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Abstract

Probabilistic linear discriminant analysis (PLDA) is the leading
method for computing scores in speaker recognition systems.
The method models the vectors representing each audio sam-
ple as a sum of three terms: one that depends on the speaker
identity, one that models the within-speaker variability, and one
that models any remaining variability. The last two terms are
assumed to be independent across samples. We recently pro-
posed an extension of the PLDA method, which we termed Joint
PLDA (JPLDA), where the second term is considered depen-
dent on the type of nuisance condition present in the data (e.g.,
the language or channel). The proposed method led to signif-
icant gains for multilanguage speaker recognition when taking
language as the nuisance condition. In this paper, we present a
generalization of this approach that allows for multiple nuisance
terms. We show results using language and several nuisance
conditions describing the acoustic characteristics of the sample
and demonstrate that jointly including all these factors in the
model leads to better results than including only language or
acoustic condition factors. Overall, we obtain relative improve-
ments in detection cost function between 5% and 47% for vari-
ous systems and test conditions with respect to standard PLDA
approaches.
Index Terms: speaker recognition, probabilistic linear discrim-
inant analysis

1. Introduction
PLDA [1] is the leading scoring technique for speaker recogni-
tion [2, 3, 4, 5, 6]. It assumes that each sample is represented
by a feature vector of fixed dimension and that this vector can
be modeled as a sum of three terms: a term that depends on
the sample’s class, a term that models within-class variability
and is assumed independent across samples, and a final term
that models any remaining variability and is also independent
across samples. These assumptions imply that all samples from
the same class are independent of each other and also indepen-
dent of the samples from other classes once the class is known.
This assumption is incorrect for many training datasets where
samples come from a small set of distinct conditions like mi-
crophones, languages, or speech styles. In these cases, samples
corresponding to the same condition will most likely be statis-
tically dependent.

In a recent publication [7], we proposed an extension of
PLDA where the term that models the within-class variability is
considered dependent on a label describing the nuisance condi-
tion of the sample. We showed in [8] that this approach gives
large gains in multilingual speaker recognition when using the
language as the nuisance condition. In this work, we extend

the proposed method to allow for multiple nuisance terms cor-
responding to different conditions that are assumed to indepen-
dently and additively affect the vector representing the sample.
We propose a heuristic algorithm for model training that is sim-
ple to implement, effective, and computationally fast, as well
as a scoring procedure that does not require knowledge of the
nuisance conditions during testing.

The literature proposes a few approaches that generalize
PLDA in a way that makes its parameters dependent on a con-
dition label. The simplest approach of this family is training a
separate PLDA model for each condition, as proposed by [9].
Nevertheless, in this paper, the authors show that pooling the
data from all conditions, as also proposed by [10], leads to
better performance than training separate models. In the tied
PLDA model proposed by [11], one PLDA model is trained for
each condition, but these models are tied by forcing the latent
variable corresponding to each class to be the same across all
conditions. The approach was shown to outperform standard
PLDA with pooled training data when each class in the train-
ing data is seen under both considered conditions, frontal and
profile, in a face recognition task. A similar approach is pro-
posed by [12]; but in this case, the mixture component is not
given during training but rather is dependent on a continuous
metadata value. The approach is tested by adding noise to the
training data at different signal-to-noise (SNR) levels, result-
ing in gains compared to pooling all the data to train a single
PLDA model. The tied PLDA approach, though, does not work
well when each speaker in the training data is seen only under a
small subset of the conditions of interest (potentially, only one)
or when some conditions have much less training data than oth-
ers [8], which are both common training scenarios.

We show results on two multilingual speaker recognition
datasets, one composed of Mixer data [13] and another com-
posed of LASRS data [14], using three different systems to
obtain the vectors that represent each sample. We show that
JPLDA gives significant improvements over standard PLDA ap-
proaches when using language as the nuisance condition for all
three systems. These results strenghten the conclusion obtained
in [8] where only one of the three systems was used for the ex-
periments. Further, we show that additional gains are obtained
by adding nuisance terms for the microphone, noise, codec, and
reverberation characteristics of the samples.

2. Standard PLDA
Standard PLDA [1] assumes that the vector mi representing a
certain sample from speaker si is given by

mi = µ+ V ysi + Uxi + εi, (1)
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where µ is the global mean of the training data; ysi is a vector
of size Ry , the dimension of the speaker subspace; and xi is a
vector of size Rx, the dimension of the subspace correspond-
ing to the nuisance condition or, as usually called in speaker
recognition, the channel. The model assumes that

ysi ∼ N(0, I), ∀si (2)
xi ∼ N(0, I), ∀i (3)
εi ∼ N(0, D−1),∀i (4)

where the matrix D is assumed to be diagonal. All these latent
variables are assumed independent: speaker variables are inde-
pendent across speakers, and the nuisance variable xi and noise
variable εi are independent across samples.

The model described above corresponds to the original
PLDA formulation, which we will call full PLDA (FPLDA).
In speaker recognition, a simplified version of PLDA (SPLDA
for the purpose of this paper) is commonly preferred, where the
matrix V is full rank, and the nuisance factor is absorbed into
the noise factor, which is then assumed to have a full rather
than diagonal covariance matrix. Sizov et al. [15] give a com-
prehensive explanation of the usual flavors of PLDA. The train-
ing of PLDA parameters for these two models is done using
expectation-maximization (EM) algorithms [4, 16].

When using PLDA for speaker verification, the score for a
trial composed of enrollment set E and test set T is computed
as the following likelihood ratio (LR):

LR =
p(E, T |HSS)

p(E, T |HDS)
, (5)

where HSS is the hypothesis that the speakers in both sets are
the same, while HDS is the hypothesis that the speakers are
different. This value can be computed using a closed form using
the PLDA model. In our code, we use the formulation derived
by [17], equation (34). Note, though, that the last term in that
equation should not be there (this mistake was confirmed by one
coauthor of the paper). For this work, we assume that each trial
is composed of a single enrollment and test sample.

3. Joint PLDA
The joint PLDA model, originally proposed in [7] and then fur-
ther developed and tested for a multilingual speaker recogni-
tion task in [8], is a generalization of PLDA where the nuisance
variable is no longer considered independent across samples but
instead is potentially shared (tied) across the samples that cor-
respond to the same nuisance condition. The original work con-
sidered a single nuisance condition, deriving the EM and scor-
ing formulas for this scenario. In this work, we further extend
the model to handle multiple nuisance conditions, assuming that
their effect is independent and additive.

We assume that the within-speaker variability can be de-
composed into N terms corresponding to different nuisance
conditions that could correspond to, for example, the language
spoken in the sample, the microphone type, the noise type and
level, or any other characteristic of the sample that can be con-
sidered to occur independently of all other characteristics. We
propose to model vector mi for sample i as:

mi = µ+ V ysi +
N∑

j=1

Ujx
j
cji + εi, (6)

where, as before, ysi is a vector of size Ry; j is an index over
the nuisance conditions; cji is the label for condition j for sam-
ple i; xjcji is a vector of size Rxj ; and

ysi ∼ N(0, I), ∀si (7)

xjcj ∼ N(0, I), ∀j, cj (8)

εi ∼ N(0, D−1), ∀i (9)

where, as before, all variables are assumed independent of each
other.

The model’s parameters to estimate are λ =
{µ, V, U1, . . . , UN , D}. The input data for the training
algorithm is now required to have the nuisance condition labels
for each sample as well as the speaker labels, as usual.

3.1. Model Training Procedure
In [7], we derive the expectation-maximization equations for
training this new model when N = 1. The formulation is
both significantly more involved than for standard PLDA and
computationally costlier. Nevertheless, in [8], we compare re-
sults obtained with different numbers of EM iterations when
using a smart initialization procedure and random initialization.
We show that, when using the proposed smart initialization pro-
cedure, running EM is unnecessary: the initial model leads to
similar performance as those further refined after many EM it-
erations. Given this finding, for this work, we train our JPLDA
models using a version of the smart initialization procedure pro-
posed in [8] that is generalized to allow for more than one nui-
sance condition label. The procedure is as follows:
• Initialize the variables xjcji and the matrices Uj to zero.
• Iterate the following steps M times:
• For each condition j = 1, . . . , N :
• Create new training vectors for each sample m̃i =
mi −

∑
k!=j Ukx

k
cki

, which subtracts the estimated
effect of all conditions except j.

• Estimate an SPLDA model for condition j using the
m̃i vectors, the labels for condition k as classes and
setting the rank of the V matrix to Rxj . Set Uj of the
JPLDA model to be the V matrix from this SPLDA
model.

• Estimate new values for the latent variables using this
SPLDA model and assign them to x̂jcji . Note that all
samples with the same label for condition j will have
the same latent variable.

• Set xjcji = x̂jcji for all i and j.
• Create new training vectors for each sample m̃i = mi −∑

j Ujx
j
cji , which subtract the estimated effect of all nui-

sance conditions.
• Estimate a SPLDA model using these training vectors and

the speakers as labels, setting the rank of V to Ry . Set the
V andD matrices of the JPLDA model to the estimated val-
ues for the corresponding matrices of this SPLDA model. If
a JPLDA model with diagonal D is required, take the diag-
onal part of the estimated D matrix.
In our experiments, we set M = 10, which was enough for

the values of the latent variables to stabilize.

3.2. Score Generation
As for standard PLDA, we define the score as the likelihood
ratio between the two hypotheses: that the speakers are the same
and that the speakers are different. Nevertheless, in this case,
we need to marginalize both likelihoods over new hypotheses:
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that each nuisance condition is the same or different in the two
samples. Hence, the LR is computed as follows:

LR =

∑
h∈H p(E, T |HSS , h)P (h|HSS)∑
h∈H p(E, T |HDS , h)P (h|HDS)

where HSS is the hypothesis that the speakers for both sets are
the same, HDS is the hypothesis that they are different, and H
is the set of all possible combinations of hypothesis about the
nuisance conditions H = {(Hm1C1 , . . . , HmNCN ) : mj ∈
{S,D},∀j ∈ {1, . . . , N}}, where S and D refer to the hy-
potheses that the conditions are the same and different. The pri-
ors for each combination of hypotheses are computed assum-
ing independence as P (h|HSS) =

∏
j P (HmjCj |HSS) and,

similarly, for P (h|HDS). Each individual prior can be set in-
dependently as a parameter of the method. This LR value can
be computed using a closed form, which can be derived using
similar procedures as for a single nuisance condition [18].

4. Experimental Setup
In this section, we describe the training and test datasets and the
different speaker recognition systems used in our experiments.

4.1. Speaker Recognition Systems
We compare the different PLDA techniques on vectors extracted
using three different procedures. In all cases, we use a speech
activity detection system (described in detail in [8]) to discard
non-speech frames before extracting the vectors representing
each sample.

UBM i-vector system (ubmivs): This a traditional i-
vector system, which uses mel-frequency cepstral coefficients
(MFCCs) of 20 dimensions appended with deltas and double-
deltas, a 2048-component GMM as a universal background
model (UBM), and a 400-dimensional i-vector extractor. For
more details on this system, see [8].

Hybrid alignment system (hybrivs): The hybrid-
alignment framework [19] provides competitive speaker recog-
nition performance across mixed conditions. This system lever-
ages a DNN trained to predict 3450 tied tri-phone states to ex-
tract 80-dimensional bottleneck features. These phonetically
rich bottleneck features are used to train a UBM of 2048 Gaus-
sians, which is later used to generate frame occupancies or
alignments for input audio. The alignments are used to gen-
erate zero-order statistics and combined with 20-dimensional
MFCCs appended with deltas and double-deltas to calculate
first-order statistics. The statistics are used in the training of
an i-vector subspace of 400 dimensions, from which i-vectors
are extracted for our PLDA experiments. Training data for the
DNN included Fisher, Switchboard and Callhome data (more
details on the DNN can be found in [20]), while the UBM was
trained using the non-degraded signals of the PRISM training
set.

Speaker embeddings system (embeddings): Recent ad-
vances in speaker recognition have shown a significant improve-
ment by using a deep neural network trained directly to tar-
get speaker classes, then extract an embedding (a low- and fix-
dimensional vector) rich in speaker information, from a hidden
layer in the network for use in subsequent backend classification
[21, 22]. Our work in [23] was leveraged for the current study,
in which an embeddings network was trained using data from
approximately 3,200 speakers from 56,000 audio files sourced
from the non-degraded subset of the PRISM training lists, each
degraded four times with four different degradation types (16-
fold degradation) consisting of noise, reverb, compression, and

Table 1: Percentage of samples in the training data for different
combinations of nuisance conditions labels. The header shows
the number of unique labels for each condition in parenthesis.
Labels for each nuisance condition are grouped in two groups
for each condition to compute the percentages. Microphone la-
bels (mic) are grouped into telephone (tel) or other microphones
(mic); codec (cod), noise (noi), and reverberation (rev) labels
are grouped into “yes” or “no” to indicate degraded and non-
degraded samples, respectively; and language labels (lan) are
converted into English (eng) or non-English (non-eng). The to-
tal number of samples is 72,659.

mic (23) cod (33) rev (10) noi (22) lan (17) perc
phn no no no eng 52.8
mic no no no eng 15.2
mic yes no no eng 12.7
mic no no yes eng 7.6
mic no yes no eng 7.5
phn no no no non-eng 4.3

music. Embeddings of 512 dimensions were extracted from the
first hidden layer after the statistics pooling layer. These em-
beddings are used for the PLDA experiments.

The vectors generated by these three systems are further
transformed using linear discriminant analysis (LDA) to 300 di-
mensions. LDA is trained with the same data used for the PLDA
methods, described below. The vectors are then mean and
length normalized [24] before training or applying the PLDA
models.

4.2. PLDA Training Data
The training data for all PLDA methods is given by the full
PRISM training set [25], which contains simulated noisy sig-
nals created by adding babble noise to clean signals from Mixer
collections at 8, 15, and 20 dB signal-to-noise ratios (SNR) and
simulated reverberated signals created by convolving the same
clean signals with different room impulse responses at different
RT60 reverberation times of 0.3, 0.5, and 0.7. Finally, to this
original PRISM training list, we added other degraded signals
created by transcoding the clean signals with a number of differ-
ent codecs. This is the data SRI has been using to train PLDA
models for a few years. In this case, though, we discarded a
small minority of training samples from languages for which
only one or two speakers are available and samples where the
language was unavailable or ambiguous. All the degraded data
is in English and degraded with only one type of degradation:
noise, reverberation, or codec distortion.

The training data is labeled with five nuisance condition la-
bels: (1) language, (2) microphone, (3) noise, (4) reverb, and (5)
codec. The language condition labels are given by the language
in the sample. The microphone labels are given by a combina-
tion of the collection identifier (switchboard, Fisher, etc.) and
the microphone label provided with the collection. The labels
for the noise, reverb, and codec conditions are given by the type
of degradation (noise signal, room type, or codec) and the level
of degradation (RT or SNR), plus one label for the non-degraded
signals. Table 1 shows statistics for the training data.

4.3. Test Data
We consider four testing conditions, one that uses Mixer data
and three that use LASRS data.

The Mixer test data is composed of telephone samples
from the Mixer collections [13] from the 2005 to 2010 NIST
speaker recognition evaluations, from speakers not used for
training. We include 119 samples in Arabic from 21 speakers;
200 samples in Russian from 47 speakers; 309 samples in Thai
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from 38 speakers; 827 samples in Chinese from 163 speakers;
and 5,755 samples in English from 701 speakers. The trials are
created by selecting the same number of target and impostor
same-language and cross-language trials such that the final set
of trials is a balanced union of both types of trials. Further, the
same-language trials are created as a balanced union of English
versus non-English trials. The final set of trials, which we call
Mixer Cln-mic All-lang (Cln stands for clean, referring to the
fact that samples are not degraded telephone samples, though
they could have different types of “wild” degradations), con-
tains 11,522 target trials and 858,119 impostor trials.

The LASRS test data is composed of samples from a bilin-
gual, multi-model voice corpus [14]. The corpus is composed
of approximately 100 bilingual speakers from each of three lan-
guages: Arabic, Korean, and Spanish. Each speaker is asked to
perform a series of tasks in English and in their native language.
Each task is recorded using seven recording devices (a cam-
corder, desktop, studio, omnidirectional, and three telephone
microphones) and repeated in two separate sessions recorded
on different days. For our experiments, we use the conversa-
tional data from all speakers. The trials are created by enrolling
with data from the first recorded session and testing on the sec-
ond recorded session in each of the two spoken languages. This
results in a total of approximately 3.9 million impostor and 34
thousand (K) target trials. This is what we call the All-mic All-
lang condition. We also subset the trials to include only three
microphones that are cleaner and somewhat similar to those
seen in training (two of the telephone and the studio micro-
phones). This subset, which we call Cln-mic All-lang, contains
approximately 715K impostor and 6.2K target trials. Finally,
we create another subset including only the English versus En-
glish trials. This subset, which we call All-mic Eng, contains
783K impostor and 7.8K target trials.

5. Results
Figure 1 shows the minimum detection cost function (DCF)
computed with a probability of target of 0.01, a cost of miss
of 10, and a cost of false alarm of 1 [26] for all three vector-
extraction procedures and all four test sets. The rank Ry is set
to 200 for all methods. For FPLDA, the Rx rank was optimized
to 40 using the Mixer data. Finally, for JPLDA, we use, in all
cases, the maximum rank that can be used for each nuisance
condition given by the number of labels for that condition (in-
dicated in Table 1) minus 1. These ranks were not tuned. The
prior probability for the same condition was set to 0.1 for all
conditions for both speaker hypothesis (see Section 3.2). This
was lightly optimized on Mixer data. Yet, values above 0.05
and below 0.5 give similar performance for all JPLDA systems.

Results show that JPLDA with language labels results in
large gains for the two Cln-mic All-lang test sets that include
all languages and microphones that are relatively clean and
matched to those seen in training. This is the same conclusion
we obtained in [8] for the ubmivs system. Here, we show that
this conclusion holds for all three systems tested. For these two
test sets, the gain from adding the other nuisance conditions is
small. This is likely due to the fact that a majority of the training
data matches the acoustic conditions in these test sets.

When the test set includes microphones that are noisier,
more distorted, or mismatched to those in training, the gain
from JPLDA with language labels becomes smaller, and the ad-
vantage of adding the other nuisance conditions during model
training becomes more apparent. Overall, we see that the model
that considers both language and acoustic conditions at the same
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Figure 1: MinDCF results for five PLDA approaches. The
JPLDA names include the nuisance conditions considered in
each case: l (language), m (microphone), c (codec), r (rever-
beration), and n (noise). The numbers on top of the last bar in
each group are the relative gains with respect to FPLDA.

time is always similar or better than the best of the two models
that consider language or acoustic condition separately.

6. Conclusions
We presented a generalization of PLDA that enables model-
ing of dependencies between samples due to common nuisance
conditions. This new model, which we termed Joint PLDA
(JPLDA) for its ability to jointly model speaker identity and
a nuisance condition of interest, was recently shown to outper-
form PLDA in a multilingual speaker recognition task when us-
ing language as the nuisance condition. In this work, we further
generalize the approach to allow for multiple nuisance condi-
tions and propose a simple and fast training algorithm, as well
as a scoring procedure that does not require knowledge of the
nuisance condition labels at test time. Results show that joint
modeling of language and a set of acoustic conditions leads
to the best results compared to standard PLDA and to JPLDA
using only language or acoustic conditions. Further work in-
cludes investigating ways of automatically estimating the con-
dition labels when the training data does not have these labels
available, generalizing the scoring formulation to multiple en-
rollment samples, and deriving the EM algorithm for multiple
nuisance conditions.
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