a significant impact on the product 

quantity, quality and process economics. In vegetal oils and animal fats the percentage 

and type of triglycerides varies considerably. For example, triglyceride composition 

soybean oils reveals five types of hydrocarbon chains which are: tripalmitin, tristearin, 

triolein, trilinolein, trilinolein, and trilinolenin and their percentage in triglycerides are 

6–10%, 20–30%, 2–5%, 50–60%, and 5–11%, respectively (Linstromberg, 1970; 

Benavides and Diwekar, 2012b) . 
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2. Modeling biodiesel production 

2.1. Basic chemical reactions 

Common vegetable oils or animal fats are esters of saturated and unsaturated 

monocarboxylic acids with the trihydric alcohol glyceride. These esters are called 

triglycerides, which can react with alcohol in the presence of a catalyst, a process 

known as transesterification or alcoholysis (Ma and Hanna, 1999). The simplified form 

of its chemical reaction is shown in Fig. 1a, where R1, R2, R3 are long-chain 

hydrocarbons, sometimes called fatty acid chains. When the triglyceride is converted 

stepwise to diglyceride, monoglyceride, and finally to glycerol, 1 mol of fatty ester is 

liberated at each reaction step.A catalyst is usually used to improve the reaction rate and 

yield. Because the reaction is reversible, excess alcohol is used to shift the equilibrium 

to the products side. Methanol and ethanol are used most frequently, especially 

methanol because of its low cost and its physical and chemical advantages (polar and 

shortest chain alcohol). The alcoholysis reaction can be catalyzed by alkalis, acids, or 

enzymes. The alkalis include NaOH, KOH, carbonates and corresponding sodium and 

potassium alkoxides such as sodium methoxide, sodium ethoxide, sodium propoxide 

and sodium butoxide. For an alkali-catalyzed transesterification, the alkali catalyst that 

is used will also react with biodiesel and triglycerides to form soap. Fig. 1b shows the 

saponification reaction of the catalyst (sodium hydroxide) and the esters, forming soap 

and alcohol. This reaction is undesirable because the soap lowers the yield of the 

biodiesel and makes more difficult to separate esters from glycerol.  

 

 
Fig. 1. Main reaction pathways. (a) Overall transesterification; (b) Saponification.  

 

2.2.  Kinetics and tendency model 

Transesterification kinetics (Komers, et al., 2002) corresponds to the following set of 

reversible reactions: 

 

𝑇𝐺 + 𝐶𝐻3𝑂𝐻 ↔ 𝐷𝐺 + 𝐸; 𝐷𝐺 + 𝐶𝐻3𝑂𝐻 ↔ 𝑀𝐺 + 𝐸; 𝑀𝐺 + 𝐶𝐻3𝑂𝐻 ↔ 𝐺 + 𝐸                            (1) 
 
whereas the saponification of glycerides and ester can be described by 
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𝑇𝐺 + 𝑂𝐻 → 𝑆 + 𝐷𝐺; 𝐷𝐺 + 𝑂𝐻 → 𝑆 + 𝑀𝐺; 𝑀𝐺 + 𝑂𝐻 → 𝑆 + 𝐺;  𝐸 + 𝑂𝐻 → 𝑆 + 𝐶𝐻3𝑂𝐻      (2) 

 

Basic reaction rates are written using mass action law and Arrhenius equation as follows 

 
𝑟1 = 𝑘1 ∗ 𝑂𝐻 ∗ 𝑇𝐺 ∗ 𝐶𝐻3𝑂𝐻;    𝑟2 = 𝑘2 ∗ 𝑂𝐻 ∗ 𝐷𝐺 ∗ 𝐸; 𝑟3 = 𝑘3 ∗ 𝑂𝐻 ∗ 𝐷𝐺 ∗ 𝐶𝐻3𝑂𝐻      

𝑟4 = 𝑘4 ∗ 𝑂𝐻 ∗ 𝑀𝐺 ∗ 𝐸;  𝑟5 = 𝑘5 ∗ 𝑂𝐻 ∗ 𝑀𝐺 ∗ 𝐶𝐻3𝑂𝐻 ,    𝑟6 = 𝑘6 ∗ 𝑂𝐻 ∗ 𝐺 ∗ 𝐸  

𝑟7 = 𝑘7 ∗ 𝑂𝐻 ∗ 𝐸 ; 𝑟8 = 𝑘8 ∗ 𝑂𝐻 ∗ 𝑇𝐺; 𝑟9 = 𝑘9 ∗ 𝑂𝐻 ∗ 𝐷𝐺; 𝑟10 = 𝑘10 ∗ 𝑂𝐻 ∗ 𝑀𝐺 

𝑘𝑖 = 𝑘𝑖
𝑜 ∗  𝐵𝑖 ∗  

1

𝑇𝑜
−

1

𝑇
  ; 𝑇𝑜 = 295.75 𝐾                                                                          (3)                                     

 

For the in silico model of biodiesel production, parameters are given in Table 1. The 

dynamics for a batch reactor are the corresponding mass balances: 

 

 
 𝑑𝑇𝐺

𝑑𝑡
= −𝑟1 + 𝑟2 − 𝑟8  ;                              

𝑑𝐷𝐺

𝑑𝑡
= 𝑟1 − 𝑟2 − 𝑟3 + 𝑟4 + 𝑟8 − 𝑟9; 

 
𝑑𝑀𝐺

𝑑𝑡
= 𝑟3 − 𝑟4 − 𝑟5 + 𝑟6 + 𝑟9 − 𝑟10  ;     

𝑑𝐸

𝑑𝑡
= 𝑟1 + 𝑟3 + 𝑟5 − 𝑟2 − 𝑟4 − 𝑟6 − 𝑟7;  

𝑑𝐶𝐻3𝑂𝐻

𝑑𝑡
= −

𝑑𝐶𝐸

𝑑𝑡
 ; 

𝑑𝐺

𝑑𝑡
= 𝑟5 − 𝑟6 + 𝑟10  ;   

𝑑𝑂𝐻

𝑑𝑡
= −𝑟7 − 𝑟8 − 𝑟9 − 𝑟10                                  (4)                                                                                  

 
To account for the available measurement in sampled data, a tendency model is 

proposed to optimize the operating policy. The simplified dynamic model for biodiesel 

production is made up of the following kinetics and mass balances 

 

𝑇𝐺 + 3 ∗ 𝐶𝐻3𝑂𝐻 → 𝐺 + 3 ∗ 𝐸 ; 𝑟1 = 𝑘1 ∗ 𝑂𝐻 ∗ 𝑇𝐺 ∗ 𝐶𝐻3𝑂𝐻 

𝑇𝐺 + 𝑂𝐻 → 𝑆 + 𝐺;                        𝑟2 = 𝑘2 ∗ 𝑂𝐻 ∗ 𝑇𝐺 

𝐸 + 𝑂𝐻 → 𝑆 + 𝐶𝐻3𝑂𝐻;                𝑟3 = 𝑘3 ∗ 𝑂𝐻 ∗ 𝐸                                                       (5) 

 
𝑑𝑇𝐺

𝑑𝑡
= −𝑟1 − 𝑟2; 

𝑑𝐸

𝑑𝑡
=  3 𝑟1 −   𝑟3; 

𝑑𝐶𝐻3𝑂𝐻

𝑑𝑡
= −

𝑑𝐸

𝑑𝑡
; 

𝑑𝑂𝐻

𝑑𝑡
= −𝑟2 − 𝑟3 

 

Table 1. In silico Model Parameters 

𝑘1
𝑜

  [l2.mol-2.s-1] 0,1586 𝑘6
𝑜

 [l2.mol-2.s-1] 0,0186 𝐵1   [K] 7208 𝐵6   [K] 2022 

𝑘2
𝑜

  [l2.mol-2.s-1] 0,0795 𝑘7
𝑜

 [l.mol-1.s-1] 0,0009 𝐵2   [K] 3891 𝐵7   [K] 167 

𝑘3
𝑜

  [l2.mol-2.s-1] 0,2506 𝑘8
𝑜

  [l.mol-1.s-1] 0,0229 𝐵3   [K] 12473 𝐵8   [K] 6626 

𝑘4
𝑜

  [l2.mol-2.s-1] 0,1950 𝑘9
𝑜

  [l.mol-1.s-1] 0,0498 𝐵4   [K] 10103 𝐵9   [K] 1416 

𝑘5
𝑜

  [l2.mol-2.s-1] 0,4048 𝑘10
𝑜

  [l.mol-1.s-1] 0,0233 𝐵5   [K] 5081 𝐵10   [K] 9743 

 

3. Run-to-run optimization 

3.1. Methodology 

In order for a tendency model to reflect the observed dynamics as accurately as possible 

it must faithfully represent its own accuracy. A probabilistic model quantifies this 

uncertainty by integrating first-principles knowledge with data to capture all plausible 

dynamics in a distribution over model predictions for state transitions between samples 

in a batch run (Martinez et al., 2009, 2013). To this aim, let us assume that process 

dynamics is modeled using a number of state variables x(t) that can be measured and the 

vector y(t) represents measured values of the outputs at a given sampling time t. Also, it 
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  1:    Policy evaluation        Exploratory run. 

   2:    Model initialization     Define priors for parameter distributions.          

   3: Loop 

   4:  Policy optimization      Performance improvement. 

   5:  Experimental design              Optimal sampling times. 

   6:   Policy evaluation    Collect observations. 

   7:  Sensitivity analysis    Introduce modeling bias. 

   8:  Probabilistic model update      Bootstrapping. 

   9: End loop 

is assumed that the probabilistic tendency model can be described by a dynamic 

stochastic model constituted by  

),,),(,,( twtxxf u , ))(( txgy                                                                                      (6) 

with the set of initial conditions x(0)=x0, u(t) and w are, respectively, the time-dependent 

and time-invariant control variables (manipulated inputs), is the set of i.i.d. model 

parameters with given a priori distributions kip i ,...,1),(  , and t is time.  

Model-based policy iteration aims at optimizing the objective function  J(tf, xf) at the 

end of each run by acting on the following design vector for the operating policy: 

),,),(,( sp
0 ftwty tu                                                                                                        (7) 

where  y0 is the set of initial conditions of the measured variables, and tf  is the duration 

of an experiment. The set of time instants at which the output variables are sampled is a 

design variable itself, and is expressed through the vector t
sp

 =[t1 … tn]
T
 of n sampling 

times. Control vector parameterization techniques are used to discretize the control 

input u(t) profiles.  

A high-level description of the model-based policy iteration framework is given in Fig. 

2 (see Martinez et al., 2013, for details). It is important to highlight that the activity 

called policy evaluation corresponds to the actual running of a designed experimental 

run whereas other activities such as policy optimization, experimental design and 

sensitivity analysis are entirely based on model simulations. The operating policy is first 

initialized by resorting to expert judgment and a priori knowledge from lab scale to 

avoid undesirable states. Samples are taken along this experiment so as to make a rough 

estimation of probability distributions or histograms for parameters in the tendency 

model. Equipped with a probabilistic model which explicitly addressed its own 

uncertainty, the policy iteration loop can be entered. First, the “most probable” model 

parameterization is used to find a model-optimized operating policy. Using this policy 

an optimally informative experiment is designed to define informative sampling times 

along the next evaluation run. The policy is then evaluated experimentally and new data 

is gathered. To use incoming data more efficiently, a sensitivity analysis is made to 

pinpoint which is the subset of parameters that explain most of the variance of the 

chosen performance J. Finally, the probabilistic tendency model is updated by 

selectively re-estimating the distributions of sensitive parameters, and a new policy 

improvement round begins. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. High-level description of the model-based policy iteration. 
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3.2. Simulation results 

Based on sample data from the foregoing in silico model run-to-run optimization has 

been addressed. Measurement errors are modeled using a normal distribution with zero 

mean and a standard deviation of  5% regarding the corresponding noise-free data. The 

operating policy has four parameters: initial hydroxyle concentration COH, switching 

time tSW and two temperature levels T1 and T2. Yield is defined on the basis of the initial 

lump of tryglycerides regardless of its composition. The final time is set to 60 min 

whereas the methanol to oil ratio is chosen as 6:1. Results obtained are summarized in 

Table 2. As can be seen, the methodology in Fig. 2 only requires two iterations to 

achieve a near-optimal operating condition (see Table 2).   

 

Table 2. Run-to-run improvement of the operating policy 

Run # 
Policy Parameter 

J [%] J pred [%] 
COH

 
[mol/l] tSW [min] T1 [ C] T2 [C] 

Exploratory 0,0750 30,00 60,0 40,0 81,18 - 

1 0,1246 52,65 40,0 44,3 94,36 94,67 

2 0,1451 19,54 40,0 40,0 94,44 91,61 

3 0,1274 15,57 40,0 40,0 94,25 93,49 

4 0,1377 36,47 40,0 40,0 94,40 95,43 

In silico optimum 0,1128 36,26 40,0 60,0 95,44 - 

 

In Fig. 3, the model-based optimized policy for iteration #1 is shown along with optimal 

sampling times. Ester and hydroxyle concentrations for this policy are given in Fig. 4. 

The histograms for some of the tendency model parameters are depicted in Fig. 5 and 

the corresponding uncertainty in biodiesel time profiles are shown in Fig. 6.  

 
Fig. 3. Optimized policy using the tendency model in iteration #1. 

 
Fig. 4.  Product and hydroxyle concentrations in iteration #1 
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Fig. 5. Histograms for selected parameters in the probabilistic tendency model (run # 1) 

 

 
Fig. 6. Characterization of yield prediction uncertainty using the probabilistic tendency model 

4. Concluding remarks 

In this work, a probabilistic tendency model for approximating the hydroxide-catalyzed 

methanolysis of vegetal oils that also accounts for the saponification reactions is 

proposed. Run-to-run optimization based on the probabilistic tendency model 

demostrates fast convergence to a significantly improved operating policy.  
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