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Abstract 

Extreme discharge events in the La Plata Basin need to be prevented. Simple approaches 

to the forecast problem such as SARIMA models usually predict average values correctly 

but fail to anticipate extreme events. As an approach to this problem, we used copula 

methods to model the distribution of the NIÑO 3.4 index and river streamflow pair. We 

used this to build a 6-months forecast for streamflow 95% percentile using observed index 

values. We added this forecast as an exogenous variable in a SARIMAX model to predict 

discharge. Given that NIÑO events are usually correlated with extreme discharge events, 

we expected this model to improve the SARIMA model in predicting extreme events. 

When comparing both models, we effectively found that that SARIMAX model is better 

than a SARIMA model both for six and twelve- month discharge forecasts in periods 

when an El Niño event occurs, while it retains the same performance level when evaluated 

on all the span of the time series. This model emerges as a lightweight and easily 

http://crossmark.crossref.org/dialog/?doi=10.1080/15715124.2022.2079657&domain=pdf


implementable option for decision makers to anticipate extreme events and reduce the 

negative impacts that they generate. 
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Introduction 

Great floods have occurred in the La Plata Basin in the past, provoking large 

economic and social damage in the nearby areas, especially affecting most vulnerable 

communities (Aparicio-Effen et al., 2016; Baéz et al., 2014). In this sense, there is a need 

to provide different tools for early identification and prevention of anomaly discharge 

events (Barros et al., 2020). Moreover, the participation of different scientific 

communities (climatologists, mathematicians, anthropologists, sociologists, and others) 

is needed. The generation of tools for decision makers to mitigate negative impacts should 

be a priority (Bai et al., 2018).  

In this work, we propose to study streamflow time series using statistical 

SARIMAX models that incorporate exogenous variables based on occurrence of extreme 

ENSO events. The purpose of this is obtaining a lightweight model that is interpretable 

and more accurate than traditional approaches for predicting extreme streamflow values.   

Different studies (Meis and Llano 2017; Cai et al., 2020, Thielen D, et al., 2020, 

Cerón et al.2020, among others) have documented the connection between extreme 

events in the La Plata Basin and ENSO (El Niño Southern Oscillation). Furthermore, in 

Meis et al. (2020) the authors built a statistical model to quantify the impact from ENSO’s 

behavior in the seasonal discharge from the Paraná river. These articles indicate that 

ENSO climatic oscillation may be a relevant variable in hydrological models, particularly 

for cases when extreme values of streamflow happen. However, none of them quantify if 

any improvement can be obtained by using ENSO-related variables for prediction of 



streamflow series. Instead, the approach taken in Meis et al. (2020) is modeling the joint 

distribution for the streamflow and ENSO index pair.  This work can be seen as a natural 

continuation of it, as rather than directly adding index values to the models, we build 

exogenous variables using those joint distributions. 

Regarding the usage of statistical models, the authors of Emerton et al. (2019) 

compare the results from two different models for streamflow, a simple statistical one and 

a more complex dynamical model. In the results, the authors conclude that there were 

regions where the dynamical tool considered presented a lesser performance. This was 

especially true in areas strongly influenced by ENSO, like southern south América. This 

shows that statistical models can be considered for the streamflow prediction problem, as 

they are better than complex dynamical models in some scenarios and still offer other 

advantages. Moreover, that article only considered a very simple statistical model, which 

we seek to improve in this manuscript. 

 In this sense, the application of statistical models in climatology and hydrological 

variables has seen increasing demand in the last decades, in the scientific community as 

well as in governmental organisms. Although there exist several approaches to this kind 

of problems, most of them are not easy to interpret, and also some of them involve a great 

computational implementation cost. For example, deep learning approaches (like the one 

in Liu et al., 2020) can generally be used to obtain good results at the cost of higher 

computational cost and lesser interpretability of results. On the other hand, the family of 

models that we use in this article, which includes the autoregressive moving average 

model (ARMA), the autoregressive integrated moving average model (ARIMA) from 

Box and Jenkins (1976) or the seasonal autoregressive moving average model (SARIMA) 

are models considered to be both understandable and easily implementable. 



Regarding the previous discussion, several authors (Tadesse and Dinka 2017; 

Ahmadpour et al., 2017; Adnan, et al., 2017, and many others) have considered the 

statistical methodology developed by Box and Jenkins in the study of discharge time 

series in the past. In those studies, the results for forecasting and modeling discharge were 

usually considered favorable. These articles only consider a simple autoregressive 

approach, which we intend to improve in this work by adding exogenous variables. 

There are several precedents of using climatic indices as variables on hydrological 

models in the literature. For instance, the work from Kim et al. (2019) considered climate 

teleconnections indices to forecast reservoir inflow in South Korea through using 

SARIMA and SARIMAX, together with more complex artificial intelligence models. The 

results showed that in some locations time series models exhibited a better performance 

at forecasting.  

In this article, we follow the same idea of incorporating climatic indices to 

discharge modeling, but we propose a more complex two-step approach. First we infer 

what is the expected streamflow given a value for the climatic index using copula methods 

to model the joint distribution of the two variables (Meis et al., 2020). Then we use the 

expected streamflow variable obtained in the first step as a regressor variable in a 

SARIMAX model for streamflow. We show that, compared to a baseline model without 

exogenous variables, the model obtained by this methodology improves predictive power 

in case of extreme events while not hurting overall series forecast error. We repeated this 

for 6-month and 12-month forecasting in the middle Paraná River basin. 

 

Data and Methodology 

 

For this study we considered the mean monthly discharge for Túnel Subfluvial 

gauge station from the Paraná River (Figure 1) in the period 1975-2016. The data was 



obtained from the Subsecretaría de Recursos Hídricos (Argentine Undersecretariat for 

Water Resources)    

Previous studies have suggested that SARIMA models (Wei, 2005) could be 

applied to forecast the monthly discharge in the Paraná river (Meis and Llano, 2017) 

because of their capacity to study time series that do not follow a stationary process (i.e. 

changes in the mean value, variance or in the autocorrelation structure), as well as time 

series that present a certain kind of seasonality (periodic fluctuations). The model could 

be expressed as follows: 

 

Φ𝑃𝑆(𝐵𝑠)Φ𝑝(𝐵)(1 − 𝐵𝑆)
𝐷(1 − 𝐵)𝑑𝑍𝑡 = Θ𝑄𝑆(𝐵𝑆)Θ𝑞(𝐵)𝑢𝑡 (Eq. 1)  

 

  

  

 

 

 

 

 

 

 

Being (p, d, q) parameters for the ordinary part and (P, D, Q) for the seasonal one and S 

the periodic fluctuation duration, with 𝑢𝑡  ∼ N (0, 𝜎2  )  and D > 0 the order of the difference 

associated with the seasonal part of the model. This model was implemented by Hyndman 

(2016) in a R package (Package ‘forecast’).  



 However, they lack the ability to forecast extraordinary events. In this way, we 

suggest that this could be improved by considering an external variable. As the aim of 

this work was to see the improvement of a certain external variable in a SARIMA model, 

first, we considered the simple approach already used, but with an extended grid. 

Therefore, we ran a grid search over the hyperparameters, in which we considered values 

for p and q less than or equal to four and P and Q less than or equal to one, analysing a 

total of one hundred possible hyperparameter combinations. However, we must clarify 

that we sought to obtain a parsimonious (simpler) model, so we kept that in consideration 

at the time of analysing grid search results.  

In the process of building the best possible model for the time series, we 

considered identification methods (autocorrelation function (ACF)), partial 

autocorrelation (PACF)), estimation of the parameters of the SARIMA model and 

diagnosis methods. In this process, the residual analysis was carried out with different 

techniques (ACF, PACF) as well as with statistical tests like the Ljung-Box, which 

consider that the data is distributed in an independent way as a null hypothesis. For the 

selection model, we used a compromise between ACF, PACF and the Ljung-Box. 

Furthermore, we took into account two metrics: the Akaike criterion (AIC) and the 

efficiency coefficient model Nash–Sutcliffe (NSE). This latter index is always minor to 

one, where values closer to one represent adequate models, while negative values exhibit 

a poor performance. 

Furthermore, for the selection of the hyperparameters for the model we took into 

account two metrics: the Akaike criterion (AIC) and the efficiency coefficient model 

Nash Sutcliffe (NSE)-. This latter index is always minor to one, where values closer to 

one represent adequate models, while negative values exhibit a poor performance.  



After the model selection, two forecasts were generated. First, for the monthly 

discharge, we forecasted the period 07/2016 a 12/2016 (six months) with a training period 

1975 – 06/2016. Second, a twelve- month forecast for the period 01/2016 to 12/2016 with 

the training period 1975 − 2015 was done. We applied the algorithm implemented by 

Stoffer (2016), (Eq. 2). 

 

Φ𝑃𝑆(𝐵𝑠)Φ𝑝(𝐵)(1 − 𝐵𝑆)
𝐷(1 − 𝐵)𝑑𝑍𝑡+1 = Θ𝑄𝑆(𝐵𝑆)Θ𝑞(𝐵)𝑢𝑡+1 (Eq. 2) 

After obtaining the results for the initial SARIMA approach, we considered the 

model obtained by incorporating an expected discharge variable as an exogenous variable 

to the SARIMA model with the already selected hyperparameters (Xie et al., 2013), in 

order to evaluate the value it adds to the predictive task (Eq. 3).  

 

Φ𝑃𝑆(𝐵𝑠)Φ𝑝(𝐵)(1 − 𝐵𝑆)
𝐷(1 − 𝐵)𝑑𝑍𝑡 = Θ𝑄𝑆(𝐵𝑆)Θ𝑞(𝐵)𝑢𝑡 +∑ 𝛽ℎ𝑋𝑡−ℎ

𝑏
ℎ=0  (Eq. 3)  

 

 

 

 

 

 

 

 

 

 

with ut ∼ N (0, σ2 ), and D >0 the difference order associated with the seasonal part of the 

model, Xt is the external variable.  



 

  In a previous work, we have estimated the mean expected discharge given a NIÑO 

3.4 value from 6 months earlier. This variable was obtained from a joint distribution 

between the shifted index and the discharge, which was estimated through a copula 

method (Meis et al., 2020). In this last research, we proposed a way to generate 

conditional samples from the variable Y (discharge) given observations from the variable 

X (index). This process consists in the following:  

(1) Transform X and Y to uniform variables by applying the inverse of their cumulative 

distribution function. Obtain U1=F-1
x(X) and U2=F−1

Y(Y) uniform variables and name 

u1=F−1
X(x) the observed value from U1 corresponding to x, the observed value from X.  

(2) Obtain a conditional sample u2 from U2 given U1 =u1 using the conditional function 

distribution from the copula (Eq. 4). 

(3) Transform the uniform sample u2 to the space of the original variable Y applying FY, 

thus obtaining a sampled value y=FY(u2) 

For this procedure we carried out the implementation proposed by Schepsmeier et al. 

(2018).  

𝐶(𝑢2|𝑢1) = 𝑃(𝑈2 ≤ 𝑢2|𝑈1 = 𝑢1) =
𝜕𝐶(𝑢1,𝑢2)

𝜕𝑢1
 (Eq. 4).  

 

 

We have already demonstrated that the new 6-month expected discharge variable 

could be useful to forecast extreme events (Meis et al. ,2020). However, we should notice 

that the discharge variable was obtained quarterly, while in this present research we 

evaluated a monthly model. We converted the quarterly variable into a monthly one by 

repeating the same value for each month in the same trimester and then applying a moving 

average of order three   to this new time series. 



Once we got the SARIMA and SARIMAX models, we did the cross validation in 

the time series in order to compare the univariate model with the one that included the 

exogenous variable. For this, the time series was truncated at two hundred different points 

(beginning with the whole series and discarding one month). At each point, the truncated 

series was used as a training set, and the following six or twelve months as a testing set, 

as it is observed in Figure 2. 

We proceeded to forecast values for the test set from the model fit with the training 

set and the external variable corresponding to the tested period. For each split, we 

computed the mean squared error in the test set for the model with and without the 

exogenous variable. Finally, we computed the average relative difference between both 

errors, where negative values imply that the SARIMAX model presents a better 

performance.  

  It is important to say that as the exogenous variable presented the last value in the 

third trimester of 2016, we decided to do the validation until September 2016. 

 

Results 

The monthly discharge time series from Túnel Subfluvial gauge station for the 

period 1975-2016 is shown in Figure 3. In this figure it is possible to highlight that there 

is a higher number of extreme events during the first twenty years. Particularly, we can 

see three extreme events with values of discharge over 30000 m3/s in that period related 

to ENSO events (Antico et al., 2015). Even more, we could see that the discharge variable 

had shown no homoscedasticity since the last twenty years. This could be related to an 

external human-manipulation variability such as the operation of a dam. However, we 

need to highlight that we are interested in the discharge variability forecast related to a 

natural external forcing. Furthermore, the time series presented seasonality and 



stationarity (Meis and Llano, 2017 and 2019) where the seasonality is shown in the form 

of an annual wave, with the maximum monthly mean between March and April, and the 

minimum around September. This can be seen in Figure 3. As for stationarity we found 

in Meis and Llano (2017) and Meis et. al (2020) that the time series considered were 

stationary, as no trend was found in the last forty years.   

As it was noticed in the previous section, we extended the grid search applied in 

a previous work over the hyperparameters, in which we considered values for p and q less 

than or equal to four and P and Q less than or equal to one, analysing a total of one 

hundred possible hyperparameter combinations. The autocorrelation and partial 

autocorrelation functions for the monthly discharge from Túnel Subfluvial gauge station 

together with  the confidence interval for what is produced by white noise (95% of 

confidence, dot lines) are shown in Figure 4. 

From the ACF (Figure 4, left) we could notice that lags multiple of twelve 

presented a high and significant correlation, in line with results from the previous work. 

Even more, the seasonality of the series could be observed by differentiating the time 

series once, this can be seen In Figure 5 where  seasonality could be easily distinguished 

from the ACF. Furthermore, it is possible to observe that lag three is significant in the 

partial autocorrelation function (Figure 4, right). This could be an indicator that the 

hyperparameter p for the SARIMA model could be of order three.  

As it has been mentioned in the methodology section, in the hyperparameter grid 

search for the SARIMA model we considered values of the parameters p and q between 

0 and 4, and P and Q between 0 and 1. This gave us one hundred possible combinations 

of hyperparameters. We picked the hyperparameter combination with minimum AIC and 

maximum NSE values, which turned out to be SARIMA(3, 0, 0)(0, 1, 1)12 for the two 

training periods mentioned in the methodology section.  



In Table I we show the AIC values for the different hyperparameter combinations, 

together with the NSE coefficient for training period (1975 – 06/2016). The selected 

combination presented an AIC equal to 8721.42, while the NSE value was equal to 0.70. 

This means that the selection of the hyperparameters considered might be adequate. For 

the second training period the values obtained were similar (results not shown).  

In Figure 6 we exhibit standardized residuals (above), ACF (middle), and the 

result from the Ljung-Box test applied to the residuals from the model for the selected 

combination of parameters (below)., and in the Ljung Box test the null hypothesis was 

not rejected for all the lags considered. From these results, it is easy to observe that the 

hyperparameter selection was adequate. 

     

Six and twelve month forecast ahead for the discharge from Túnel Subfluvial 

gauge station. 

 

We carried out forecasts for the last six and twelve months of the time series using 

the SARIMA model selected in the previous section. The prediction together with the 

original series and the classical one-standard deviation from the forecast (confidence 

interval) are shown in Figures 7 and 8. It is possible to observe in those figures that 

although the actual series for six months lies inside the confidence interval generated by 

the model, the location of the minimum points are not properly obtained. On the other 

hand, in the twelve-month forecast it is important to highlight the overestimation of the 

maximum values for January and April for 2016.    

As the last results for the twelve- month forecast presented an underestimation of 

the streamflow in the first months, possibly, associated with the influence of the ENSO 

phenomenon, as 2015-2016 was considered an El Niño event, we proposed incorporating 

the expected discharge estimated from a copula method as an exogenous variable for the 

SARIMA model, as described in the methodology section. As we have already analyzed 



in a previous work by Meis et al. (2020), we obtain a copula of the Joe family when fitting 

a joint distribution for discharge and index. This can be seen in Equation (3). As 

mentioned in methodology, we carried out a comparison between the model without the 

external variable and the SARIMAX model, through the computation of the mean squared 

error of two hundred truncated time series, in cross validation fashion. We measured the 

error in the forecast for twelve months as well as for six months at each step. We obtained 

that for the twelve- month forecast, the SARIMAX model was 2.44% worse than the 

univariate model, while for the six -month forecast it turned out to be 1% better.  

However, it is interesting to highlight that although on average the incorporation of the 

exogenous variable seems not to improve the model, we noticed large differences when 

forecasting extreme events.  

To evidence this phenomenon, we report the relative performance of the model 

SARIMAX with respect to the univariate in the first twelve iterations of the cross 

validation, corresponding to the prediction of the period that finalized during October 

2015- September 2016, in which the test set coincided totally or partially with an El Niño 

event. We exhibit the errors for each model on each of these iterations in Tables II and 

III.  Moreover, to illustrate this, we exhibit the forecast for the last six and twelve months 

after a period where ENSO affected the study region in Figures 9 and 10. 

In Table II and Figure 9, we can observe that when we are forecasting close to the 

extreme relative maximum that occurred at the beginning of 2016 the SARIMAX model 

performs much better. This makes sense, as the exogenous variable incorporated into the 

model was estimated from the NIÑO 3.4 index and the temporal period analyzed is 

influenced by an ENSO phenomenon.  

In the twelve- month forecast that is observed in Table III and Figure 10 we can 

also see that the SARIMAX model is performing better than the univariate model. 



 

Conclusions 

Interaction between different scientific communities turns out to be necessary 

and almost essential in order to be able to collaborate with decision makers in the 

hydrological, climatic and agriculture fields, among other areas. 

The studies in the La Plata Basin are important for their hydrological implications 

for the southeast of Southamerica (SESA). Several extreme events (floods and 

downspouts) have occurred in the recent past, which have provoked irreparable socio-

economic damage in the different regions and communities that depend on the basin. In 

this sense, any climatic and hydrological study that might help prevent and mitigate these 

catastrophic effects in the LPB are essential for the well-being of society. 

Hence, the monitoring of streamflow becomes indispensable, and statistical 

modeling is a useful approach for improving alert and control systems in the near future.  

  In this work, we applied statistical models to the problem described above. We 

considered using a time series model to forecast the monthly discharge in Túnel 

Subfluvial gauge station in the southern part of the La Plata Basin. 

As it was seen in Meis and Llano (2017) SARIMA models could be useful to 

model the Paraná´s streamflow, however they lack the capacity to forecast its discharge 

under an extreme event scenery, such as an El Niño event. However, we chose the best 

model among 100 combinations of parameters for the SARIMA model. The selection we 

established considers the AIC criterion, as well as the NSE coefficient for both training 

periods. As it was expected, certain particularities were observed regarding estimated 

values, accordingly with Meis and Llano (2017). 

To alleviate this, we repeated the exercise by adding to the model an exogenous 

variable describing the expected discharge obtained from the observed value of the NIÑO 

3.4 index. Results showed that the exogenous variable did not improve the performance 



of the model on average, however, it was possible to observe that under situations in 

which the series presented extreme values, the new forecast was much better. This result 

is coherent with the work done in Meis et al. (2020), where we found that the relationship 

between the NIÑO 3.4 index and the discharge is stronger when the region is influenced 

by the phenomenon.  

Even more, the joint distribution that was used to generate the exogenous variable 

works particularly well in the tail that corresponds to high values of the index and the 

discharge, suggesting that the signal that the expected discharge we built might not be too 

strong on average, but particularly accurate in extreme events. In this sense, by adding 

the exogenous variable we are getting a model that does not perform worse than the 

previous one on average, and it is stronger in certain temporal bounded windows related 

to extreme events of the El Niño phase.  

Overall, these results show that it is possible to improve existing simple statistical 

models to perform well under extreme events that rely on an external natural forcing, such 

as ENSO. This is important for two reasons, these models have much lower computational 

cost and good interpretability, and extreme events are one of the most important situations 

in which decision makers must monitor discharge.  
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Table I: AIC, NSE for the one hundred SARIMA model hyperparameters combination 

for the mean monthly discharge in Túnel Subfluvial gauge station for the period 1975-

2015. In bold it is the SARIMA(3, 0, 0)(0, 1, 1)12. 

 

 

p q P Q AIC NSE 

1 0 0 0 0 9443.58 -0.46 

2 1 0 0 0 9027.56 0.39 

3 2 0 0 0 9006.55 0.42 

4 3 0 0 0 8983.57 0.45 

5 4 0 0 0 8985.41 0.45 

6 0 1 0 0 9106.43 0.28 

7 1 1 0 0 8992.40 0.43 

8 2 1 0 0 8993.10 0.44 

9 3 1 0 0 8985.46 0.45 

10 4 1 0 0 8987.30 0.45 

11 0 2 0 0 9026.42 0.39 

12 1 2 0 0 8990.72 0.44 

13 2 2 0 0 8991.41 0.44 

14 3 2 0 0 8986.40 0.45 

15 4 2 0 0 8964.34 0.48 

16 0 3 0 0 9010.57 0.42 

17 1 3 0 0 8989.87 0.44 



18 2 3 0 0 8991.34 0.44 

19 3 3 0 0 8970.56 0.47 

20 4 3 0 0 8933.68 0.52 

21 0 4 0 0 9007.89 0.42 

22 1 4 0 0 8989.74 0.45 

23 2 4 0 0 8993.87 0.44 

24 3 4 0 0 8943.27 0.51 

25 4 4 0 0 8953.44 0.50 

26 0 0 1 0 9349.17 -0.19 

27 1 0 1 0 8893.87 0.54 

28 2 0 1 0 8872.20 0.57 

29 3 0 1 0 8858.01 0.58 

30 4 0 1 0 8859.30 0.58 

31 0 1 1 0 9002.03 0.43 

32 1 1 1 0 8862.45 0.57 

33 2 1 1 0 8863.53 0.57 

34 3 1 1 0 8859.39 0.58 

35 4 1 1 0 8862.01 0.58 

36 0 2 1 0 8911.20 0.53 

37 1 2 1 0 8862.44 0.58 

38 2 2 1 0 8862.67 0.58 

39 3 2 1 0 8857.38 0.59 

40 4 2 1 0 8852.45 0.59 

41 0 3 1 0 8884.03 0.56 

42 1 3 1 0 8861.54 0.58 



43 2 3 1 0 8863.53 0.58 

44 3 3 1 0 8856.79 0.59 

45 4 3 1 0 8852.98 0.59 

46 0 4 1 0 8881.42 0.56 

47 1 4 1 0 8863.51 0.58 

48 2 4 1 0 8855.90 0.59 

49 3 4 1 0 8837.07 0.61 

50 4 4 1 0 8854.17 0.59 

51 0 0 0 1 9242.71 0.07 

52 1 0 0 1 8763.79 0.67 

53 2 0 0 1 8738.63 0.68 

54 3 0 0 1 8721.42 0.70 

55 4 0 0 1 8722.89 0.70 

56 0 1 0 1 8887.32 0.56 

57 1 1 0 1 8726.84 0.69 

58 2 1 0 1 8728.22 0.69 

59 3 1 0 1 8722.95 0.70 

60 4 1 0 1 8724.88 0.70 

61 0 2 0 1 8781.88 0.65 

62 1 2 0 1 8727.36 0.69 

63 2 2 0 1 8725.37 0.70 

64 3 2 0 1 8724.75 0.70 

65 4 2 0 1 8726.57 0.70 

66 0 3 0 1 8752.54 0.68 

67 1 3 0 1 8724.19 0.70 



68 2 3 0 1 8725.95 0.70 

69 3 3 0 1 8724.38 0.70 

70 4 3 0 1 8727.56 0.70 

71 0 4 0 1 8748.44 0.68 

72 1 4 0 1 8725.75 0.70 

73 2 4 0 1 8727.21 0.70 

74 3 4 0 1 8724.81 0.70 

75 4 4 0 1 8726.17 0.70 

76 0 0 1 1 9239.99 0.08 

77 1 0 1 1 8765.47 0.67 

78 2 0 1 1 8740.46 0.69 

79 3 0 1 1 8722.58 0.70 

80 4 0 1 1 8724.12 0.70 

81 0 1 1 1 8884.60 0.57 

82 1 1 1 1 8728.39 0.70 

83 2 1 1 1 8729.70 0.70 

84 3 1 1 1 8724.19 0.70 

85 4 1 1 1 8726.10 0.70 

86 0 2 1 1 8781.89 0.66 

87 1 2 1 1 8728.71 0.70 

88 2 2 1 1 8727.07 0.70 

89 3 2 1 1 8725.93 0.70 

90 4 2 1 1 8728.18 0.70 

91 0 3 1 1 8753.90 0.68 

92 1 3 1 1 8725.61 0.70 



93 2 3 1 1 8727.48 0.70 

94 3 3 1 1 8727.07 0.70 

95 4 3 1 1 8729.43 0.70 

96 0 4 1 1 8749.85 0.68 

97 1 4 1 1 8727.36 0.70 

98 2 4 1 1 8728.80 0.70 

99 3 4 1 1 8725.26 0.71 

100 4 4 1 1 — — 

 

Table II: Percentual mean squared error for the six -month forecast model from Túnel 

Subfluvial gauge station.  

 

END TESTED DATE 6 MONTHS 

SEPTEMBER 2016 74.79% 

AUGUST 2016 68.42% 

JULY 2016 65.75% 

JUNE 2016 -0.54% 

MAY 2016 -50.22% 

APRIL 2016 -62.57% 

MARCH 2016 -51.22% 

FEBRUARY 2016 -38.48% 

JANUARY 2016 -40.4% 

DECEMBER 2015 -61.29% 

NOVEMBER 2015 -47.55% 

OCTOBER 2015 -46.45% 

 

 

 

 

 



Table III: Percentual mean squared error for the twelve- month forecast model from Túnel 

Subfluvial gauge station. 

 

END TESTED DATE 12 MONTHS 

SEPTEMBER 2016 -9.86% 

AUGUST 2016 -9.37% 

JULY 2016 -11.89% 

JUNE 2016 -13.04% 

MAY 2016 -12.97% 

APRIL 2016 -12.76% 

MARCH 2016 -11.46% 

FEBRUARY 2016 -10.99% 

JANUARY 2016 -8.29% 

DECEMBER 2015 -11.46% 

NOVEMBER 2015 -10.99% 

OCTOBER 2015 -8.29% 

 

Figure 1: Geographic location of Túnel Subfluvial gauge station.  

 

Figure 2: Description of the generation of training and test sets for the discharge mean 

monthly time series, as well as the exogenous variable. Particular case for twelve- month 

forecast for the series that ends in December 2016. The external variable in the training 

set corresponds to a discharge expected six months ahead in time. 

 

Figure 3: Mean monthly discharge time series for Túnel Subfluvial in the period 1975-

2015. 

 

Figure 4: ACF (left) and PACF (right) from Túnel Subfluvial mean monthly time series 

from the period 1975-2015. 

 

Figure 5: ACF for the differentiated mean monthly time series from Túnel Subfluvial 

gauge station corresponding to the period 1975-2015. 

 

Figure 6: ACF, and standardized residual Túnel Subfluvial time series together with the 

Ljung Box p-values for the training period 1975 − 2015. 

 



Figure 7: Six months forecast for the discharge from Túnel Subfluvial. The red line is the 

forecast from the SARIMA model, the black line is observed data, the blue lines represent 

one standard deviation from the forecast. 

 

Figure 8: Twelve -month forecast for the discharge from Túnel Subfluvial. The red line 

is the forecast from the SARIMA model, the black line is observed data, the blue lines 

represent one standard deviation from the forecast. 

 

Figure 9: Examples of the six- month forecast for monthly discharge in Túnel Subfluvial 

gauge station from October 2015 to September 2016. The red line represents the model 

that includes the exogenous variable, the green line represents the SARIMA without 

exogenous variable. (a) End tested December’15, (b) End tested April’16, (c) End tested 

May’16, (d) End tested September’16. 

 

Figure 10: Examples of the twelve -month forecast for monthly discharge in Túnel 

Subfluvial gauge station from October 2015 to September 2016. The red line represents 

the model that includes the exogenous variable, the green line represents the SARIMA 

without exogenous variable. (a) End tested January’16, (b) End tested July’16, (c) End 

tested May’16. 
 



 



 



 



 



 



 



 



 



 



 



 



 



 



 



 




