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Realizing the full benefits of MODIS' temporal resolution requires, among others, the correction of the directional
effect (i.e. the combined impact of the variation of the measurement geometry and of the observed land surface
upon the registered radiant flux). While different BRDF methods have been proposed to address this effect, its
performance has been evaluated at coarse spatial resolutions making it difficult to assess its applicability to, for
example, crop monitoring. Here we test 2 approaches based on two different assumptions: the Classic approach
that relies on the hypothesis of stable target and a recent Alternative that is based on the idea that despite
reflectance magnitude may change rapidly, the BRDF shape varies slowly in time. Additionally, we segmented
the growing season into different numbers of periods for the BRDF correction (a single period along the growing
season, 3 periods based in phenology and 9–12 periods of fixed 16-days). The resulting 6 methods were
compared over annual crops (wheat, maize and soybean) at 250 m spatial resolution from a site located in the
Argentine Pampas. We used MOD and MYD 09 GQ and GA as inputs and compared the corrected daily red and
infrared reflectances and the NDVI time series against the filtered benchmark (input time series with quality
filters applied) by means of the high frequency variability (i.e. noise). We also tested whether corrected time
series were better correlated with soybean PAR interception and biomass. Our results showed that methods'
performance was more explained by the number of periods than by the approach (Classic or Alternative). Single
period methods decreased noise by 52%, 55% and 4% for red, infrared and NDVI time series. The use of 3 periods
improved the correction performance to 63, 64 and 24% for red, infrared and NVDI time series respectively, while
the highest reductions (65, 68 and 32% for red, infrared and NVDI) were found with 16-day intervals (9–12 pe-
riods) considering a magnitude inversion process. Wheat displayed the lowest noise reduction compared to the
other crops. BRDF parameters obtained fromdifferentmethodswere associated to crop structure, suggesting that
they have biophysical meaning. The decrease in noise obtained with correction methods was translated into a
better assessment of the fraction of intercepted PAR and biomass. These promising results suggest the possibility
of extensive field crop monitoring at an unprecedented temporal resolution.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Earth observing satellites have played a central role in the genera-
tion of global datasets that led to an unprecedented understanding of
the functioning of the Earth system. In particular, the MODerate-
resolution Imaging Spectroradiometer (MODIS) mission datasets span
more than 10 years of near-daily observations of the entire Earth
surface radiant flux acquired in 36 spectral bands ranging the visible
to infrared spectra at 1 km, 500 and 250 m nadir pixel resolutions
(Salomonson et al., 2011). After applying different processing algo-
rithms this huge amount of data gives way tomore than 40 geophysical

products which have served to observe and monitor key land, atmo-
sphere, and ocean variables and to foster hypothesis testing. Examples
range from radiation budgets (e.g. Kaufman, Tanré, & Boucher, 2002),
ecosystem process — including vegetation phenology (e.g. Zhang
et al., 2003) and fire occurrence (e.g. Van Der Werf et al., 2006), land
cover characterization (e.g. Friedl et al., 2002) and agriculture
(Becker-Reshef, Vermote, Lindeman, & Justice, 2010; Pittman, Hansen,
Becker-Reshef, Potapov, & Justice, 2010) to aerosol, cloud and precipita-
ble water assessment (e.g. King et al., 2003) and ocean chlorophyll
content (e.g. Darecki & Stramski, 2004) among others.

There are, however, certain aspects of the MODIS datasets that have
not been completely exploited. The temporal resolution may be one of
these aspects as most MODIS products are generated at 8 and, mostly,
16 day intervals. This decrease in the temporal resolution of global
products is mainly due to the presence of clouds and aerosols in
addition to the directional effect. The directional effect refers to the
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combined impacts of the variation of the illuminating and viewing ge-
ometries and of the observed land surface upon the registered radiant
flux (Rasmussen, Göttsche, Olesen, & Sandholt, 2011). This means that
differences between satellite observations in two clear consecutive
days could be a consequence of potential changes in the physical prop-
erties of the surface and of variations in the viewing and illuminating
geometries. Hopefully, new methodologies (Breon & Vermote, 2012;
Vermote, Justice, & Breon, 2009) may ease the limitations imposed by
directional effects with processing requirements compatible with
large daily 250 m datasets. Here we compare different methodologies
to correct directional effects in MODIS daily data from an agricultural
area in the Pampas region of Argentina.

The scattering of a parallel beam of incident light from one direction
into another direction after interacting with a surface is described by a
Bidirectional Reflectance Distribution Function (BRDF) (Schaepman-
Strub, Schaepman, Painter, Dangel, &Martonchik, 2006). By considering
variables that characterize the viewing and illumination geometries
(i.e. sun zenith angle, view zenith angle, and both azimuthswith respect
to a reference direction) the BRDF allows isolation of the surface intrin-
sic reflectance properties from those related to the observation geome-
try. Therefore, a model able to reproduce a target BRDF is needed to
correct for directional effects. Though many different models have
been proposed, we will focus on the one use by the MODIS mission
(Schaaf et al., 2002) and a recent method proposed by Vermote et al.
(2009).

The BRDF correction methodology currently implemented in the
MODIS BRDF/Albedo product (MCD43) is based on a linear model
with two functions (i.e. kernels) and three parameters (i.e. kernel
weights). This type of model was originally proposed by Roujean,
Leroy, and Deschamps (1992) and subsequently modified to account
for different processes such as the hot-spot (Breon, Maignan, Leroy, &
Grant, 2002; Li & Strahler, 1992). The kernels' formulation in use in
the MCD43 product were developed by Ross (1981) (i.e. Ross—thick)
and by Li and Strahler (1992) (Li—sparse) (Schaaf et al., 2002). This
model (hereafter “Classic approach”), estimates reflectance (ρ) as the
sum three terms:

ρ θs; θv;ϕð Þ ¼ k0 þ k1 F1 θs; θv;ϕð Þ þ k2 F2 θs; θv;ϕð Þ ð1Þ

where F1 and F2 (i.e. kernels) are the analytical functions of the solar or
illumination (θs), relative azimuthal (Φ) and viewing angles (θv) and kx
are kernel weights. The first term (isotropic term) is comprised of k0
which represents the bidirectional reflectance for θs = θv = 0. The
second (k1∗ F1) and the third terms (k2∗ F2) represent the geometric
and volumetric scattering contributions to the surface reflectance
respectively. According to Roujean et al. (1992) parameters k0, k1 and
k2 depend, among other factors, on the shape and distribution of the
objects in the surface and the expected proportion of geometric and vol-
umetric contributions. In particular, k1 is related to the height, length,
horizontal area and Lambertian reflectance of surface protrusions
while k2, in the case of vegetated surfaces, is mainly related to leaf
area index (LAI) of the canopy. Although kernel parameters should be
related to target characteristics (e.g. LAI or geometric features) the
extent to which they can provide valuable information about surface
properties has been scarcely evaluated (Gao, Schaaf, Strahler, Jin, & Li,
2003; Roujean et al., 1992; Vermote et al., 2009).

For the MCD43 product, k0, k1 and k2 are estimated by minimization
of the sum of the square difference between estimated and observed
reflectance over a 16-day revisit period (Schaaf et al., 2002). In the
caseswhere less than 7 good quality observations are registered, amag-
nitude inversion is performed — BRDF parameters are obtained from a
look up table. The 16 day period represents a trade-off between
obtaining sufficient good quality observations (i.e. free of clouds, aero-
sols and viewing angles lower than 60°) and violating the assumption
that the target remains stable (unchanged) during the period. For

annual crops in particular the assumption of stable target might be un-
realistic and may lead to errors (Vermote et al., 2009).

Vermote et al. (2009) proposed an alternative approach (hereafter
“Alternative approach”) to correct for directional effects which accounts
for surface changes through time. Theirmethod is based on the assump-
tion that despite reflectance magnitude may change rapidly, the BRDF
shape varies slowly in time implying that k1 and k2 stay proportional
to k0. Translated into a mathematical form, they factorized Roujean
et al. (1992) model so that:

ρ θs; θv;ϕ; tð Þ ¼ k0 tð Þ 1þ V F1 θs; θv;ϕð Þ þ RF2 θs; θv;ϕð Þ½ � ð2Þ

being R the roughness (k1/k0) and V the volumetric (k2/k0) parameters
respectively. In turn, the assumption of negligible change in BRDF
shape between successive observations – p(ti) and p(ti + 1) – allowed
Vermote et al. (2009) to estimate R and V by minimizing the sum of
the square difference between the following 2 terms:

k0i≈k0iþ1 or
ρ tið Þ

1þ V Fi1 þ RFi2
� �≈ ρ tiþ1

� �

1þ V Fiþ1
1 þ RFiþ1

2

� � ð3Þ

where i stands for time. As with the Classic, the outcome of the Alterna-
tive approach is a new set of normalized reflectance time series to stan-
dard observation geometry.

Using this method Vermote et al. (2009) reported a significant
decrease in the high frequency variability – i.e. “noise” – of MODIS
daily time-series from 25 km−2 pixels corresponding to different land
covers/uses — savanna, evergreen forest, deciduous forest and
broadleaved crops.With a refinement of thismethodology – i.e. allowing
the correction to operate at sub-periods of varying length – at the savan-
na site the noise reduction amounted to 82, 86 and 58% for the red and
infrared bands and the NDVI respectively. Additionally, these authors
concluded that the global patterns of parameters R andVwere consistent
with land cover suggesting that these parameters might carry valuable
geophysical information. On a different setting, Becker-Reshef et al.
(2010) capitalized this dataset to develop a generalized approach to es-
timate wheat yields at 0.05° spatial resolution with an error lower than
10%. Despite these promising results this methodology remains to be
tested at a finer spatial resolution to assess its potential to improve the
monitoring of vegetation dynamics.

The objective of this study is to test different methods to correct di-
rectional effects in MODIS reflectance time series over annual crops
(wheat, maize and soybean) at 250 m spatial resolution.We specifically
seek to answer the following questions: which method performs bet-
ter? How important is the length of the periods used to characterize
the BRDF? Is there an interaction between method and crop? Are the
model parameters associated to any crop feature? Does corrected time
series improve our ability to derive valuable crop information such as
biomass or fraction of intercepted radiation?Answering these questions
is a key step towards realizing the potential of dailyMODIS data tomon-
itor crops at 250 m spatial resolution. Vegetation indexes provided by
the MOD 13 and MYD 13 products have a time step of 16 days and are
generated using reflectance registered in one given day within that
16 day interval (Huete, Didan, van Leeuwen, Miura, & Glenn, 2011).

2. Materials and methods

Satellite and field information corresponded to an agricultural area
located in San Antonio de Areco department (34° 14′S 59° 33′W) in
Buenos Aires province, Argentina. MODIS Terra and Aqua daily reflec-
tance products (MOD09GQ/GA and MYD09GQ/GA, tile h13 v12) were
downloaded from NASA REVERB website (http://reverb.echo.nasa.gov/
reverb/). Field level crop data from 2007 to 2011 (crop type — maize,
wheat, early soybean, late soybean) were obtained from local farmers.
During 2011–2012 we conducted several field campaigns to monitor
crop biomass focusing on early and late soybeans.
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We applied different BRDF correction methods to the same quality
filtered surface red and infrared reflectance MODIS observations.
Although differences between methods, each correction coarsely
consisted on a) model parameters retrieval and b) normalization of ob-
served reflectance to the same viewing and illumination geometry
using the model parameters obtained in a). Then we evaluated each
correction method by means of an estimate of the noise (i.e. high fre-
quency variability, Vermote et al., 2009), a comparison between
modeled and LANDSAT reflectance, RMSE of model fit and the angular
sampling distribution. Also, we evaluated the ability of each normalized
dataset to estimate the fraction of intercepted PAR (fIPAR) and biomass
from early and late soybeans. Finally, we performed an analysis of sen-
sitivity to assess the effect of different quality filters upon method
performance.

BRDF corrections were carried out only on pixels whose area was
occupied by at least 95% by a single crop. For each crop (i.e. wheat,
maize, early soybean and late soybean) we defined a growing season
based on local average sowing and harvesting dates. Thus, we corrected
the red and infrared reflectances and calculated the NDVI on a crop
growing season basis for a total of 2628 pixels belonging to 4 different
crops distributed over 48 fields in 4 agricultural campaigns and consid-
ering two sensors (Aqua and Terra).

2.1. BRDF correction methods

The BRDF correction approaches we used include 2 methodologies
already published (Schaaf et al., 2002 — Classic approach; Vermote
et al., 2009 — Alternative approach) applied over different lengths
(number) of periods. Thus, we segmented the growing season into
periods wherein changes in vegetation characteristics are expected to
be minimum. Therefore, BRDF parameters were retrieved at a single-
period (i.e. crop growing season) or multiple-periods (i.e. 3 periods
within the growing season based on phenology or 9–12 periods of
fixed 16 days to match that of the MCD43 product). The resulting
methods were: 1) Classic single-period (Classic SP), 2) Classic 3
multiple-periods (Classic 3MP), 3) Classic 9–12 multiple-periods
(Classic 12MP), 4) Alternative single-period (Alternative SP), 5) Alter-
native 3 multiple-periods (Alternative 3MP) and 6) Alternative 9–12
multiple-periods (Alternative 12MP). A magnitude inversion was
performed whenever a period from the 12MP method had less than 7
good quality observations. This inversion involved the use of the corre-
sponding BRDF parameters from the 3MP method.

2.2. Normalization

Once the 6 sets of BDRF parameters – corresponding to the 6 correc-
tionmethods –were obtained, we normalized observed red and infrared
reflectances (ρN) to a common observation geometry (i.e. 45° illuminat-
ing angle, 0° viewing angle—nadir, and 0° relative azimuthal angle). This
normalization was performed by multiplying the observed reflectance
(ρ′) by the ratio between modeled normalized reflectance – obtained
with each method (using the estimated parameters) – and modeled ob-
served reflectance (using observed viewing, illuminating and azimuthal
angles).

ρN ¼ ρ0 k0 þ k1 F
N
1 þ k2 F

N
2

k0 þ k1 F1 þ k2 F2
ð4Þ

and

ρN ¼ ρ0 1þ RFN1 þ V FN2
1þ RF1 þ V F2

ð5Þ

for the Classic and Alternative methodologies respectively.

2.3. Correction method evaluation

We assessed the performance of each correction method by means
of the high frequency variability (i.e. noise) (Breon & Vermote, 2012;
Vermote et al., 2009). Additionally, we estimated the root mean square
error (i.e. RMSE) of the model fit and compared the corrected time se-
ries with observed reflectance from LANDSAT images. To account for
possible differences in input data quality, we calculated the Weight of
Determination (Lucht & Lewis, 2000).

2.3.1. High frequency variability
Following Vermote et al. (2009) we evaluated the impact of each

correctionmethod by computing an estimate of the high frequency var-
iability (i.e. noise). Noise value is derived from the difference between
the center observation from a triplet (tree successive observations,
i, i + 1 and i + 2) and the estimated value assuming a linear interpola-
tion between the two extremes:

Noise yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n−2

i¼1 yiþ1−
yiþ2−yi

dayiþ2−dayi
dayiþ1−dayi
� �

−yi
� �2

N−2

vuut
ð6Þ

where yx stands for observed reflectance orNDVI in a given day (i, i + 1,
or i + 2).

As formulated, this measure of noise would scale with the mean of
the observations. Therefore, to compare the noise from crops with dif-
ferent average reflectance or NDVI values, we also calculated a relative
noise as:

NoiseR yð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
N−2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n−2

i¼1

yiþ1−
yiþ2−yi

dayiþ2−dayi
dayiþ1−dayi
� �

−yiÞ
h i

yiþ1

0
@

1
A

2
vuuut :

ð7Þ

2.3.2. Model fit
The root mean square error (RMSE) is an extensively used measure

of the uncertainty ofmodel predictions.Wehere used the RMSE as a de-
scriptor of the differences between the observed reflectance from
MODIS (i.e. the filtered time-series) and the BRDF corrected reflectance
modeled at the same measurement geometry of the observed reflec-
tance. Thus, as RMSE increases so does the uncertainty in themodel-fits.

2.3.3. Modeled vs. observed reflectance
We compared MODIS Terra and Aqua reflectance values obtained

with different correction methods vs. reflectance obtained with a near
nadir viewing system as LANDSAT. We used 6 LANDSAT TM cloud free
acquisitions (scene 226-84) including different agricultural campaigns
and times during a year (Table 1). Digital numbers were converted to
radiance and reflectance following Chandler and Markham (2003) and
Rayleigh atmospheric corrections were applied according to Stumpf
(1992). MODIS data weremodeled to illumination and viewing geome-
tries of each LANDSAT scene. LANDSAT viewing angle was assumed as

Table 1
Illumination (θs), viewing (θv) and relative azimuthal (Φ) angles for LANDSAT (path: 226,
row: 84), Terra and Aqua on the dates considered for the validation.

Date LANDSAT Terra Aqua

θs θs θv Φ θs θv Φ

10/22/2008 37.8 39.9 61.6 −43 34.7 37.4 −138.4
01/26/2009 38.4 40.9 61.6 −28 25.2 37.1 −139.8
03/15/2009 48.3 50.5 61.6 −47.1 39 37.6 −121.8
09/23/2009 46.3 49 61.6 −52.4 42.3 36.9 −125.2
01/13/2010 35.1 38.9 61.7 −24.9 23.7 36.9 −146.1
03/21/2011 49 51.9 61.5 −49.4 40.5 36.8 −119.3
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0° for all the scenes. We computed the RMSE between MODIS modeled
reflectance and LANDSAT reflectance averaged across all pixels within
the area of each MODIS pixel.

2.3.4. Weight of Determination
TheWeight of Determination (WoD) quantifies the sensitivity of the

correction model parameters (and of the corrected reflectance) to the
angular sampling of the observed data (Lucht & Lewis, 2000). A high
WoD is indicative of a poor angular sampling. It has been extensively
used in BRDF correction attempts and Albedo retrieval studies
(Chopping, 2000; Roy, Lewis, & Justice, 2002; Schaaf et al., 2002;
Shuai, Schaaf, Strahler, Liu, & Jiao, 2008) as a quality indicator of input
data. As suggested by the literature, we calculated the WoD for a given
parameter u as:

WoDu ¼ U½ �T M−1
h i

� U½ � ð8Þ

where U is a vector composed of the terms ui (being i the number of the
model kernels), and M−1 is the inverse matrix providing the analytical
solution of inversion equations. For each crop, we computed the WoD
for the resulting reflectance for the Classic single and multiple-period
correction approaches.

2.4. Correlation with biophysical variables

We assessed if the corrected time series were better related to bio-
physical parameters from vegetation by regressing a) NDVI vs. fIPAR
from specific dates and b)maximumNDVI fromeach correctionmethod
vs. soybean peak dry-biomass. To that end, during the 2011–2012 agri-
cultural campaign we measured fIPAR in soybean fields by means of a
ceptometer (Cavadevices, Buenos Aires, Argentina). Measurements of
PAR over and below the crop canopy were done at full sunny days be-
tween 11:00 and 15:00 local time.We also conducted periodic harvests
at 12 soybean fields located within the studied area. In each soybean
field we harvested ten 0.5 linear meters from a row and registered the
distance between rows. Harvestswere distributedwithin soybeanfields
so as to sample an average of 3 pixels per field. At the laboratory sam-
pleswere oven dried (more than 72 h at 70 °C) andweighted until con-
stantweight.Weused a simple logarithmic regressionmodel to account
for the asymptotic relationship between NDVI and biomass. We report
the coefficient of determination of both relationships discriminated
among correction methods.

2.5. Processing strategy

We first extracted the input data (red and infrared reflectances), ob-
servation coverage (Obscov) as well as the angles (viewing, illumina-
tion, and azimuth) and quality index from the daily MOD and MYD09
GQ and GA – level L2G – tiles respectively for each crop growing season.
Thenwe discarded observations based on the threshold values for cloud
state and aerosol quantity or acquisition geometry shown in Table 2.
Given that the resulting set of observations still had suspicious values

(e.g. negative reflectance) we further removed outliers (observations
lying further than 3 SD from themean). These filtered time-series consti-
tuted, then, the input data for the 6 correction approaches.

Corrections were applied on a per pixel basis. For each crop we con-
sidered the complete growing season from sowing to harvest divided in
different periods. Periods considered were: a) from sowing to harvest
(single period — SP), b) an initial period from sowing to active growth,
an intermediate period from active growth to the onset of grain filling
and a final period of decreasing growth and senescence (3 multiple-
periods — 3MP) and c) a fixed 16 day intervals from sowing to harvest
(9–12multiple-periods— 12MP). It should be noted that the number of
fixed 16-day period varied according to the length of each crop growing
season (from 9 to 12). Parameters characterizing each crop growing
season and duration of periods for BRDF correction are shown in
Table 3. Once the parameters were obtained (k0, k1 and k2 for the Classic
and V and R for the Alternative methods), we run each model to gener-
ate two reflectance sets: one at the normal geometry (45, 0, 0) and
another at the observed geometry. The daily ratio of these quantities
was used as the correction factor for the daily observed reflectance to
obtain the corrected time-series (Eqs. (4) and (5)). Finally, as suggested
by Vermote et al. (2009) we performed an outlier removal on these
time-series to avoid noise calculation being driven by extreme observa-
tions. NDVI was calculated from each corrected red and infrared time-
series and also subjected to the outlier removal. To mirror outlier treat-
ments we also performed a second removal on the filtered time series
and used this dataset as the benchmark for comparison between correc-
tion methods. All the processing was implemented on IDL code
(ITT Visual Information Solutions, Colorado, USA).

2.6. Sensitivity analysis

To assess the effect of differences in input data quality over the
performance of correctionmethods,we conducted a sensitivity analysis.
For the original 2628 pixels (i.e. 4 crops, 4 years, 2 sensors), 30 addi-
tional time series of red and infrared reflectances were generated by
considering different threshold values for a given parameter and keep-
ing the others unchanged. Parameter values are shown in Table 4. Each
additional time series was fed to the correction approaches and NDVI
was then calculated. Finally, noise from red and infrared reflectances
and NDVI was computed.

3. Results

In general, BRDF corrections applied to the filtered data yielded re-
ductions in the noise of the time series. As expected, the magnitude of
these reductions was different depending on correction method, crop

Table 2
Threshold values used to filter the input data (MOD and MYD09 GQ).

Quality index Threshold value Binary value

Viewing angle (°) b70 –

Sun zenith angle (°) b70 –

Aerosol quantity Low 01 and 00
Observation coverage (%) N5 –

Pixel adjacent to cloud No 0
Internal cloud algorithm No cloud 0
Cirrus detected None 00
Cloud shadow No 0
Cloud state Clear 00

Table 3
Dates defining the crop growing season and duration of periods for BRDF correction. 3MP:
3 multiple-periods.

Crop Growing
season start

Initial sub-period
end (3MP)

Intermediate
sub-period end (3MP)

Growing
season end

Wheat Jul 7 Aug 31 Nov 19 Dec 14
Maize Sep 20 Nov 24 Feb 24 Mar 24
Early soybean Oct 20 Dec 25 Mar 9 Apr 4
Late soybean Dec 14 Feb 4 Apr 4 May 3

Table 4
Threshold values considered for the sensitivity analysis.

Parameter Values

Observation coverage (%) 5–10–15–20–25
Viewing angle (°) 50–55–60–65–70
Sun zenith angle (°) 50–55–60–65–70
Aerosol quantity Climatology (00)–low (01)–average (10)–high (11)
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type, and their interaction. The magnitude of the reductions was also
different for the red, infrared and NDVI time-series. Model parameters
(kx and R & V) were quite similar among crops and, for each crop, varied
consistently in time. Given that the noise distribution was not normal
(test Shapiro–Wilk p ≪ 0.05 for all time series except for filtered infra-
red band), in the following sections we present the results as median
and median absolute deviation discriminated according to method.
More parameters (e.g. mean, standard deviation, 5 and 95% percentile,
etc.) describing the performance of correction method are given in
Appendix 1. Results on a per crop basis are shown in terms of relative
noise.

3.1. Comparison between correction methods

Averaged across all crops and years, Classic and Alternative SP
correction methods reduced the noise median of the red band by 47
and 56% compared to the filtered time series (0.028 vs. 0.015 and
0.012) (Fig. 1). For the infrared band, reductionswere higher. Compared
to thefiltered time series the reductions amounted to 49 and 61% for the
Classic SP and Alternative SP respectively. The Classic SP displayed an
increase of 23% in the noise median while the Alternative SP method
produced a 15% reduction over the filtered NDVI time series.

When correction methods considered 3 periods (3MP) these reduc-
tions further intensified. For the red band each method yielded 61
(Classic) and 63% (Alternative) less noise than the filtered dataset
(Fig. 1). For the infrared band the reduction amounted to 61 and 67%
for Classic 3MP and Alternative 3MP respectively. NDVI, however,
showed a different performance between methods: Classic 3MP
achieved a reduction of 15%while for the Alternative it amounted to 34%.

The highest improvement over the filtered time series was observed
when 9–12 periods – each of 16 days – (12MP) were used. Time series
corrected by the Classic 12MPmethod showed reductions of 65, 66 and
34% while for the Alternative 12MP achieved reductions of 66, 70 and
39% for the red, infrared and NDVI respectively. Due to the lack of
good quality observations, magnitude inversion was applied over 60%
of pixels–periods.

The cumulative histogram of the absolute noise for each method
(Fig. 2) confirms these results: curves from correction methods lie at
the left of the filtered except for the case of the Classic SP for the
NDVI. Curves, however, differed on the noise value at which the plateau
occurred. In general, for multiple-periods (3MP and 12MP) the plateau
of the Alternativemethods occurred at higher values of noise and lower
cumulative probability than the Classic methods. This indicates that a
fraction of the pixels still showed high noise after correction by Alterna-
tive compared to Classic methods.
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Fig. 1.Median absolute high frequency variability (noise) of filtered (uncorrected) and each correctionmethod for red, infrared and NDVI time-series. SP: single-period, 3MP: 3 multiple-
periods, 12MP: 9–12 multiple-periods. Bars represent the median absolute deviation (MAD).

Fig. 2. Cumulative histogram of the absolute noise of the red and infrared reflectances and NDVI time-series for each correctionmethod and filtered (uncorrected) data. SP: single-period,
3MP: 3 multiple-periods, 12MP: 9–12 multiple-periods.
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A pixel by pixel analysis showed that correction methods did not
performed uniformly. Classic 3MP and 12MP showed improvements
(lower noise than uncorrected) in almost 100% of pixels for red and
infrared bands. On the contrary, Alternative methods did not imply an
improvement in all pixels as, for the red band 91 to 95% of the pixels
(12MP and 3MP respectively) displayed lower noise than the filtered
time series, while for infrared band this occurred on 97 (12MP) to 99%
(3MP). For NDVI the improvement occurred only in 74 to 85% (Classic
3MP and 12MP respectively) and 85 to 88% (Alternative 12MP and
3MP respectively) of the pixels.

Among crops, different performances of correction methods were
found at particular combinations of crop and time series. In general
wheat showed lower noise reductions than other crops for infrared
and NDVI time series (Fig. 3 panels A, B, C). In particular wheat showed
lower reductions for AlternativeMPmethods in red band and for Classic
SP in infrared band. Early and late soybean and maize showed, in turn,
similar average noise reductions. Coarsely, the pattern of decreasing
noise (filtered N SP N 3MP and Classic N Alternative) was maintained
among crops. However, formultiple-period correctionmethods theper-
centage of improved pixels was slightly lower for wheat (87%) than for
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Fig. 3.Median relative high frequency variability (noise) of red (A), infrared (B) and NDVI (C) time series for each crop and correction method. Bars represent median absolute deviation
(MAD). SP: single-period, 3MP: 3 multiple-periods, 12MP: 9–12 multiple-periods.
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other crops (94% for early and late soybean respectively, and 97% for
maize).

Fig. 4 shows an example of a pixel red, infrared and NDVI MODIS
Terra time series filtered and corrected by Classic and Alternative SP,
3MP and 12MP methods. Therein, 4 growing seasons (2007–2011) –

corresponding to an agricultural rotation of soybean, wheat/soybean,
maize, and soybean – are depicted. The noise reduction associated
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Fig. 4. Time series of MODIS Terra red, infrared and NDVI at a crop field in San Antonio de Areco (Argentina) from 2007 to 2011 in a 4 crop rotation sequence: soybean (2007–2008),
wheat–soybean (2008–2009), maize (2009–2010), and soybean (2010–2011). Time series colors: filtered (uncorrected) (black), Classic SP (single period— red), Alternative SP (orange),
Classic 3MP (3multiple-periods— green), Alternative 3MP (blue), Classic 12MP (9–12multiple-periods—magenta), and Alternative 12MP (cyan). Time series have been shifted bymul-
tiples of 0.1, 0.25, and 0.5 for red, infrared, and NDVI, respectively.

Table 5
Median rootmean square error (RMSE) ofmodel fit for each correctionmethod. SP: single
period, 3MP: 3 multiple-periods, 12MP: 9–12 multiple-periods.

Band Classic
SP

Alternative
SP

Classic
3MP

Alternative
3MP

Classic
12MP

Alternative
12MP

Red 0.037 0.016 0.020 0.031 0.016 0.040
Infrared 0.079 0.177 0.044 0.259 0.036 0.239
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with the correction methods is evident from the increased grouping –

i.e. decrease dispersion – of successive observations particularly for
the red and infrared bands.

The median values of the RMSE computed from the modeled
reflectance by each of the BRDF correction methods and the observed
reflectance – at similar measurement geometry – fell within the range
of 0.016 to 0.259 (Table 5). The highest median RMSE was found for
the Alternative 3MP for the infrared reflectance and the lowest for the
Alternative SP and Classic 12MP for the red reflectance.

The comparison ofmodeledMODIS vs. LANDSAT reflectance showed
RMSE values between 0.004 and 0.014 for red band and between 0.047
and 0.123 for infrared band (Table 6). Alternative SP showed lower
RMSE than Classic SP, while Classic multiple-period methods (3MP
and 12 MP) showed in general lower RMSE than Alternative 3MP and
12MP. Aqua showed a tendency towards lower RMSE values than
Terra as, on average, their viewing angles on dates of LANDSAT acquisi-
tions were lower (Table 1).

Table 7 reports median values of the Weights of Determination
(WoD) found for the reflectance corrected by the Classic approach
discriminated between crops and periods (SP, 3MP and 12MP). WoD
ranged between 0.019 (maize SP) and 16 (wheat, 12MP period
2) being lowest for the SP method (0.026 across all crops) followed by
the 3MP (0.169) and highest for the 12MP (0.956). In particular,
wheat displayed a high WoD at the beginning of the growing season
(markedly high for the first 3 periods of the 12MP and for the initial
period of the 3MP method) while, for late soybean the highest value
occurred at the end of the growing season (i.e. final sub-period for
3MP or last 2 periods for the 12MP method). For 2391 of 26,592 (9%)
combinations of pixel and 16-day periods (12MP), there were less
than 3 good quality observations which precluded the application of
the correction methods and the WoD calculation.

3.2. Model parameters

Parameters from SP correctionmethods for infrared time-serieswere
in general higher than for the red time series, and k2 (volumetric) param-
eter was higher than k1 (geometric) for both time-series. However, a
clear pattern could not be observed in part because of the high variability
displayed by some parameters. In contrast, parameters obtained from
3MPmethods had less variability and some consistent patterns emerged.
For all crops a decrease in red and an increase in infrared k0 were ob-
served at the intermediate period (Fig. 5, panels A, B). In the case of infra-
red k2 we observed a constant increment for wheat and maize and a
hump-shaped pattern for early soybean and particularly late soybean
(Fig. 6A).

Similarly to Classic SP parameters, the lack of a clear pattern in R and
V may be due to the high variability in model parameters. V parameter
wasmarkedly higher than R only for the infrared time-series.When pa-
rameters were obtained from 3 periods (3MP methods), wheat and
maize infrared V parameter showed increases through sub-periods
(Fig. 6B). Early and late soybeans showed an opposite pattern of de-
creasing V values at intermediate and final periods. As 12MP methods
also included a high proportion of 3MP parameters, we excluded these
methods from the analysis.

3.3. Relationship between model output and crop biophysical variables

Correlation between daily NDVI and measured fIPAR increased
markedly with respect to uncorrected data in most of the correction
methods, particularly for all Alternative and Classic 12MP (Table 8).
The coefficient of determination for biomass increased between 13
and 15% with the Classic and Alternative SP correction methods. The
r2 improvement was lower when the Classic 3MP and 12 MP methods
were considered but the association disappeared when the Alternative
3MP and 12MP were used. However, if the pixels where the correction
methods did not result in a noise reduction were excluded from the re-
gressions, the r2 would notably increase, being in some cases higher
than obtained with filtered data (Alternative 3MP and 12MP – Terra
and Classic 3MP – Aqua).

3.4. Analysis of sensibility

In general for all time series (red, infrared and NDVI), changes in il-
lumination angle (between 50 and 70°) and aerosol quantity thresholds
did not affect noise for the SP and 3MP methods. 12MP methods were
not included in this analysis because of the high percentage of pixels
that required magnitude inversion. Noise was very sensitive to viewing
angle and Obscov thresholds. Comparing each time series, NDVI noise
showed higher sensitivity than red and infrared reflectances (data not
shown). Single-period methods showed constant decreases in NDVI
noise as viewing angle threshold was reduced, but in 3MP methods
very low sensitivities were observed (Fig. 7). The number of observa-
tions from the filtered time-series decreased from an average of 56 to
40 when the viewing angle threshold changed from 70° to 50°. NDVI
noise showed a minimum at intermediate values of Obscov across all
correction methods. 3MP methods displayed a higher increase in NDVI
noise at highObscov values than SPmethods. In this case, the total num-
ber of observations ranged from 56 to 28 between extreme values of
Obscov (5 to 25%).

Table 6
Root mean square error (RMSE) of LANDSAT red (R) and infrared (IR) reflectance vs. Terra and Aqua data modeled to viewing and illumination geometries of LANDSAT scenes for Classic
and Alternative SP, 3MP and 12MP correction methods. RMSE for uncorrectedMODIS data (Filtered) was also included. SP: single period, 3MP: 3 multiple-periods, 12MP: 9–12multiple-
periods.

Sensor Band Filtered Classic SP Alternative SP Classic 3MP Alternative 3MP Classic 12MP Alternative 12MP

Terra Red 0.034 0.014 0.011 0.007 0.011 0.005 0.009
Infrared 0.446 0.123 0.094 0.082 0.063 0.052 0.052

Aqua Red 0.003 0.005 0.005 0.005 0.008 0.004 0.007
Infrared 0.064 0.077 0.051 0.048 0.049 0.047 0.053

Table 7
MedianWeight of Determination of reflectance by each period andmethod. SP: single period, 3MP: 3 multiple-periods and 12MP: 9–12multiple-periods. Subscripts indicate the order of
each 16-day period in 12MP methods.

Crop SP 3MP initial 3MP intermediate 3MP final 12MP1 12MP2 12MP3 12MP4 12MP5 12MP6 12MP7 12MP8 12MP9 12MP10 12MP11 12MP12

Wheat 0.033 0.472 0.057 0.143 2.562 16.402 4.638 1.179 0.392 0.366 0.293 0.347 0.246 0.200 – –

Maize 0.019 0.064 0.038 0.132 0.270 0.318 0.467 0.236 0.193 0.377 0.261 0.213 0.297 0.327 0.445 0.345
Early soybean 0.023 0.065 0.052 0.194 0.281 0.242 0.263 0.369 0.219 0.184 0.267 0.297 0.415 0.283 – –

Late soybean 0.030 0.073 0.083 0.656 0.402 0.175 0.219 0.263 0.527 0.331 0.537 1.508 2.039 – – –
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4. Discussion

Wecompared differentmethods to correct the directional effects that
preclude the use of daily MODIS 250 m time-series and showed that

reflectance's noise (i.e. high frequency variability) was decreased by 47
to 70% across all methods while corrected NDVI explained a higher pro-
portion of the variability in soybean biomass and fIPAR. Higher reduc-
tions were obtained when shorter periods were considered, and results
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Fig. 5. Cropmedian k0 for red (A) and infrared (B) time series for the Classic 3multiple-period (3MP) correctionmethod. Periods are depicted by different column patterns. Bars represent
median absolute deviation (MAD).
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for Classic and Alternativemethods applied over 16-day intervals (12MP
methods) were similar.We found that parameters kx and V and R vary in
time and among crops as expected from bidirectional reflectance model
theory (Roujean et al., 1992) and thus may have a biological meaning.
Our results shed light on the importance of stable target and stable
BRDF shape assumptions underlying BRDF correction methods and
open the door for the analysis of vegetation dynamics at an unprecedent-
ed temporal and spatial resolution.

While undoubtedly more work needs to be done before having an
operative methodology to generate corrected daily MODIS reflectance
time series, several indicators point to the robustness of our results.
Results from two extensively-used quality indices, the high frequency
variability and the RMSE, consistently showed that correction methods
improved the quality of the time series. In turn, the comparison be-
tween different BRDFmodeled reflectance to that of LANDSAT provided
additional evidence that the BRDF models can acceptably reproduce
observed near nadir reflectances. As the ultimate goal of remotely
sensed data is to retrieve precise information about the target we also
tested whether the corrected time series improved the association to
important biophysical variables such as fIPAR and biomass. Indeed, the
corrected time series displayedmoderate improvements in their associ-
ations when compared to the uncorrected time series. Finally, we
performed a sensitivity analysis to assess up to what extent our results
were influenced by particular thresholds of input data. Its results

suggest that most methodologies are stable within an ample range of
viewing and illumination angles, Obscov and aerosol quality.

We did not find that the decrease in the noise of red and near infra-
red reflectances translated into a similar decrease in the noise of the
NDVI. Indeed, for the Classic single-period method even an increase in
NDVI noise was found. This has been explained on the basis that,
being a ratio, the NDVI implicitly contains a directional correction be-
cause the effects are similar in the red and infrared reflectances
(Vermote et al., 2009). Whenever directional effects cause an increase
(decrease) in red and infrared reflectances, NDVI would dampen its
effects by canceling a higher (lower) numerator by a higher (lower)
denominator. However, it seems implausible that changes in red and
infrared reflectances from successive observations would always be pos-
itively correlated during a crop cycle. As LAI increases onewould expect a
decrease in red reflectance – because of chlorophyll absorption – and an
increase in infrared reflectance— given the increased cellulose andwater
scattering (Colwell, 1974; Tucker, 1979). Of course this general pattern of
negative correlationmay be obscure or reversed by, among other factors,
background reflectance, amount of shadow, moisture content and
measurement geometry (Colwell, 1974), which may change on a daily
time-step. We found a positive correlation (average Pearson moment
correlation r = 0.59, significant positive = 562, significant nega-
tive = 0, p-value b 0.05) between changes in successive observations
of MODIS red and infrared filtered (i.e. no correction) reflectance, while

Table 8
Coefficients of determination for the relation between i) fraction of intercepted photosynthetic active radiation (fIPAR) and the NDVI of the corresponding day (NDVId, and ii) peak dry
biomass and the maximum NDVI (NDVImax) for each correction method. In brackets the coefficients of determination are shown when failed pixels (corrected noise higher than
uncorrected) were excluded. Superscripts indicate the number of excluded observations.

Dependent variable Independent variable Sensor n F CSP ASP C3MP A3MP C12MP A12MP

fIPAR NDVId Terra 20 0.31 0.33 0.81 0.49 0.86 0.70 0.77
Aqua 21 0.76 0.61 0.88 0.68 0.86 0.85 0.87

Peak dry biomass NDVImax Terra 36 0.48 0.59 0.58 0.54 (0.50)a 0.03 (0.51)b 0.53 0.06 (0.53)c

Aqua 36 0.52 0.56 0.55 0.47 (0.54)d 0.01 (0.48)e 0.46 (0.52)f 0.01 (0.48)g

a: 6, b: 6, c: 11, d: 4, e: 3, f: 3, g: 3.
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Fig. 7. NDVI noise median (left y-axis) and total number of observations (right y-axis) as a function of the threshold value used to filter each parameter (viewing or illumination angle,
aerosol quantity or observation coverage) keeping constant the rest of the parameters. Squares: input filtered data (no corrected); crosses: number of data of the filtered time-series. Tri-
angles: Classic correction methods and circles: Alternative correction methods. Open symbols: simple-period (SP) and filled symbols: 3 multiple-periods (3MP).
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for the Alternativemethods therewas no consistent correlation (average
r = 0.038 and 0.045, significant positive = 349 and 361, significant
negative = 231 and 235 for SP and 3MP respectively, p-value b 0.05)
or negative in case of Classic methods (average r = −0.19 and −0.13,
significant positive = 139 and 145, significant negative = 746 and
696 for SP and 3MP respectively, p-value b 0.05). In addition, we tested
whether the reduction in the short term variability was due to the
formulation of the NDVI or to the type of correlation (i.e. positive or
negative) between red and infrared reflectances by generating randomly
correlated time series. NDVI noise resulted systematically lower when
red and infrared time-series were positively correlated than when they
were negatively or no correlated. On the other hand, the noise from
the simple ratio index (IR/R) showed no association with the type of

correlation between reflectances. Therefore, the remaining noise of the
NDVI constructed from corrected red and infrared reflectances may con-
tain valuable information on short term changes in vegetation status.

Our results also highlight the importance of the number of periods
used to characterize the BRDF function. As expected, the noise reduction
in Classic method improved significantly when 3 or 9–12 periods
instead of 1 were considered in line with the idea that during the crop
cycle vegetation does not remain stable. The Alternative method,
which assumes that the BRDF shape and not the target remains stable,
also improved (although less), when 3 or 9–12 periods were consid-
ered. Vermote et al. (2009) found similarly reductions in noise when
usingmultiple periods based onNDVI ranges to correct 3 years of reflec-
tance data from a 25 km2 of savanna vegetation. These converging

Table A1
Parameters describing absolute high frequency variability (noise) of red, infrared and NDVI time series. F: filtered (uncorrected data), CSP (Classic single period), ASP: Alternative single
period, C3MP: Classic 3 multiple-periods, A3MP: Alternative 3 multiple-periods, C12MP: Classic 9–12 multiple-periods, A12MP: Alternative 9–12 multiple-periods.

Band Red Infrared

Method F CSP ASP C3MP A3MP C12MP A12MP F CSP ASP C3MP

Mean 0.028 0.016 0.015 0.012 0.015 0.010 0.017 0.077 0.043 0.032 0.031
Standard deviation 0.006 0.006 0.024 0.003 0.036 0.003 0.045 0.012 0.019 0.011 0.010
Median 0.028 0.015 0.012 0.011 0.010 0.010 0.010 0.077 0.039 0.030 0.030
Median absolute deviation 0.006 0.005 0.004 0.003 0.004 0.003 0.004 0.012 0.016 0.010 0.010
Percentile 05 0.018 0.009 0.007 0.007 0.006 0.006 0.005 0.056 0.020 0.017 0.017
Percentile 95 0.038 0.026 0.026 0.018 0.027 0.016 0.044 0.097 0.080 0.053 0.050
Number of observations 2628 2628 2628 2448 2448 2448 2448 2628 2628 2628 2448

Table A2
Parameters describing relative high frequency variability (noise) of red, infrared andNDVI time series for correctionmethods that could be applied in themajority of pixels for each crop. F:
filtered (uncorrected data), CSP (Classic single period), ASP: Alternative single period, C3MP: Classic 3 multiple-periods, A3MP: Alternative 3 multiple-periods, C12MP: Classic 9–12
multiple-periods, A12MP: Alternative 9–12 multiple-periods.

Band Red Infrared

Method F CSP ASP C3MP A3MP C12MP A12MP F CSP ASP C3MP

Crop: wheat
Mean 0.411 0.256 0.294 0.189 0.377 0.180 0.532 0.228 0.170 0.108 0.107
Standard deviation 0.125 0.108 0.265 0.058 0.643 0.055 2.158 0.050 0.061 0.044 0.028
Median 0.394 0.239 0.231 0.184 0.209 0.173 0.219 0.221 0.168 0.103 0.105
Median absolute deviation 0.109 0.090 0.129 0.048 0.111 0.046 0.133 0.037 0.062 0.033 0.026
Percentile 05 0.235 0.107 0.077 0.091 0.080 0.087 0.078 0.169 0.066 0.058 0.067
Percentile 95 0.639 0.438 0.610 0.291 1.020 0.277 1.611 0.310 0.269 0.171 0.155
Number of observations 666 666 666 486 486 486 486 666 666 666 486

Crop: maize
Mean 0.393 0.255 0.243 0.176 0.194 0.154 0.216 0.271 0.158 0.125 0.105
Standard deviation 0.128 0.187 0.202 0.117 0.266 0.114 0.419 0.042 0.042 0.040 0.030
Median 0.382 0.244 0.216 0.163 0.165 0.143 0.141 0.265 0.154 0.116 0.101
Median absolute deviation 0.044 0.059 0.075 0.052 0.063 0.046 0.061 0.043 0.040 0.034 0.031
Percentile 05 0.316 0.156 0.124 0.101 0.087 0.085 0.073 0.216 0.098 0.077 0.065
Percentile 95 0.482 0.359 0.395 0.272 0.318 0.234 0.489 0.341 0.238 0.206 0.165
Number of observations 446 446 446 446 446 446 446 446 446 446 446

Crop: early soybean
Mean 0.399 0.237 0.232 0.191 0.237 0.172 0.241 0.247 0.123 0.103 0.098
Standard deviation 0.065 0.088 0.107 0.056 0.361 0.058 0.399 0.039 0.043 0.034 0.032
Median 0.392 0.219 0.208 0.182 0.168 0.162 0.155 0.241 0.113 0.099 0.093
Median absolute deviation 0.058 0.067 0.089 0.045 0.070 0.048 0.070 0.032 0.040 0.031 0.031
Percentile 05 0.305 0.132 0.107 0.116 0.089 0.099 0.080 0.196 0.072 0.056 0.053
Percentile 95 0.512 0.426 0.428 0.295 0.465 0.279 0.625 0.318 0.201 0.166 0.158
Number of observations 878 878 878 878 878 878 878 878 878 878 878

Crop: late soybean
Mean 0.399 0.235 0.221 0.206 0.233 0.177 0.298 0.230 0.118 0.102 0.098
Standard deviation 0.074 0.078 0.102 0.063 0.371 0.064 0.610 0.050 0.046 0.039 0.035
Median 0.395 0.225 0.207 0.197 0.159 0.163 0.151 0.225 0.109 0.093 0.090
Median absolute deviation 0.065 0.076 0.096 0.065 0.064 0.059 0.068 0.052 0.038 0.034 0.028
Percentile 05 0.289 0.125 0.101 0.118 0.088 0.096 0.081 0.156 0.065 0.057 0.058
Percentile 95 0.537 0.374 0.436 0.311 0.490 0.300 0.910 0.304 0.220 0.179 0.169
Number of observations 638 638 638 638 638 638 638 638 638 638 638

Appendix 1
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results evidence the difficulty of characterizing a dynamic entity as veg-
etation – and particularly crops –where the possibility of improving the
temporal resolution of the BRDF characterization (and improving the
correction) is constrained by the availability of good quality observa-
tions. The definition of the optimal period's length requires site and veg-
etation specific knowledge which may introduce a subjective
component.

The effect of shorter period upon noise reduction was higher for the
Classic than for the Alternative approach (Figs. 1, 2). These results are in
line with the assumptions underlying each approach. As the Classic ap-
proach assumes a stable target, more problems should be expected for
larger periods than for the Alternative methods which assume stable
BRDF shape (and not stable target.). From the later, it follows that

Alternative methods are more flexible on the definition of the length
of the period when the number of available data is low.

Although Alternative methods performed better (lower noise medi-
an values), they had a given percentage of pixels with very high noise,
and higher standard deviation and mean values than Classic ones
(Appendix 1).One reason of this behavior could be that particular com-
binations of kernels and kernel parameters that are minimized without
constrains could give very high values in the correction factor (Eqs. (4)
and (5)) and in addition, in the corrected reflectance values. We found
situations for the Alternative methods where the correction factor was
higher than 3 (implying at least a 200% correction). This issue occurred
at least once on 8% of pixels. Classicmethods, as they used onemore pa-
rameter than the Alternative, showed a lower occurrence of this effect

Table A1
Parameters describing absolute high frequency variability (noise) of red, infrared and NDVI time series. F: filtered (uncorrected data), CSP (Classic single period), ASP: Alternative single
period, C3MP: Classic 3 multiple-periods, A3MP: Alternative 3 multiple-periods, C12MP: Classic 9–12 multiple-periods, A12MP: Alternative 9–12 multiple-periods.

Infrared NDVI

A3MP C12 P A12MP F CSP ASP C3MP A3MP C12MP A12MP

0.033 0.028 0.036 0.068 0.083 0.064 0.058 0.061 0.050 0.087
0.092 0.010 0.127 0.021 0.029 0.178 0.016 0.166 0.014 0.400
0.025 0.026 0.023 0.065 0.080 0.055 0.055 0.043 0.048 0.039
0.009 0.009 0.009 0.019 0.028 0.019 0.015 0.016 0.013 0.016
0.014 0.015 0.012 0.040 0.041 0.032 0.036 0.025 0.030 0.023
0.048 0.046 0.053 0.107 0.137 0.101 0.087 0.103 0.077 0.183

2448 2448 2448 2628 2628 2628 2448 2448 2448 2448

Table A2
Parameters describing relative high frequency variability (noise) of red, infrared andNDVI time series for correctionmethods that could be applied in themajority of pixels for each crop. F:
filtered (uncorrected data), CSP (Classic single period), ASP: Alternative single period, C3MP: Classic 3 multiple-periods, A3MP: Alternative 3 multiple-periods, C12MP: Classic 9–12
multiple-periods, A12MP: Alternative 9–12 multiple-periods.

Infrared NDVI

A3MP C12MP A12MP F CSP ASP C3MP A3MP C12MP A12MP

0.107 0.099 0.134 0.114 0.273 0.545 0.108 0.232 0.101 0.317
0.095 0.027 0.284 0.038 1.004 3.551 0.041 0.912 0.036 1.722
0.092 0.096 0.090 0.107 0.150 0.119 0.097 0.093 0.092 0.095
0.031 0.024 0.033 0.032 0.062 0.051 0.027 0.046 0.022 0.052
0.054 0.060 0.051 0.064 0.073 0.064 0.065 0.046 0.064 0.047
0.178 0.148 0.305 0.182 0.443 0.956 0.179 0.696 0.167 0.795

486 486 486 666 666 666 486 486 486 486

0.140 0.091 0.148 0.156 0.224 0.146 0.134 0.133 0.118 0.171
0.600 0.028 0.635 0.049 0.135 0.051 0.045 0.208 0.041 0.475
0.093 0.087 0.083 0.147 0.212 0.137 0.124 0.104 0.109 0.093
0.031 0.030 0.032 0.051 0.055 0.043 0.038 0.042 0.037 0.041
0.056 0.053 0.049 0.091 0.121 0.082 0.078 0.056 0.067 0.050
0.195 0.145 0.233 0.250 0.341 0.236 0.214 0.211 0.183 0.299

446 446 446 446 446 446 446 446 446 446

0.083 0.084 0.081 0.133 0.364 0.118 0.123 0.136 0.104 0.335
0.045 0.027 0.134 0.039 2.285 0.039 0.039 0.488 0.035 6.619
0.079 0.082 0.067 0.127 0.182 0.112 0.115 0.084 0.099 0.074
0.028 0.028 0.024 0.035 0.083 0.032 0.035 0.028 0.030 0.029
0.043 0.045 0.037 0.079 0.087 0.072 0.070 0.052 0.060 0.043
0.135 0.137 0.125 0.206 0.721 0.190 0.196 0.187 0.158 0.247

878 878 878 878 878 878 878 878 878 878

0.093 0.088 0.082 0.160 7.934 0.539 0.124 0.194 0.113 0.285
0.120 0.030 0.053 0.060 183.5 7.521 0.047 0.800 0.065 1.180
0.078 0.083 0.073 0.146 0.170 0.117 0.115 0.086 0.100 0.083
0.025 0.025 0.025 0.050 0.088 0.047 0.036 0.033 0.033 0.034
0.048 0.052 0.042 0.084 0.079 0.066 0.071 0.049 0.062 0.047
0.151 0.144 0.146 0.273 1.932 0.671 0.208 0.313 0.184 0.800

638 638 638 638 638 638 638 638 638 638
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(less than 2% of pixels). Frequency of failed pixels increased with the
number of periods considered as a higher number of minimizations
was performed.

Wheat displayed the highest percentage of pixels where the correc-
tion did not imply a reduction in the reflectance or NDVI noise. There
are several reasons that may help to explain this outcome. Wheat in
the Pampas grows during a period where clouds or illumination angles
may reduce the amount of good quality observations. In fact,
wheat showed the lowest percentage of cloudless observations – 31% –

compared to 37 for maize and early soybean and 38% and late soybean
respectively. The combined effect of less cloud free observations and,
on average, high illumination angles occurring at the beginning of the
wheat crop cycle may partially explain its relatively poor angular sam-
pling — as evidenced by the high WoD from the first sub-period.
Wheat longer growing season could not compensate for this effect, as
the total number of good quality observations was, on average 50 for
wheat vs. 54, 62 or 71 for late, early soybean and maize respectively.
However, wheat did show higher intervals of missing data that could
be responsible for its lower performance. In turn, the low sensitivity of
correction methods to sun zenith angles suggests that this variable
should not be playing an important role to explain wheat performance.
Additionally, as the noise from the filtered time series did not differ be-
tween crops it can also be discarded that wheat is intrinsically noisier
than maize or soybeans.

From Fig. 5 it is apparent that k0 follows the dynamic of the green
biomass showing an infrared maximum and a red minimum at the
intermediate period where green biomass is expected to peak. This
pattern agrees with the Roujean et al. (1992) definition of k0: the
bidirectional reflectancewhen both sun and sensor are at nadir. Howev-
er, at the intermediate period the values of k0 were not associated to
green biomass (as in general maize has more biomass than the other
crops) suggesting that other variables such as canopy shadowing or
leaf transmittance (Colwell, 1974) may be involved in the determina-
tion of k0.

Gao et al. (2003) suggested that k2 at infrared band is sensitive to
vegetation structure, being higher at dense canopies with few gaps
and thus higher volumetric scattering. For 3MPmethods, crops showed
differences in the values of k2 at the final period compared to the values
at the intermediate period (Fig. 5A). Decrease in k2 values for soybean
could be associated to structural changes that occur at maturity related
to leaf abscission. On the contrary, wheat and maize, crops that retain
leaves, showed increments in k2 at the final period. The higher values
of k2 for late compared to early soybean at initial stages could be associ-
ated to the presence of standing wheat residues which is common due
to the extensive use of direct sowing in the Pampas. V parameter at
infrared band showed a similar pattern to k2 when comparing the inter-
mediate to the final period for 3MPmethods (Fig. 5B), and could be also
related to changes in vegetation structure. V parameter values, although
independently generated, were associated to the temporal variation of
k2 and k0 values generated for the Classic method (Figs. 4 and 5).

The decrease in noise translated to a better association between
NDVI and fIPAR and soybean biomass. However, the influence of failed
pixels is evident from the difference in the r2 obtained considering all
against only those where correction resulted in a noise reduction.
Therefore, care is needed when performing an operational correction
of directional effects using methods that do not assure 100% success.
Such an approach could employ more than one correction method to
be used when the main correction method fails.

Overall, these results seem promising. The BRDF correctionmethods
tested here represent a significant step forward towards the operational
production of high spatiotemporal resolution observations of vegeta-
tion. Corrected time-series showed, on average, between 5 and 6
times more observations than those obtained in the standard 16 day
compositing period. Moreover, these corrected observations were bet-
ter correlated with biophysical variables such as soybean biomass
than their uncorrected counterparts. We propose that this so called

“hyper-temporal” analysis could be particularly useful for monitoring
rapid changes in crop status.
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