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Abstract In this work we predict the maximum amplitude, its time of oc-
currence, and the total length of Solar Cycle 24 by linear regression to the
curvature (second derivative) at the preceding minimum of a smoothed version
of the sunspots time series. We characterise the predictive power of the proposed
methodology in a causal manner by an incremental incorporation of past solar
cycles to the available data base. In regressing maximum cycle intensity to cur-
vature at the leading minimum we obtain a correlation coefficient R ≈ 0.91 and
for the upcoming Cycle 24 a forecast of 78 (90% confidence interval: 56 – 106).
Ascent time also appears to be highly correlated to the second derivative at the
starting minimum (R ≈ -0.77), predicting maximum solar activity for October
2013 (90% confidence interval: January 2013 to September 2014). Solar Cycle
24 should come to an end by February 2020 (90% confidence interval: January
2019 to July 2021), although in this case correlational evidence is weaker (R ≈
-0.56).

Keywords: Solar Cycle 24; maximum activity prediction; ascent time; total
cycle length

1. Introduction

The main features of solar magnetic activity, as measured by the solar (or
Wolf) sunspots number (SSN), are successfully explained by dynamo theory
(Ossendrijver, 2003). A short cycle was first discovered by Schwabe and later
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reported by Wolf, who estimated its period to be approximately 11 years. This
cycle is not periodic, with variations in amplitude and length, and also phases
of inactivity such as the Maunder minimum. Longer-scale structures known as
Gleissberg cycles have also been identified, but their analysis is complicated by
the limited time-span of observations. The existence of multiple-scale dynamics,
or non-stationarity, adds a layer of complexity to the important problem of
solar-activity forecasting. This problem is technologically relevant as it affects
the estimation of orbital drag and other space-weather effects such as the rate
of solar flares, coronal mass ejections, and cosmic rays.

Different methods have been proposed in the literature to predict the maxi-
mum amplitude of Solar Cycle 24 (for a good review see Pesnell, 2008). Following
Pesnell (2008), existing techniques can be broadly classified as climatological,
precursor, dynamo model, spectral, and neural network:

• Climatological forecasts assume that amplitude variations around the mean
are random and therefore predict a forthcoming cycle of mean intensity,
where the average can be computed over the full historical record or a
more recent past (Wang et al., 2002; Horstman, 2005; Kim, Wilson, and
Cucinotta, 2006; Lantos, 2006; Clilverd et al., 2006).

• Precursor methods have recourse to leading indicators of solar activity. Two
important examples of this type of signals are the intensity of solar polar
magnetic fields and geomagnetic activity at the declining phase or cycle
minimum (Schatten, 2005; Svalgaard, Cliver, and Kamide, 2005; Hathaway
and Wilson, 2006; Jain, 2006; Hamid and Galal, 2006; Kane, 2007).

• Dynamo models, on the other hand, attempt to explain solar dynamics from
first principles by integrating conservation equations. Examples of this type
of approach include Dikpati, de Toma, and Gilman (2006) and Choudhuri,
Chatterjee, and Jiang (2007).

• Spectral methods search for regularities or predictable patterns in the spec-
tral content of the SSN time series. Autoregressive forecasts are also classi-
fied as spectral. Representative examples are given by Kane (1999), Duhau
(2003), De Meyer (2003), Clilverd et al. (2006), and Hiremath (2008).

• Finally, neural networks attempt to capture nonlinear relationships between
a set of input features and future solar activity. Examples in this category
are given by Calvo, Ceccatto, and Piacentini (1995), Verdes, Granitto, and
Ceccatto (2004), and Maris and Oncica (2006).

The proposed method is statistical in nature and falls into the climatological
class. More precisely, we apply and extend a previously developed methodology
for maximum solar-activity prediction (Verdes et al., 2000). Based on the cur-
vature of the SSN time series at a solar-cycle minimum, we forecast the main
features of the following cycle, namely maximum amplitude, time to maximum,
and total length. In Verdes et al. (2000) we proposed a restricted version of
this approach only for the prediction of maximum amplitude and applied it
to the case of Solar Cycle 23. The contributions of the present work are: i)
the application of the previously proposed technique to predict the maximum
intensity of Solar Cycle 24, and ii) its extension to forecast other cycle features
such as ascent time and total length. The rationale behind the proposed method
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can be ultimately summarised as follows: fast-rising cycles will reach higher
levels than slower-rising ones, with shorter ascent times and total cycle lengths.
This is known as the Waldmeier effect (Waldmeier, 1955) and has been further
documented by Hathaway, Wilson, and Reichmann (1994), Hathaway, Wilson,
and Reichmann (2002), and Dikpati, Gilman, and de Toma (2008). As a proxy
for rising speed we use the curvature (second derivative) at the minima of the
SSN time series, and effectively find that it determines the main characteristics
of the unfolding cycle. We report details on these studies below.

2. Data Preparation and Predictor Signal Construction

We used the monthly averages of sunspot counts published by the Solar In-
fluences Data Analysis Center (SIDC), which is the Solar Physics research de-
partment of the Royal Observatory of Belgium (try http://sidc.oma.be/DATA/
monthssn.dat).

In Verdes et al. (2000) we smoothed the raw data with a nonlinear technique
known as local projective noise reduction (Grassberger et al., 1993). Since the
proposed methodology is independent of the specific smoothing procedure, here
we followed a simpler approach and used a Savitzky–Golay filter (Savitzky and
Golay, 1964) fitting parabolas in windows of 61 months (30 months to each side
of the point being smoothed). The Savitzky–Golay filter allows us to estimate
a smooth curve interpolating the sunspot data and its second derivative every-
where. In the following we call these time series d0(t) and d2(t), respectively.
Finally, we construct our predictor signal by searching for the 24 minima of
d0(t) and evaluating d2(t) at these points. This process is illustrated in Figure
1.

3. Predicting the Main Shape Parameters of Solar Cycles

3.1. Maximum Amplitude

To predict the maximum amplitude of a solar cycle, we chose as a target vari-
able the yearly averages of sunspot numbers also published by the Solar In-
fluences Data Analysis Center (SIDC, http://sidc.oma.be/DATA/yearssn.dat).
More precisely, we focus on the last 23 maxima of this time series.

In Figure 2 we show a scatter plot of solar-cycle maxima as a function of
the second derivative at the leading minima. With solid and dashed lines, we
plot a fitted linear model and the 5 and 95 quantiles of its residues, respectively.
We employed a robust fitting procedure that minimises the median absolute
deviation (MAD) (Huber, 1981). We obtain a correlation coefficient R ≈ 0.91,
and for the upcoming Cycle 24 a forecast of 78 (shown with an open circle) and
a 90% confidence interval of 56 – 106 (dashed lines). The standard error (sample
standard deviation of residuals) is 16.

We now characterise the behaviour of the proposed methodology in a causal
manner, i.e. by incremental incorporation of past solar cycles to the available
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Figure 1. Construction of the signal used to predict the main features of solar cycles. Raw
monthly data are indicated with scattered dots. The series d0(t) and d2(t) obtained from a
Savitzky–Golay filter are depicted with solid black and gray lines, respectively. Vertical lines
highlight the values of d2(t) at the minima of d0(t), which is the key signal used in this work
to forecast shape parameters of solar cycles. A second axis is used for d2(t), which has been
conveniently scaled in order to visually maximise the correspondence between the proposed
predictor values and subsequent maxima of d0(t), which is the essence of our method. Notice
also that for visual clarity we do not show negative d2(t) values as they are unused by the
proposed forecasting approach. Cycles are annotated by their number.

Figure 2. Maximum amplitude of solar cycles against the value of the second derivative at the
preceding minimum. Full and dashed lines indicate a robust linear fit and its 90% confidence
interval, respectively. Dots are annotated by the corresponding solar cycle number. The open
circle indicates the prediction for Solar Cycle 24.
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Figure 3. Characterisation of the proposed forecasting methodology. In panel (a) we show
the evolution of the linear regression-intercept as new cycles are added to the data base
(more precisely, as a function of the predicted solar cycle number). Panel (b) profiles the
slope behaviour. In (c) we plot the evolution of the correlation coefficient between maximum
amplitude and curvature at the preceding minimum. The linear relationship is found to be
stable over time, with coefficients roughly unchanged from Cycle 10 onwards. Finally, in panel
(d) we show the cycle-by-cycle prediction error. Notice that this error is signed and defined as
predicted minus observed maximum, i.e. a positive value corresponds to an overshot prediction.

data base. Is the obtained linear relationship stable over time (in the sense of
the stability of its coefficients) as new cycles become available? We start from
the earliest possible application of the proposed approach, namely predicting
Cycle 3 with a linear response fitted to data from Cycles 1 and 2. We then
incorporate the actual data from Cycle 3 to the available data base and fit
a linear model which we use to forecast the maximum amplitude of Cycle 4.
This exercise is repeated incrementally, always in a causal manner: to issue a
prediction for a given solar cycle we only use information from previous cycles.
In this way we obtain the results presented in Figure 3. Panels (a) and (b) show
the linear regression coefficients profile as a function of the predicted solar cycle
number. In panel (c) we plot the linear correlation coefficient and in (d) the
signed prediction error (predicted minus observed maximum). We observe that
as new cycles are incorporated into the data base the proposed method quickly
stabilises, and only small fluctuations are apparent after the tenth cycle.

In Verdes et al. (2000) we proposed the second-derivative prediction method
and used it to issue a forecast for the maximum amplitude of Solar Cycle 23. The
predicted maximum level was 115 ± 32, a value which was consistent with the
climatological mean of historical data. As mentioned in Section 2, in that work
we used a more involved smoothing approach, while here we adopted a simple
Savitzky–Golay scheme. However, the different smoothing procedure employed
in this work had no effect on the issued prediction. Indeed, the forecast would
be again 115, with a 90% confidence interval of 94 – 143. Cycle 23 finally showed
a peak sunspot number of 119.6, in remarkable agreement with the prediction, a
coincidence which can be considered as exceptional rather than the rule. Notice
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Figure 4. Ascent time of solar cycles against the value of the second derivative at the starting
minimum. As in Figure 2, full and dashed lines are used to plot the result of a robust linear fit
and its 90% confidence interval, respectively. Each dot is annotated by the solar cycle number
it represents, and an open circle is used for the case of Solar Cycle 24.

from Figure 2 that, together with Cycle 13, Solar Cycle 23 happened to be
amongst the closest to the regression line – for Cycle 1 no model was yet available.

3.2. Time of Occurrence

In order to predict when maximum solar activity will be observed, we measure
the elapsed time between consecutive minima and maxima of d0(t). Notice that
we do not base the ascent time definition on the yearly averages time series,
but prefer the finer resolution (monthly as opposed to yearly) of d0 instead. We
regress the so-obtained ascent times to the curvature (d2) at the corresponding
minima. In Figure 4 we show a scatter plot of these variables. We find that the
second derivative at the minimum has a good explanatory power of ascent time.
More precisely, they are inversely related, with a linear correlation coefficient of
-0.77. This inverse relationship is consistent with the rationale of the proposed
approach: the larger d2 at the minimum is, the faster the cycle rises and therefore
the shorter the ascent time.

As Figure 4 shows, for Solar Cycle 24 we obtain a prediction of 5.0 years
for the ascent time (shown with an open circle). This interval is to be counted
from the last minimum of our d0 time series (October 2008), which brings the
predicted sunspot number maximum of 78 to October 2013 (90% confidence
interval: January 2013 to September 2014). The standard error of this prediction
(sample standard deviation of residuals) is six months.

We characterise the proposed approach along the same lines employed in the
previous section for the prediction of maximum cycle amplitude. In Figure 5 we
show how the unfolding of new cycles has affected the stability of the inverse
relationship between ascent time and curvature at minimum reported here. We
find that the intercept has been broadly unaffected by new data. In contrast,
the slope was initially much steeper than it currently is. As panel (b) of Figure
5 shows, Cycle 14 and more recently Cycles 19 and 22 have had a significant
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Figure 5. Characterisation of the proposed ascent time forecasting methodology. In panel (a)
we show the evolution of the linear regression-intercept as new cycles are added to the data
base (more precisely, as a function of the predicted solar cycle number). Panel (b) profiles
the slope behaviour. In (c) we plot the evolution of the correlation coefficient between maxi-
mum amplitude and curvature at the preceding minimum. Finally, in panel (d) we show the
cycle-by-cycle prediction error. This error is signed and defined as predicted minus observed
maximum, i.e. a positive value corresponds to an overshot prediction. Notice that the last
points in panels (a), (b) and (c) correspond to the current coefficients and correlation of the
model used to predict Solar Cycle 24.

influence reducing the slope of the regression (the contribution of these cycles to
the linear fit can be visualised in Figure 4, where each dot is annotated by the
solar-cycle number that it represents).

3.3. Total Cycle Length

Finally, we use the same technique to address the problem of predicting solar
cycle length, which we compute as the temporal interval between consecutive
minima in d0(t). As for the ascent time case, we prefer to measure temporal
intervals on the monthly resolution of d0(t) instead of the coarser one available
from the yearly averages time series.

We therefore regress total cycle length to curvature at minimum. Inspection
of these data, shown in Figure 6, reveals the unusually long character of Cycle
4. Indeed, there is some controversy in the literature about the nature of this
cycle. On one hand, it has been argued that the fourth solar cycle (1784 – 1798) is
actually a superposition of two shorter cycles (Usoskin, Mursula, and Kovaltsov,
2001, 2003; Usoskin et al., 2009). However, arguments against this assertion have
also been elaborated (Krivova, Solanki, and Beer, 2002; Zolotova and Ponyavin,
2011). Krivova, Solanki, and Beer (2002) performed statistical tests of sunspot
records, 10Be, 14C, and auroral proxy data to conclude that the hypothesis of
two shorter cycles is not supported by existing data. Zolotova and Ponyavin
(2011) reached the same conclusion and suggested that the length of the fourth
cycle can be explained by impulse activity in the northern declining phase of the
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Figure 6. Total cycle length of solar cycles against the value of the second derivative at the
leading minimum. Full and dashed lines indicate a robust linear fit and the 90% confidence
interval, respectively. Solar cycles are highlighted on the scatter plot by their number. An open
dot is used for the current cycle.

cycle. In any case, since the validity of this data point to our analysis is under
question, we opt to exclude it from the model building process. Therefore, in the
study of solar-cycle length versus curvature at minimum that follows below we
do not include Solar Cycle 4.

Figure 6 reveals that the second derivative at the starting minimum carries
information on the total length of the cycle. As it was the case for ascent time,
they are inversely related – the linear correlation coefficient being in this case
-0.56. This inverse relationship is again consistent with the concept that larger
curvatures at the leading minima are associated with stronger, shorter cycles.
In particular, for Solar Cycle 24 we obtain a prediction of 11.33 years for total
length (shown with an open circle). This interval is to be counted from the most
recent minimum of the d0 time series (October 2008), which brings the predicted
end to February 2020 (90% confidence interval: January 2019 to July 2021). The
standard error (sample standard deviation of residuals) is ten months.

We complete the solar-cycle length study with the same incremental, causal
analysis of its stability. In Figure 7 we show how the unfolding of new cycles has
progressively shaped the inverse relationship between total length and curvature
at the leading minimum reported here. We find that the intercept has been very
consistent through time. As panel (b) of Figure 7 shows, the extreme character
of Cycle 19 had a significant influence redefining the slope of the regression,
which has subsequently remained stable.

3.4. Summary

In this subsection we collect the predictions obtained above into a consolidating
view of forecasted solar-cycle features through time. In Figure 8 we plot the
time series of yearly averages of sunspot numbers together with predictions
elaborated with the methodology presented in this work. Forecasts have been
made in a purely causal manner by always using information from the past.
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Figure 7. Unfolding of the proposed forecasting methodology in time. Panel (a) profiles the
evolution of the linear-regression intercept as new cycles are incorporated to the data base.
Panel (b) shows the evolution of the slope. In (c) we depict the correlation coefficient between
total cycle length and curvature at the starting minimum. Finally, in panel (d) we plot the
cycle-by-cycle prediction error.

Figure 8. Predictions issued with the proposed methodology for the different cycles compared
to the yearly average SSN time series (solid line). Forecasts of maximum amplitude, timing and
length (and their associated 90% confidence intervals) are shown with bars and were obtained
following a sequential protocol (see the main text for details).

Every prediction (and its 90% confidence interval) is drawn from a regression

to curvature at the starting minimum that only sees the available data from

previous cycles. Notice the expanding character of confidence intervals as new

cycles are incorporated to the proposed linear models. In the case of solar-cycle

length predictions we use horizontal bars on the time axis (with an ordinate of

0). The most recent bars depict our predictions for Solar Cycle 24.
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4. Conclusions

In this work we have applied a previously developed methodology for maximum
solar activity prediction (Verdes et al., 2000) to the case of the current Solar
Cycle 24, forecasting a cycle of moderate intensity (maximum sunspot number
of 78). Furthermore, we have generalised it to study the problem of maximum
and subsequent minimum intensity timing. The forecast of the latter features
of solar activity bears a particular relevance, amongst others, for space mission
planning, and space weather and climate change analyses.

The rationale behind the proposed methodology can be summarised in the fol-
lowing way: a fast-rising cycle (as measured by the curvature or second derivative
at its starting minimum) is likely to be more intense than a slower-rising one. By
the same intuition, its ascent time and total cycle length will be shorter. We have
indeed found that the curvature at the leading minimum determines the main
characteristics of the unfolding cycle. We have also demonstrated the stability
through time of the proposed predictive models. We believe that the approach to
solar-activity forecasting presented in this work constitutes a valuable addition
to the existing body of statistical prediction methods in the literature.
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