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ABSTRACT 

Benthic diatoms are often used for assessing environmental conditions, such as water 

quality and habitat conditions in stream and river systems. Although laboratory 

experiments have shown that each diatom species have different levels of tolerance to 

different stressors, few studies have been conducted in laboratory settings that analyze 

the responses of the diatom assemblage to the effects of multiple simultaneous 

variables. The aim of this study was to evaluate some structural responses (such as 

species composition and diversity) of the diatom assemblage on a short time scale to the 

effects of the simultaneous increase in four variables that are directly linked to the 

environmental changes affecting the Pampean streams: turbidity, nutrients (phosphorous 

and nitrogen), water velocity and temperature. To this end we conducted a five-week 

laboratory experiment using artificial channels where we simulated two environmental 

conditions (LOW and HIGH) employing epipelic biofilm from a mesotrophic stream. 

The results obtained in the experiment show that the structure of the diatom assemblage 

in the epipelic biofilm is affected by the simultaneous modification of temperature, 

water velocity, nutrient concentration and turbidity. These modifications in the 

assemblage included moderate decreases in diversity, small decreases in the proportion 

of species sensitive to eutrophication and saprobity, moderate increases in the IDP 

(Pampean Diatom Index) values and moderate changes in the percentages of the stalked 

growth-forms. The relative abundance of species such as Luticola mutica, Navicula 

cryptocephala and Navicula lanceolata were negatively affected by both treatments; 

other species such as Planothidium lanceolatum, Caloneis bacillum, Encyonema 

minutum, Humidophila contenta, Luticola kotschyi, Nitzschia amphibia, Navicula 

veneta, Pinnularia subcapitata var. subcapitata were positively affected by the HIGH 

treatment; and Nitzschia fonticola was positively affected by both treatments. The 
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results suggest that, in the very short term of the bioassay conducted, the diatom 

assemblage can modify its structure to respond in a sensitive manner to the abrupt 

changes in multiple physical-chemical variables. 

 

Keywords: epipelic diatom assemblage; turbidity; nutrients; water velocity; 

temperature; artificial channels; Argentina Pampean plain 
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1. INTRODUCTION 

Rising human pressure on water resources, combined with the effects of global 

climate changes, affect the hydrological and geomorphological state of river systems, 

favoring increases in variables such as nutrients and temperature, which consequently 

modify the structure and functioning of aquatic ecosystems (Nilsson & Renofalt, 2008; 

Sabater, 2008). Each of these perturbations occurs worldwide, but often in relatively 

discrete locales (Malmqvist & Rundle, 2002). 

The Pampean plain in Argentina contains 21 million inhabitants and 

concentrates the majority of industrial and farming activities, and it is exposed to the 

most intense use of fertilizers in the country (INDEC, 2010). Furthermore, the increase 

of urbanization that progressively occupied cultivatable land and caused the 

displacement of livestock from their traditional areas to marginal lands situated in 

floodplains has increased the incidence of erosion and the input of particulate material 

into waterways. These changes in land use associate with changes in climatic patterns 

are having effects on the physical, chemical and hydrologic properties of the lotic 

systems that run through the Pampean plains (Rodrigues Capitulo et al., 2010). The 

climatic models for the region predict higher rainfalls (Hulme & Sheard, 1999) which 

might increase erosion and generate flooding, increasing the transport of sediments, 

nutrients, and contaminants into the water. These changes in the discharge and in the 

turbidity of the water can affect the residence time and the light penetration in the water 

column (Davies-Colley et al., 1992; Davies-Colley & Smith, 2001).  

The streambed of the Pampean streams is composed of fine sediments (clay and 

silt) that are colonized by an epipelic biofilm in which diatoms are the dominant group, 
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constituting the basal trophic levels for extensive food webs (López van Oosterom et al., 

2013; Ocón et al., 2013). These streams show a relatively high concentration of 

nutrients when they are compared with other lotic systems of the world (Bauer et al., 

2002, Giorgi et al., 2005), and can be classified as eutrophic when phosphorus is 

considered, or as mesotrophic when nitrogen is taken into account (Feijó & Lombardo, 

2007).  

Benthic diatoms are often used for assessing environmental conditions, such as 

water quality and habitat conditions in stream and river systems and nutrient enrichment 

(e.g. Pan et al., 1999; Soininen et al., 2004; Kelly et al., 1995; Rott et al., 1997, 1999; 

Coring, 1999) and have been widely related to specific environmental conditions in 

different geographical regions (Soininen, 2002; Martinez de Fabricius et al., 2003; 

Ndiritu et al., 2006, Gomez & Licursi, 2001, Lobo et al., 2002; 2004a,b). Consequently, 

several studies have addressed the tolerances and preferences of diatoms along a 

number of environmental gradients, such as gradients in salinity, pH, trophy, saprobity 

and current preference (e.g. van Dam et al., 1994; Rott et al., 1997; Hering et al., 2006).  

Although laboratory experiments have shown that different diatom species have 

different levels of tolerance to different stressors (Admiraal & Peletier, 1980; Admiraal, 

1984; Licursi & Gómez, 2013), patterns of species distribution observed from field 

studies rarely relate directly to a single variable (Oppenheim, 1991). In a broad analysis 

in ecological studies in marine ecosystems, Crain (2008) found that the interaction 

between individual variables effect across most studies was synergistic, although 

additive and antagonistic effects were also common. They also concluded that as the 

number of stressors in a system increase, stressor pair interactions become increasingly 

complex and more commonly synergistic. In laboratory settings, few studies have been 

conducted that analyze the responses of the diatom assemblage to the effects of multiple 
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variables combined (such as Navarro Rodriguez, 1998; Rier & Stevenson, 2002; Lange 

et al., 2011), a situation that is more likely to occur in a natural stream since 

environmental changes rarely affect a single variable. 

In this context, the aim of this study was to evaluate structural responses (such as 

species composition and diversity) of the diatom assemblage on a short time scale to the 

effects of the simultaneous increase in four variables that are linked to the 

environmental changes affecting the Pampean streams: turbidity, nutrients (phosphorous 

and nitrogen), water velocity and temperature. To this end we conducted a laboratory 

experiment simulating two environmental conditions (LOW treatment and HIGH 

treatment) employing epipelic biofilm from a mesotrophic Pampean stream (the 

“Martin” stream). The manipulated temperatures were selected to represent the both the 

maximum increment predicted by the climatic models of the region (Hulme & Sheard, 

1999) in the HIGH treatment and an intermediate situation in the LOW treatment; the 

nutrients (phosphorous and nitrogen), turbidity and water velocity increments in the 

HIGH treatment are among the largest values measured in different sites throughout the 

Pampean streams (Gómez & Licursi, 2001; Gómez et al., 2008; Bauer et al., 2002; 

Giorgi et al., 2005; Licursi, 2005; Licursi & Gómez, 2009), and in the LOW treatment 

these variables were increased in an intermediate level between the controls and the 

HIGH treatment. 

There has been reported that increments in nutrients and temperature, and slower 

water current velocities increase algal biomass (e.g. Dodds et al., 2002; Blanchard et al., 

1996; Lamb & Lowe, 1987), while turbidity usually has a negative effect on the algal 

development due to its shading and erosive properties (Horner et al., 1990). We then 

hypothesized that the simultaneous changes in these environmental variables would 

produce rapid but small structural changes in the diatom assemblage that inhabits the 



Page 7 of 31

Acc
ep

te
d 

M
an

us
cr

ip
t

epipelic biofilm, which would include increased total density and loss of diversity. Also, 

the abundance of sensitive species to organic matter and nutrients would decrease when 

exposed to the treatments while favoring the more tolerant species.  

2. MATERIALS AND METHODS 

A laboratory experiment was conducted using epipelic biofilms from a site in the 

“Martin” stream (34° 54’51” S - 58° 04’ 39” W, Figure 1). The land use of the 

catchment was previously quantified using a geographical information system 

(Quantum GIS 2.0) employing 1:50000 land use maps (Hurtado et al., 2006). This 

shows that the land use in the catchment is mainly agricultural (72%) with the 

remainder percentage classified as suburban.  

The concentrations of Soluble Reactive Phosphorous (SRP), Dissolved Inorganic 

Nitrogen (DIN, calculated as the sum of the concentrations of ammonia, nitrites and 

nitrates), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD5) and Chemical 

Oxygen Demand (COD) in the water were assessed previous to the experiment by 

standard methods (APHA, 1998).  

2.1 Experimental setup 

Nine indoor artificial channels measuring 1m (length) x 0.15m (height) x 0.10m 

(width) were used, each with an access ramp that ensures a laminar input flow (water 

depth was 0.10m). Water exiting the channel flowed past a slit, and fell into a holding 

tank before being pumped back to the access ramp (Figure 2). All artificial channels 

were exposed to a photoperiod of 14h light-10h dark. Light was provided by GE® E-

biax Helical lights (6500°K, IRC82%) with an intensity of 110-115 μEinsteins of 

photosynthetically active radiation.  
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Figure 1. Map of the study area that includes the main land uses, the location of the 

sampling site and the limits of the catchment (modified from Hurtado et al., 2006). 

 

 

Figure 2. Design of one of the nine artificial channels used in the experiments. 
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Out of the nine channels, three were used as controls (C) and their physical-

chemical variables were kept similar to the values measured at site from the “Martin” 

stream. Another three channels (HIGH treatment) were exposed to a 4°C increase in 

temperature, 300% increase in nutrients (SRP and DIN), 50% increase in suspended 

solids and 20% increase in water velocity. The temperature increase was selected to 

represent the maximum increment predicted by the climatic models of the region 

(Hulme & Sheard, 1999), while the nutrients, turbidity and water velocity increments 

are among the largest values measured in different sites throughout the Pampean 

streams (Gómez & Licursi, 2001; Gómez et al., 2008; Bauer et al., 2002; Giorgi et al., 

2005; Licursi, 2005; Licursi & Gómez, 2009). The final three channels (LOW 

treatment) were exposed to intermediate levels of the manipulated variables: a 1°C 

increase in temperature, 50% increase in nutrients (SRP and DIN), 15% increase in 

suspended solids and 5% increase water velocity. These values were selected to be a 

minor increase in the modified variables from the controls, but lower than those in the 

HIGH treatment. 

Water temperature increments were achieved using regulated Atman 70W water 

heaters placed in the individual tanks of each artificial channel. The increments in water 

velocity were achieved by setting the Chosen® Champion CX-500 water pumps, also 

placed in the individual tanks of each channel, at different settings. Increases in 

turbidity were achieved by adding sterilized suspended solids to each channel from the 

Martin stream where the biofilm was collected from. Nutrient increments (SRP and 

DIN) were achieved by adding dissolved Nitrofoska® fertilizer (use frequently in the 

Pampean plain for agricultural purposes, 12%N-12%P-17%K) in the established 

concentration for each channel. 
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For the biofilms to develop, each channel contained Falcon® multiwell 

polystyrene microplates that were first filled with sterilized sediment from the site in the 

“Martin” stream, for a volume in each well of 3.4cm3. Each channel was filled with 

river water, and a suspension of sediment biofilms collected at the stream was later 

added. The biofilms were allowed to settle and colonize the sterilized sediment for four 

weeks previous to the experiments, and water from all channels was partially renewed 

with filtered stream water twice a week to prevent metabolite accumulation.  

The colonization process was determined through optical inspection with an 

Olympus BX-50 microscope, and, when no significant changes in the diatom density 

were observed for three consecutive sampling dates, the colonization stage was 

considered to have finished. Afterwards, the different treatment manipulations were 

started and maintained for 5 weeks. Physical-chemical variables in each channel were 

measured every two days and the diatom assemblage was sampled every seven days. 

2.2  Physical-chemical variables  

 Dissolved Oxygen (DO, mg l-1), temperature (°C), conductivity (μS cm-1) and 

pH were measured using a CONSORT C933 sensor. Turbidity (NTU) was measured 

using an HORIBA U10 sensor, and water velocity (m sec-1) using a Schiltknecht 

MiniAir20. Nutrient samples were filtered through glass fiber filters (Whatman GF/F, 

Whatman International); ammonia (N-NH4
+, mg l−1), nitrites (N-NO2

-, mg l−1), nitrates 

(N-NO3
-, mg l−1) and soluble reactive phosphorous (P-PO4

3-, mg P l−1) were analyzed 

according to standard methods (APHA, 1998). Total dissolved inorganic nitrogen (DIN, 

mg N l−1) was calculated as the sum of nitrate, nitrite and ammonia. All physical-

chemical variables were determined using three subreplicates from each channel. 
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2.3 Epipelic biofilm sampling and analysis of the diatom assemblage  

The epipelic biofilm samples were collected by pipetting the first 10 mm (equivalent 

to 1 cm-2) of the superficial layer from wells selected at random in each channel (Gómez 

et al., 2009). For each sample two subreplicates (two wells) were collected per channel, 

and their average value was used for all statistical analyses. The samples were observed 

in a Sedgewick-Rafter chamber (1mL) to compute the cell density of the algal groups. 

To identify the diatom species, an optical microscope Olympus BX-50 with phase and 

interference contrast at 1000x was used. Diatoms were previously cleaned with H2O2, 

washed thoroughly using distilled water and mounted on microscope slides with 

Naphrax®. Four hundred valves per sample were identified to the lowest possible 

taxonomical level, according to standard floras by Patrick & Reimer (1966; 1975), 

Krammer & Lange-Bertalot (1986; 1988; 1991a; 1991b), Lange-Bertalot (1993), 

Krammer (1992; 2000), Lange-Bertalot & Moser (1994). Taxonomy of each taxon is 

given from division to infra-specific level according to Algaebase (Guiry & Guiry, 

2012) 

Once the diatom species were identified and quantified, their saprobic and trophic 

preferences were assigned based on Sládecèk (1973), van Dam et al. (1994) and Gómez 

& Licursi (2001). The total diatom density and Shannon’s diversity index (H’, Shannon 

& Weaver, 1949) were calculated for each sample, along with the Pampean Diatom 

Index (IDP, Gómez & Licursi, 2001), a diatom index developed specifically for the 

Pampean streams due to their particular characteristics, that integrates information about 

organic pollution and eutrophication. The diatoms were also classified by their growth-

form according to Molloy (1992). 

2.4 Data analysis 
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Differences in the physical-chemical variables between treatments were 

analyzed using a one-way ANOVA, and the same analysis was used to monitor that the 

manipulated variables fell within the planned values. Normality was previously assessed 

by the Shapiro–Wilk test (Shapiro & Wilk, 1965) and homogeneity of variance was 

tested by Cochran’s C test (Cochran, 1951). 

The overall differences between the controls and treatments in the species 

composition were analyzed conducting an Analysis of Similarity (ANOSIM), and the 

variations in the individual densities of the species were analyzed by means of a two-

way repeated measures analysis of variance (RM ANOVA) to test for the differences 

among treatments and dates (Winer, 1971). This latter analysis was also used to check 

for significant differences in the abundance of diatoms as classified by their saprobic 

and trophic preferences and in the indices (H’ and IDP). Probabilities within groups 

were corrected for sphericity using the Greenhouse–Geisser correction. All post-hoc 

comparisons were made with the Student–Newman–Keuls test (SNK). 

Generalized eta2 (ηG
2) was computed as a measure of the effect size (Olejnik & 

Algina, 2003). This statistic has two major advantages over the traditional eta2 and 

partial-eta2: first, it provides measures of effect size that are comparable across a wide 

variety of research designs; and second, these effect-size measures provide indices of 

effect that are consistent with Cohen’s (1998) guidelines for defining the magnitude of 

the effect (Olejnik & Algina, 2003). These guidelines state that an effect size ≤ 0.20 is 

considered small, around 0.50 is considered a medium effect, and ≥ 0.80 is a large 

effect. ηG
2 provides comparability across between-subjects and within-subjects in 

repeated measures designs (Bakeman, 2005), and is estimated as: 
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Where SS represents a Sums of Squares, A represents a between-subjects factor 

(Treatment), P represents a within-subjects factor (Time) and s represents the subjects 

factor.  
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3. RESULTS 

3.1  Physical-chemical parameters 

 The manipulated variables (SRP, DIN, temperature, water velocity and turbidity) 

were significantly increased in both LOW and HIGH treatments when compared to the 

controls (p<0.05, Table 1). Results from the analysis of variance show that these 

increments were in accordance with the planned increments for the experiment (p> 

0.05).  

 

 CONTROL LOW HIGH p 

pH 8.7 (± 0.1) 8.6 (± 0.1) 8.5 (± 0.2) 0.58 

Conductivity 

μS cm-1 

633.6 (± 256.7) 723.5 (± 266.8) 1075.4 (± 292.4) 0.01 
C = LOW < HIGH 

DO 

mg l-1 

7.7 (± 0.02) 7.7 (± 0.02) 7.6 (± 0.02) 0.36 

Temperature 

°C 

24.7 (± 1.3) 25.8 (± 1.2) 28.9 (± 1.4) 0.01 
C < LOW < HIGH 

Turbidity 

NTU 

32.3 (± 7.5) 36.9 (± 8.1) 48.3 (± 10.8) 0.01 
C = LOW < HIGH 

Water Velocity 

m sec-1 

0.35 (± 0.01) 0.37 (± 0.01) 0.43 (± 0.01) 0.01 
C < LOW < HIGH 

SRP 

mg l-1 

0.20 (± 0.12) 0.327 (± 0.19) 0.891 (± 0.53) 0.01 
C < LOW < HIGH 

DIN 

mg l-1 

0.43 (± 0.40) 0.75 (± 0.65) 1.39 (± 1.30) 0.01 
C < LOW < HIGH 

Table 1.  Mean (± standard deviation) of the physical-chemical variables measured in the artificial 
channels throughout the experiment. Significant differences between the treatments are highlighted in 
bold (One-way ANOVA, p<0.05) along with a posteriori test Student-Neuman-Keuls (SNK) when 
significant differences were found (C=Control, LOW=Low treatment, HIGH= High treatment). 
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3.2 Diatom assemblage 

The algal groups in the biofilm were represented mainly by diatoms. Other 

groups included cyanophytes, represented by Oscillatoria tenuis, and chlorophytes, 

represented by Coelastrum microporum, Scenedesmus opoliensis, Pediastrum duplex 

and Closterium intermedium. Euglenophytes, although scarce, were represented by 

Euglena acus and species of the genus Phacus. The detailed analysis of the diatom 

assemblage showed that the most abundant diatoms in all channels before the 

experimental manipulation had started were Diadesmis confervacea (19.0%), Ulnaria 

ulna (16.8%), Nitzschia palea (12.6%) and Placoneis placentula (6.0%).   

Throughout the experiment, the mean total density was slightly higher in the 

treated channels when compared to the controls (Figure 3), although no significant 

differences were found (Table 2). The diversity index, on the other hand, was 

significantly higher in the controls (3.5±0.3 bits ind-1) than in the treatments (LOW= 

3.1±0.2 bits ind-1, HIGH= 3.3±0.3 bits ind-1) (Figure 3). The effect size in the diversity 

index suggests a medium effect (ηG
2 ∼0.5) due to the treatments. 

The ANOSIM evidenced significant differences due to the composition of the 

assemblage between the HIGH treatment and the controls (p< 0.05), while no 

differences were found between the LOW treatment and either the controls or the HIGH 

treatment. The RM ANOVA analysis of their densities shows that the treatments caused 

moderate to large effects (ηG
2 >0.65; p<0.05) on 12 species. Species such as 

Planothidium lanceolatum, Caloneis bacillum, Encyonema minutum, Humidophila 

contenta, Luticola kotschyi, Nitzschia amphibia, Navicula veneta, and Pinnularia 

subcapitata var. subcapitata increased their densities in the channels only when 

exposed to the HIGH treatment. Other species such as Luticola mutica, Navicula 
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cryptocephala and Navicula lanceolata were negatively affected by both treatments, 

while Nitzschia fonticola was positively affected by both treatments. The variations 

throughout the experiment in the most abundant species that were affected by the 

treatments (over 5x102 cells cm-2) are shown in Figure 4, and the complete list of 

species identified throughout the experiment is shown in Table 3. 

The oligosaprobic and oligotrophic taxa were significantly higher in the controls 

than in the treatments (Table 2, Figure 5), and the effect size on those categories was 

small (ηG
2≤0.20). Throughout the experiment the IDP values (Figure 3) in all channels 

correspond to environments with high nutrient concentrations and organic matter 

(IDP>2), although these values were significantly lower in the controls (2.1±0.2) and in 

the LOW treatment (2.2±0.1) than in the HIGH treatment (2.5±0.2). The effect size for 

these modifications in the IDP suggests a medium-sized effect due to the treatments (ηG
2 

= 0.64). 

With regards to growth-forms, the stalked taxa were significantly more abundant 

in the controls (7.7±3.9 cell cm-2), while decreasing moderately (ηG
2 =0.58) in both the 

LOW (3.9±1.3 cell cm-2) and HIGH (5.8±3.1 cell cm-2) treatments. Although the other 

groups did not vary significantly, their mean values suggest that the stalked taxa in the 

treatments were replaced by motile biraphids, that increased their mean densities in the 

LOW (58.0±4.4 cell cm-2) and HIGH (55.9±7.3 cell cm-2) treatments while diminishing 

in the controls (38.3±12.6 cell cm-2) by the end of the experiment. The same tendency 

was observed for the filamentous diatoms, which decreased in the controls (7.65±7.6 

cell cm-2) while increasing in both the LOW (22.7±20.1 cell cm-2) and HIGH 

(21.1±12.3 cell cm-2) treatments. 
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Figure 3. Total density, diversity and IDP (Pampean Diatom Index) in the diatom assemblage throughout 
the experiment in the controls, Low and High treatments, from weeks 1 through 5. 
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Figure 4. Mean density values of the diatoms that were affected by the treatments (LOW and HIGH) with 
densities over 10x52 cells cm-2 in the five weeks of the experiment. 
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Figure 5. Variations in the mean relative abundance of diatoms as classified by their saprobic (top) and 

trophic (bottom) preferences in the Controls, Low and High treatments, from weeks 1 through 5. 

α‐Mesosaprobic

CONTROL 

1 2 3 4 5
Week 

LOW 

1 2 3 4 5
Week 

HIGH 

1 2 3 4 5
Week 

CONTROL 

1 2 3 4 5
Week 

LOW 

1 2 3 4 5
Week 

HIGH 

1 2 3 4 5
Week 
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   TREATMENT TIME TREATMENT*TIME 
TOTAL DENSITY p 0.49 0.23 0.82 
(cell cm-2) ηG

2 0.77 0.22 0.09 
INDICES     

p 0.05 0.39 0.06 
ηG

2 0.43 0.12 0.23 
Shannon’s Diversity Index 
 (H’) 

 H=L<C   
p 0.04 0.00 0.07 

ηG
2 0.64 0.54 0.22 

Pampean Diatom Index  
(IDP) 

 C<L<H   
SAPROBITY     
Oligosaprobic  p 0.05 0.54 0.33 
  ηG

2 0.15 0.07 0.28 
  C>L>H   
β-Mesosaprobic  p 0.32 0.56 0.65 
  ηG

2 0.12 0.06 0.11 
α-Mesosaprobic  p 0.50 0.19 0.61 
  ηG

2 0.12 0.18 0.07 
Polysaprobic p 0.70 0.53 0.37 
 ηG

2 0.03 0.06 0.23 
TROPHIC STATE 
Oligotrophic p 0.05 0.50 0.83 
 ηG

2 0.14 0.08 0.07 
  C>L>H   
Mesotrophic p 0.35 0.34 0.59 
 ηG

2 0.14 0.12 0.12 
Eutrophic/Hypereutrophic p 0.57 0.07 0.46 
 ηG

2 0.10 0.24 0.13 
GROWTH FORMS 
Adnates p 0.21 0.06 0.42 

 ηG
2 0.32 0.63 0.21 

Solitary centrics p 0.98 0.23 0.46 
 ηG

2 0.00 0.46 0.21 
Erects p 0.62 0.44 0.00 
 ηG

2 0.11 0.34 0.48 
Filamentous p 0.13 0.60 0.31 
 ηG

2 0.39 0.26 0.24 
Monoraphids/Prostrate p 0.26 0.03 0.00 
 ηG

2 0.28 0.69 0.50 
Stalked p 0.04 0.58 0.20 
  C>L=H   
 ηG

2 0.53 0.27 0.28 
Biraphid/Prostrate/Motile p 0.31 0.53 0.01 
 ηG

2 0.25 0.29 0.45 
Biraphid/Prostrate/Non-motile p 0.41 0.37 0.05 

  ηG
2 0.19 0.38 0.36 

Table 2. Effects of the treatments (TREATMENT column), sampling times (TIME column) and the 
interaction between the two factors (TREATMENT*TIME column) on the total density, on the diatom 
abundances as classified by their saprobity and trophic preferences, on the diversity, on the IDP and on 
their growth forms. Significant p values (RM-ANOVA, p<0.05) are highlighted, and ηG

2 is shown as a 
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measure of the effect size. Student-Neuman-Keuls results for the treatment factor are shown when 
significant (C=Controls, L=Low treatment, H=High treatment).  
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SPECIES NAME 

Achnanthidium exigua (Grunow) Czarnecki 
Amphora libyca Ehenberg.                                                              
Aulacoseira granulata (Ehrenberg) Simonsen                                            
Caloneis bacillum (Grunow) Cleve                                                 
Caloneis silicula (Ehenberg.) Cleve                                                    
Caloneis ventricosa (Ehenberg.Donkin) Meister var. minuta (Grunow) Patrick  
Cocconeis placentula Ehrenberg var. euglypta (Ehr.)Grunow                          
Cyclotella meneghiniana Kutzing                                                  
Denticula elegans Kützing 
Denticula kuetzingii Grunow var. kuetzingii                                       
Diadesmis confervacea Kützing                                                    
Diploneis marginestriata Hustedt                                                 
Diploneis ovalis (Hilse) Cleve                                                   
Diploneis puella (Schumann) Cleve                                                
Encyonema minutum (Hilse in Rabh.) Mann 
Encyonema silesiacum (Bleisch in Rabh.) Mann                             
Eolimna minima (Grunow) Lange-Bertalot                                                           
Eolimna subminuscula (Manguin) Moser Lange-Bertalot & Metzeltin                
Eunotia bilunaris (Ehrenberg) Mills var. bilunaris                                    
Eunotia minor (Kützing) Grunow in Van Heurck                                     
Fallacia insociabilis (Krasske) D.G.Mann   
Fragilaria capucina Desmazieres var. capucina                                     
Geissleria decussis (Østrup) Lange-Bertalot & Metzeltin   
Gomphonema affine Ktzing                                                        
Gomphonema augur Ehrenberg                                                       
Gomphonema clavatum Ehrenberg                                                         
Gomphonema minutum (Agardh) Agardh f. minutum                                         
Gomphonema parvulum (Kützing) Kützing var. parvulum f. parvulum                
Gyrosigma acuminatum (Kützing)Rabenhorst                                         
Gyrosigma scalproides (Rabenhorst) Cleve                                          
Halamphora montana (Krasske) Levkov                                                          
Hantzschia amphioxys (Ehrenberg) Grunow 
Hippodonta capitata (Ehrenberg) Lange-Bertalot Metzeltin & Witkowski          
Hippodonta hungarica (Grunow) Lange-Bertalot Metzeltin & Witkowski          
Humidophila contenta (Grunow) Lowe, Kociolek, Johansen, Van de Vijver, 
Lange-Bertalot & Kopalová.                                    
Luticola kotschyi (Bleisch) Mann 
Luticola mutica (Kützing) D.G. Mann                                              
Mayamea atomus (Kützing) Lange-Bertalot                                       
Melosira varians Agardh                                                          
Navicula arvensis Hustedt                                                        
Navicula capitatoradiata Germain                                                 
Navicula clementis Grunow 
Navicula cryptocephala Kützing                                                   
Navicula erifuga Lange-Bertalot                                                  
Navicula gregaria Donkin                                                         
Navicula lanceolata (Agardh) Ehrenberg                                           
Navicula laterostrata Hustedt                                                    
Navicula pseudolanceolata Lange-Bertalot                                         
Navicula schroeteri Meister var. schroeteri                                      
Navicula subadnata Hustedt 
Navicula veneta Kützing                                                          
Nitzschia amphibia Grunow f. amphibia                                             
Nitzschia brevissima Grunow                                                      
Nitzschia capitellata Hustedt  
Nitzschia fonticola Grunow  
Nitzschia frustulum (Kützing) Grunow var. frustulum                                 
Nitzschia gracilis Hantzsch                                                      
Nitzschia linearis (Agardh) W.M.Smith var. linearis                                
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Nitzschia microcephala Grunow  
Nitzschia palea (Kützing) W.Smith                                                
Nitzschia paleacea (Grunow) Grunow  
Nitzschia sigma (Kützing) Smith                                                
Nitzschia subacicularis Hustedt in Schmidt 
Nitzschia umbonata (Ehrenberg) Lange-Bertalot                                      
Pinnularia gibba Ehrenberg                                                       
Pinnularia microstauron (Ehrenberg) Cleve var. microstauron                           
Pinnularia subcapitata Gregory var. subcapitata 
Placoneis gastrum (Ehrenberg) Mereschkovsky 
Placoneis placentula (Ehrenberg) Heinzerling                                          
Placoneis pseudanglica (Lange-Bertalot) Cox                                      
Planothidium lanceolatum (Brebisson ex Kützing) Lange-Bertalot 
Rhoicosphenia abbreviata (C.Agardh) Lange-Bertalot                               
Sellaphora pupula (Kützing) Mereschkowksy                                        
Sellaphora seminulum (Grunow) Mann                                          
Stauroneis anceps Ehrenberg                                                      
Surirella angusta Kützing                                                        
Surirella linearis Smith                                                     
Surirella ovalis Brebisson                                                       
Surirella subsalsa Smith                                                       
Tryblionella angustata W.Smith 
Tryblionella kuetzingii Álvarez-Blanco & S.Blanco 
Tryblionella levidensis W.Smith 
Ulnaria ulna (Nitzsch.) Compère 

Table 3. Diatom species identified throughout the experiment in all the artificial channels.  
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4. DISCUSSION 

The results obtained in the experiment show that the structure of the diatom 

assemblage in the epipelic biofilm is affected by the simultaneous modification of 

temperature, water velocity, nutrient concentration and turbidity. These modifications in 

the assemblage included changes in diversity, in the proportion of species sensitive to 

eutrophication and saprobity, and in the percentage of stalked diatoms. These effects 

were noticeable in the most intensive treatment (HIGH), where moderate decreases 

were found in the diversity index, small decreases in the proportion of oligotrophic and 

oligosaprobic species, moderate increases in the IDP values, and moderate decreases of 

stalked diatoms, which revealed a detriment in the water quality.  

When we analyzed changes in the densities of the species, we found that out of the 

twelve species that were affected by the treatments: three were negatively affected by 

both treatments (Luticola mutica, Navicula cryptocephala, Navicula lanceolata), eight 

were positively affected by the HIGH treatment (Planothidium lanceolatum, Caloneis 

bacillum, Encyonema minutum, Humidophila contenta, Luticola kotschyi, Nitzschia 

amphibia, Navicula veneta, Pinnularia subcapitata var. subcapitata) and one species 

was positively affected by both treatments (Nitzschia fonticola). This latter not only 

responded more sensibly to the treatment but also the size of the effects was larger. 

Even though the algal biomass is known to be enhanced by the increments in 

nutrients (e.g. Dodds et al, 2002; Dodds, 2006), temperature (Blanchard et al., 1996) 

and water current velocities < 40 cm s-1 (Lamb & Lowe, 1987; Steinaman & McIntire, 

1986), in our study the combination of these variables along with increased turbidity did 

not translate into a significant increment in total density. It is likely that turbidity, which 

generally has a negative effect on the biomass of the biofilm due both to the shading it 
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produces and the erosive properties of the sediments (Horner et al., 1990), represented 

an important factor in modulating the overall development of the diatoms.  

Decreases in the diversity of the assemblage when under stress have been reported 

(such as Patrick & Reimer, 1966; Sabater, 2000; Gold et al., 2003; Spencer et al., 2008), 

although it has to be considered that the diversity indices for the benthic diatom 

assemblages are very variable, and no authors have described a direct cause-effect 

relationship between chemical pollution and diversity (Ricciardi et al., 2009). 

Furthermore, Lobo et al. (1995) demonstrated that the distribution pattern of diatom 

species diversity, measured by Shannon's index in Japanese lotic systems, was 

consistent with the intermediate disturbance hypothesis (Connell, 1978), and indicates 

that highest diversity is maintained under intermediate disturbance by pollution. Our 

results show that moderate changes in the species’ diversity when the assemblage was 

exposed to multiple stressors were manifested after only five weeks of exposure, but 

only in the most intense treatment. And variations in the tolerance of the diatom 

assemblage due to that treatment manifested as a decrease in the sensitive species 

(oligotrophic and oligosaprobic) and as an increment in the IDP values. This coincides 

with responses observed in other nutrient-rich Pampean streams, where the proportions 

of sensitive species, even when low, diminish with the increments of nutrients and 

organic matter (Gómez et al., 2008; Licursi & Gómez, 2009) 

The results also show a decrease in stalked diatoms in the treated channels, with 

slight increments in motile biraphids. The latter include species from the genera 

Navicula, Nitzschia, and Sellaphora, which are classified as part of the “motile guild” 

by Passy (2007). This guild includes comparatively fast moving species that are 

superior competitors for nutrients in nutrient-rich environments (Fairchild et al., 1985; 
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Van der Grinten et al., 2004) and can physically avoid stress within the benthic mat by 

moving to resource-rich microhabitats (Johnson et al., 1997). 

The results exhibited in this article showed the sensitivity of the diatom assemblage 

in the very short term of the bioassay conducted to changes in multiple physical-

chemical variables, modifying its structural parameters even in response to a moderate 

stress. We had hypothesized that the manipulation of multiple physical-chemical 

variables would produce rapid but small structural changes in the diatom assemblage, 

which were evident in the very short term of the bioassay conducted. The effects of the 

environmental variables on the diversity and on the proportion of sensitive species were 

observed only in the more intensive treatment, with no significant changes in the total 

density, suggesting that the structure of the assemblage is resistant to lesser impacts in 

these descriptors, while changes in the relative abundance of some diatom species were 

evident in the intermediate treatment. 

Although the results obtained represent a simplification of the complex interactions 

that occur in natural systems, they provided an approach to the effects of combined 

variables on the diatom assemblage. However, experiments at longer time scales that 

study the different interactions between the physical-chemical variables, in conjunction 

with field experiments, are required to be able to accurately predict the effects of global 

changes on these micro-communities, and to understand the possible repercussions that 

these changes might have on the functioning of streams. 
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