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ABSTRACT. The artificial intelligence-based prediction of the mechanical properties derived 

from the tensile test, plays a key role in assessing the application profile of new polymeric 

materials, specifically in the design stage, prior to synthesis. This strategy saves time and 

resources when creating new polymers with improved properties that are increasingly 

demanded by the market. A quantitative structure-property relationship (QSPR) model for 

tensile strength at break is presented in this work. The QSPR methodology applied here is based 

on machine learning tools, visual analytics methods, and expert-in-the-loop strategies. From 

the whole study, a QSPR model composed of five molecular descriptors that achieved a 

correlation coefficient of 0.9226 is proposed. We applied visual analytics tools at two levels of 

analysis: a more general one in which models are discarded for redundant information metrics 

and a deeper one in which a chemistry expert can make decisions on the composition of the 
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model in terms of subsets of molecular descriptors, from a physical-chemical point of view. In 

this way, with the present work, we close a contribution cycle to polymer informatics, providing 

QSPR models oriented to the prediction of mechanical properties related to the tensile test. 

 

 

1. INTRODUCTION 

Traditionally, for the exploration of structure-property correlations or tailoring of material 

properties for a specific application, a small series of polymers with chemical variations are 

synthesized for investigation. The chosen monomers are usually based on an expert’s chemical 

intuition [Guo et al., 2021]. Although this approach may enable polymer chemists to identify 

materials with suitable properties, it is highly unlikely that this approach will identify the 

polymer with the optimal possible properties for the intended application. To address this issue, 

advances have been made in the development of machine learning (ML) methods that can learn 

the structure-property relationship by computational models [Guo et al., 2021]. Therefore, this 

interdisciplinary shift in the way of designing new materials represents a significant advance in 

materials science and it is a long-standing challenge in cheminformatics, specifically in polymer 

informatics [Kim et al., 2019, Chen et al., 2021, Kuenneth et al., 2021, Lui et al., 2021, Sha et 

al., 2021]. 

These structure-property relationships are used to make predictions of polymer properties, 

thereby providing a rational way to prioritize among different candidate polymers during the 

virtual screening step of computational materials design projects [Guo et al., 2021, Wu et al., 

2019]. In addition, compound libraries used in virtual screening can also be developed by ML 

to generate hundreds of virtual candidate molecules with structural variations, without the need 

to synthesize them [Bilodeau, et al., 2022]. Understanding the processes that govern the 

performance of polymeric materials by exploring modeling results becomes a major challenge 

in polymer informatics. In this sense, ML has been involved for more than half a century in the 
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development of techniques that quantitatively relate structure to an activity or a property. These 

relationships began to be studied sixty years ago in the field of biology [Hansch, and Fujita, 

1964], but today they are applied to several others, such as materials science [Meredig, 2019, 

Chen et al., 2021]. 

Specifically, in polymer informatics, one of the most studied properties is glass transition 

temperature (Tg) [Adams, 2010; Chen et al., 2018] beginning with the pioneering works of 

Katritzky et al.[Katritzky et al., 1996], to the present with the work of Kim et al, that propose 

a general ML-based approach to design polymers that meet practically useful, but extreme, 

property criteria using as a use case: Tg>500 K and bandgap, Eg>6 eV [Kim,et al., 2021]. It is 

a highly relevant property of polymers because it is related to molecular mobility, material 

processability, and consequently to macroscopic mechanical properties [Kim, et al., 2019, 

Karuth et al., 2021, Ward and Sweeney, 2004]. There are other interesting properties [Liu, et 

al., 2020], such as electrical [Hu, et al., 2020; Tuan-Anh, T. and Zaleśny, R., 2020], or optical 

[Theodosiou and Kalli, 2020; Erickson, et al., 2020]. 

In particular, we are interested in mechanical properties derived from the tensile test for high 

molecular weight linear polymers because all service conditions involve some mechanical 

loading. Therefore, the choice of a material for a specific application must be based on the 

knowledge of these properties. They are related to forces outside the polymeric material that 

are exerted on it and respond in one way or another depending on the type of polymer and the 

transformation process they have undergone. Generally, plastic materials respond to these 

forces to which they are subjected by undergoing a deformation that, depending on the case, is 

greater or lesser and ends in breakage. According to the need and the field of application of 

each product, whether for packaging, construction, aeronautics, or medicine, for example, some 

mechanical (tensile, compression, flexural, impact) properties will be determined. The 

https://www.sciencedirect.com/science/article/abs/pii/S0927025620305589#!


Accepted to J. Chem. Phys. 10.1063/5.0087392

  

 

4 

 

mechanical properties are very little studied compared to the others, one of the few current 

references on the prediction of mechanical properties corresponds to the work of Pal and 

Naskar, [Pal and Naskar, 2021], and another is that of Kuenneth, et al. [Kuenneth et al., 2021]. 

On the one hand, Pal and Naskar present a general workflow to predict the properties of ionic 

thermoplastic elastomers (Ionic-TPEs) through the inference of three different regression ML 

models. They generated a virtual stress-strain plot (including: tensile strength, elongation at 

break, hardness (shore A) tear strength), created by the regression model trained for the Ionic-

TPEs samples. They prepare only 10 samples (mixtures with different ratios of rubber and 

stearic acid), measure the stress-strain properties of interest, and then train ML models with 

these data. On the other hand, Kuenneth et al., present a multi-task learning study, where they 

work with 13,000 polymers and 36 properties, including two mechanical properties. The 

method presented by them learns "better" as it has more data on the same or other properties, 

learns one property at a time, and then looks for inherent correlations between the data on the 

different properties. 

Our long-term goal is the development of virtual screening methods for the identification of 

promising synthetic polymers with a specific industrial profile, based on the quantitative 

structure-property relationship (QSPR) modeling of mechanical properties. We have already 

presented a QSPR model for the prediction of elongation at break [Palomba et al., 2014] and 

two predictive QSPR models for the tensile modulus [Cravero et al., 2019]. The aim of the 

present work is to close the prediction cycle for the tensile test by presenting a QSPR model for 

tensile strength at break, thus achieving a complete set of useful prediction tools for materials 

design practitioners. 
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2. RESULTS AND DISCUSSIONS 

 

2.1. POLYMER DATABASE: DATA REPRESENTATION, PREDICTED 

PROPERTY, AND MOLECULAR DESCRIPTORS 

It is relevant to understand the inherent complexity of QSPR modeling in the context of polymer 

informatics. While the chemical structure of a low molecular weight drug candidate determines 

its biological activity, the structural repeat unit (SRU) of a polymer is only one of many 

parameters that affects its ultimate utility. Other equally important parameters are polymer 

molecular weight, molecular weight distribution, and fabrication method. Establishing QSPR 

correlations using both molecular structure and fabrication characteristics is of utmost 

significance for prediction purposes. Even though the SRU reduces the structural information 

on a material (i.e., it does not represent the bulk material), there are vast works in the literature 

that validate its use. To try to overcome part of this problem, we introduced some descriptors 

that provide information on average molecular weights, polydispersity, and testing parameters 

(e.g., crosshead speed). 

 

2.1.1. POLYMERS INCLUDED IN THE DATABASE 

The dataset reported by Palomba et al.  [Palomba et al., 2014] for high molecular weight linear 

polymers was used for the present work. This dataset was especially created for the study of 

mechanical properties derived from tensile tests for amorphous and thermosetting polymers. 

All the polymer data were taken from PolyInfo [Otsuka, et al., 2011], following homogeneity 

criteria for testing parameters and standards. Our complete dataset includes values for 

elongation and tensile strength at break as well as tensile modulus for each polymer. These 

properties were reported in PolyInfo under similar experimental conditions (testing temperature 

(20-25 ºC) and standards (ASTM D638, ASTM D882-83, and DIN 53504.53A)), therefore all 

polymers reported have been tested under their glassy temperature. Nine different chemical 
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families of compounds are represented in the dataset: Polyoxides/ethers/acetals, Polystyrenes, 

Polyvinyls, Polyamides/thioamides, Polyesters/thioesters, Polyimides/thioamides, 

Polysulfones/sulfoxides/sulfonates/sulfoamides, Polyketones/thioketones, and Polysulfides. 

The polymers can belong to more than one family, in consequence their molecular structures 

are more diverse and complex, contributing to expanding the chemical space represented in this 

dataset. 

From the original dataset, 76 polymers were included; the dataset was split into two subsets 

using the same division defined in a previous work [Cravero et al., 2019], where predictive 

QSPR models for the tensile modulus were presented. One of the subsets was reserved as a 

testing set (19 polymers), and the other three were used as a training set (57 polymers), 

preserving the structural diversity from the nine families mentioned. The 76 high molecular 

weight linear polymers represent nine different families, and most of these polymers belong to 

more than one of them. This makes it a structurally complex set and therefore expands the 

chemical space it represents.  

 

2.1.2. TARGET PROPERTY: TENSILE STRENGTH AT BREAK 

Tensile strength at break is the property that shows the capability of a polymeric material to 

resist breaking under tensile stress (Figure 1). It is therefore the force per unit area required to 

break the material specimen. The crosshead speed at which a sample is pulled apart in the test 

can affect the results, and this aspect was considered in our database by including these values 

(ranging from 1 to 100 [mm/min]) as a descriptor in the QSPR technique [Seymour and 

Carraher, 1998; Ward and Sweeney, 2004]. The values for tensile strength at break in the 

database range from 7.5 to 103 [MPa].   
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Figure 1. Graphic representation of the tensile test and derived stress-strain curve for a 

polymeric material. Tensile strength at break [MPa] is plotted on the curve 

 

2.1.3. MOLECULAR DESCRIPTORS  

Regarding the characterization of the polymers, two molecular models were used. On the one 

hand, the hydrogen-end-capped SRU was used, and 998 classical descriptors were calculated 

for each SRU with the Dragon tool [Mauri et al., 2006]. On the other hand, using the hydrogen-

end-capped trimer’s central unit as a molecular model, 51 global descriptors were calculated 

using the Hyperchem software [Froimowitz, 1993]. These descriptors are called macro vision 

descriptors [Palomba et al., 2012], and they are normalized; that is, they do not vary according 

to the number of SRUs included in the molecular model used. Other types of features included 

in this last category are parameters such as the crosshead speed (CHS) at which the tensile test 

is performed or global data of the polymeric material such as the polydispersity index (PDI), 

average molecular weights in number (Mn), or average molecular weights in weight (Mw). 

Finally, a filter was applied to remove features with missing values, highly correlated features, 

and features with low variance to discard those descriptors that were not useful for inferring the 

QSPR models describing the molecule. The final pool had a total of 693 molecular descriptors 

(MDs). 
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2.2. ML-BASED METHODOLOGY USED FOR QSPR MODELING  

Figure 2 shows a flowchart of the methodological steps followed to infer the predictive QSPR 

models for the tensile strength at break property. In the first step, a percentage of the original 

dataset is separated to execute the corresponding external validation of the final models. In      

the second step, the Feature Selection procedure is performed, followed by an analysis of the 

subset of descriptors obtained. Then, the inference of the QSPR models is executed and the      

external validation is carried out for each of them. These steps are explained in detail below 

and the results are discussed. 

 
Figure 2. Flowchart of the methodological steps used for generating the QSPR models 

 

2.2.1. FEATURE SELECTION STEP 

Feature Selection methods are part of the dimensionality reduction methods for pattern 

recognition systems [Li et al., 2018]. In ML, the aim of these methods is to obtain, from a full 

set of features, a relevant subset for the inference of a model. In small datasets, where the 

features (molecular descriptors) are many more than the instances (polymers), using all the 

features can lead to obtaining models with a high level of overfitting. It is assumed that many 

of the variables may be irrelevant or redundant for the model. Irrelevant variables are those that 

do not provide useful information for inference the model and the redundant variables are those 

that do not provide additional information regarding the remaining selected ones. Besides, a 
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completely useless variable by itself, it can generate an improvement in the performance of the 

model if it is taken together with others [Cai et al., 2018.]. 

Feature selection (FS) plays an important role in the success of an ML model. The features 

used, together with the training method, influence the final result of a predictive QSPR model. 

The training methods cannot solve the problem of learning models if the wrong features are 

used, that is, if they do not provide information. FS can improve results by reducing the noise 

contributed by some useless features. In this fact lies the importance of doing FS when the 

dataset is small.  

In order to have several different subsets of descriptors, FS techniques were applied to the initial 

pool of 693 MDs. To perform this task, the Waikato environment for knowledge analysis 

(Weka) [Hall, et al., 2009] framework was used, experimenting with five different classification 

functions: one correlation-based feature subset selection (CFS) and four instances of wrapper 

subset eval (WSE), using different learning techniques: linear regression (WLR), multilayer 

perceptron (WMLP), random forest (WRF), and random committee (WRC). In addition, the 

molecular descriptor subset selection (MoDeSuS) [Martínez et al., 2019.] software was used to 

obtain other five subsets. A summary of the main aspects of the selected subsets is detailed in 

Supplementary Information. 

 

2.2.2. MOLECULAR DESCRIPTORS SUBSET ANALYSIS 

To begin the analysis of this modeling stage, we have ten subsets of molecular descriptors 

obtained in the previous stage. These alternative subsets must be judged and selected based not 

only on the accuracy of their predictions related to the target property, but also on their 

cardinality (overfitting problem) and information contribution of the descriptors of the same 

subset (irrelevant or redundant features). For this task, the visual analytics tool ViDeAN 
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[Martínez et al., 2015] is used to perform a detailed analysis of the subsets and choose the best 

five in terms of the aforementioned criteria. 

ViDeAN enables visualizations to analyze the correlations between each pair of descriptors in 

Spearman (S), Kenndal (K), and entropy-based (E) terms. In the ViDeAN plots, in Spearman 

or Kendall correlation modes, the edges of the graphs represent the Spearman or Kendall rank 

correlation between the descriptors (nodes). The link color range is: from red to yellow for 

positive correlation (red = 1) and from blue to light blue for negative correlation (blue = −1). 

Conditional entropy is a measure of the amount of uncertainty about one random variable when 

the value of another random variable is known. In entropy-based mode, the links represent the 

mutual information (MI) between the descriptors, i.e., the reduction of the uncertainty of one 

of them due to the knowledge of the other, and vice versa. The link color range goes: from light 

pink when the descriptors are independent (MI = 0) to dark purple when the descriptors are 

identical (high MI values) [Martínez et al., 2015]. All the screenshots of each of the correlation 

graphs for each subset can be found in Supplementary Information Figure SI.1.  

The criteria used to discard subsets were a) high correlation level among the descriptors that 

conform the subset and b) their cardinality, preferring the lowest ones. That is, first are 

discarded those subsets formed by MDs with high MI or correlation (in the plots created by 

ViDeAN this is displayed as dark links of the graphs), and secondly, when the percentage 

amount of correlation of the MDs is the same, the subset with the highest total number is 

discarded. All the screenshots of each of the correlation graphs for each subset can be found in 

Supplementary Information Figure SI.1. Table 1 shows the percentage of low correlations 

between each pair of descriptors, that is, the number of links that do not exceed 50% correlation; 

this means that they have little mutual information, which is desirable.  
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Table 1. Percentages of pairwise descriptor links in Spearman (S), Kenndal (K), and entropy-

based (E) terms of each subset with associated low correlation coefficients  

 Cardinality S (%) K (%) E (%) Selected? 

Sub1 10 50 70 60 Yes 

Sub2 10 50 70 100 Yes 

Sub3 10 30 30 20 No 

Sub4 10 50 60 100 Yes 

Sub5 10 30 30 50 No 

Sub6 33 18 18 78 No 

Sub7 12 16 58 83 No 

Sub8 8 37 50 62 Yes 

Sub9 6 50 60 100 Yes 

Sub10 11 36 45 45 No 

 

The percentages in Table 1 are formed by counting those links that have less than 50% 

correlation over the total number of links. Therefore, it is desirable to choose those subsets with 

higher percentages in the table (lower MI). The main steps of the analysis and assessment were 

the following: 

• The first subsets selected for further experimentation were Sub1, Sub2, Sub4, and Sub9 

because all of them had at least 50% of the correlations between descriptors belonging 

to the subset below the midpoint on all correlation scales analyzed. Note that in all of 

them all the links are light colored, that is, they are below the midpoint of the correlation 

range. 

• Doing the same analysis, subsets Sub3, Sub5, and Sub10 had correlation values above 

the mean of the range in all the different types of correlations considered (dark links), 

therefore they were discarded. 
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• From the remaining subsets, regarding subset Sub6, although it had 78% of entropy-

based correlation low values, Spearman and Kendall correlation low values was low 

(18% in both cases). The subset Sub6 was discarded for this and because of its high 

cardinality (the highest of the ten subsets). 

• Finally, among the subsets Sub7 and Sub8, the latter was selected. Both have low values 

for both the entropy-based correlation and the Kendall correlation; these were greater 

than the percentage (50%) threshold defined in this analysis for the three types of 

correlations considered. However, the cardinality of subset Sub8 was lower, which 

strongly influenced the decision. 

2.2.3. QSPR MODEL INFERENCE 

QSPR models estimate an objective property of chemical compounds from variables that 

describe their molecular structure and a mathematical equation that relates them. The predictive 

QSPR models were inferred using four well-known ML techniques: linear regression (LR), 

multilayer perceptron (MLP), random forest (RF), and random committee (RC), within the 

Weka framework [Hall et al., 2009]. More information on how these techniques were used in 

the present work can be found in Supplementary Information.  

In total, 20 QSPR models were trained by combining the application of each ML method with 

each selected subset. Different measures were considered to evaluate the quality of each 

inferred model to access those with the best statistical performance and physicochemical 

interpretability. One of these measures was the correlation coefficient, a statistic whose main 

purpose is to determine the quality of the model to replicate the results and the proportion of 

variation of the results that can be explained by the model. As it should not be used as the sole 

guide to select the final models, the values of some error metrics were also considered to 

perform the evaluation of the inferred models. These errors were mean absolute error (MAE) 
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and root mean squared error (RMSE). MAE measures the average magnitude of the errors in a 

set of predictions, without considering their direction. It is the average over the test sample of 

the absolute differences between prediction and actual observation, where all individual 

differences have the same weight. RMSE is a quadratic scoring rule that also measures the 

average magnitude of the error. It is the square root of the average of the squared differences 

between prediction and actual observation. [Taraji et al., 2017] The criterion for selecting the 

models in this step was to exceed a correlation coefficient of 0.75; those models whose 

correlation coefficient was between 0.7 and 0.75 were considered reasonably good models. 

Additionally, all error measures were expected to be kept low. 

Table 2 shows the performances of the QSPR models. All correlation coefficient values are 

above random results; furthermore, the minimum value is 0.612. The maximum value is 0.936, 

and 17/20 (85%) models have a correlation coefficient value above 0.75; that is, only 15% of 

the inferred models have a correlation coefficient below 0.75. If we also consider that 70% of 

the models are above 0.8, it could be said that the tensile strength at break is a property that can 

be addressed with this methodology for this type of polymers. 

When trained with MLP, subset Sub4 obtained the lowest correlation coefficient; its best 

performance was achieved when trained using RF. However, the correlation coefficient was 

barely 0.76, so all four models trained from subset Sub4 were discarded. As well as for subset 

Sub1, the correlation coefficient values were above 0.8; yet they did not exceed 0.82/0.83, 

which was low considering that the maximum value achieved exceeded 0.93. It was a stable 

subset; that is, the models inferred from it had similar correlation coefficient values regardless 

of the ML method used. However, none of them exceeded the value of 0.85, so its four models 

were discarded. The same happened with subset Sub2; it was stable, but no model exceeded a 
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correlation coefficient value of 0.9, so its four models were discarded. From the subsets of 

molecular descriptors extracted by MoDeSus, subset Sub2 achieved the highest performance. 

Table 2. Correlation coefficient and error values for the selected subsets. The highest 

performances are highlighted in bold 

  LR MLP RC RF 

Sub1 

Correlation coefficient 0.8284 0.8090 0.8213 0.8223 

MAE 12.4241 13.5058 12.4002 12.1383 

RMSE 16.1454 17.4071 16.3708 16.1713 

Sub2 

Correlation coefficient 0.8597 0.8316 0.8288 0.8672 

MAE 11.2811 13.0056 11.5685 10.5189 

RMSE 14.5203 17.2705 16.0994 14.1359 

Sub4 

Correlation coefficient 0.7151 0.6117 0.7534 0.7639 

MAE 15.7051 17.0702 13.9597 13.9861 

RMSE 20.2120 27.9884 18.8229 18.3327 

Sub8 

Correlation coefficient 0.8335 0.7468 0.9226 0.9176 

MAE 13.0271 15.5269 8.2702 8.3410 

RMSE 15.7964 24.4889 11.0138 11.3948 

Sub9 

Correlation coefficient 0.7710 0.9020 0.9322 0.9361 

MAE 15.2743 9.7278 8.5314 8.3188 

RMSE 18.1904 12.5023 10.2820 10.1300 

 

Regarding the remaining subsets obtained by Weka, when they were trained by ensemble 

techniques such as RC or RF, they achieved correlation coefficient values greater than 0.9. 

Moreover, the model inferred using MLP from subset Sub9 obtained a correlation coefficient 

value greater than 0.9. Finally, these five QSPR models continued in the next step of external 

validation. In addition to having the highest correlation coefficient values, the RMSE values of 
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these final models were lower than those obtained for their counterparts (trained with the same 

ML method). The MAE values for each of these five models remained below 10, being the 

lowest values reported in the table. Note that the chosen QSPR models used the subset with the 

lowest cardinalities among all selected subsets. 

2.2.4. EXTERNAL VALIDATION OF QSPR MODELS 

The goal of the ML algorithm is to obtain a reasonable approximation. The inferred model was 

the result of the automated generalization procedure. In ML, this generalizability refers to the 

capability of the model to adapt appropriately to unseen data, within the same applicability 

domain. For this purpose, the inferred models were applied to the test set (unknown data). The 

criterion for selecting the models that passed the external validation was that the difference in 

the correlation coefficient did not exceed 0.05 between the training and the test sets, as a way 

for avoiding overfitted models. This difference can be seen in the parity plots shown in Figures 

SI.2 and SI.3, in Supplementary Information. The results in Table 3 show that the only model 

that does not meet the condition is the one trained with RF from subset Sub8 (Sub8_RF). 

Table 3. External validation results: correlation coefficient values obtained for the test set, the 

difference obtained between test and training sets, the mean value of the correlation coefficient 

using y-Randomization, and the performance classification criteria according to Roy [Roy et 

al., 2016] 

 

Models Test Difference Y-Rand Roy’s Class 

Sub 8_RC 0.8851 0.0380 0.1083 Moderate 

Sub 8_RF 0.8660 0.0520 0.1088 Moderate 

Sub 9_MLP 0.9163 -0.0140 0.1068 Moderate 

Sub 9_RC 0.9029 0.0290 0.1088 Moderate 

Sub 9_RF 0.9203 0,0160 0.1074 Moderate 
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QSPR modeling has the risk of finding correlations by chance, since models consider features 

selected from large descriptor pools. Therefore, it is desirable to perform tests showing the 

performance of models built from pseudo-descriptors, in which the models derived from 

random data have lower predictive potential (the quality of QSPR models) than the original 

models [Lipiński and Szurmak, 2017]. To verify whether the obtained models could be 

explained by such “chance correlations”, we used the Y-scrambling method [Khan and Roy, 

2018], in which property data are randomly shuffled to change their true order altering any 

meaningful structure-property relationships [Muller et al., 2015]. All models passed this test, 

as the mean, obtained from 1000 random trials, was as far below the correlation coefficient 

obtained by each of the original models. Roy's test was also run. This allowed classifying the 

inferred model predictions according to their quality level in Good, Bad, or Moderate, after 

discarding the possibility of systematic errors. In the present study, all QSPR models passed 

the test with a Moderate quality level [Roy et al., 2016]. More information in Supplementary 

Information. 

Generalizability, non-randomness, and statistical parameter analysis form part of the good 

practice in QSAR. However, considering the possible physicochemical interpretations of a 

model is desirable. Out of the final five models, four of them (discarding the RF-trained model 

from subset Sub8) passed all tests. Consequently, all of them are valid models for the prediction 

of tensile strength at break. Nevertheless, we selected the MLP-trained model from subset Sub9 

to perform physicochemical analysis because it obtained a higher correlation coefficient value 

for unseen data, thus ruling out the possibility of overfitting. In addition, it had only six features 

and the lowest cardinality. The features or molecular descriptors for the model Sub9_MLP are: 

ETA_dEpsilon_D (measure of the contribution of hydrogen bond donor atoms, that is, the 

presence of groups such as –OH, –NH2, –SH, etc. T -ETA indices-), MSD (mean square 

distance index [Balaban]; MSD decreases with increasing molecular branching in an isomeric 
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series -Topological indices-), nROH (number of hydroxyl groups -Functional group counts-), 

maxssssC (Maximum ssssC -Atom-type E-state indices-), nHdsCH, and maxHdsCH (Count of 

and Maximum atom-type H E-State: = CH-, respectively -Atom-type E-state indices-). 

To be able to perform a physicochemical interpretation of the best models and, consequently, 

to intervene on them to increase their reliability, a chemist’s knowledge was introduced at this 

step. This technique is called expert-in-the-loop and allows quickly capturing an expert’s 

experience and knowledge in the domain to obtain better models in less time than it would take 

to test all combinatorics [Ristoski, et al., 2020; Schustik, et al., 2021]. 

Note that the two features nHdsCH and maxHdsCH are about the same information; this fact 

could be confirmed by using ViDeAN. This software tool can generate different types of plots 

and graphs containing several pieces of information. In the present study, it allowed us to make 

a more detailed analysis of the contribution of each descriptor to the subset. Figure 3 shows a 

scatterplot for the relationship of nHdsCH (on the left) and maxHdsCH (on the right) with the 

target property. Both features cover similar information spaces, where most of the points lie on 

the y-axis, that is, they have a value of zero and a few have medium and high property values 

for low descriptor values. 

Another detailed analysis that could be performed using ViDeAN is that of the mutual 

information between these descriptors by examining the correlation graphs (Figure 4). In this 

case, the Kendal correlation is presented in Figure 4a and the Spearman correlation in Figure 

4b. In both graphs, the link between nHdsCH and maxHdsCH is red. This color represents the 

maximum possible intensity, which means that they have mutual information; in other words, 

they do not provide different information. 
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Figure 3. Screenshot of a scatterplot ViDeAN’s visualization for the relationship of nHdsCH 

(on the left) and maxHdsCH (on the right) with the target property 

 

 

Figure 4. Molecular descriptors and their (a) Kendall and (b) Spearman correlation 

 

We decided to remove each of these two molecular descriptors and analyze the performance of 

the resulting models. When removing the nHdsCH descriptor, the performance in terms of 
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correlation coefficient increased to 0.905; when removing the maxHdsCH descriptor, the 

correlation coefficient increased to 0.9054. Therefore, we concluded that apparently neither 

descriptor is more relevant than the other. When both descriptors were excluded, the 

performance of the model dropped to 0.8419, as expected. This means that both descriptors 

provide relevant information, but it is the same, confirming what was observed in the ViDeAN 

visualizations. Then, we chose a model to continue our analysis. We selected the model 

"Sub9_MLP - masHdsCH'' because of the minimal difference in performance. 

Note in Fig. 4b that the dark blue links join each of these descriptors with ETA_dEpsilon_D. 

Therefore, an attempt was made to remove it from the model with the best performance, that is, 

the model with five descriptors "Sub9_MLP - masHdsCH". The resulting model with four 

descriptors dropped to a correlation coefficient value of 0.748, so it was decided to undo this 

last elimination. Figure 5 shows a scatterplot for ETA_dEpsilon_D, in which the coverage of 

the information space is quite different from that of the other two descriptors; this could explain 

the drop in the performance of the model when it was removed. 

 

Figure 5. Screenshot of a scatterplot ViDeAN’s visualization for the relation of ETA_dEpsilon_D with 

the target property 
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Therefore, the final model is integrated by the following five molecular descriptors: 

ETA_dEpsilon_D, MSD, nROH, maxssssC, and nHdsCH. This model has a performance in 

terms of correlation coefficient of 0.9054 for training and 0.9226 for external validation. In 

addition, the y-randomization value is 0.1057 and Roy's class is Moderate. Therefore, these 

results show the high performance and confidence achieved by the QSPR model. In this way, 

with the incorporation of the domain expert in the modeling cycle, it was possible to reduce the 

cardinality of the model by 16% without decreasing its performance. The ready-to-use Weka 

model is available in Supplementary Information. 

 

3. CONCLUSION 

Following the proper steps of a QSPR methodology based on ML and visual analytics tools, 

the tensile strength at break property derived from the tensile test was modeled in this work. 

The study comprised six consecutive central steps for the analysis: construction of a database 

integrated by suitable molecular descriptors, selection of subsets of features relevant to the 

studied property, learning of QSPR models derived from the subsets of selected features, 

assessment of the QSPR models with higher performances, intervention of the model through 

the incorporation of an expert-in-the-loop, and a statistical validation procedure. During this 

process, 20 candidate QSPR models were generated by combining different subsets of selected 

molecular descriptors and different supervised learning methods. 

In a clearly data-driven step, we selected a QSPR model composed of six molecular descriptors 

that was generated using the MLP method and achieved a correlation coefficient of 0.9163. At 

this step, visual analytics was used to filter subsets for a global analysis of subsets. In a 

subsequent step, in which an expert’s knowledge and experience were incorporated, the model 

selected in the previous step was intervened. This model was reduced in cardinality, eliminating 
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a molecular descriptor that did not provide additional information. This expert-guided analysis 

was performed through visual analytics, making use of ViDeAN for a more detailed analysis 

of each of the descriptors that constituted the subset from which the QSPR model was trained. 

From the whole analysis and ML process, we recommend a QSPR model composed of five 

molecular descriptors that was generated using the MLP method and achieved a correlation 

coefficient for external validation of 0.9226. 

In this way, through an exhaustive experimental design, it was possible to infer a QSPR model 

for the tensile strength at break property, thus completing the cycle of QSPR models oriented 

to the prediction of mechanical properties related to the tensile test: elongation at break, tensile 

modulus, and tensile strength at break. We consider that these QSPR models will be useful for 

the design of new polymeric materials aided by artificial intelligence techniques, saving time 

and resources against to classical techniques. 

SUPPLEMENTARY MATERIAL 

See Supplementary Information for the complete dataset and the main aspects of the selected 

subsets, their screenshots of each correlation plots as well as the techniques to inference and 

validate the predictive QSPR models. 
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