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ABSTRACT
Reduced-rank regression is a dimensionality reduction method with many
applications. The asymptotic theory for reduced rank estimators of param-
eter matrices in multivariate linear models has been studied extensively.
In contrast, few theoretical results are available for reduced-rank multivari-
ate generalized linearmodels.WedevelopM-estimation theory for concave
criterion functions that are maximized over parameter spaces that are nei-
ther convex nor closed. These results are used to derive the consistency and
asymptotic distribution of maximum likelihood estimators in reduced-rank
multivariate generalized linear models, when the response and predictor
vectors have a joint distribution. We illustrate our results in a real data
classification problem with binary covariates.
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1. Introduction

The multivariate multiple linear regression model for a q-dimensional response Y = (Y1, . . . ,Yq)
T

and a p-dimensional predictor vectorX = (X1, . . . ,Xp)
T postulates thatY = BX + ε, whereB is a q ×

pmatrix and ε = (ε1, . . . , εq)T is the error term, with E(ε) = 0 and var(ε) = �. Based on a random
sample (X1,Y1), . . . , (Xn,Yn) satisfying the model, ordinary least squares estimates the parameter
matrix B by minimizing the squared error loss function

∑n
i=1 ‖Yi − BXi‖2 to obtain

B̂ols =
( n∑

i=1
YiXT

i

)( n∑
i=1

XiXT
i

)−1

. (1)

Reduced-rank regression introduces a rank constraint on B, so that Equation (1) is minimized subject
to the constraint rank(B) ≤ r, where r < min(p, q). The solution is B̂TRRR = B̂TolsUrUT

r , where Ur are
the first r singular vectors of ŶT = B̂olsXT (see, e.g. [1]).

Reduced-rank regression has attracted attention as a regularisation method by introducing a
shrinkage penalty on B. Moreover, it is used as a dimensionality reduction method as it constructs
latent factors in the predictor space that explain the variance of the responses.

Anderson [2] obtained the likelihood-ratio test of the hypothesis that the rank of B is a given
number and derived the associated asymptotic theory under the assumption of normality of Y and
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non-stochastic X. Under the assumption of joint normality of Y and X, Izenman [3] obtained the
asymptotic distribution of the estimated reduced-rank regression coefficient matrix and drew con-
nections between reduced-rank regression, principal component analysis and correlation analysis.
Specifically, principal component analysis coincides with reduced-rank regression when Y =X [4].
Recently, Fan et al. [5] studied the theoretical properties of nuclear norm regularizedmaximum likeli-
hood type estimates in a class of models that includes reduced-rank regression. They derive statistical
rates of convergence in possibly high-dimensional scenarios. However, they do not provide asymp-
totic results that can be used to construct confidence intervals or hypothesis tests. The monograph
by Reinsel and Velu [1] contains a comprehensive survey of the theory and history of reduced rank
regression, including in time series, and its many applications.

Despite the application potential of reduced-rank regression, it has received limited attention in
generalized linear models. Yee and Hastie [6] were the first to introduce reduced-rank regression
to the class of multivariate generalized linear models, which covers a wide range of data types for
both the response and predictor vectors, including categorical data.Multivariate or vector generalized
linear models (VGLMs) is the topic of Yee’s [7] book, which is accompanied by the associated R pack-
ages, VGAM and VGAMdata. Yee andHastie [6] proposed an alternating estimation algorithm, which
was shown to result in the maximum likelihood estimate of the parameter matrix in reduced-rank
multivariate generalized linear models by Bura et al. [8]. Asymptotic theory for the restricted rank
maximum likelihood estimates of the parametermatrix inmultivariate GLMs has not been developed
yet.

In general, a maximum likelihood estimator is a concave M-estimator in the sense that it max-
imizes the empirical mean of a concave criterion function. Asymptotic theory for M-estimators
defined through a concave function has received much attention. Huber [9], Haberman [10] and
Niemiro [11] are among the classical references. More recently, Hjort and Pollard [12] presented a
unified framework for the statistical theory of M-estimation for convex criterion functions that are
minimized over open convex sets of a Euclidean space. Geyer [13] studiedM-estimators restricted to
a closed subset of a Euclidean space.

The rank restriction in reduced rank regression imposes constraints that have not been studied
before in M-estimation as they result in neither convex nor closed parameter spaces. In this paper we
(a) developM-estimation theory for concave criterion functions, which are maximized over parame-
ters spaces that are neither convex nor closed, and (b) apply the results from (a) to obtain asymptotic
theory for reduced rank regression estimators in generalized linear models. Specifically, we derive the
asymptotic distribution and properties ofmaximum likelihood estimators in reduced-rankmultivari-
ate generalized linear models where both the response and predictor vectors have a joint distribution.
The asymptotic theory we develop covers reduced-rank regression for linear models as a special case.
We show the improvement in inference the asymptotic theory offers via analysing the data set Yee
and Hastie [6] analysed.

Throughout, for a function f : R
q → R, ∇f (x) denotes the row vector ∇f (x) = (∂f (x)/∂x1, . . . ,

∂f (x)/∂xq), ḟ (x) stands for the column vector of derivatives, while ∇2f (x) denotes the symmetric
matrix of second-order derivatives. For a vector valued function f : R

q1 → R
q2 ,∇f denotes the q2 ×

q1 matrix,

∇f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xq1

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xq1

...
...

...
...

∂fq2
∂x1

∂fq2
∂x2

· · · ∂fq2
∂xq1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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2. M-estimators

Let Z be a random vector taking values in a measurable spaceZ and distributed according to the law
P. We are interested in estimating a finite dimensional parameter ξ0 = ξ0(P) using n independent
and identically distributed copies Z1,Z2, . . . ,Zn of Z. In the sequel, we use Pf to denote the mean of
f (Z); i.e. Pf = E[f (Z)].

Let � be a subset of a Euclidean space and m� : Z → R be a known function. Assume that the
parameter of interest ξ0 is the maximizer of the map ξ �→ Pmξ defined on�. One can estimate ξ0 by
maximizing an empirical version of the optimization criterion. Specifically, given a known function
mξ : Z �→ R, define

M(ξ) := Pmξ and Mn(ξ) := Pnmξ , (2)

where, here and throughout,Pn denotes the empiricalmean operatorPnV = n−1∑n
1=1 Vi. Hereafter,

Mn(ξ) and Pnmξ will be used interchangeably as the criterion function, depending on which of the
two is appropriate in a given setting.

Assume that ξ0 is the unique maximizer of the deterministic functionM defined in Equation (2).
AnM-estimator for the criterion functionMn over� is defined as

ξ̂n = ξ̂n(Z1, . . . ,Zn) maximizing Mn(ξ) = 1
n

n∑
i=1

mξ (Zi) over� . (3)

If the maximum of the criterion functionMn over� is not attained but the supremum ofMn over�
is finite, any value ξ̂n that almost maximizes the criterion function, in the sense that it satisfies

Mn(ξ̂n) ≥ sup
ξ∈�

Mn(ξ)− An, (4)

for An small, can be used instead.

Definition 2.1: An estimator ξ̂n that satisfies Equation (4) with An = op(1) is called a weak M-
estimator for the criterion functionMn over�.WhenAn = op(n−1), ξ̂n is called a strongM-estimator.

Proposition A.1 in the Appendix lists the conditions for the existence, uniqueness and strong con-
sistency of an M-estimator, as defined in Equation (3), whenMn is concave and the parameter space
is convex. Under regularity conditions, as those stated in Theorem 5.23 in van der Vaart [14], the
asymptotic expansion and distribution of a consistent strong M-estimator [see Definition 2.1] for ξ0
is given by

√
n(ξ̂n − ξ0) = 1√

n

n∑
i=1

IFξ0(Zi)+ op(1), (5)

where IFξ0(Zi) = −V−1
ξ0

ṁξ0(Zi), and Vξ0 is the non-singular symmetric second derivative matrix of
M(ξ) at ξ0.

2.1. RestrictedM-estimators

We now consider the optimization ofMn over�res ⊂ �, where�res is the image of a function that is
not necessarily injective. Specifically, we restrict the optimization problem to the set�res by requiring:

Condition 2.2: There exists an open set� ⊂ R
q and a map g : � → � such that ξ0 ∈ g(�) = �res.

Even when an M-estimator for the unrestricted problem as defined in (3) exists, there is no
a priori guarantee that the supremum is attained when considering the restricted problem. Nev-
ertheless, Lemma 2.3 establishes the existence of a restricted strong M-estimator, regardless of
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whether the original M-estimator is a real maximizer, weak or strong. All proofs are provided in the
Appendix.

Lemma 2.3: Assume there exists a weak/strong M-estimator ξ̂n for the criterion function Mn over�. If
Condition 2.2 holds, then there exists a strong M-estimator ξ̂ resn for the criterion function Mn over�res.

Proposition 2.4 next establishes the existence and consistency of a weak restricted M-estimator
sequence when mξ (z) is a concave function in ξ under the same assumptions as those of the
unrestricted problem, stated in Proposition A.1 in the Appendix.

Proposition 2.4: Assume that Condition 2.2 holds. Then, under the assumptions of Proposition A.1 in
the Appendix, there exists a strongM-estimator of the restricted problem over�res. Moreover, any strong
M-estimator of the restricted problem converges to ξ0 in probability.

We derive next the asymptotic distribution of ξ̂ resn = g(θ̂n), with θ̂n ∈ �. The constrained esti-
mator ξ̂ resn is well defined under Lemma 2.3, even when θ̂n is not uniquely determined. If θ̂n were
unique and

√
n(θ̂n − θ) had an asymptotic distribution, one could use a Taylor series expansion for

g to derive asymptotic results for ξ̂ resn . Building on this idea, Condition 2.5 introduces a parametriza-
tion of a neighbourhood of ξ0 that allows applying standard tools in order to obtain the asymptotic
distribution of the restricted M-estimator.

Condition 2.5: Given ξ0 ∈ g(�), there exists an open set M in �res with ξ0 ∈ M ⊂ g(�), and
(S , h), where S is an open set in R

qs , qs ≤ q, and h : S → M is one-to-one, bi-continuous and twice
continuously differentiable, with ξ0 = h(s0) for some s0 ∈ S .

Under the setting in Condition 2.5, we will prove that ŝn = h−1(ξ̂ resn ) is a strong M-estimator for
the criterion function Pnmh(s) over S . Then, we can apply Theorem 5.23 of van der Vaart [14] to
obtain the asymptotic behaviour of ŝn, which, combined with a Taylor expansion of h about s0, yield
a linear expansion for ξ̂ resn . Finally, requiring Condition 2.6, which relates the parametrizations (S , h)
and (�, g), suffices to derive the asymptotic distribution of ξ̂ resn in terms of g.

Condition 2.6: Consider (�, g) as in Condition 2.2 and (S , h) as in Condition 2.5. For each θ0 ∈
g−1(ξ0), span∇g(θ0) = span∇h(s0).

Condition 2.6 ensures that Tξ0 = span∇g(θ0) is well defined regardless of the fact that g−1(ξ0)
may contain multiple θ0’s. Moreover, Tξ0 also agrees with span∇h(s0). Consequently, the orthogonal
projection	ξ0(�) onto Tξ0 with respect to the inner product defined by a symmetric positive definite
matrix� satisfies

	ξ0(�) = ∇g(θ0)(∇g(θ0)T�∇g(θ0))†∇g(θ0)T�

= ∇h(s0)(∇h(s0)T�∇h(s0))−1∇h(s0)T�, (6)

where A† denotes a generalized inverse of the matrix A. The gradient of g is not necessarily of full
rank, in contrast to the gradient of h. Note that	ξ0(�) is idempotent (	2

ξ0(�)
= 	ξ0(�)) and the span

of its columns is equal to Tξ0 . However, 	ξ0(�) is not in general symmetric, but rather self-adjoint
with respect to the inner product induced by� since< x, y >� := yT�x.
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Proposition 2.7: Assume that Conditions 2.2, 2.5 and 2.6 hold. Assume also that the unrestricted prob-
lem satisfies the regularity Conditions A.2–A.4 in the Appendix. Then, any strong M-estimator ξ̂ resn of
the restricted problem that converges in probability to ξ0 satisfies

√
n(ξ̂ resn − ξ0) = 1√

n

n∑
i=1

	ξ0(−Vξ0 )IFξ0(Zi)+ op(1), (7)

where IFξ0(Zi) = −V−1
ξ0

ṁξ0(Zi) is the influence function of the unrestricted estimator defined in
Equation (5), Vξ0 is the non-singular symmetric second derivative matrix of M(ξ) at ξ0, and	ξ0(−Vξ0 )
is defined according to Equation (6).

Moreover,
√
n(ξ̂ resn − ξ0) is asymptotically normal with mean zero and asymptotic variance

avar{√n(ξ̂ resn − ξ0)} = 	ξ0(−Vξ0 )V
−1
ξ0

P
{
ṁξ0ṁ

T
ξ0

}
V−1
ξ0
	T
ξ0(−Vξ0 )

. (8)

As an aside remark, we conjecture that for estimators that are maximizers of a criterion func-
tion under restrictions that satisfy Conditions 2.2–2.6, when Equation (5) is true, Equation (7) also
holds. This can be important since the asymptotic distribution of restricted estimators will be derived
directly from the asymptotic distribution of the unrestricted one.

The optimization problem that defines the restricted M-estimators considered in this paper is, in
general, not convex and hence difficult to solve. However, in the case of maximum likelihood esti-
mation in reduced rank multivariate generalized linear models, the main application of the results in
our paper, efficient algorithms exist for solving it (see [6] and the VGAM R package).

3. Asymptotic theory for themaximum likelihood estimator in reduced rank
multivariate generalized linear models

In this sectionwe show thatmaximum likelihood estimators in reduced-rankmultivariate generalized
linear models are restricted strong M-estimators for the conditional log-likelihood. Using results in
Section 2.1, we obtain the existence, consistency and asymptotic distribution of maximum likelihood
estimators in reduced-rank multivariate generalized linear models. In practice, these estimators can
be obtained using the R package VGAM, developed by Yee [15].

3.1. Exponential family

Let Y = (Y1, . . . ,Yq)
T be a q-dimensional random vector and assume that its distribution belongs to

a k-parameter canonical exponential family with pdf (pms)

fη(y) = exp{ηTT(y)− ψ(η)}h(y), (9)

where T(y) = (T1(y), . . . ,Tk(y))T is a vector of known real-valued functions, h(y) ≥ 0 is a non-
negative known function and η ∈ R

k is the vector of natural parameters, taking values in

H = {η ∈ R
k :
∫

exp{ηTT(y)}h(y) dy < ∞}, (10)

where the integral is replaced by a sum when Y is discrete. The set H of the natural parameter space
is assumed to be open and convex in R

k, and ψ a strictly convex function defined on H. Moreover,
we assume ψ(η) is convex and infinitely differentiable inH. In particular,

∇ψ(η) = ETη (T(Y)) and ∇2ψ(η) = varη(T(Y)), for every η ∈ H, (11)

where ∇2ψ is the k × k matrix of second derivatives of ψ . Since ψ is strictly convex, varη(T(Y)) is
non-singular for every η ∈ H.
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3.2. Multivariate generalized linearmodels

Let Z = (X,Y) be a random vector, where now Y ∈ R
q is a multivariate response and X ∈ R

p is a
vector of predictors. The multivariate generalized linear model postulates that the conditional distri-
bution of Y given X belongs to some fixed exponential family and hypothesizes that the k-vector of
natural parameters, which we henceforth call ηx to emphasize the dependence on x, depends linearly
on the vector of predictors. Thus, the pdf (pms) of Y | X = x is given by

fY|X=x(y) = exp{ηTx T(y)− ψ(ηx)}h(y), (12)

where ηx ∈ R
k depends linearly on x.

Frequently, a subset of the natural parameters depends on x, whereas its complement does not.
The normal linear model with constant variance is such an example. To accommodate this structure,
we partition the vector ηx indexing model (12) into ηx1 and ηx2, with k1 and k2 components, and
assume that H, the natural parameter space of the exponential family, is R

k1 × H2, where H2 is an
open convex subset of R

k2 . We also assume that

ηx =
(
ηx1
ηx2

)
=
(
η̄1 + βx
η̄2

)
, (13)

where β ∈ R
k1×p, η̄1 ∈ R

k1 and η̄2 ∈ H2. Let ξ = (η̄T1 , vec
T(β), η̄T2 )

T ∈ � = R
k1 × R

k1p × H2,
denote a generic vector and ξ0 the true parameter. Suppose n independent and identically distributed
copies of Z = (X,Y) satisfying Equations (12) and (13), with true parameter vector ξ0, are available.
Given a realization zi = (xi, yi), i = 1, . . . , n, the conditional log-likelihood, up to a factor that does
not depend on the parameter of interest, is

Ln(β ; η̄) = 1
n

n∑
i=1

{
ηTxiT(yi)− ψ(ηxi)

}
. (14)

Let

m(β ;η̄)(z) = ηTx T(y)− ψ(ηx). (15)

By definition (3), the maximum likelihood estimator (MLE) of the parameter indexing model (12)
subject to (13), if it exists, is an M-estimator.

Theorem 3.1 next establishes the existence, consistency and asymptotic normality of ξ̂n, the MLE
of ξ0.

Theorem 3.1: Assume that Z = (X,Y) satisfies model (12) subject to (13) with true parameter ξ0.
Under regularity conditions (A20), (A21), (A22) and (A23) in the Appendix, the maximum likeli-
hood estimate of ξ0, ξ̂n, exists, is unique and converges in probability to ξ0. Moreover,

√
n(ξ̂n − ξ0)

is asymptotically normal with covariance matrix

Wξ0 =
[
E
{
F(X)T∇2ψ(F(X)ξ0)F(X)

}]−1
, (16)

where

F(x) =
((
(1, xT)⊗ Ik1

)
0

0 Ik2

)
,

and ∇2ψ was defined in Equation (11).
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3.3. Partial reduced rankmultivariate generalized linearmodels

When the number of natural parameters or the number of predictors is large, the precision of the
estimation and/or the interpretation of results can be adversely affected. A way to address this is to
assume that the parameters live in a lower dimensional space. That is, we assume that the vector of
predictors can be partitioned as x = (xT1 , x

T
2 )

T with x1 ∈ R
r and x2 ∈ R

p−r , and that the parameter
corresponding to x1, β1 ∈ R

k1×r , has rank d < min{k1, r}. In this way, the natural parameters ηx in
Equation (12) are related to the predictors via

ηx =
(
ηx1
ηx2

)
=
(
η̄1 + β1x1 + β2x2

η̄2

)
, (17)

where β1 ∈ R
k1×r
d , the set of matrices in R

k1×r of rank d ≤ min{k1, r}, while β2 ∈ R
k1×(p−r), and

β = (β1,β2).
Following Yee and Hastie [6], we refer to the exponential conditional model (12) subject to the

restrictions imposed in Equation (17) as partial reduced rank multivariate generalized linear model.
The reduced-rank multivariate generalized linear model is a special case of model (17) with β2 = 0.

To obtain the asymptotic distribution of the M-estimators for this reduced model, we will show
that Conditions 2.2–2.6 are satisfied for�res, (�, g),M and (S , h), which are defined next. To main-
tain consistency with notation introduced in Section 2.1, we vectorize each matrix involved in the
parametrization of our model and reformulate the parameter space accordingly for each vectorized
object. With this understanding, we use the symbol ∼= to indicate that a matrix space component in
a product space is identified with its image through the operator vec : R

m×n → R
mn. In the sequel,

to keep the notation as simple as possible, we concatenate column vectors without transposing them;
that is, we write (a, b) for (aT, bT)T. Moreover, we write ξ = (η̄1,β , η̄2), with the understanding that
β stands for vec(β).

For the non-restricted problem, β1 belongs to R
k1×r , so that the entire parameter ξ =

(η̄1,β1,β2, η̄2) belongs to

� ∼= R
k1 × R

k1×r × R
k1×(p−r) × H2. (18)

However, for the restricted problem, we assume that the true parameter ξ0 = (η̄01,β01,β02, η̄02)
belongs to

�res ∼= R
k1 × R

k1×r
d × R

k1×(p−r) × H2. (19)

Let

� ∼= R
k1 ×

{
R
k1×d
d × R

d×r
d

}
× R

k1×(p−r) × H2 (20)

and consider g : � → �res, with (η̄1, (S,T),β2, η̄2) �→ (η̄1, ST,β2, η̄2). Without loss of generality, we
assume that β01 ∈ R

k1×r
first,d, the set of matrices in R

k1×r
d whose first d rows are linearly independent.

Therefore,

β01 =
(
Id
A0

)
B0, with A0 ∈ R

(k1−d)×d and B0 ∈ R
d×r
d . (21)

This is trivial since β01 ∈ R
k1×r
d and its first d rows are linearly independent. Consider

M ∼= R
k1 × R

k1×r
first,d × R

k1×(p−r) × H2, and so ξ0 ∈ M ⊂ �res. (22)

Finally, let

S ∼= R
k1 ×

{
R
(k1−d)×d × R

d×r
d

}
× R

k1×(p−r) × H2, (23)
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and h : S → M be the map

(η̄1, (A,B),β2, η̄2) �→
(
η̄1,
(

B
AB

)
,β2, η̄2

)
. (24)

Proposition 3.2: Conditions 2.2–2.6 are satisfied for ξ0, �, �res, (�, g), M and (S , h) defined in
Equations (18)–(24), respectively.

Under the rank restriction on β1 in Equation (17), the existence of the maximum likelihood
estimator cannot be guaranteed in the sense of an M-estimator as defined in Equation (3) with
mξ = m(β ;η̄) in Equation (15), and � replaced by �res in Equation (18). However, we can work
with a strong M-estimator sequence for the criterion function Pnm(β ;η̄) over �res using Lemma 2.3.
Theorem 3.3 states our main contribution.

Theorem 3.3: Let ξ0 = (η̄01,β01,β02, η̄02) denote the true parameter value of ξ = (η̄1,β1,β2, η̄2).
Assume that Z = (X,Y) satisfies model (12) subject to (17), with ξ0 ∈ �res defined in Equation (19).
Then, there exists a strong maximizing sequence for the criterion function Pnmξ over �res for mξ =
m(β ;η̄) defined in Equation (15). Moreover, any weak M-estimator sequence {ξ̂ resn } converges to ξ0 in
probability.

If {ξ̂ resn } is a strong M-estimator sequence, then
√
n(ξ̂ resn − ξ0) is asymptotically normal with

covariance matrix

avar{√n(ξ̂ resn − ξ0)} = 	
ξ0(W−1

ξ0
)
Wξ0

= G(GTW−1
ξ0

G)−1GT, (25)

where Wξ0 is defined in Equation (16) and

G =

⎛
⎜⎜⎜⎝
Ik1 0 0 0 0
0 BT0 ⊗ Ik1 Ir ⊗ C0 0 0
0 0 0 Ik1(p−r) 0
0 0 0 0 Ik2

⎞
⎟⎟⎟⎠ , (26)

with β01 = C0B0, C0 ∈ R
k1×d and B0 ∈ R

d×r any decomposition of β01.

Remark 3.4: The asymptotic variance of the estimator does not depend on the specific decomposi-
tion of β01. That is, for another β01 = C̃0B̃0, even if (26) changes, (25) remains the same.

Remark 3.5: Aplug-in procedure can be used to estimate the elements of thematrix in Equation (25)
and then, appealing to Slutzky’s Theorem, asymptotic confidence regions for ξ̂ resn can be constructed.
Also, bootstrap variance estimates can be computed by samplingwith replacement from the empirical
distribution, leading to so-called normal bootstrap intervals (see, e.g. [16], Section 8.3).

Remark 3.6: Since	
ξ0(W−1

ξ0
)
is a projection,	

ξ0(W−1
ξ0
)
Wξ0 ≤ Wξ0 . That is, the eigenvalues ofWξ0 −

	
ξ0(W−1

ξ0
)
Wξ0 are non-negative, so that using partial reduced-rank multivariate generalized linear

models results in efficiency gain.

Remark 3.7: Decomposing x into more sets of predictors with reduced rank parameters amounts to
adding new rows, like the second set of rows of G in Equation (26), for each reduced rank parameter.

Remark 3.8: For more general families, like the one considered by Yee and Hastie [6], if the fam-
ily in question satisfies the regularity conditions in Proposition 2.7, the asymptotic variance of the
estimators can also be computed by making the corresponding substitutions in the formulas of
Proposition 2.7.
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4. Application: marital status in a workforce study

Yee and Hastie [6] analyse data from a self-administered questionnaire collected in a large New
Zealand workforce observational study conducted during 1992–1993. For homogeneity, the anal-
ysis was restricted to a subset of 4105 European males with no missing values in any of the
variables used. Yee and Hastie [6] were interested in exploring whether certain lifestyle and psy-
chological variables were associated with marital status, especially separation/divorce. The response
variable is Y = maritalstatus, with levels 1 = single, 2 = separatedordivorced, 3 = widower, and
4 = marriedorlivingwithapartner. Themarried/partnered are the reference group. Data on 14 regres-
sors were collected, 12 of which are binary (1/0 for presence/absence, respectively). These have been
coded so that their presence is negative healthwise. Their goal was to investigate if and how these
12 unhealthy variables were related to Y , adjusting for age and level of education. The variables are
described in Table 1.

A categorical responseY taking values 1,2,3,4with probabilities pr(Y = i) = pi can be expressed as
amultinomial vector to fit the generalized linearmodel presented in this paper,Y = (Y1,Y2,Y3,Y4)

T,
where Yi = 1 if Y = i and Yi = 0 otherwise, and

∑4
i=1 Yi = 1. The pdf of Y can be written as

fY(y) = exp{ηTT(y)− ψ(η)}h(y), (27)

where y = (y1, y2, y3, y4), T(y) = (y1, y2, y3), η = (η1, η2, η3) ∈ R
3, ψ(η) = 1 +∑3

i=1 exp(ηi) and
h(y) = 1/(y1!y2!y3!(1 − y1 − y2 − y3)!). The natural parameter η = (η1, η2, η3) ∈ R

3, is related to
the pdf of Y through the identity ηi = log(pi/p4), i= 1,2,3.

LetX be the vector of predictor variables and consider pi = pi(x) = pr(Yi = 1|X = x). The depen-
dence of pi on x will not be made explicit in the notation. As in [6] we fit a multinomial regression
model to Y |X = x, as in Equation (27), with

ηx =
⎛
⎝log(p1/p4)
log(p2/p4)
log(p3/p4)

⎞
⎠ = η̄ + βx, (28)

where η̄ ∈ R
3 is the intercept and β ∈ R

3×14 is the coefficient matrix, so that there are 3 × 14 + 3 =
42 + 3 = 45 parameters to estimate. When a multinomial linear model is fitted to the data at level
0.05, age30 and binge are significant for log(p1/p4), smokehow and tense for log(p2/p4), and
only age30 is significant for log(p3/p4).

Table 1. Variables used in the workforce study.

Variable name Description

marital Marital status. 1= single, 2= separated or divorced, 3=widower,
and 4=married or living with a partner

age30 Age−30, in years
logedu1 log(1+ years of education at secondary or high school)
binge In the last 3 months what is the largest number of drinks that you

had on any one day? (1= 20 or more, 0= less than 20)
smokenow Current smoker?
sun Does not usually wear a hat, shirt or suntan lotion when outside

during summer
nerves Do you suffer from ‘nerves’?
nervous Would you call yourself a ‘nervous’ person?
hurt Are your feelings easily hurt?
tense Would you call yourself tense or ‘highly strung’?
miserable Do you feel ‘just miserable’ for no reason?
fedup Do you often feel ‘fed-up’?
worry Do you worry about awful things that might happen?
worrier Are you a worrier?
mood Does your mood often go up and down?
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Table 2. Estimators with standard errors for β1 for the generalized linear model
(first two rows) and the reduced generalized linear model (last two rows).

Variable log(p1/p4) log(p2/p4) log(p3/p4)

Intercept
GLM −1.573* −2.921* −6.123*

(0.388) (0.396) (1.106)
PRR–GLM −1.762* −2.699* −6.711*

(0.377) (0.383) (1.047)

age30
GLM −0.190* 0.012 0.077*

(0.008) (0.008) (0.024)
PRR–GLM −0.191* 0.012 0.086*

(0.008) (0.008) (0.023)

logedu1
GLM 0.254 −0.316 −0.198

(0.228) (0.214) (0.566)
PRR–GLM 0.338 −0.365 −0.089

(0.225) (0.213) (0.559)
∗ Significance at 5% level.

We next fitted a partial reduced rank multivariate generalized linear model, where the two
continuous variables, age30 and logedu1, were not subject to restriction. That is,

ηx = η̄ + βx = η̄ + β1x1 + β2x2, (29)

where x2 represent the continuous variables and x1 the 12 binary predictors. The AIC criterion esti-
mates the rank ofβ1 in Equation (29) to be one (see [6]). Using the asymptotic results from the current
paper, Duarte [17] developed a test based on Bura and Yang [18] that also estimates the dimension
to be 1. Therefore, in our notation, q= 4, k = k1 = 3, p= 14, r= 2, d= 1, and β1 = AB, A : 3 × 1
y B : 1 × 12, β2 : 3 × 2 and η̄ : 3 × 1. The rank restriction results in a drastic reduction in the total
number of parameters from 45 to 24.

The reduction in the estimation burden is also reflected in how tight the confidence intervals are
compared with those in the unrestricted model, as can be seen in Table 3 and Table 2 in [6]. As a
consequence the variables nervous, hurt, which are not significant in the unrestricted general-
ized linear model, are significant in the reduced (29). Furthermore, some variables, such as binge,
smokenow, nervous and tense, are now significant for all responses.

All significant coefficients are positive. These correspond to the variables binge, smokenow,
nervous, tense and hurt for single and divorced/separated groups. Since the positive value
of the binary variables indicates poor lifestyle and negative psychological characteristics, our anal-
ysis concludes that for men with these features, the chance of being single, divorced or widowed is
higher than the chance of being married, adjusting for age and education. Also, the coefficients cor-
responding to the response log(p3/p4) are twice as large as those of log(p1/p4), suggesting the effect
of the predictors differs in each group. All computations were performed using the R package VGAM,
developed by Yee [15]. The R script to reproduce the data analysis in Section 4 can be accessed at
supplemental data.

5. Discussion

With the exception of thework of Yee and his collaborators onVGLMs [6,7,19], where the distribution
of the response can be any member of the multivariate exponential family, reduced-rank regression
has been almost exclusively restricted to regressions with continuous response variables. Estimation
methods and the corresponding software for general partial reduced rank multivariate generalized
linear models were developed by Yee and Hastie [6] and Yee [7]. Yet, the distribution and statistical
properties of the estimators were not obtained. In this paper we fill this gap by developing asymptotic
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Table 3. MLEs with their standard errors in parentheses for the full rank generalized linear
model (first two rows) and the partial reduced rank generalized linearmodel (last two rows).

Variable log(p1/p4) log(p2/p4) log(p3/p4)

binge
GLM 0.801* 0.318 1.127

(0.143) (0.256) (0.670)
PRR–GLM 0.569* 0.786* 1.114*

(0.125) (0.196) (0.409)
smokenow

GLM 0.022 0.501* 0.654
(0.126) (0.157) (0.469)

PRR–GLM 0.222* 0.306* 0.434*
(0.088) (0.119) (0.208)

sun
GLM −0.066 0.120 −0.088

(0.122) (0.161) (0.518)
PRR–GLM 0.011 0.015 0.021

(0.084) (0.116) (0.164)
nerves

GLM −0.102 0.123 −1.456
(0.138) (0.198) (0.841)

PRR–GLM −0.054 −0.074 −0.105
(0.101) (0.139) (0.197)

nervous
GLM 0.297 0.353 1.007

(0.169) (0.228) (0.665)
PRR–GLM 0.312* 0.430* 0.609*

(0.124) (0.168) (0.291)
hurt

GLM 0.184 0.210 0.483
(0.126) (0.167) (0.501)

PRR–GLM 0.180* 0.248* 0.352
(0.089) (0.122) (0.199)

tense
GLM 0.166 0.483* 1.108

(0.176) (0.214) (0.612)
PRR–GLM 0.302* 0.416* 0.590*

(0.122) (0.163) (0.284)
miserable

GLM −0.050 0.128 −0.093
(0.138) (0.178) (0.613)

PRR–GLM 0.019 0.0268 0.038
(0.094) (0.129) (0.185)

fedup
GLM 0.112 0.249 −0.214

(0.122) (0.171) (0.548)
PRR–GLM 0.117 0.161 0.229

(0.094) (0.129) (0.185)
worry

GLM 0.113 −0.102 −0.548
(0.145) (0.209) (0.818)

PRR–GLM 0.003 0.004 0.005
(0.106) (0.146) (0.207)

worrier
GLM −0.027 -0.243 −0.548

(0.131) (0.180) (0.550)
PRR–GLM −0.116 -0.160 −0.227

(0.092) (0.128) (0.193)
mood

GLM −0.111 0.092 −0.193
(0.123) (0.171) (0.553)

PRR–GLM −0.037 −0.052 −0.073
(0.087) (0.120) (0.172)

∗ Significant at 5% level.
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theory for the restricted rank maximum likelihood estimates of the parameter matrix in multivariate
GLMs.

To illustrate the potential impact of our results, we refer to the real data analysis example in
Section 4. In order to assess the significance of the predictors, Yee and Hastie [6] calculate the stan-
dard errors for the coefficient matrix factors, A and B, independently and can only infer about the
significance of the components of the matrix A and the components of the matrix B separately. The
asymptotic distribution for either estimator is obtained assuming that the other is fixed and known.
In this way, they first analyse ν = Bx1 to check which predictors are significant and thenAν to exam-
ine how they influence each response. Their standard errors are ad-hoc and it is unclear what the
product of standard errors measures as relates to the significance of the product of the components of
the coefficient matrix β1 = AB. Moreover, this practical ad-hoc approach cannot readily be extended
when d> 1.

Using the results of Theorem 3.3, we can obtain the errors of each component of the coefficient
matricesA,B simultaneously, and assess the statistical significance of each predictor on each response.
Using the ad-hoc approach of Yee and Hastie [6], a predictor can only be found to be significant
across all responses. For example, Yee and Hastie [6] find the predictor hurt to be significant for
all three groups (single, divorced/separated, widower). On the other hand, we can assess the signif-
icance of any response/predictor combination. Thus, we find hurt to be significant for single and
divorced/separated groups, but not for widower men group (see Table 3).

A potential future direction for our approach was brought to our attention by a referee. The com-
putational cost for fitting a reduced rank multinomial logistic regression can be very high. Powers et
al. [20] proposed replacing the rank restriction with a restriction on the nuclear normwhich amounts
to a convex relaxation of the reduced-rank multinomial regression problem. Our methodology can
be adapted to obtain asymptotic inference for the regularized parameter estimates.
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Appendix. Proofs
The consistency ofM-estimators has long been established (see, for instance, Theorem 5.7 in [14]). The functionsM(ξ)
and Mn(ξ) are defined in Equation (2). Typically, the proof for the consistency of M-estimators assumes that ξ0, the
parameter of interest, is a well-separated point of maximum of M, which is ascertained by assumptions (a) and (b) of
Proposition A.1. Assumption (c) of Proposition A.1 yields uniform consistency ofMn as an estimator ofM, a property
needed in order to establish the consistency of M-estimators.

PropositionA.1: Assume (a)mξ (z) is a strictly concave function in ξ ∈ �,where� is a convex open subset of a Euclidean
space; (b) the function M(ξ) is well defined for any ξ ∈ � and has a unique maximizer ξ0; that is, M(ξ0) > M(ξ) for any
ξ �= ξ0; and (c) for any compact setK in�,

E

[
sup
ξ∈K

∣∣mξ (Z)∣∣
]
< ∞. (A1)

Then, for each n ∈ N, there exists a unique M-estimator ξ̂n for the criterion function Mn over �. Moreover, ξ̂n → ξ0 a.e.
as n → ∞.

Proof: For each compact subset K of �, {mξ : ξ ∈ K} is a collection of measurable functions which, by assumption
(c), has an integrable envelope. Moreover, for each fixed z, the map ξ �→ mξ (z) is continuous, since it is concave and
defined on the open set�. As stated in Example 19.8 of van der Vaart [14], these conditions guarantee that the class is
Glivenko–Cantelli. That is,

pr

(
lim
n→∞ sup

ξ∈K
|Pnmξ − Pmξ | = 0

)
= 1. (A2)

We need to prove that there exists a unique maximizer of Mn(ξ) = Pnξ , and that it converges to the maximizer of
M(ξ) = Pmξ . We first consider the deterministic case ignoring for the moment that {Mn} is a sequence of random
functions.

https://arxiv.org/pdf/1710.08083.pdf
https://CRAN.R-project.org/package=VGAM
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Since ξ0 belongs to the open set�, there exists ε0 > 0 such that the closed ball B[ξ0, ε0] is contained in�. Uniform
convergence of {Mn} toM overK = {ξ : ‖ξ − ξ0‖ = ε0} guarantees that

lim
n→∞ sup

‖ξ−ξ0‖=ε0
{Mn(ξ)− Mn(ξ0)} = sup

‖ξ−ξ0‖=ε0
{M(ξ)− M(ξ0)} < 0 (A3)

becauseM(ξ0) > M(ξ) for any ξ �= ξ0. Then, for n ≥ n0(ε0),

sup
‖ξ−ξ0‖=ε0

Mn(ξ)− Mn(ξ0) < 0. (A4)

Let ζn(ξ) = Mn(ξ)− Mn(ξ0). Since Mn is concave and continuous, ζn attains its maximum over the compact set
B[ξ0, ε0], which we denote by ξ̂n. Note that ζn(ξ0) = 0 and ζn is strictly smaller than zero in the boundary of the
ball, as shown in Equation (A4); therefore, we conclude that ξ̂n ∈ B(ξ0, ε0), so that ξ̂n is a local maximum for ζn.

Let ξ satisfy ‖ξ − ξ0‖ > ε0. The convexity of� implies there exists t ∈ (0, 1) such that ξ̃ = (1 − t)ξ0 + tξ satisfies
‖ξ̃ − ξ0‖ = ε0, and therefore

ζn(ξ̂n) ≥ ζn(ξ0) = 0 > ζn(ξ̃ ) ≥ tζn(ξ)+ (1 − t)ζn(ξ0) = tζn(ξ), (A5)

implying that ζn(ξ) < 0 ≤ ζn(ξ̂n). Therefore, the maximum ξ̂n ∈ B(ξ0, ε0) is global. The strict concavity of Mn guar-
antees that such global maximum is unique, thus ξ̂n is the unique solution to the optimization problem in Equation (3).
By repeating this argument for any ε < ε0, we prove the convergence of the sequence {ξ̂n} to ξ0.

Turning to the stochastic case, the uniform convergence ofMn toM overK = B[ξ0, ε0] on a set�1, with pr(�1) =
1, as assumed in Equation (A2), guarantees the deterministic result can be applied to any element of�1, which obtains
the result. �

Proof of Lemma 2.3: Let {ξ̂n} be any (weak/strong) M-estimator sequence of the unconstrained maximization prob-
lem. SinceMn(ξ̂n) ≥ supξ∈�Mn(ξ)− An with An → 0, we have

1 = lim
n→∞ pr

(
sup
ξ∈�

Pnmξ < ∞
)

≤ lim
n→∞ pr

(
sup
ξ∈�res

Pnmξ < ∞
)
. (A6)

Define

�n :=
{

sup
ξ∈�res

Pnmξ < ∞
}
. (A7)

For all n, there exists ξ̂ resn such that

Mn(ξ̂
res
n ) ≥ sup

ξ∈�res
Mn(ξ)− 1

n2
(A8)

on�n. Let ξ̂ resn
.= 0 on�c

n. Then, since pr(�n) → 1, {ξ̂ resn } is a strong M-estimator for the criterion functionMn over
�res. �

Proof of Proposition 2.4: In Proposition A.1 we established the existence of a unique maximizer ξ̂n for the criterion
function Mn over �. We can now invoke Lemma 2.3 to guarantee the existence of ξ̂ resn , a strong M-estimator for the
criterion functionMn over�res. Let {ξ̂ resn } be any strong M-estimator for the criterion functionMn over�res. We start
from the deterministic case:

Mn(ξ̂
res
n ) ≥ sup

ξ∈�res
Mn(ξ)− An, (A9)

whereMn is defined in Equation (2) and An is a sequence of real numbers with An → 0. As in the proof of Proposition
A.1, define ζn(ξ) = Mn(ξ)− Mn(ξ0) to obtain that, for ε0 small enough,

sup
‖ξ−ξ0‖=ε0

ζn(ξ) ≤ 1
2

sup
‖ξ−ξ0‖=ε0

{M(ξ)− M(ξ0)} := −δ(ε0) (A10)

for n large enough. Under Condition 2.2, ξ0 ∈ �res, and therefore, by Equation (A9),

ζn(ξ̂
res
n ) = Mn(ξ̂

res
n )− Mn(ξ0) ≥ Mn(ξ̂

res
n )− sup

ξ∈�res
Mn(ξ) ≥ −An. (A11)

Since An → 0, −An > −δ(ε0) for n large enough. Combining this with Equations (A10) and (A11) obtains

sup
‖ξ−ξ0‖=ε0

ζn(ξ) < ζn(ξ̂
res
n ).
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We will deduce that ‖ξ̂ resn − ξ0‖ < ε0, once we prove that

sup
‖ξ−ξ0‖=ε0

ζn(ξ) = sup
‖ξ−ξ0‖≥ε0

ζn(ξ). (A12)

Now, let us prove Equation (A12). Choose ξ with ‖ξ − ξ0‖ > ε0, and take t ∈ (0, 1) such that ξ̃ = (1 − t)ξ̂n + tξ is a
distance ε0 from ξ0, where ξ̂n is the maximizer of ζn over �, as defined in Proposition A.1, which is assumed to be at
distance smaller than ε0 from ξ0. Then,

ζn(ξ̃ ) = ζn

(
(1 − t)ξ̂n + tξ

)
≥ (1 − t)ζn(ξ̂n)+ tζn(ξ) ≥ ζn(ξ).

Thus,
sup

‖ξ−ξ0‖=ε0
ζn(ξ) ≥ ζn(ξ̃ ) ≥ ζn(ξ), for any ξ with ‖ξ − ξ0‖ > ε0,

which in turn yields (A12). When An = op(1), convergence in probability of {ξ̂ resn } to ξ0 is equivalent to the existence
of an almost everywhere convergent sub-sub-sequence for any subsequence {ξ̂ resnk }. Therefore, by applying the deter-
ministic result to the set of probability one, where there exists a sub-subsequence of Ank that converges to zero a.e. we
obtain the result. �

Regularity conditions for Proposition 2.7 (from Theorem 5.23, p. 53 in [14]).

ConditionA.2: For each ξ in an open subset� of a Euclidean space, mξ (z) is a measurable function in z such that mξ (z)
is differentiable in ξ0 for almost every z with derivative ṁξ0 (z).

Condition A.3: There exists a measurable function φ(z) with Pφ2 < ∞ such that, for any ξ1 and ξ2 in a neighbourhood
of ξ0,

|mξ1 (z)− mξ2 (z)| ≤ φ(z)‖ξ1 − ξ2‖. (A13)

ConditionA.4: Themap ξ → Pmξ admits a second-order Taylor expansion at a point ofmaximum ξ0 with non-singular
symmetric second derivative matrix Vξ0 .

Under regularity conditions A.2–A.4, van der Vaart proved in Theorem 5.23 of his book [14] that if {ξ̂n} is a strong
M-estimator sequence for the criterion function Pnmξ over� and ξ̂n → ξ0 in probability, then

√
n(ξ̂n − ξ0) = −V−1

ξ0

1√
n

n∑
i=1

ṁξ0 (Zi)+ op(1). (A14)

Moreover,
√
n(ξ̂n − ξ0) is asymptotically normal with mean zero and

avar
{√

n(ξ̂n − ξ0)
}

= V−1
ξ0

Pṁξ0ṁ
T
ξ0
V−1
ξ0

. (A15)

This result will be invoked in the following proofs.

Proof of Proposition 2.7: Assume that {ξ̂ resn } is a sequence in �res that converges in probability to ξ0 ∈ M, which is
assumed to be open in �res. Then, pr(ξ̂ resn ∈ M) → 1. Bicontinuity of h guarantees that s∗n = h−1(ξ̂ resn ) converges in
probability to s0 = h−1(ξ0). Note that

Pnmh(s∗n) = Pnmξ̂ resn
≥ sup
ξ∈�res

Pnmξ ≥ sup
ξ∈M

Pnmξ ≥ sup
s∈S

Pnmh(s), (A16)

except for an op(n−1) term that is omitted in the last three inequalities. Therefore, {s∗n} is a strongmaximizing sequence
for the criterion function Pnmh(s)(z) over S .

We next verify Conditions A.2–A.4 are satisfied for {s∗n}, s0, mh(s)(z) and Pmh(s). Specifically, Condition A.2 holds
since mh(s) is a measurable function in z for all s ∈ S and mh(s)(z) is differentiable in s0 for almost every z. In fact,
h(s0) = ξ0,mξ (z) is differentiable at ξ0 and h(s) is also differentiable. Moreover, the derivative function is ∇h(s0)ṁξ0 .

For all s1 and s2 in a neighbourhood of s0, by the continuity of h, h(s1) and h(s2) are in a neighbourhood of ξ0. Then

|mh(s1)(z)− mh(s2)(z)| ≤ φ(z)‖h(s1)− h(s2)‖
≤ φ(z)‖∇h‖∞,Ns0

‖s1 − s2‖,
where ‖∇h‖∞,Ns0

denotes the maximum of ‖∇h(s)‖ in a neighbourhoodNs0 of s0. The first inequality holds because
such condition is valid in the unconstrained problem and the second inequality follows since h is continuously
differentiable at s0. Thus, the Lipschitz Condition A.3 is satisfied.
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For Condition A.4, we observe that the function s �→ Pmh(s) is twice continuously differentiable in s0 because both
Pmξ and h(s) satisfy the required regularity properties at ξ0 and s0, respectively. Moreover, since Pṁξ0 = 0, the second
derivative matrix of Pmh(s) at s0, isWs0 = ∇h(s0)TVξ0∇h(s0), where Vξ0 is the second derivative matrix of Pmξ at ξ0.
The matrixWs0 is non-singular and symmetric because ∇h(s0) is full rank and Vξ0 is non-singular and symmetric.

We can now apply Theorem 5.23 in [14], and obtain

√
n(s∗n − s0) = −

(
∇h(s0)TVξ0∇h(s0)

)−1 1√
n

n∑
i=1

∇h(s0)Tṁξ0 (Zi)+ op(1), (A17)

so that the first-order Taylor series expansion of h(s∗n) around s0 is
√
n(h(s∗n)− h(s0)) = ∇h(s0)

√
n(s∗n − s0))+ op(1)

= − 1√
n

n∑
i=1

∇h(s0)
(
∇h(s0)TVξ0∇h(s0)

)−1 ∇h(s0)Tṁξ0 (Zi)+ op(1)

= 1√
n

n∑
i=1

	ξ0(−Vξ0 )IFξ0 (Zi)+ op(1),

for	ξ0(−Vξ0 ) and IFξ0 (z) defined in Equations (6) and (5), respectively, which obtains the expansion in Equation (7).
Now, Equation (8) follows immediately. �

Proof of Theorem 3.1: Write

ηx1 = η̄1 + βx = (η̄1,β) f (x) = (f (x)T ⊗ Ik1 )vec (η̄1,β) ,

where f (x)T = (1, xT) ∈ R1×(p+1). Then, in matrix form,

ηx =
(
η̄1 + βx
η̄2

)
=
(
f (x)T ⊗ Ik1 0

0 Ik2

)(
vec (η̄1,β)

η̄2

)
= F(x)ξ , (A18)

where

F(x) =
(
f (x)T ⊗ Ik1 0

0 Ik2

)
∈ R

k×(k1(p+1)+k2),

and ξ = (η̄T1 , vec
T(β), η̄T2 )

T is the vector of parameters of model (13). Note that F(x)ξ ∈ H for any value of ξ with
H defined in Equation (10). This notation allows to simplify the expression for the log-likelihood function in
Equation (15), and replace it with

mξ (z) = T(y)TF(x)ξ − ψ(F(x)ξ). (A19)
The regularity conditions required to derive consistency and asymptotic distribution of theMLE are: For any ξ and any
η and for any compactK ⊂ � = Rk1 × Rk1p × H2.

pr (F(X)ξ = η̄) < 1. (A20)

E
[
‖T(Y)TF(X)‖

]
< ∞, E

[
sup
ξ∈K

|ψ(F(X)ξ)|
]
< ∞, (A21)

E
[
‖T(Y)TF(X)‖2

]
< ∞, E

[
sup
ξ∈K

‖∇ψ(F(X)ξ)F(X)‖2
]
< ∞, (A22)

E

[
sup
ξ∈K

‖F(X)T∇2ψ(F(X)ξ)F(X)‖
]
< ∞. (A23)

To prove the existence, uniqueness and consistency of the MLE under the present model, ξ̂n, we next show that the
assumptions stated in Proposition A.1 are satisfied.

The strict convexity ofψ implies that, for each fixed z,mξ (z) is a strictly concave function in ξ ∈ � = Rk1+pk1 × H2.
The concavity of mξ (z) is preserved under expectation, thus M(ξ) = Pmξ is concave. The identifiability condition
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satisfied by the exponential family in Section 3.1 allows applying Lemma 5.35 of van der Vaart [14, p.62] to conclude
that

E
[
T(Y)TF(Y)ξ − ψ(F(X)ξ) | X

]
≤ E

[
T(Y)TF(X)ξ0 − ψ(F(X)ξ0) | X

]
. (A24)

Taking expectation with respect toX, we conclude that Pmξ ≤ Pmξ0 for any ξ . Moreover, if Pmξ1 = Pmξ0 , pr(F(X)ξ1 =
F(X)ξ0) = 1, which contradicts the hypothesis (A20). Finally, the integrability of Equation (A1) follows from Equation
(A21).

The conditions A.2–A.4 required by van der Vaart’s Theorem 5.23 to derive the asymptotic distribution of M-
estimators are easily verifiable under the integrability assumptions stated in Equations (A22) and (A23).

The second derivative matrix of Pmξ at ξ0 is

Vξ0 = −E
[
F(X)T∇2ψ(F(X)ξ0)F(X)

]
. (A25)

Finally, observe that

P
[
ṁξ0ṁ

T
ξ0

]
= E

[
F(X)T

{
T(Y)− ∇Tψ(F(X)ξ0)

} {
T(Y)T − ∇ψ(F(X)ξ0)

}
F(X)

]
= E

{
F(X)T∇2ψ(F(X)ξ0)F(X)

}
to deduce that, according to the general formula for the asymptotic variance of anM-estimator in (A15), the asymptotic
variance of

√
n(ξ̂n − ξ0) is given by (16). �

Lemmas A.5–A.10 and Corollary A.6 are required to prove Proposition 3.2.

Lemma A.5: Assume that β01 ∈ R
k1×r
first,d and can be written as in Equation (21). Let (S0,T0) ∈ R

k1×d
d × R

d×r
d with

S0T0 = β01. Then, there exists U ∈ R
d×d
d so that S0 = S0(U) and T0 = T0(U), with

S0(U) :=
(

U
A0U

)
and T0(U) := U−1B0. (A26)

Proof: Let

S0 =
(
S01
S02

)
,

with S01 ∈ Rd×d and S02 ∈ R(k1−d)×d . The matrix S01T0 is comprised of the first d rows of β01 which are linearly
independent. Then, d = rank(S01T0) ≤ rank(S01) ≤ d, hence S01 is invertible. TakeU = S01. From the expression (21)
for β01, we have

S01T0 = B0

S02T0 = A0B0.

Thus, T0 = U−1B0, and since T0TT
0 ∈ Rd×d and rank d,

S02 = A0B0TT
0 (T0TT

0 )
−1 = A0B0BT0U

−1(U−1B0BT0U
−1)−1 = A0U. �

Corollary A.6: Let β01 ∈ R
k1×r
first,d and can be written as in Equation (21). For U in R

d×d
d and S0(U),T0(U) as defined in

Equation (A26), the pre-image of ξ0 through g, g−1(ξ0), satisfies

g−1(ξ0) ∼=
{
(η̄01, S0(U),T0(U),β02, η̄02) : U ∈ R

d×d
d

}
. (A27)

Lemma A.7: R
d×m
d with d ≤ m is an open set in Rd×m.

Proof: We will show that the complement of R
d×m
d is closed. Consider (Tn)n≥1 ∈ Rd×m, each Tn of rank strictly less

than d, and assume that Tn converges to T ∈ Rd×m. Note that, |TnTT
n | = 0 for all n ≥ 1, so that |TTT| is also equal to

zero. Hence, rank(T) < d. �

Lemma A.8: � and S are open sets.
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Proof: Up to a homeomorphism,� and S are equivalent to

R
k1 × R

k1×d
d × R

d×r
d × R

k1×(p−r) × H2 and R
k1 × R

(k1−d)×d × R
d×r
d × R

k1×(p−r) × H2,

respectively, which are products of open sets by Lemma A.7. �

Lemma A.9: h : S → M is one to one bicontinuous.

Proof: It suffices to note that h1 : R(k1−d)×d × R
d×r
d �→ R

k1×r
first,d with

(A,B) →
(

B
AB

)

satisfies the required properties for h. Let h−1
1 : Rk1×r

first,d �→ R(k1−d)×d × R
d×r
d with

(
B
C

)
→ (CBT

(
BBT

)−1
,B). (A28)

Then, h−1
1 (h1(A,B)) = (A,B) and

h1
(
h−1
1

(
B
AB

))
=
(

B
AB

)
,

and, therefore, h−1
1 is the inverse of h1. Thus, h1 is one to one and bicontinuous. �

Lemma A.10: M is open in �res

Proof: It suffices to show R
k1×r
first,d is an open set in R

k1×r
d , or equivalently, that the complement of R

k1×r
first,d is a closed set

in R
k1×r
d . Let {Tn} ⊂ R

k1×r
d be a sequence such that the first d rows are not linearly independent and Tn converges to

T ∈ R
k1×r
d . Then, if we write

Tn =
(
Tn1
Tn2

)
,

with Tn1 ∈ Rd×r and Tn2 ∈ R(k1−d)×r , we obtain that | Tn1TT
n1 |= 0 for all n. Then | T1TT

1 |= 0, where T1 comprises
of the first d rows of T, and therefore the first d rows of T are not linearly independent. �

Proof of Proposition 3.2: We verify that Conditions 2.2, 2.5 and 2.6 are satisfied.
Condition 2.2: By Lemma A.8, the set�, defined in Equation (20), is open and ξ0 belongs to g(�) = �res.
Condition 2.5: Since the first d rows of β01 are linearly independent, ξ0 ∈ M. Then, applying Lemma A.10 obtains

thatM is an open set in�res.
Consider (S , h) as in Equation (23). By Lemma A.8, S is an open set, and h is one-to-one and bicontinuous by

Lemma A.9. Furthermore, if

s0 = (η̄01,A0,B0,β02, η̄02) ∈ S ,
where A0 y B0 are given in Equation (21), then h(s0) = (η̄01, β01, β02, η̄02) = ξ0.

The function h is twice continuously differentiable and its Jacobian is full rank. In fact, the latter is

∇h(η̄1,A,B,β2, η̄2) =

⎛
⎜⎜⎜⎜⎜⎝

Ik1 0 0 0 0

0 BT ⊗
(

0
Ik1−d

)
Ir ⊗

(
Id
A

)
0 0

0 0 0 Ik1(p−r) 0
0 0 0 0 Ik2

⎞
⎟⎟⎟⎟⎟⎠ (A29)

of order (k1p + k)× (d(k1 + r − d)+ k1(p − r)+ k) with full column rank d(k1 + r − d)+ k1(p − r)+ k (see [21];
also it is a direct implication of Theorem 5 in [22]).
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Condition 2.6: Consider θ0 ∈ g−1(ξ0), associated with U, as shown in Lemma A.5. Since

∇g(η̄1, S,T,β2, η̄2) =

⎛
⎜⎜⎜⎝
Ik1 0 0 0 0
0 TT ⊗ Ik1 Ir ⊗ S 0 0
0 0 0 Ik1(p−r) 0
0 0 0 0 Ik2

⎞
⎟⎟⎟⎠

then,

∇g
(
η̄10,

(
U

A0U

)
,U−1B0,β20, η̄20

)

=

⎛
⎜⎜⎜⎜⎜⎝

Ik1 0 0 0 0

0 BT0 ⊗ Ik1 Ir ⊗
(
Id
A0

)
0 0

0 0 0 Ik1(p−r) 0
0 0 0 0 Ik2

⎞
⎟⎟⎟⎟⎟⎠G,

where

G =

⎛
⎜⎜⎜⎜⎜⎝

Ik1 0 0 0 0
0 U−T ⊗ Ik1 0 0 0
0 0 (Ir ⊗ U) 0 0
0 0 0 Ik1(p−r) 0
0 0 0 0 Ik2

⎞
⎟⎟⎟⎟⎟⎠ . (A30)

Since G is invertible of order (d(k1 + r)+ k1(p − r)+ k)× (d(k1 + r)+ k1(p − r)+ k),

span∇g(θ0) = span

⎛
⎜⎜⎜⎜⎜⎝

Ik1 0 0 0 0

0 BT0 ⊗ Ik1 Ir ⊗
(
Id
A0

)
0 0

0 0 0 Ik1(p−r) 0
0 0 0 0 Ik2

⎞
⎟⎟⎟⎟⎟⎠ . (A31)

Next, since ∇h(s0) = ∇g(θ0)G−1 Ĩ, with

Ĩ = diag
(
Ik1 Id ⊗

(
0

Ik1−d

)
Ird Ik1(p−r) Ik2

)
,

we have span∇h(s0) ⊂ span∇g(θ0). Applying again Theorem 5 in [22] obtains rank(∇g(θ0)) = d(k1 + r − d)+
k1(p − r)+ k = rank(∇h(s0)). Therefore, span∇h(s0) = span∇g(θ0). �

Proof of Theorem 3.3: In Theorem 3.1 we verified that the conditions of Theorem 5.23 in [14] are satisfied for the
maximum likelihood estimator under model (12) satisfying (13). The asymptotic variance of the MLE estimator is
given in Equation (16). We also showed Conditions 2.2–2.6 are satisfied in the proof of Proposition 3.2. The result
follows from Proposition 2.7 since −Vξ0 = W−1

ξ0
and

avar{√n(ξ̂ resn − ξ0)} = 	
ξ0(W−1

ξ0
)
Wξ0	

T
ξ0(W−1

ξ0
)

= ∇g(θ0)(∇g(θ0)TW−1
ξ0

∇g(θ0))†∇g(θ0)T

= 	
ξ0(W−1

ξ0
)
Wξ0 .

Now, by Equation (21),

C0 =
(
Id
A0

)
,

span∇g(θ0) in Equation (A31) is equal to span(G), with G defined in Equation (26). The result follows if we prove that
span(G) does not depend on the decomposition of β01.
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Suppose that β01 = C1B1. Then C1 = C0M and B1 = M−1B0, for an invertible M ∈ Rd×d. Let G1 be the matrix
corresponding to G using the new decomposition of β01. Then, G1 = GH, with

H =

⎛
⎜⎜⎜⎝
Ik1 0 0 0 0
0 M−T ⊗ Ik1 Ir ⊗ M 0 0
0 0 0 Ik1(p−r) 0
0 0 0 0 Ik2

⎞
⎟⎟⎟⎠ ,

where H is invertible. Therefore, span(G1) = span(G) and the result follows. �
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