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Universidad de Buenos Aires

Pabellon I, Ciudad Universitaria (1428)
Buenos Aires, Argentina

To Juan Luis Vazquez in his 75th anniversary with our best wishes.

Abstract. In this paper we find viscosity solutions to a coupled system com-

posed by two equations, the first one is parabolic and driven by the infinity

Laplacian while the second one is elliptic and involves the usual Laplacian. We
prove that there is a two-player zero-sum game played in two different boards

with different rules in each board (in the first one we play a Tug-of-War game

taking the number of plays into consideration and in the second board we move
at random) whose value functions converge uniformly to a viscosity solution to

the PDE system.

1. Introduction. Our main goal in this paper is to provide a probabilistic ap-
proach to find solutions to an elliptic/parabolic system in which we have two dif-
ferent operators. We deal with viscosity solutions to

∂u

∂t
(x, t)− 1

2
∆∞u(x, t) + u(x, t)− v(x, t) = 0 x ∈ Ω, t > 0,

−κ
2

∆v(x, t) + v(x, t)− u(x, t) = 0 x ∈ Ω, t > 0,

u(x, t) = f(x, t) x ∈ ∂Ω, t > 0,
v(x, t) = g(x, t) x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x) x ∈ Ω.

(1)

Notice that this system involves two differential operators, the usual Laplacian

∆φ =

N∑
i=1

∂xixi
φ

and the infinity Laplacian (see [10])

∆∞φ = 〈D2φ
∇φ
|∇φ|

,
∇φ
|∇φ|

〉 =
1

|∇φ|2
N∑

i,j=1

∂xi
φ∂xixj

φ∂xj
φ.
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In addition, the first equation is parabolic (it involves a time derivative of u) while
the second one is elliptic (the time variable can be viewed just as a parameter in
the equation for v). Remark that there is an initial condition for u but not for v.
This is due to the fact that the first equation is parabolic while the second one is
elliptic.

There is a large literature highlighting the interplay between Probability and
Partial Differential Equations. In fact, there is a deep connection between classical
potential theory and probability theory. The main idea is that harmonic functions
and martingales have something in common: the validity of mean value formulas.
A well known fact is that u is harmonic, that is u verifies the PDE ∆u = 0, if
and only if it verifies the mean value property u(x) = 1

|Bε(x)|
∫
Bε(x)

u(y) dy. In

fact, we can relax this condition by requiring that it holds asymptotically u(x) =
1

|Bε(x)|
∫
Bε(x)

u(y) dy + o(ε2), as ε→ 0. The connection between the Laplacian and

the Bownian motion or with the limit of random walks as the step size goes to zero
is also well known, see [17].

Nowadays, it is known that the ideas and techniques used for linear equations
can be extended to cover nonlinear problems. For a mean value property for the
p−Laplacian (including the infinity Laplacian) we refer to [15, 12, 18, 20] and [23].
See also [5] for mean value formulas for Monge-Ampere. These mean value formulas
are closely related to game theoretical approximations of solutions to PDEs. For a
probabilistic approximation of the infinity Laplacian there is a game (called Tug-of-
War game in the literature) that was introduced in [29] and generalized in several
directions to cover other equations, like the p−Laplacian, in [1, 2, 7, 9, 22, 23, 24,
25, 28, 30, 31]. There are also parabolic versions of these results, we refer to [6, 26].
For a general overview of the subject we refer to the recent books [8] and [19] and
references therein.

For systems of equations there are less references available. This is due to the
fact that for general fully nonlinear systems there is no viscosity theory and also
that the estimates needed to pass to the limit in the approximations are more
involved (usually for systems one needs to obtain estimates for both components
simultaneously). For elliptic systems we quote [28] and [27]. In [28] a coupled
elliptic system involving the infinity Laplacian for every component was analyzed;
while in [27] an elliptic system involving two different operators (the Laplacian and
the infinity Laplacian) was studied. This paper can be viewed as a follow up of these
two references. The main difference with [28] and [27] is that here we have to tackle
a time dependent problem and then we have to take extra care when we obtain
estimates for the components of the approximations (we need to prove estimates in
space and time simultaneously).

The system (1) is not variational (there is no associated energy). Therefore, to
find solutions one possibility is to use monotonicity methods based in a comparison
principle (Perron’s argument). Here we will look at the system in a different way
and to obtain existence of solutions we find an approximation using game theory.
This approach not only gives existence of solutions but it also provide us with a
description that yields some intuition on the behaviour of the solutions. At this
point we note that we will understand solutions to the system in a viscosity sense.
This is natural since the infinity Laplacian is not variational (see Section 2 for the
precise definition). Once we have existence of solutions, we prove a comparison
principle that implies uniqueness.
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Now let us describe briefly the game that is associated with (1), see Section 3 for
more details. Fix T > 0 (we aim to obtain a continuous viscosity solution to (1) in
Ω× [0, T ] with T arbitrary). The game is a two-player zero-sum game played in two
different boards. We will call a board a cylinder of the form Ω×(0, T ] ⊆ RN× [0, T ].
Fix a parameter, 0 < ε < 1, and two final payoff functions f, g : RN \Ω × [0, T ] 7→ R
(one for each board f for the first board and g for the second one). These payoff
functions f and g are just two bounded Lipschitz extensions to {RN \Ω}× [0, T ] of
the boundary data f and g that appear in (1). Fix also a final payoff u0 : Ω 7→ R to
be used in the first board if we reach a nonpositive time. If we are playing at a point
(x, t) ∈ Ω× (0, T ] in the first board, with probability 1− ε2 (recall that ε ∈ (0, 1))
the players play the Tug of War game (a fair coin is tossed and the winner choses
the new position of the game in the ball Bε(x)), but descending to the level t− ε2,
that is, the next position of the game will be a point that looks like (y, t− ε2) with
y ∈ Bε(x) that depends on the choice of the players and the toss of a fair coin (the
winner of the coin toss chooses the next position in Bε(x)). On the other hand,
playing at a point (x, t) ∈ Ω × (0, T ] in the second board, with probability 1 − ε2

the next position is random in Bε(x) at the same time level. That is, the next point
looks like (y, t), where y ∈ Bε(x) is chosen at random (with uniform distribution).
On top of these rules, being in either of the two boards we can jump to the other
board with probability ε2. That is, if we are at (x, t) ∈ Ω × (0, T ] on one of the
boards, with probability ε2 we will go to (x, t) but on the other board. The game
continues until the position of the token leaves the domain, or the time is below zero
(this can only happen playing in the first board) and at this final point (xτ , tτ ) if it
is in the first board the first player gets f(xτ , tτ ) and the second player −f(xτ , tτ ),
while they obtain g(xτ , tτ ) and −g(xτ , tτ ) if they are playing in the second board,
or when tτ ≤ 0 the first player gets u0(xτ ) and the second player −u0(xτ ). (we can
think that Player II pays to Player I the amount prescribed by f , g or u0, according
to the final position of the game).

This game has a expected value (the best outcome of the game that both players
expect to obtain playing their best, see Section 3 for a precise definition). In this case
the value of the game is given by a pair of functions (uε, vε), defined in Ω × (0, T ]
that depends on the size of the steps, ε. For (x0, t0) ∈ Ω × (0, T ], the value of
uε(x0, t0) is the expected outcome of the game when it starts at (x0, t0) in the first
board, while vε(x0, t0) is the expected value starting at (x0, t0) in the second board.

Our first theorem ensures that this game has a well-defined value and that this
pair of functions (uε, vε) verifies a system of equations (called the dynamic pro-
gramming principle (DPP) in the literature).

Theorem 1.1. The game has value given by a pair of functions uε, vε : (RN ×
(0, T ]) ∪ (Ω× R≤0) 7→ R, that is characterized as the unique solution to

uε(x, t)=ε2vε(x, t)+(1− ε2)
{1

2
sup

y∈Bε(x)

uε(y, t− ε2)+
1

2
inf

y∈Bε(x)
uε(y, t− ε2)

}
,

x ∈ Ω, t ∈ (0, T ],

vε(x, t) = ε2uε(x, t) + (1− ε2)

∫
Bε(x)

vε(y, t)dy,

x ∈ Ω, t ∈ (0, T ],

uε(x, t) = f(x, t) x ∈ RN\Ω, t ∈ (0, T ],
vε(x, t) = g(x, t) x ∈ RN\Ω, t ∈ (0, T ],
uε(x, t) = u0(x) x ∈ Ω, t ≤ 0.

(2)
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Notice that (2) can be seen as a sort of mean value property (at size ε) for
the system (1). Let see intuitively why the DPP (2) holds. Playing in the first
board, at each step Player 1 chooses the next position of the game with proba-

bility 1−ε2
2 and aims to obtain supy∈Bε(x) u

ε(y, t − ε2) (recall this player seeks to

maximize the expected payoff and that time decreases by ε2 each time we play in

the first board); with probability 1−ε2
2 it is player 2 who chooses and aims to ob-

tain infy∈Bε(x) u
ε(y, t−ε2), and finally with probability ε2 the game changes boards

keeping the same position and time (and therefore vε(x, t) comes into play). Playing
in the second board, with probability 1− ε2 the point moves at random (but stays
in the second board and keeps the same time) and hence the term

∫
Bε(x)

vε(y, t)dy

appears, but with probability ε2 the board is changed to the first one and hence we
have uε(x, t) in the second equation.

Our next goal is to look for the limit as ε → 0. Our main result in this paper
is to show that, under appropriate regularity conditions on the data, ∂Ω, f and
g, these value functions uε, vε converge uniformly in Ω to continuous limits u, v
that are characterized as being a viscosity solution to (1). Here we use that Ω is a
bounded domain satisfying a uniform exterior sphere condition, that is, there exists
a fixed radius θ0 > 0 such that, for every point z ∈ ∂Ω there exists an exterior ball
Bθ0 ⊂ RN \ Ω with {z} = ∂Bθ0 ∩ ∂Ω.

Theorem 1.2. Assume that Ω is a bounded domain satisfying a uniform exterior
sphere condition and that the data f , g and u0 are Lipschitz continuos and that the
compatibility condition u0(x) = f(x, 0) for x ∈ ∂Ω holds. Let (uε, vε) denote the
values of the game. Then, there exists a pair of continuous functions in Ω× [0, T ],
(u, v), such that

uε → u, and vε → v, as ε→ 0,

uniformly in Ω × [0, T ]. Moreover, the limit (u, v) is characterized as the unique
viscosity solution to (1) (with the constant κ = 1

|B1(0)|
∫
B1(0)

z2
j dz, that depends only

on the dimension).

Remark 1. It is enough to ask for a uniform modulus of continuity of the data f ,
g and u0 (keeping the compatibility u0(x) = f(x, 0) for x ∈ ∂Ω). We prefer to state
and prove our results for Lipschitz continuos functions to slightly simplify some of
the arguments.

Remark 2. If we assume that the probability of moving random in the second
board is 1−Kε2 (and hence the probability of changing from the second to the first
board is Kε2) with the same computations we obtain

vε(x, t) = Kε2uε(x, t) + (1−Kε2)

∫
Bε(x)

vε(y, t)dy

as the second equation in the DPP (the first equation and the exterior and initial
data remain unchanged). Passing to the limit we get

− κ

2K
∆v(x, t) + v(x, t)− u(x, t) = 0,

and hence, choosing K, we can obtain any positive constant in front of the Laplacian
in (1).

Let us comment briefly on the ideas used in the proofs. To prove that the sequence
converges we will apply an Arzelà-Ascoli type lemma (see Lemma 5.1 in Section 5).
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To this end we need to prove a uniform bound and a sort of asymptotic continuity
that is based on estimates for both components (uε, vε) near the boundary (these
estimates can be extended to the interior via a coupling probabilistic argument).
In fact, to see an asymptotic continuity close to a boundary point, we are able to
show that both players have strategies that enforce the game to end near a point
y ∈ ∂Ω with high probability if we start close to that point no mater the strategy
choosed by the other player. Also we need to show that the players have strategies
that force the game to end close to (y, 0), y ∈ Ω, when the starting point (x, t) has
x close to y and t > 0 but small. This allows us to obtain a sort of asymptotic
equicontinuity close to the boundary leading to uniform convergence in the whole
Ω× [0, T ]. Note that, in general the value functions (uε, vε) are discontinuous inside
Ω×(0, T ) (this is due to the fact that we make discrete steps) and therefore showing
uniform convergence to continuos limits is a difficult task. Once we prove uniform
convergence along subsequences of (uε, vε) to a continuous limit (u, v) we show that
the limit is in fact a viscosity solution to the system (1) (here we use viscosity
arguments taking into account that one equation in (1) is parabolic and the other
one elliptic).

Our elliptic/parabolic system (1) has a comparison principle (for viscosity super
and subsolutions). Therefore, we have uniqueness of the limit and we conclude
convergence of the whole family (uε, vε) (the Arzelà-Ascoli type lemma gives us
convergence along subsequences).

Finally, we observe that similar ideas could be applied to the following system,

−1

2
∆∞u(x, t) + u(x, t)− v(x, t) = 0 x ∈ Ω, t > 0,

∂v

∂t
(x, t)− κ

2
∆v(x, t) + v(x, t)− u(x, t) = 0 x ∈ Ω, t > 0,

u(x, t) = f(x, t) x ∈ ∂Ω, t > 0,

v(x, t) = g(x, t) x ∈ ∂Ω, t > 0,

v(x, 0) = v0(x) x ∈ Ω,

in which the time derivative appears in the second equation.
The paper is organized as follows: in Section 2 we gather some preliminary re-

sults (including the precise definition of a viscosity solution to our parabolic/elliptic
system); in Section 3 we describe in detail the game; in Section 4 we start the anal-
ysis of the game and include a proof of the existence and uniqueness of solutions to
the DPP (proving Theorem 1.1) and in Section 5 we show the uniform convergence
of the values of the game to a continuous limit; in Section 6 we prove that this
uniform limit is in fact a viscosity solution to our system and we include a brief
sketch of the proof of the comparison principle for (1) that implies uniqueness of
the limit.

2. Preliminaries. In this section we first include the precise definition of what we
understand as a viscosity solution for the system (1). In this case we must consider
two different definitions, one for each equation. Next, we include the precise state-
ment of the Optional Stopping Theorem that we will need when dealing with the
probabilistic part of our arguments.
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2.1. Viscosity solutions. We refer to [11] for general results on viscosity solutions.
For the first equation of (1) we introduce the following definition of being a

viscosity solution to a parabolic PDE. Fix a function

P : Ω× (0, T ]× R× R× RN × SN → R

where SN denotes the set of symmetric N × N matrices.We want to consider the
PDE

P
(
x, t, u(x, t),

∂u

∂t
(x, t), Du(x, t), D2u(x, t)

)
= 0, x ∈ Ω, t ∈ (0, T ). (3)

In our system we have

P
(
x, t, r, s, p,M

)
= s− 1

2
〈M p

|p|
,
p

|p|
〉+ r − v(x, t) = 0.

The idea behind Viscosity Solutions is to use the maximum principle in order to
“pass derivatives to smooth test functions”. This idea allows us to consider oper-
ators in non divergence form. We will assume that P satisfies two monotonicity
properties,

X ≤ Y in SN =⇒ P (x, t, r, s, p,X) ≥ P (x, t, r, s, p, Y )

for all (x, t, r, s, p) ∈ Ω× (0, T ]× R× R× RN ; and

s1 ≤ s2 in R =⇒ P (x, t, r, s1, p,X) ≤ P (x, t, r, s2, p, Y )

for all (x, t, r, p,X) ∈ Ω × (0, T ] × R × RN × SN . Here we have an equation that
involves the ∞-laplacian that are not defined when the gradient vanishes. In order
to be able to handle this issue, we need to consider the lower semicontinous, P∗,
and upper semicontinous, P ∗, envelopes of P . These functions are given by

P ∗(x, t, r, s, p,X) = lim sup
(y,l,m,n,q,Y )→(x,t,r,s,p,X)

P (y, l,m, n, q, Y ),

P∗(x, t, r, s, p,X) = lim inf
(y,l,m,n,q,Y )→(x,t,r,s,p,X)

P (y, l,m, n, q, Y ).

These functions coincide with P at every point of continuity of P and are lower
and upper semicontinous respectively. With these concepts at hand we are ready
to state the definition of a viscosity solution to (3).

Definition 2.1. An upper semi-continuous function u is a subsolution of (3) if for
every φ ∈ C2(Ω × (0, T ]) such that φ touches u at (x, t) ∈ Ω × (0, T ] strictly from
above (that is, u−φ has a strict maximum at (x, t) with u(x, t) = φ(x, t)), we have

P∗

(
x, t, φ(x, t),

∂φ

∂t
(x, t), Dφ(x, t), D2φ(x, t)

)
≤ 0.

A lower semi-continuous function u is a viscosity supersolution of (3) if for every
ψ ∈ C2(Ω× (0, T ]) such that ψ touches u at (x, t) ∈ Ω× (0, T ] strictly from below
(that is, u− ψ has a strict minimum at (x, t) with u(x, t) = ψ(x, t)), we have

P ∗
(
x, t, ψ(x, t),

∂ψ

∂t
(x, t), Dψ(x, t), D2ψ(x, t)

)
≥ 0.

Finally, u is a viscosity solution of (3) if it is both a sub- and supersolution.

Now, for the second equation in (1) we introduce the following definition accord-
ing to its elliptic nature with t as a parameter. This time we fix a function

Q : Ω× (0, T ]× R× RN × SN → R.
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Associated with Q, we consider the PDE

Q
(
x, t, v(x, t), Dv(x, t), D2v(x, t)

)
= 0, x ∈ Ω, t ∈ (0, T ). (4)

In our system (1) the second equation is given by

Q
(
x, t, r, p,M

)
= −κ

2
trace(M) + r − u(x, t) = 0.

Notice that there is no time derivative involved, but t is still present in the
operator Q. We will assume that Q satisfies a monotonicity property,

X ≤ Y in SN =⇒ Q(x, t, r, p,X) ≥ Q(x, t, r, p, Y )

for all (x, t, r, p) ∈ Ω × (0, T ] × R × RN . Here we have an equation that involves
the Laplacian that is well defined, so there is no need to consider upper and lower
semicontinuous envelopes of Q. Now we have

Definition 2.2. An upper semi-continuous function v is a viscosity subsolution of
(4) if for every φ ∈ C2(Ω) such that φ touches v(·, t) at x ∈ Ω strictly from above
(that is, u(·, t)− φ(·) has a strict maximum at x with u(x, t) = φ(x)), we have

Q
(
x, t, φ(x), Dφ(x), D2φ(x)

)
≤ 0.

A lower semi-continuous function u is a viscosity supersolution of (4) if for every
ψ ∈ C2(Ω) such that ψ touches v(·, t) at x ∈ Ω strictly from below (that is, v(·, t)−
ψ(·) has a strict minimum at x with u(x, t) = ψ(x)), we have

Q
(
x, t, ψ(x, t), Dψ(x, t), D2ψ(x, t)

)
≥ 0.

Finally, v is a viscosity solution of (3) if it is both a sub- and supersolution.

As we mentioned before, to deal with our system (1), we understand that the pair
(u, v) is a viscosity solution to (1) if u is a viscosity solution to the first equation (in
the sense of Definition 2.1 with v(x, t) as a given function), and v(x, t) is a solution
to the second equation (this time in the sense of Definition 2.2 with u(x, t) in the
right hand side).

Definition 2.3. The pair of continuous functions u, v : Ω × [0,+∞) 7→ R, is a
viscosity solution to (1) if for every T > 0, u is a solution to

∂u

∂t
(x, t)− 1

2
∆∞u(x, t) + u(x, t)− v(x, t) = 0 x ∈ Ω, t ∈ (0, T ],

in the sense of Definition 2.1 using

P (x, t, r, s, p,X) = s− 〈X p

|p|
,
p

|p|
〉+ r − v(x, t),

and verifies u|∂Ω×(0,T ] = f and u|Ω×{0} = u0; while v is a solution to

−κ
2

∆v(x, t) + v(x, t)− u(x, t) = 0 x ∈ Ω, t ∈ (0, T ],

in the sense of Definition 2.2, using

Q(x, t, r, p,X) = −κ
2
trace(X) + r − u(x, t),

and verifies v|∂Ω×(0,T ] = g.
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2.2. Probability. The optional stopping Theorem. We briefly recall (see [32])
that a sequence of random variables {Mk}k≥1 is called a supermartingale (a sub-
martingale) if

E[Mk+1|M0,M1, ...,Mk] ≤Mk (≥)

Then, the Optional Stopping Theorem, that we will call (OSTh) in what follows,
says: given τ a stopping time such that one of the following conditions hold,

(a) The stopping time τ is bounded a.s.;
(b) It holds that E[τ ] <∞ and there exists a constant c > 0 such that

E[Mk+1 −Mk|M0, ...,Mk] ≤ c;

(c) There exists a constant C > 0 such that |Mmin{τ,k}| ≤ C a.s. for every k.

Then

E[Mτ ] ≤ E[M0] (≥)

if {Mk}k≥0 is a supermartingale (submartingale). For the proof of this result we
refer to [13, 32].

3. Description of the game. The rules of the game are the following: the game
starts with a token at an initial position (x0, t0) ∈ Ω × (0, T ], in one of the two
boards. In the fist board, with probability 1 − ε2, the players play Tug-of-War as
described in [29, 23] (this game is associated with the infinity Laplacian). Playing
the Tug-of-War game, the players toss a fair coin and the winner chooses a new
position of the game with the restriction that x1 ∈ Bε(x0). Then the new position
of the game goes to the point (x1, t0 − ε2), this means that, if we play in the first
board, the next position of the game must be at the time level t1 = t0 − ε2 (or
t1 = 0 if t0 < ε2). We decrease time by ε2 only if we play in the first board. On the
other hand, with probability ε2 the token jumps to the second board (at the same
position (x0, t0) (without changing the time in this case). Playing in the second
board, with, probability 1− ε2 the token is moved at random (uniform probability)
to some point (x1, t0) ∈ Bε(x0)× (0, T ] (we keep the time unchanged in the second
board) and with probability ε2 the token jumps back to the first board (without
changing the spacial position nor the time). Notice that in the second board we stay
at every play at the same time (we only change the space variable x, but the time
variable t remains the same). The game continues until the position of the token
leaves the spacial domain or the time variable becomes less or equal than 0. If we
are in the first situation (we leave Ω at some positive time) and the last position of
the game is (xτ , tτ ) (with xτ ∈ RN \Ω and tτ > 0) in the first board, then Player I
gets the final payoff f(xτ , tτ ) and Player II gets −f(xτ , tτ ) (notice that this is a zero
sum game). But if the game stops due to the time becoming less than 0 (remark
that this can only happens playing in the first board), the first player gets as final
payoff u0(xτ ) when xτ ∈ Ω, or f(xτ , 0) if xτ /∈ Ω and the second player gets minus
this amount. Now, if we finish the game playing in the second board and (xτ , tτ )
is the last position (notice that tτ must be positive in this case), then Player I gets
g(xτ , tτ ) and Player II gets −g(xτ , tτ ). We can think this final payoff as Player II
pays to Player I the amount given by the payoff functions according to the board
in which the game ends and/or to the time when the game ends. We have that the
game generates a sequence of states

P =
{

(x0, t0, j0), (x1, t1, j1), ..., (xτ , tτ , jτ )
}
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with ji ∈ {1, 2} (this index gives the board in which we are playing) and (xi, ti)
gives the position (both in space and time) in the board ji. The dependence of the
position of the token in one of the boards, ji, will be made explicit only when needed.
Also remark that the number of plays until the game ends, τ , is finite almost surely
(that is, the game ends with probability one in at most a finite number of plays).

A strategy SI for Player I is a function defined on the partial histories that gives
the next position of the game provided Player I wins the coin toss (and the token
is and stays in the first board)

SI((x0, t0, j0), (x1, t1, j1), . . . , (xn, tn, 1)) = (xn+1, tn+1, 1)

with xn+1 ∈ Bε(xn) and tn+1 = tn − ε2 > 0 or tn+1 = 0 if tn − ε2 ≤ 0

Analogously, a strategy SII for Player II is a function defined on the partial histories
that gives the next position of the game provided Player II is who wins the coin
toss (and the token stays at the first board).

When the two players fix their strategies SI and SII we can compute the expected
outcome as follows: Given the sequence (x0, t0), . . . , (xn, tn) with xk ∈ Ω and tn > 0,
if (xk, tk) belongs to the first board, the next game position is distributed according
to the probability

πSI,SII,1((x0, t0, j0), . . . , (xk, tk, 1), A,B)

=
1− ε2

2
δSI((x0,t0,j0),...,(xk,tk,1))(A) +

1− ε2

2
δSII((x0,t0,j0),...,(xk,tk,1))(A)

+ε2δ(xk,tk)(B).

Here A is a subset in the first board while B is a subset in the second board. If xk
belongs to the second board, the next game position is distributed according to the
probability

πSI,SII,2((x0, t0, j0), . . . , (xk, tk, 2), A,B) = (1− ε2)U(Bε(xk))(B) + ε2δ(xk,tk)(A).

Here and in what follows we denote by U(B) the uniform probability measure on
the set B.

By using the Kolmogorov’s extension theorem and the one step transition proba-

bilities, we can build a probability measure P(x0,t0,j0)
SI,SII

on the game sequences (taking

onto account the two boards). The expected payoff, when starting from (x0, t0, j0)
and using the strategies SI, SII, is

E(x0,t0,j0)
SI,SII

[h(xτ , tτ )] =

∫
H∞

h(xτ , tτ ) dP(x0,t0,j0)
SI,SII

. (5)

Here we first extend the functions f and g from ∂Ω × (0,∞) to RN \ Ω × (0,∞)
by a pair of Lipschitz and bounded functions that we denote by f and g and then
we use h = f if (xτ , tτ ) is in the first board and tτ > 0, h = g if (xτ , tτ ) is in the
second board and tτ > 0, or, finally, we set h = u0 if tτ ≤ 0.

The value of the game for Player I is given by

uεI (x0, t0) = inf
SII

sup
SI

E(x0,t0,1)
SI,SII

[h(xτ , tτ )]

for (x0, t0) ∈ Ω× (0, T ] in the first board (j0 = 1), and by

vεI (x0, t0) = inf
SII

sup
SI

E(x0,t0,2)
SI,SII

[h(xτ , tτ )]

for (x0, t0) ∈ Ω× (0, T ] in the second board (j0 = 2).
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The value of the game for Player II is given by the same formulas just reversing
the inf–sup,

uεII(x0, t0) = sup
SI

inf
SII

E(x0,t0,1)
SI,SII

[h(xτ , tτ )] ,

for x0 in the first board and

vεII(x0, t0) = sup
SI

inf
SII

E(x0,t0,2)
SI,SII

[h(xτ , tτ )] ,

for x0 in the second board.
Intuitively, the values uI(x0, t0) and uII(x0, t0) are the best expected outcomes

each player can guarantee when the game starts at (x0, t0) in the first board while
vI(x0, t0) and vII(x0, t0) are the best expected outcomes for each player in the second
board. If these values coincide uεI = uεII and vεI = vεII, we say that the game has a
value.

Before proving that the game has a value, let us observe that the game ends
almost surely no matter the strategies used by the players, that is P(τ = +∞) = 0,
and therefore the expectation (5) is well defined. This is because we cannot play
infinitely in the same board, and playing in the first board we will leave Ω × [0, t)
either exiting Ω or exhausting time (in a finite number of plays).

4. Existence and uniqueness for the DPP. To see that the game has a value,
we first observe that we have existence of (uε, vε), a pair of functions that satisfies
the DPP. The existence of such a pair can be obtained by Perron’s method. In fact,
let us start considering the following set (that is composed by pairs of functions
that are sub solutions to our DPP). Let

C = max
{
‖f‖∞, ‖g‖∞, ‖u0‖∞

}
, (6)

and take

A =
{

(zε, wε) : are bounded above by C and verify (e)
}
,

with

zε(x, t)≤ε2wε(x, t)+(1− ε2)
{1

2
sup

y∈Bε(x)

zε(y, t− ε2)+
1

2
inf

y∈Bε(x)
zε(y, t− ε2)

}
x ∈ Ω, t∈(0, T ],

wε(x, t) ≤ ε2zε(x, t) + (1− ε2)

∫
Bε(x)

wε(y, t)dy

x ∈ Ω, t∈(0, T ],

zε(x, t) ≤ f(x, t) x ∈ RN\Ω, t∈(0, T ],

wε(x, t) ≤ g(x, t) x ∈ RN\Ω, t∈(0, T ],

zε(x, t) ≤ u0(x) x ∈ Ω, t ≤ 0.
(e)

Observe that A 6= ∅. To see this fact, we just take zε = −C and wε = −C with
C given by (6). Now we let

uε(x, t) = sup
(zε,wε)∈A

zε(x, t) and vε(x, t) = sup
(zε,wε)∈A

wε(x, t). (7)

Our goal is to show that in this way we find a solution to the DPP.
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Proposition 1. The pair (uε, vε) given by (7) is a solution to the DPP (2).

Proof. First, let us see that (uε, vε) belongs to the set A. To this end we first observe
that uε y vε are bounded by C and verify uε(x, t) ≤ f(x, t) , vε(x, t) ≤ g(x, t) for
x ∈ RN\Ω, t ≥ 0, and uε(x, t) ≤ u0(x) for x ∈ Ω, t ≤ 0. Hence we need to check
(e) for x ∈ Ω , t > 0. Take (zε, wε) ∈ A and fix (x, t) ∈ Ω× (0, T ]. Then,

zε(x, t) ≤ ε2wε(x, t) + (1− ε2)
{1

2
sup

y∈Bε(x)

zε(y, t− ε2) +
1

2
inf

y∈Bε(x)
zε(y, t− ε2)

}
.

As zε ≤ uε and wε ≤ vε we obtain

zε(x, t) ≤ ε2vε(x, t) + (1− ε2)
{1

2
sup

y∈Bε(x)

uε(y, t− ε2) +
1

2
inf

y∈Bε(x)
uε(y, t− ε2)

}
.

Taking supremum in the left hand sise we obtain

uε(x, t) ≤ ε2vε(x, t) + (1− ε2)
{1

2
sup

y∈Bε(x)

uε(y, t− ε2) +
1

2
inf

y∈Bε(x)
uε(y, t− ε2)

}
In an analogous way we obtain

vε(x, t) ≤ ε2uε(x, t) + (1− ε2)

∫
Bε(x)

vε(y, t)dy,

and we conclude that (uε, vε) ∈ A.
To end the proof we need to see that (uε, vε) verifies (2). We argue by contra-

diction and assume that there is a point (x0, t0) ∈ RN × [0, T ] where an inequality
in (e) is strict. First, assume that (x0, t0) ∈ RN\Ω × [0, T ] and that we have
uε(x0, t0) < f(x0, t0), or the case x0 ∈ Ω, t0 ≤ 0 and uε(x0, t0) < u0(x0). Then,
take uε0 defined by uε0(x, t) = uε(x, t) for (x, t) 6= (x0, t0) and uε0(x0, t0) = f(x0, t0)
in the first case, and uε0(x0, t0) = u0(x0) in the second case. The pair (uε0, v

ε) be-
longs to A but uε0(x0) > uε(x0) which is a contradiction. We can argue in a similar
way if vε(x0, t0) < g(x0, t0). Next, we consider a point (x0, t0) ∈ Ω × (0, T ] with
one of the inequalities in e strict. Assume that

uε(x0, t0) < ε2vε(x0, t0)+(1−ε2)
{1

2
sup

y∈Bε(x0)

uε(y, t0−ε2)+
1

2
inf

y∈Bε(x0)
uε(y, t0−ε2)

}
.

Let

δ = ε2vε(x0, t0) + (1− ε2)
{1

2
sup

y∈Bε(x0)

uε(y, t0 − ε2) +
1

2
inf

y∈Bε(x0)
uε(y, t0 − ε2)

}
−uε(x0, t0) > 0,

and consider the function uε0 given by;

uε0(x, t) =


uε(x, t) (x, t) 6= (x0, t0),

uε(x, t) +
δ

2
(x, t) = (x0, t0).

Observe that

uε0(x0, t0) = uε(x0, t0) +
δ

2

< ε2vε(x0, t0) + (1− ε2)
{1

2
sup

y∈Bε(x0)

uε(y, t0 − ε2) +
1

2
inf

y∈Bε(x0)
uε(y, t0 − ε2)

}
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and hence

uε0(x0, t0) < ε2vε(x0, t0)+(1−ε2)
{1

2
sup

y∈Bε(x0)

uε0(y, t0−ε2)+
1

2
inf

y∈Bε(x0)
uε0(y, t0−ε2)

}
.

Then we have that (uε0, v
ε) ∈ A but uε0(x0t0) > uε(x0, t0) reaching again a contra-

diction.
In an analogous way we can show that when

vε(x0, t0) < ε2uε(x0, t0) + (1− ε2)

∫
Bε(x0)

vε(y, t0)dy,

we also reach a contradiction.

Now, concerning the value functions of our game, we know that uεI ≥ uεII and
vεI ≥ vεII (this is immediate from the definitions). Hence, to obtain uniqueness of
solutions of the DPP and existence of value functions for our game, it is enough to
show that uεII ≥ uε ≥ uεI and vεII ≥ vε ≥ vεI . To show this result we will use the
OSTh for sub/supermartingales (see Section 2).

Theorem 4.1. Gigen 0 < ε < 1 let (uε, vε) a pair of functions that verifies the
DPP (2), then it holds that

uε(x0, t0) = sup
SI

inf
SII

E(x0,t0,1)
SI ,SII

[h(xτ , tτ )]

if (x0, t0) ∈ Ω× (0, T ) is in the first board and

vε(x0, t0) = sup
SI

inf
SII

E(x0,t0,2)
SI ,SII

[h(xτ , tτ )]

if (x0, t0) ∈ Ω× (0, T ) is in the second board.
Moreover, we also have that

uε(x0, t0) = inf
SII

sup
SI

E(x0,t0,1)
SI ,SII

[h(xτ , tτ )]

if (x0, t0) ∈ Ω× (0, T ) is in the first board and

vε(x0, t0) = inf
SII

sup
SI

E(x0,t0,2)
SI ,SII

[h(xτ , tτ )]

if (x0, t0) ∈ Ω× (0, T ) is in the second board.
As a consequence, we conclude that the game has a value and that this value can

be characterized as the unique solution to the DPP.

Proof. Given ε > 0 we have proved the existence of a solution to the DPP (uε, vε).
Fix δ > 0. Assume that we start with (x0, t0, 1), that is, the initial position is at
board 1. We choose a strategy for Player I as follows:

(xIk+1, tk+1, 1) = S∗I ((x0, t0, j0), ..., (xk, tk, 1))

is such that

sup
y∈Bε(xk)

uε(y, tk − ε2)− δ

2k
≤ uε(xIk+1, tk+1).

Given this strategy for Player I and any strategy SII for Player II we consider the
sequence of random variables given by

Mk =


uε(xk, tk)− δ

2k
if (jk = 1),

vε(xk, tk)− δ

2k
if (jk = 2).
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Let us see that (Mk)κ≥0 is a submartingale. To this end we need to estimate

E(x0,t0,1)
S∗I ,SII

[Mk+1|Mk] = E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, jk)].

We consider two cases:

Case 1: Assume that jk = 1, then

E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 1)]

= (1− ε2)E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 1) ∧ jk+1 = 1]

+ε2E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 1) ∧ jk+1 = 2].

Her we used that the probability of staying in the same board is (1− ε2) and the
probability of jumping to the other board is ε2. Now, if jk = 1 and jk+1 = 2 then
xk+1 = xk and tk+1 = tk (we just changed boards). On the other hand, if we stay
in the first board we obtain

E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 1)]

= (1− ε2)
{1

2
uε(xIk+1, tk+1) +

1

2
uε(xIIk+1, tk+1)− δ

2k+1

}
+ε2(vε(xk, tk)− δ

2k
).

Since we are using the strategies S∗I and SII , it holds that

sup
y∈Bε(xk)

uε(y, tk − ε2)− δ

2k
≤ uε(xIk+1, tk+1)

and

inf
y∈Bε(xk)

uε(y, tk − ε2) ≤ uε(xIIk+1, tk+1).

Therefore, we arrive to

E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 1)]

≥ (1− ε2)
{1

2
sup

y∈Bε(xk)

uε(y, tk − ε2)− δ

2k
+

1

2
inf

y∈Bε(xk)
uε(y, tk − ε2)

}
+ε2vε(xk, tk)− ε2 δ

2k
,

that is,

E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 1)]

≥ (1− ε2)
{1

2
sup

y∈Bε(xk)

uε(y, t− ε2) +
1

2
inf

y∈Bε(xk)
uε(y, t− ε2)

}
+ε2vε(xk, tk)− (1− ε2)

δ

2k
− ε2 δ

2k
.

As uε is a solution to the DPP (2) we obtain

E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 1)] ≥ uε(xk, tk)− δ

2k
= Mk

as we wanted to show.
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Case 2: Assume that jk = 2. With the same ideas used before we get

E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 2)]

= (1− ε2)E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 2) ∧ jk+1 = 2]

+ε2E(x0,1)
S∗I ,SII

[Mk+1|(xk, tk, 2) ∧ jk+1 = 1].

Remark that when jk = jk+1 = 2 (this means that we play in the second board)
with xk ∈ Ω, then xk+1 is chosen with uniform probability in the ball Bε(xk).
Hence,

E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 2) ∧ jk+1 = 2]

= E(x0,t0,1)
S∗I ,SII

[vε(xk+1, tk+1)− δ

2k+1
|(xk, 2) ∧ jk+1 = 2]

=

∫
Bε(xk)

vε(y, tk)dy − δ

2k+1
.

On the other hand,

E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 2) ∧ jk+1 = 1] = uε(xk, tk)− δ

2k+1
.

Collecting these estimates we obtain

E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 2)]

= (1− ε2)

(∫
Bε(xk)

vε(y, tk)dy − δ

2k+1

)
+ ε2

(
uε(xk, tk)− δ

2k+1

)
≥ (1− ε2)

∫
Bε(xk)

vε(y, tk)dy + ε2uε(xk, tk)− δ

2k
,

that is,

E(x0,t0,1)
S∗I ,SII

[Mk+1|(xk, tk, 2)] ≥ vε(xk, tk)− δ

2k
= Mk.

Here we used that vε is a solution to the DPP, (2). This ends the second case.
Therefore (Mk)k≥0 is a submartingale. Using the OSTh (recall that we have

proved that τ is finite a.s. and that we have that Mk is uniformly bounded) we
conclude that

E(x0,t0,1)
S∗I ,SII

[Mτ ] ≥M0

where τ is the first time such that (xτ , tτ ) /∈ Ω × (0, T ] in any of the two boards.
Then,

E(x0,t0,1)
S∗I ,SII

[h(xτ , tτ )] ≥ uε(x0, t0)− δ.

We can compute the infimum in SII and then the supremum in SI to obtain

sup
SI

inf
SII

E(x0,t0,1)
SI ,SII

[h(xτ , tτ )] ≥ uε(x0, t0)− δ.

We just observe that if we have started in the second board the previous com-
putations show that

sup
SI

inf
SII

E(x0,t0,2)
SI ,SII

[h(xτ , tτ )] ≥ vε(x0, t0)− δ.
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Now our goal is to prove the reverse inequality (interchanging inf and sup). To
this end we define an strategy for Player II with

(xIIk+1, tk+1) = S∗II
(
(x0, t0, j0), ..., (xk, tk, 1)

)
is such that

inf
y∈Bε(xk)

uε(y, tk+1) +
δ

2k
≥ uε(xIIk+1, tk+1),

and consider the sequence of random variables

Nk =


uε(xk, tk) +

δ

2k
if jk = 1

vε(xk, tk) +
δ

2k
if jk = 2.

Arguing as before we obtain that this sequence is a supermartingale. From the
OSTh we get

E(x0,t0,1)
SI ,S∗II

[Nτ ] ≤ N0

for any strategy SI , where τ is the stopping time for the game. Then,

E(x0,t0,1)
SI ,S∗II

[h(xτ , tτ )] ≤ uε(x0, t0) + δ.

Taking supremum in SI and then infimum in SII we obtain

inf
SII

sup
SI

E(x0,t0,1)
SI ,SII

[h(xτ , tτ )] ≤ uε(x0, t0) + δ.

As before, the same ideas starting at (x0, t0, 2) give us

inf
SII

sup
SI

E(x0,1)
SI ,SII

[h(xτ , tτ )] ≤ vε(x0) + δ.

To end the proof we just observe that

sup
SI

inf
SII

ESI ,SII
[h(xτ , tτ )] ≤ inf

SII

sup
SI

ESI ,SII
[h(xτ , tτ )].

Therefore,

uε(x0, t0)− δ ≤ sup
SI

inf
SII

E(x0,t0,1)
SI ,SII

[h(xτ , tτ )]

≤ inf
SII

sup
SI

E(x0,t0,1)
SI ,SII

[h(xτ , tτ )] ≤ uε(x0, t0) + δ

and
vε(x0, t0)− δ ≤ sup

SI

inf
SII

E(x0,t0,2)
SI ,SII

[h(xτ , tτ )]

≤ inf
SII

sup
SI

E(x0,t0,2)
SI ,SII

[h(xτ , tτ )] ≤ vε(x0, t0) + δ.

As δ > 0 is arbitrary the proof is finished.

5. Uniform convergence. Now our aim is to pass to the limit in the values of
the game and prove that

uε → u and vε → v, as ε→ 0,

uniformly in Ω × [0, T ], and then in the next section to obtain that this limit pair
(u, v) is a viscosity solution to our system (1).

To obtain a convergent subsequence we will use the following Arzela-Ascoli type
lemma both for uε and for vε. For its proof see Lemma 4.2 from [25].

Lemma 5.1. Let {wε : Ω× [0, T ]→ R, ε > 0} be a set of functions such that
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1. there exists C > 0 such that |wε(x, t)| < C for every ε > 0 and every x ∈ Ω,
t ∈ [0, T ],

2. given δ > 0 there are constants r0 and ε0 such that for every ε < ε0 and any
x, y ∈ Ω with |x− y| < r0 and any t, s ∈ [0, T ] with |t− s| < r0, it holds

|wε(x, t)− wε(y, s)| < δ.

Then, there exists a uniformly continuous function w : Ω × [0, T ] → R and a
subsequence still denoted by {wε} such that

wε → w uniformly in Ω× [0, T ], as ε→ 0.

So our task now is to show that uε and vε both satisfy the hypotheses of the
previous lemma. First, we observe that they are uniformly bounded.

Lemma 5.2. There exists a constant C > 0 independent of ε such that

|uε(x, t)| ≤ C, |vε(x, t)| ≤ C,

for every ε > 0 and every (x, t) ∈ Ω× [0, T ].

Proof. We observe that we can take

C = max{‖g‖∞, ‖f‖∞, ‖u0‖∞},

since the final payoff in any of the boards is bounded by this constant C.

To prove the second hypothesis of Lemma 5.1 we will need some key estimates
according to the board in which we are playing.

5.1. Estimates for the Tug-of-War game. In this case we are going to assume
that we are permanently playing in board 1 (with the Tug-of-War game). Since we
are playing in only one board we will omit the j variable when describing the position
of the token. Also we remark that the involved expectations are taken with respect
to the probability associated with the Tug-of-War game. We introduce the notations
ΩT = Ω× (0, T ] for a parabolic cilinder and ∂pΩT =

[
∂Ω× (0, T ]

]
∪
[

Ω× {0}
]

for
the parabolic boundary.

Lemma 5.3. Given η > 0 and a > 0, there exist r0 > 0, l0 > 0 and ε0 > 0 such
that, given (y, s) ∈ ∂pΩT and (x0, t0) ∈ ΩT with |x0 − y| < r0, |t0 − s| < l0 any of
the two players has a strategy S∗ with which we obtain

P
(
|xτ − y| < a

)
≥ 1− η, P

(
|tτ − s| < a

)
≥ 1− η and P

(
τ ≥ a

2ε2

)
< η

for ε < ε0 and here (xτ , tτ ) denotes the first position outside Ω× (0, T ].

Proof. We consider two cases depending of the position of (y, s) in ∂pΩT =
[
∂Ω×

(0, T ]
]
∪
[

Ω× {0}
]
.

Case 1: If (y, s) ∈ ∂Ω × (0, T ]. We can assume without loss of generality that
y = 0 ∈ ∂Ω. In this case we consider the strategy S∗ (this strategy can be used by
any of the two players) that is given by “point to the point y = 0”. This strategy
is given by

xk+1 = S∗
(
x0, x1, ..., xk

)
= xk +

( ε3

2k
− ε
) xk
|xk|

,

when |xk| ≥ ε, in the other case we take xk+1 = 0. Notice that the strategy only
depends of de position xk, not of the time tk (that is deterministic, tk+1 = tk − ε2,
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and then not affected by the choice of the strategies). Now, let us consider the
random variables

Nk = |xk|+
ε3

2k

for k ≥ 0 and play assuming that one of the players uses the S∗ strategy. The goal
is to prove that {Nk}k≥0 is supermartingale, i.e.,

E[Nk+1|Nk] ≤ Nk.

Note that with probability 1/2 we obtain

xk+1 = xk +
( ε3

2k
− ε
) xk
|xk|

this is the case when the player who uses the S∗ strategy wins the coin toss. On
the other hand, we have

|xk+1| ≤ |xk|+ ε,

when the other player wins (no matter what strategy he uses). Then, we obtain

E
[
|xk+1||xk

]
≤ 1

2

(
|xk|+ (

ε3

2k
− ε)

)
+

1

2
(|xk|+ ε) = |xk|+

ε3

2k+1
.

Hence, we get

E
[
Nk+1|Nk

]
= E

[
|xk+1|+

ε3

2k+1
||xk|+

ε3

2k

]
≤ |xk|+

ε3

2k+1
+

ε3

2k+1
= Nk.

We just proved that {Nk}k≥0 is a supermartingale. Now, let us consider the random
variables

(Nk+1 −Nk)2,

and the event

Fk =
{

the player who points to 0 ∈ ∂Ω wins the coin toss
}
. (8)

Then we have the following

E[(Nk+1 −Nk)2|Nk] =
1

2
E[(Nk+1 −Nk)2|Nk ∧ Fk] +

1

2
E[(Nk+1 −Nk)2|Nk ∧ F ck ]

≥ 1

2
E[(Nk+1 −Nk)2|Nk ∧ Fk].

Let us observe that when |xk| ≥ ε
1

2
E[(Nk+1 −Nk)2|Nk ∧ Fk] =

1

2
E
[
(|xk| − ε+

ε3

2k
+

ε3

2k+1
− |xk| −

ε3

2k
)2
]

=
1

2
E
[
(−ε+

ε3

2k+1
)2
]
≥ ε2

3

if ε < ε0 for ε0 small enough. In the case that |xk| < ε we have that xk+1 = 0, then

1

2
E[(Nk+1 −Nk)2|Nk ∧ Fk] =

1

2
E
[
(
ε3

2k+1
− |xk| −

ε3

2k
)2
]

>
1

2
E
[
(−ε− ε3

2k+1
)2
]
≥ ε2

3

and we have obtained the same estimate. With this estimate in mind we get

E[(Nk+1 −Nk)2|Nk] ≥ ε2

3
. (9)
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Now, we analyze N2
k −N2

k+1. We have

N2
k −N2

k+1 = (Nk+1 −Nk)2 + 2Nk+1(Nk −Nk+1). (10)

Let us prove that E[Nk+1(Nk −Nk+1)|Nk] ≥ 0 using the set Fk defined by (8). It
holds that

E[Nk+1(Nk −Nk+1)|Nk]

=
1

2
E[Nk+1(Nk −Nk+1)|Nk ∧ Fk] +

1

2
E[Nk+1(Nk −Nk+1)|Nk ∧ F ck ]

=
1

2

[
(|xk| − ε+

ε3

2k
+

ε3

2k+1
)(|xk|+

ε3

2k
− |xk|+ ε− ε3

2k
− ε3

2k+1
)
]

+
1

2

[
(|xk+1|+

ε3

2k+1
)(|xk|+

ε3

2k
− |xk+1| −

ε3

2k+1
)
]

≥ 1

2

(
|xk| − ε+

ε3

2k
+

ε3

2k+1

)(
ε− ε3

2k+1

)
+

1

2

[
(|xk| − ε+

ε3

2k+1
)(|xk|+

ε3

2k
− |xk| − ε−

ε3

2k+1
)
]
,

here we used that |xk| − ε ≤ |xk+1| ≤ |xk|+ ε. Thus, we have

E[Nk+1(Nk −Nk+1)|Nk] ≥ 1

2
(|xk| − ε+

ε3

2k+1
+
ε3

2k
)(ε− ε3

2k+1
)

+
1

2
(|xk| − ε+

ε3

2k+1
)(−ε+

ε3

2k+1
),

and then,

E[Nk+1(Nk −Nk+1)|Nk] ≥ 1

2

[ ε3

2k
(ε− ε3

2k+1
)
]
≥ 0.

If we go back to (10) and use (9) and the result we just obtained we arrive to

E[N2
k −N2

k+1|Nk] ≥ E[(Nk+1 −Nk)2|Nk] ≥ ε2

3
.

For the sequence of random variables

Wk = N2
k +

kε2

3

we have

E[Wk −Wk+1|Wk] = E[N2
k −N2

k+1 −
ε2

3
|Wk] ≥ 0.

as E[Wk|Wk] = Wk then

E[Wk+1|Wk] ≤Wk.

We have proved that the sequence {Wk}k≥1 is a supermartingale. In order to use
the OSTh, given a fixed integer m ∈ N we define the stopping time

τm = τ ∧m := min{τ,m}.

This new stopping time verifies τm ≤ m which is the first hypothesis of the OSTh.
Then, we obtain

E[Wτm ] ≤W0.
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Observe that lim
m→∞

τ ∧m = τ almost surely. Then, using Fatou’s Lemma, we arrive

to
E[Wτ ] = E[lim inf

m
Wτ∧m] ≤︸︷︷︸

Fatou

lim inf
m

E[Wτ∧m] ≤︸︷︷︸
OSTh

W0.

Thus, we obtain E[Wτ ] ≤W0, i.e.,

E
[
N2
τ +

τε2

3

]
≤ N2

0 . (11)

Then,
E[τ ] ≤ 3(|x0|+ ε3)2ε−2 ≤ 4|x0|2ε−2

if ε is small enough. On the other hand, if we go back to (11) we have

E[N2
τ ] ≤ N2

0 ,

i.e.

E[|xτ |2] ≤ E
[
(|xτ |+

ε3

2τ
)2
]
≤ (|x0|+ ε3)2 ≤ 2|x0|2.

What we have so far is that

E[τ ] ≤ 4|x0|2ε−2 and E[|xτ |2] ≤ 2|x0|2.
Given η > 0 and a > 0, we take x0 ∈ Ω such that |x0| < r0 with r0 that will be
choosed later (depending on η and a). We have

Cr2
0ε
−2 ≥ C|x0|2ε−2 ≥ Ex0 [τ ] ≥ P

(
τ ≥ a

2ε2

) a

2ε2
.

Thus

P
(
τ ≥ a

2ε2

)
≤ C2

r2
0

a
< η (12)

which holds true if r0 <
√

ηa
2C .

Now, from (12) we have

P
(
τε2 <

a

2

)
≥ 1− η ⇒ P(t0 − τε2 > t0 −

a

2
) ≥ 1− η.

Then, using that tτ < t0 we obtain

P
(
|tτ − t0| <

a

2

)
≥ 1− η.

Observe that, if we take l0 <
a
2 , we have

|tτ − s| ≤ |tτ − t0|+ |t0 − s| < |tτ − t0|+
a

2
Then {

|tτ − t0| <
a

2

}
⊆
{
|tτ − s| < a

}
,

and we can conclude that

P(|tτ − s| < a) ≥ 1− η.
Also we have

Cr2
0 ≥ C|x0|2 ≥ Ex0 [|xτ |2] ≥ a2P(|xτ |2 ≥ a2).

Then

P(|xτ | ≥ a) ≤ C r
2
0

a2
< η

which holds true if r0 <
√

ηa2

C . Observe that if we take a < 1/2 we have
√

ηa2

C <√
ηa
2C , then if we choose r0 <

√
ηa2

C both conditions are fulfilled at the same time.
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Case 2: Suppose that s = 0, that is we have a point (y, 0) with y ∈ Ω. One more
time, we use as strategy for any of the two players to point towards y, as we defined
above. that is,

xk+1 = S∗
(
x0, ..., xk

)
= xk +

( ε3

2k
− ε
) y − xk
|y − xk|

if |xk−y| ≥ ε and xk+1 = y in other case. We can assume without loss of generality
that player I uses this strategy.

Suppose that 0 < t0 < l0 for some l0 small (to be chosen latter). Then the
stopping time is bounded. In fact, τ ≤ [ l0ε2 ] whit probability 1. Let us call M = [ l0ε2 ].
Since tτ < t0 it is enough take l0 ≤ a/2 to get

P(τ ≥ a

2ε2
) = 0 and P(|tτ | < a) = 1.

Now we define the following random variables:

Xk =

 1 if Player II wins,

−1 if Player I wins,

for k ≥ 1 and

Zk =

k∑
j=1

Xk.

Observe that Xk are independent with E[Xk] = 0 and V[Xk] = 1. Then, E[Zk] = 0
and V[Zk] = k. If we use Chevichev’s Theorem (see [14]) we obtain

P(|ZM | ≥
a

2ε
) ≤ V[ZM ]

( a2ε )2
=
M4ε2

a2
≤ 4

( l0ε2 + 1)ε2

a2
≤ 4l0

a2
+

4ε2

a2
< η

if 4l0
a2 < η

2 and 4ε2

a2 < η
2 . This says that the probability that Player II wins a

2ε more
times than Player I is small. Then, we deduce that

P(|xτ − x0| ≥
a

2
) < η.

Here we use that the maximum we can get away from x0 is ε each step. Now, if we
take r0 <

a
2 , we obtain

|xτ − y| ≤ |xτ − x0|+ |x0 − y| < |xτ − x0|+
a

2
.

Hence, we have {
|xτ − y| ≥ a

}
⊆
{
|xτ − x0| ≥

a

2

}
,

and then we conclude that

P(|xτ − y| ≥ a) < η.

This ends the proof.
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5.2. Estimates for the Random walk game. Here we assume that we are play-
ing on board 2, with the random walk game without changing time. Again, since
we are playing in only one board, we will omit the j variable when describing the
position of the token and we notice that expectations are taken with respect to
the probability measure of the random walk. The estimates for this game follow
the same ideas as before, and are even simpler since there are no strategies of the
players involved in this case. We include some ideas for completeness and refer to
[27] for more details. Recall that in this board the time t does not change when we
play.

Lemma 5.4. Given η > 0 and a > 0, there exists r0 > 0 and ε0 > 0 such that,
given (y, s) ∈

[
∂Ω × (0, T )

]
and x0 ∈ Ω with |x0 − y| < r0, if we play random in

Ω× {s} we obtain

P
(
|xτ − y| < a

)
≥ 1− η and P

(
τ ≥ a

2ε2

)
< η

for ε < ε0 and (xτ , s) the first position outside Ω× (0, T ].

Proof. We include only a skecht of the proof. Extra details can be found in [27].
Assume that N ≥ 3 (the cases N = 1, 2 are similar). The first step is, given θ < θ0,
and y ∈ Ω we are going to assume that the center of the exterior ball that has y
on its boundary is at zy = 0, so that we have Bθ(0) ∩ Ω = {y}. We define the set
Ωε = {x ∈ RN : d(x,Ω) < ε} for ε small enough. Now, we consider the function
µ : Ωε → R given by

µ(x) =
1

θN−2
− 1

|x|N−2
.

This function is positive in Ω\{y}, radially increasing and harmonic in Ω. Also it
holds that µ(y) = 0.

Take the first position of the game, x0 ∈ Ω, such that |x0− y| < r0 with r0 to be
choosen later. Let (xk)k≥0 be the sequence of positions of the game playing random
walks and consider the sequence of random variables

Nk = µ(xk)

for k ≥ 0. Since µ is harmonic, we have that Nk is a martingale,

E[Nk+1|Nk] =

∫
Bε(xk)

µ(y)dy = µ(xk) = Nk.

Since µ is bounded in Ω, the third hypothesis of OSTh is fulfilled, hence we obtain

E[µ(xτ )] = µ(x0).

We have the following estimate for µ(x0): there exists a constant c(Ω, θ) > 0 such
that

µ(x0) ≤ c(Ω, θ)r0.

Now we need to establish a relation between µ(xτ ) and |xτ − y|. To this end, we
take the function b : [θ,+∞)→ R given by

b(a) =
1

θN−2
− 1

aN−2
.

Note that this function is the radial version of µ. It is positive and increasing, then,
it has an inverse (also increasing) that is given by the formula

a(b) =
θ

(1− θN−2b)
1

N−2

.
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With this function we can get the following result: given a > 0, exist a > θ, b > 0
and ε0 > 0 such that

if µ(xτ ) < b⇒ |xτ − y| < a , d(xτ ,Ω) < ε0.

Then, we have

P(µ(xτ ) ≥ b) ≥ P(|xτ − y| ≥ a).

and then we obtain

P(|xτ − y| ≥ a) < η

if r0 is small. Now, let us compute

E[N2
k+1 −N2

k |Nk] =

∫
Bε(xk)

(µ2(w)− µ2(xk))dw.

Using the Taylor expansion of order two we can prove that

E[N2
k+1 −N2

k |Nk] ≥ σ(Ω)ε2.

Then, with arguments similar to those used above we obtain

P
(
τ ≥ a

2ε2

)
< η

for r0 small enough.

Now we are ready to prove the second condition in the Arzela-Ascoli type lemma.

Lemma 5.5. Given δ > 0 there are r0 > 0 and ε0 > 0 such that for every 0 < ε < ε0

and any x, y ∈ Ω with |x− y| < r0 and |t− s| < r0 it holds

|uε(x, t)− uε(y, s)| < δ and |vε(x, t)− vε(y, s)| < δ.

Proof. We deal with the estimate for uε. Recall that uε is the value of the game
playing in the first board (where we play Tug-of-War).

First, we start with two close points (x, t) and (y, s) with (y, s) ∈ ∂pΩT and
(x, t) ∈ ΩT . Let define the following function w : [(RN\Ω×(0, T ])∪(RN×{0})]→ R,

w(x, t) =

 f(x, t) if t ≥ 0, x /∈ Ω,

u0(x) if t = 0, x ∈ Ω.

From our conditions on the data, the function w is well defined and is Lipschitz in
both variables, that is

|w(x, t)− w(y, s)| ≤ L(|x− y|+ |t− s|),

recall that f , g and u0 are assumed to be Lipschitz. For instance, notice that for
t > 0 and s = 0 with x ∈ RN \ Ω and y ∈ Ω, we have

|f(x, t)− u0(y)| ≤ L(|x− y|+ |t|).

Given η > 0 and a > 0, we have the parameters r0, l0, ε0 and the strategy S∗I as
in Lemma 5.3. Let

F =
{

the position does not change board in the first d a
2ε2
e plays and τ < d a

2ε2
e
}
.

We consider two cases. First we show a lower bound for uε(x0, t0)−w(y, s) and
next an upper bound. For the lower bound we use that we can choose the strategy
for Player I, while for the upper bound we use a strategy for Player II.
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1st case: We are going to show that uε(x0, t0)−w(y, s) ≥ −A(a, η) with A(a, η)↘
0 if a→ 0 and η → 0. We have

uε(x0, t0) ≥ inf
SII

E(x0,t0,1)
S∗I ,SII

[h(xτ , tτ )].

Now, using probality properties we obtain

E(x0,t0,1)
S∗I ,SII

[h(xτ , tτ )] = E(x0,t0,1)
S∗I ,SII

[h(xτ , tτ )|F ]P(F ) + E(x0,t0,1)
S∗I ,SII

[h(xτ , tτ )|F c]P(F c)

≥ E(x0,t0,1)
S∗I ,SII

[w(xτ , tτ )|F ]P(F )−max{|f |, |g|, |u0|}P(F c).

Here we used that the final payoff, denoted by h, is given by f , g or u0 and that
under F c we do not control the board at which the game ends.

Now we estimate P(F ) and P(F c). We have that

P(F c) ≤ P
(

the game changes board before d a
2ε2
e plays

)
+ P(τ ≥ d a

2ε2
e).

Hence we are left with two bounds. First, we have

P
(

the game changes board before d a
2ε2
e plays

)
= 1− (1− ε2)

a
2ε2 ≤ (1− e−a/2) + η

(13)

for ε small enough. Here we are using that (1− ε2)
a

2ε2 ↗ e−a/2. Next, we observe
that using Lemma 5.3 we get

P
(
τ ≥ a

2ε2

)
≤ P

(
τ ≥ a

2ε2
0

)
< η, (14)

for ε < ε0. From (13) and (14) we obtain

P(F c) ≤ (1− e−a/2) + η + η = (1− e−a/2) + 2η

and hence

P(F ) = 1− P(F c) ≥ 1− [(1− e−a/2) + 2η].

Then we obtain

E(x0,t0,1)
S∗I ,SII

[h(xτ , tτ )] ≥ E(x0,t0,1)
S∗I ,SII

[w(xτ , tτ )|F ](1− [(1− e−a/2) + 2η])

−max{|f |, |g|, |u0|}[(1− e−a/2) + 2η].
(15)

Let us analyze the expected value E(x0,t0,1)
S∗I ,SII

[w(xτ , tτ )|F ]. Again we need to consider
two events,

F1 = F ∩ [{|xτ − y| < a} ∩ {|tτ − s| < a}] and F2 = F ∩ F c1 .

We have that F = F1 ∪ F2. Then

E(x0,t0,1)
S∗I ,SII

[w(xτ , tτ )|F ]

= E(x0,t0,1)
S∗I ,SII

[w(xτ , tτ )|F1]P(F1) + E(x0,t0,1)
S∗I ,SII

[w(xτ , tτ )|F2]P(F2).
(16)

Now we have that

P(F2) ≤ P([{|xτ − y| < a} ∩ {|tτ − s| < a}]c)

= P ({|xτ − y| ≥ a} ∪ {|tτ − s| ≥ a})

≤ P(|xτ − y| ≥ a) + P(|tτ − s| ≥ a) < 2η.

(17)
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To get a bound for the other case we observe that F c1 = F c∪{|xτ−y| ≥ a}∪{|tτ−s| ≥
a}. Therefore

P(F1) = 1− P(F c1 ) ≥ 1− [P(F c) + P(|xτ − y| ≥ a) + P(|tτ − s| ≥ a)],

and we arrive to

P(F1) ≥ 1− [(1− e−a) + 2η + η + η] = 1− [(1− e−a) + 4η]. (18)

If we go back to (16) and use (18) and (17) we get

E(x0,t0,1)
S∗I ,SII

[w(xτ , tτ )|F ]

≥ E(x0,t0,1)
S∗I ,SII

[w(xτ , tτ )|F1](1− [(1− e−a) + 4η])−max{|f |, |u0|}2η.

Using that w is Lipschitz we obtain

w(xτ , tτ ) ≥ w(y, s)− L(|xτ − y|+ |tτ − s|) ≥ w(y, s)− 2La,

and then, using that (w(y, s)−2La) does not depend on the strategies, we conclude
that

E(x0,t0,1)
S∗I ,SII

[w(xτ , tτ )|F ] ≥ (w(y, s)− 2La)(1− [(1− e−a) + 4η])−max{|f |, |u0|}2η.

Recalling (15) we obtain

E(x0,t0,1)
S∗I ,SII

[h(xτ , tτ )]

≥ ((w(y, s)− 2La)(1− [(1− e−a) + 4η])

−max{|f |, |u0|}2η)(1− [(1− e−a) + 2η])

−max{|f |, |g|, |u0|}[(1− e−a) + 2η].

Notice that when η → 0 and a → 0 the the right hand side goes to w(y, s), hence
we have obtained

E(x0,t0,1)
S∗I ,SII

[h(xτ , tτ )] ≥ w(y, s)−A(a, η)

Taking the infimum over all possible strategies SII and then supremum over SI we
get

uε(x0, t0) ≥ w(y, s)−A(a, η)

with A(a, η)→ 0 as η → 0 and a→ 0 as we wanted to show.

2nd case: Now we want to show that

uε(x0, t0)− w(y, s) ≤ B(a, η)

with B(a, η)↘ 0 as η → 0 and a→ 0. In this case we just use the strategy S∗ from
Lemma 5.3 as the strategy for the second player S∗II and we obtain

uε(x0, t0) ≤ sup
SI

Ex0

SI ,S∗II
[h(xτ , tτ )].

Using again the set F that we considered in the previous case we obtain

E(x0,t0,1)
SI ,S∗II

[h(xτ , tτ )] = E(x0,t0,1)
SI ,S∗II

[w(xτ , tτ )|F ]P(F ) + E(x0,t0,1)
SI ,S∗II

[h(xτ , tτ )|F c]P(F c).

We have that P(F ) ≤ 1 and P(F c) ≤ (1− e−a/2) + 2η. Hence we get

E(x0,t0,1)
SI ,S∗II

[h(xτ , tτ )] ≤ E(x0,t0,1)
SI ,S∗II

[w(xτ , tτ )|F ] + max{|f |, |g|, |u0|}[(1− e−a/2) + 2η].
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To bound E(x0,t0,1)
SI ,S∗II

[w(xτ , tτ )|F ] we will use again the sets F1 and F2 as in the

previous case. We have

E(x0,t0,1)
SI ,S∗II

[w(xτ , tτ )|F ] = E(x0,t0,1)
SI ,S∗II

[w(xτ , tτ )|F1]P(F1) +E(x0,t0,1)
SI ,S∗II

[w(xτ , tτ )|F2]P(F2).

Now we use that P(F1) ≤ 1 and P(F2) ≤ 2η to obtain

E(x0,t0,1)
SI ,S∗II

[w(xτ , tτ )|F ] ≤ E(x0,t0,1)
SI ,S∗II

[w(xτ , tτ )|F1] + max{|f |, |u0|}2η.

Using that w is Lipschitz and that (w(y, s)+2La) does not depend on the strategies
we get

E(x0,t0,1)
SI ,S∗II

[w(xτ , tτ )|F ]

≤ E(x0,t0,1)
SI ,S∗II

[w(y, s) + 2La|F1] + max{|f |}2η

≤ (w(y, s) + 2La) + max{|f |, |u0|}2η,
and therefore we conclude that

E(x0,t0,1)
SI ,S∗II

[h(xτ , tτ )]

≤ w(y, s) + 2La+ max{|f |, |u0|}2η + max{|f |, |g|, |u0|}[(1− e−a/2) + 2η].

We have proved that

E(x0,t0,1)
SI ,S∗II

[h(xτ , tτ )] ≤ w(y, s) +B(a, η)

with B(a, η)→ 0. Taking supremum over the strategies for Player I we obtain

uε(x0, t0) ≤ w(y, s) +B(a, η)

with B(a, η)→ 0 as η → 0 and a→ 0.
We conclude that

|uε(x0, t0)− w(y, s)| < max{A(a, η), B(a, η)},

that holds when (y, s) ∈ ∂pΩT and (x0, t0) ∈ ΩT is close to (y, s).
An analogous estimate holds for vε. The details are simpler and left to the reader.
Now, given two points (x0, t0, j) and (z0, s0, j) inside Ω with |x0 − z0| < r0 and

|t0 − s0| < r0 we couple the game starting at (x0, t0, j) with the game starting
at (z0, s0, j) making the same movements and also changing board simultaneously.
This coupling generates two sequences of positions (xi, ti, ji) and (zi, si, ki) such
that |xi − zi| < r0, |ti − si| < l0 and ji = ki (since they change boars at the same
time both games are at the same board at every turn). This continues until one
of the games exits the domain (say at (xτ , tτ ) 6∈ Ω × (0, T )). At this point for the
game starting at (z0, s0, j) we have that its position (zτ , sτ ) is close to the exterior
point (xτ , tτ ) 6∈ Ω × (0, T ) at the same board (since we have |xτ − zτ | < r0 and
|tτ − sτ | < r0) and hence we can use our previous estimates for points close to the
boundary to conclude that

|uε(x0, t0)− uε(z0, s0)| < δ, and |vε(x0, t0)− vε(z0, s0)| < δ.

This ends the proof.

As a consequence, we have convergence of (uε, vε) as ε→ 0 along subsequences.
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Theorem 5.6. Let (uε, vε) be solutions to the DPP, then there exists a subsequence
εk → 0 and a pair on functions (u, v) continuous in Ω such that

uεk → u, and vεk → v,

uniformly in Ω× [0, T ].

Proof. Lemma 5.2 and Lemma 5.5 imply that we can use the Arzela-Ascoli type
lemma, Lemma 5.1, to obtain uniform convergence.

6. Existence of viscosity solutions. In this section we use viscosity arguments
to show that a uniform limit of the values of the game (which exists due to Theorem
5.6) is in fact a viscosity solution to our parabolic/elliptic system (1). This is part
of the proof of Theorem 1.2.

Lemma 6.1. Let (u, v) be a uniform limit, along a subsequence, of the values of the
game, (uε, vε), as ε→ 0. Then (u, v) is a viscosity solution to our parabolic/elliptic
system (1).

Proof. By hypothesis there exists a subsequence εk → 0 and a pair on functions
(u, v) continuous in Ω such that

uεk → u, and vεk → v,

uniformly in Ω× [0, T ]. From this uniform convergence and the fact that (uεk , vεk)
verify 

uεk(x, t) = f(x, t) x ∈ RN\Ω, t ∈ (0, T ],

vεk(x, t) = g(x, t) x ∈ RN\Ω, t ∈ (0, T ],

uεk(x, t) = u0(x) x ∈ Ω, t ≤ 0,

we obtain that the uniform limits satisfy
u(x, t) = f(x, t) x ∈ ∂Ω, t ∈ (0, T ],

v(x, t) = g(x, t) x ∈ ∂Ω, t ∈ (0, T ],

u(x, 0) = u0(x) x ∈ Ω.

Hence, our task now is to show that (u, v) is a viscosity solution to the para-
bolic/elliptic equations in (1) inside Ω× (0, T ].

First equation. Let be φ ∈ C2(Ω× (0, T ]) such that (u−φ)(x0, t0) has a absolute
maximum at (x0, t0) with (u− φ)(x0, t0) = 0 (maximum in the two variables x and
t). Then exist a sequence (xε, tε)ε>0 such that xε → x0 and tε → t0 when ε → 0
and

uε(y, t)− φ(y, t) ≤ uε(xε, tε)− φ(xε, tε) + ε3

if y ∈ Ω, t ∈ (0, T ]. Then we obtain

uε(y, t)− uε(xε, tε) ≤ φ(y, t)− φ(xε, tε) + ε3 (19)

Then, using the DPP for uε at the point (xε, tε) we have

uε(xε, tε) = ε2vε(xε, tε)+(1−ε2)
{1

2
sup

y∈Bε(xε)

uε(y, tε−ε2)+
1

2
inf

y∈Bε(xε)
uε(y, tε−ε2)

}
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and then, adding and subtracting uε(xε, tε − ε2), we obtain

0 = ε2vε(xε, tε)−
[
uε(xε, tε)− uε(xε, tε − ε2)

]
+(1− ε2)

1

2
sup

y∈Bε(xε)

[
uε(y, tε − ε2)− uε(xε, tε − ε2)

]
+(1− ε2)

1

2
inf

y∈Bε(xε)

[
uε(y, tε − ε2)− uε(xε, tε − ε2)

]
− ε2uε(xε, tε − ε2).

Now, using (19) we arrive to

0 ≤ ε2vε(xε, tε)−
[
φ(xε, tε)− φ(xε, tε − ε2)

]
+(1− ε2)

1

2
sup

y∈Bε(xε)

[
φ(y, tε − ε2)− φ(xε, tε − ε2)

]
+(1− ε2)

1

2
inf

y∈Bε(xε)

[
φ(y, tε − ε2)− φ(xε, tε − ε2)

]
+ ε3 − ε2uε(xε, tε − ε2).

From this point the proof follows from simple Taylor expansions. If ∇φ(x0, t0) 6= 0
then ∇φ(xε, tε − ε2) 6= 0 for ε small enough. Let us call

wε =
∇φ(xε, tε − ε2)

|∇φ(xε, tε − ε2)|
and w0 =

∇φ(x0, t0)

|∇φ(x0, t0)|

Observe that wε → w0 when ε→ 0. Then

sup
y∈Bε(xε)

φ(y, tε − ε2) ∼ φ(xε + εwε, tε − ε2)

and

inf
y∈Bε(xε)

φ(y, tε − ε2) ∼ φ(xε − εwε, tε − ε2).

In fact, notice that since ∇φ(x0, t0) 6= 0 then the maximum (and analogously the

minimum) of φ in Bε(xε) is attained at some point xεm ∈ ∂Bε(xε) for ε small enough.
Moreover, from a simple Taylor expansion we have that

|φ(xε + εwε)− φ(xεm)| = o(ε2).

Thus, we arrive to

0 ≤ ε2vε(xε, tε)−
[
φ(xε, tε)− φ(xε, tε − ε2)

]
+(1− ε2)

1

2

[
φ(xε + εwε, tε − ε2)− φ(xε, tε − ε2)

]
+(1− ε2)

1

2

[
φ(xε − εwε, tε − ε2)− φ(xε, tε − ε2)

]
−ε2uε(xε, tε − ε2) + o(ε2).

Using the Taylor expansion of φ with respect to the spatial variables at the point
(xε, tε − ε2) we obtain

φ(xε + εwε, tε − ε2)− φ(xε, tε − ε2) = ε〈∇φ(xε, tε − ε2), wε〉

+ε2 1

2
〈D2φ(xε, tε − ε2)wε, wε〉+ o(ε2)
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φ(xε − εwε, tε − ε2)− φ(xε, tε − ε2) = −ε〈∇φ(xε, tε − ε2), wε〉

+ε2 1

2
〈D2φ(xε, tε − ε2)wε, wε〉+ o(ε2).

So, dividing by ε2, we get

0 ≤ vε(xε, tε)−
φ(xε, tε)− φ(xε, tε − ε2)

ε2

+(1− ε2)
1

2
〈D2φ(xε, tε − ε2)wε, wε〉+

o(ε2)

ε2
− uε(xε, tε − ε2).

Taking limit ε→ 0 we conclude

0 ≤ v(x0, t0)− ∂φ

∂t
(x0, t0) +

1

2
〈D2φ(x0, t0)w0, w0〉 − u(x0, t0)

i.e.
∂φ

∂t
(x0, t0)− 1

2
∆∞φ(x0, t0) + u(x0, t0)− v(x0, t0) ≤ 0,

as we wanted to show.
The reverse inequality for smooth test functions that touches from below the

graph of u can be obtained with analogous arguments.
Second equation. Now, let us show that v is a viscosity solution to

−κ
2

∆v(x, t) + v(x, t)− u(x, t) = 0.

Let us start by showing that v is a subsolution. For a fix t > 0, let ψ ∈ C2(Ω)
such that v(x0, t) − ψ(x0) = 0 and has a maximum of v(·, t) − ψ at x0 ∈ Ω. As
before, we have the existence of a sequence (xε)ε>0 such that xε → x0 and

vε(y, t)− vε(xε, t) ≤ ψ(y)− ψ(xε) + ε3. (20)

Therefore, from the DPP (2) at the point (xε, t), we obtain

0 = (uε(xε, t)− vε(xε, t)) + (1− ε2)
1

ε2

∫
Bε(xε)

(vε(y, t)− vε(xε, t))dy.

Using (20) we get

0 ≤ (uε(xε, t)− vε(xε, t)) + (1− ε2)
1

ε2

∫
Bε(xε)

(ψ(y)− ψ(xε))dy + (1− ε2)ε.

From Taylor’s expansions we obtain

1

ε2

∫
Bε(xε)

(ψ(y)− ψ(xε))dy =
κ

2

n∑
j=1

∂xjxjψ(xε) =
κ

2
∆ψ(xε),

with

κ =
1

εn|B1(0)|

∫
B1(0)

z2
j ε
ndz =

1

|B1(0)|

∫
B1(0)

z2
j dz.

Taking limits as ε→ 0 we get

−κ
2

∆ψ(x0) + v(x0, t)− u(x0, t) ≤ 0.

The fact that v is a supersolution is similar.
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6.1. Comparison principle and uniqueness for the limit problem. Our goal
is to show uniqueness for viscosity solutions to our system (1). To this end we follow
ideas from [4, 27, 28] (see also [16] for uniqueness results concerning the infinity
Laplacian). This uniqueness result implies that the whole sequence uε, vε converge
as ε → 0 and finishes the proof of Theorem 1.2. As usual in viscosity theory,
uniqueness follows from a comparison principle. The comparison principle for the
elliptic counterpart of (1) was obtained in [27]. At this point we recall that viscosity
solutions to (1) are understood in the sense of Definition 2, u is a viscosity solution
to the first equation with v(x, t) as a given function, and v(x, t) is a solution to the
second equation, this time with u(x, t) given. See Section 2.3.

Theorem 6.2. Assume that (u1, v1) and (u2, v2) are a bounded viscosity subsolution
and a bounded viscosity supersolution of (1), respectively, and also assume that
u1 ≤ u2 and v1 ≤ v2 on ∂pΩT . Then,

u1 ≤ u2 and v1 ≤ v2,

in Ω× (0, T ).

As an immediate corollary of this comparison result we obtain the desired unique-
ness for (1).

Corollary 1. There exists a unique viscosity solution to (1).

Proof of Theorem 6.2. Following the classical ideas given in [11] we perturb the
subsolution defining the function

ũ1(x, t) := u1(x, t)− δ

T − t
, δ > 0,

that satisfies, in the viscosity sense,

∂(ũ1)

∂t
(x, t)− 1

2
∆∞ũ1(x, t) + ũ1(x, t)− v1(x, t)

≤ − δ

T − t
− δ

(T − t)2
≤ −c < 0 in Ω× (0, T ),

ũ1 → −∞, when t→ T−.

It is clear that if we prove ũ1(x, t) ≤ u2(x, t) for x ∈ Ω and t ∈ (0, T ) then the
conclusion follows by taking δ → 0. Therefore, we can assume that we have a strict
subsolution,

∂(ũ1)

∂t
(x, t)− 1

2
∆∞ũ1(x, t) + ũ1(x, t)− v1(x, t) ≤ −c < 0 in Ω× (0, T ),

u1 → −∞, when t→ T−.

Now, suppose, by contradiction, that

sup
x∈Ω, t∈[0,T ]

max
{
ũ1(x, t)− u2(x, t); v1(x, t)− v2(x, t)

}
:= η > 0.

We may assume further that ũ1 and v1 are semi-convex in space and u2 and
v2 are semi-concave in space by using sup and inf convolutions and restricting the
problem to a slightly smaller domain if necessary (see [28] for extra details). We
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now perturb ũ1 and v1. For α > 0, take Ωα := {x ∈ Ω : dist(x, ∂Ω) > α} and for
|h| sufficiently small we consider

M(h) := max
{

max
x∈Ω, t,r∈[0,T ]

ũ1(x+ h, t)− u2(x, r)− |t− r|
2

2ε
;

max
x∈Ω, t,r∈[0,T ]

(v1(x+ h, t)− v2(x, r))
}

= w1(xh + h, th)− w2(xh, rh)

for w = u or v and some xh ∈ Ω|h|, th, rr (notice that these quantities also depend
on ε but we omit this dependence to simplify the notation). We will call w the
component at which the maximum is achieved that is

w = u, if max
x∈Ω, t,r∈[0,T ]

ũ1(x+h, t)−u2(x, r) ≥ max
x∈Ω, t,r∈[0,T ]

(v1(x+h, t)− v2(x, r))

and

w = v, if max
x∈Ω, t,r∈[0,T ]

ũ1(x+h, t)−u2(x, r) < max
x∈Ω, t,r∈[0,T ]

(v1(x+h, t)−v2(x, r)).

Since M(0) > 0, for |h| small enough, we have M(h) > 0 and the above maximum
is the same if we take it over Ωα any α > 0 sufficiently small and fixed.

As in [27] we obtain that there exists a sequence hn → 0 such that at any
maximum point y ∈ Ω|hn| of

max
{

max
x∈Ω|hn|

(ũ1(x+ hn)− u2(x)); max
x∈Ω|hn|

(v1(x+ hn)− v2(x))
}
,

we have

Dw1(y + hn) = Dw2(y) 6= 0

for n ∈ N.
Now we consider, as in [4], the functions ϕγ defined as the primitive of

ϕ′γ(t) = exp

(∫ t

0

exp
(
− 1

γ
(s− 1

γ
)
)
ds

)
.

These functions ϕγ are close to the identity (that is, ϕγ(s)→ s as γ → 0), ϕ′γ > 0,

ϕ′γ converge to 1 as γ → 0 and ϕ′′γ converge to 0 as γ → 0 with (ϕ′′γ(s))2 >

ϕ′′′γ (s)ϕ′γ(s), see [4]. With ψγ = ϕ−1
γ we perform the changes of variables

Uγi = ψγ(ui), V γi = ψγ(vi), i = 1, 2.

It is clear that U1, V1 are semi-convex in space and U2, V2 are semi-concave in space.
We have that

max
{

max
x,t,r

(Uγ1 (x+ hn, t)− Uγ2 (x, r)− |t− r|
2

2γ
); max
x,t,r

(V γ1 (x+ hn, t)− V γ2 (x, r))
}

is achieved at some point xγ , tγ , rγ . Notice that U1, V1, −U2 and −V2 are bounded

from above, Ω× [0, T ] is compact and limt→T− U1 → −∞. From standard compu-
tations in viscosity theory we get

1

ε
|tγ − rγ |2 → 0, as γ → 0. (21)

Extracting a subsequence, if necessary, we can assume that xγ → xhn
and (tγ , rγ)→

(t̃n, r̃n) ∈ [0, T )2, and we get t̃ = r̃. By using that u1(x, t) ≤ u2(x, t), v1(x, t) ≤
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v2(x, t) on ∂Ω× (0, T ) and u1(x, 0) ≤ u2(x, 0), we have that xh /∈ ∂Ω and t̃ = r̃ > 0.
Therefore, we get

min{d(xh, ∂Ω)} > 0, and min{tε, rε} > 0.

Since we have

Dw1(y + hn) = Dw2(y) 6= 0

for n ∈ N, it holds that there is a positive constant c(n) such that

|Dw1(xn + hn, t̃n)| = |Dw2(xn, r̃n)| > c(n).

Then, we deduce that for γ sufficiently small, it holds that

|DW γ
1 (xγ + hn, t̃n)| = |DW γ

2 (xγ , r̃n)| ≥ c(n)/2.

Now, we have, as in [27], that U1, V1, U2 and V2 verify a strictly monotone system
(with a strict inequality in the first equation). In fact, the pair (U1, V1) verifies the
equations (in the viscosity sense)

0 > −c ≥ ∂ũ1

∂t
− 1

2
∆∞u1 + u1 − v1

= ϕ′(U1)
∂U1

∂t
− 1

2
ϕ′(U1)∆∞U1 −

1

2
ϕ′′(U1)|DU1|2 + ϕ(U1)− ϕ(V1)

= ϕ′(U1)
(∂U1

∂t
− 1

2
∆∞U1 −

1

2

ϕ′′(U1)

ϕ′(U1)
|DU1|2 +

ϕ(U1)− ϕ(V1)

ϕ′(U1)

)
,

and

0 = −κ
2

∆v + v − u

= −κ
2

(
ϕ′(V1)∆V1 + ϕ′′(V1)|DV1|2

)
+ ϕ(V1)− ϕ(U1)

= ϕ′(V1)
(
− κ

2
∆V1 −

κ

2

ϕ′′(V1)

ϕ′(V1)
|DV1|2(x) +

ϕ(V1)− ϕ(U1)

ϕ′(V1)

)
,

and similar equations also hold for (U2, V2). Thus, from the strict monotonicity,
the strict inequality for the parabolic equation and using (21), we get the desired
contradiction. See the proof of [4], Lemma 3.1, for a more detailed discussion.
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