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We study the vacuum fluctuations of a quantum scalar field in the presence of a thin and inhomogeneous
flat mirror, modeled with a delta potential. Using heat-kernel techniques, we evaluate the Euclidean
effective action perturbatively in the inhomogeneities (nonperturbatively in the constant background).
We show that the divergences can be absorbed into a local counterterm and that the remaining finite part is
in general a nonlocal functional of the inhomogeneities, which we compute explicitly for massless fields
in D ¼ 4 dimensions. For time-independent inhomogeneities, the effective action gives the Casimir self-
energy for a partially transmitting mirror. For time-dependent inhomogeneities, the Wick-rotated effective
action gives the probability of particle creation due to the dynamical Casimir effect.
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I. INTRODUCTION

Quantum fields on nontrivial backgrounds or in the
presence of boundary conditions are of interest in many
branches of physics. Vacuum fluctuations of the quantum
fields produce interesting physical phenomena like Casimir
forces and particle creation by moving mirrors or by time-
dependent gravitational fields. They can also serve as seeds
for structure formation in inflationary models.
When analyzing the static Casimir effect [1,2] beyond

the perfect conductor limit, the physical properties of thin
surfaces can be described by delta potentials, that is,
potentials that are proportional to Dirac delta functions
with support on those surfaces. For scalar fields, the analog
of perfect conductor are Dirichlet or Neumann boundary
conditions, that can be obtained from a delta potential in the
limit in which the coefficient of the delta function (or its
derivative) tends to infinity. Otherwise, the delta potential
models a thin semitransparent mirror. Here we will be
concerned with inhomogeneous mirrors, on whose surfaces

the physical properties vary from point to point and may
also depend on time.
Casimir forces for homogeneous delta potentials have

been analyzed previously in the literature for different
geometries and using different methods [3–6]. The dynami-
cal Casimir effect [7–9] for semitransparent mirrors has
also been considered both for moving mirrors [10–14] and
for static mirrors with time-dependent properties [15,16].
The situation for Casimir self-energies is more subtle.

Although not relevant for the computation of forces
between different bodies, the vacuum energy, or more
generally the vacuum expectation value of the energy-
momentum tensor for the quantum fields, couples to
gravity through the semiclassical Einstein equations. It is
also relevant in the calculation of the Casimir self-stresses
on curved surfaces [17]. As pointed out a long time ago
by Deutsch and Candelas [18], the renormalized energy-
momentum tensor diverges near a perfect conductor, and
the divergence depends on the local geometry of the
surface. This divergence implies that the total self-energy
is also divergent, although there can be partial cancellations
between divergences on both sides of the surface. Local and
global divergences for homogeneous delta potentials has
been discussed by Milton in Ref. [19], while the divergent
part of the effective action for inhomogeneous delta
potentials has been computed by Bordag and Vassilevich
[20] using heat-kernel (HK) techniques. More general
situations have also been considered, in which the thin
surface is replaced by a layer of finite width [21]. The layer
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can be modeled with a classical background field that
interacts with the vacuum field. In this case, the self-energy
can be made finite renormalizing the classical background.
This approach can be generalized for quantum fields on a
curved spacetime, taking into account the contribution of
the vacuum expectation value of the energy-momentum
tensor to the semiclassical Einstein equations and renorm-
alizing the theory using standard techniques [22]. Different
aspects of the vacuum energy in the presence of soft walls
have been discussed in Refs. [23,24].
Regarding the renormalization, it is customary in the

Casimir context to renormalize by introducing classical
fields, in such a way that in the large-mass limit the
renormalized energy should vanish [25–27]. Although this
criterion is clearly not available for the massless case, the
renormalization procedure can still be consistently applied.
In the HK framework, it has been shown that there are two
different scenarios, depending on whether a given coef-
ficient in the small proper-time Seeley-DeWitt expansion
vanishes or not [25]. If it does not vanish, then the
procedure loses some predictivity because one should fix
some constants by using “experimental data.” In any case, it
should be clear that this does not imply an ambiguity in the
process but just a partial loss in predictivity.
In this paper, we will work within the thin surface

idealization and consider an inhomogeneous delta potential
on a single flat surface. We will go beyond the above
mentioned works on singular potentials by computing the
effective action in an expansion in powers of the inhomo-
geneities, paying attention not only to the divergent part,
but also to its finite contribution. The effective action will
be a nonlocal functional of the inhomogeneities. Moreover,
when the properties of the mirror depend on time, the time-
dependent boundary conditions will produce particle cre-
ation. This is a particular realization of the dynamical
Casimir effect, in which the mirror is static but its physical
properties depend on time. We will compute the vacuum
persistence amplitude from the imaginary part of the
Lorentzian effective action. Several of our results for
singular potentials have their counterpart in semiclassical
gravity, as we will point out along the paper.
From a technical point of view, we will use HK

techniques. We will first consider a massive scalar field
in an Euclidean space of D dimensions. As described in
Sec. II, the HK and the Euclidean effective action can be
evaluated exactly for homogeneous delta potentials and
perturbatively for small departures from homogeneity. In
Sec. III we will analyze in detail the massless case inD ¼ 4
dimensions. Wewill discuss the divergences of the effective
action and analyze its finite part in two opposite limiting
situations: smooth and rapidly varying inhomogeneities.
For time-independent inhomogeneities, explicit evaluations
of the self-energy of the plate are described in Sec. III D.
We will then consider the case of time-dependent inho-
mogeneities and its relation with the dynamical Casimir

effect. As shown in Sec. IV, the Lorentzian (or in-out)
effective action can be obtained from the Euclidean
effective action through a Wick rotation. The imaginary
part of the effective action, which is a finite quantity, gives
the vacuum persistence amplitude for this problem. We will
obtain a general expression and then discuss some par-
ticular examples. Section V contains the conclusions
of our work. The Appendixes describe some details of
the calculations, as well as an alternative derivation of the
Casimir self-energy using an approach based on the
Gel’fand-Yaglom theorem [28].

II. EFFECTIVE ACTION IN THE PRESENCE
OF A DELTA POTENTIAL:

THE HEAT-KERNEL APPROACH

As said above, our goal is to study the quantum properties
of the vacuum for a field in the presence of a singular
potential V, namely a Dirac delta function whose support lies
on a hypersurface of codimension one. One effective way to
perform such a study is by using spectral functions. Let us
briefly review how this can be accomplished.
Consider then a massive real scalar field ϕ defined on a

D-dimensional Euclidean flat space and in the presence of
an external potential VðxÞ; accordingly, its action reads

Sϕ ¼ 1

2

Z
dDxϕðxÞð−∂2 þm2 þ VðxÞÞϕðxÞ: ð1Þ

As customary, one can perturbatively integrate the quantum
field in order to obtain the effective action, from which it is
easier to study the desired properties. For the action (1), it is
straightforward to show that the one-loop contribution to
the effective action, which is actually the only quantum
correction in this simple case, is given by

Γ1-loop ¼
1

2
TrLogð−∂2 þm2 þ VðxÞÞ: ð2Þ

Alternatively, by using Schwinger’s trick [27,29] one may
recast this expression into

Γ1-loop ¼ −
1

2

Z
∞

0

dT
T

TrKV; ð3Þ

where we have defined the HK of the operator of quantum
fluctuations as

KV ≔ e−Tð−∂2þm2þVðxÞÞ: ð4Þ

We have thus reduced our problem to the determination of a
relevant HK, to which we will devote the following
subsections.
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A. The exact heat kernel for a homogeneous
background

As a warm-up, let us begin by considering the operator

Δδ ≔ −∂2
x þ ζδðx − LÞ; x ∈ R; ð5Þ

for a constant ζ > 0 (as long as the contrary is not stated,
this assumption will be considered throughout the rest of
the article). Up to our knowledge, its exact HK has been
obtained for the first time in [30] by considering path
integral and Laplace-transform techniques; later, it was
independently rederived in [31], in a similar way (employ-
ing methods of Brownian motion and Laplace transforms).
Here we will provide a new derivation of an exact
expression for its HK, which involves solving an integral
equation derived from a path integral representation.
Recall that the problem of finding the HK of Δδ is

equivalent to the determination of the propagator of a
particle in a first-quantization realm and subject to a
potential which is a Dirac delta, to wit

Kδðx; y;TÞ ≔
Z

qðTÞ¼y

qð0Þ¼x
DqðtÞe−Sδ ; ð6Þ

where

Sδ ¼
Z

T

0

dt

�
_q2ðtÞ
4

þ ζδðqðtÞ − LÞ
�
: ð7Þ

Notice, of course, that this corresponds to a fictitious
particle that evolves in time t, which is fictitious as well.
This implementation of path integrals in the computation of
HKs and effective actions is usually called worldline
formalism or string-inspired formalism in the literature
[29,32]. In relation to Dirac delta potentials, a first-order
perturbative computation of the Casimir energy between
two semitransparent layers has been computed in [5], while
other recent applications include computations in QED [33]
and noncommutative quantum field theory [34].
Coming back to Eq. (6), one can formally perform the

usual expansion in powers of ζ, which after choosing a
convenient ordering in the intermediate times ti leads to

Kδðx; y;TÞ ¼
X∞
n¼0

ð−ζÞn
Z

T

0

dtn

Z
tn

0

dtn−1 � � �

×
Z

t2

0

dt1K0ðy; L;T − tnÞ

× K0ðL;L; tn − tn−1Þ � � �
× K0ðL;L; t2 − t1ÞK0ðL; x; t1Þ; ð8Þ

where K0, the free HK, has the expression

K0ðx; y;TÞ ≔
e−ðx−yÞ2=4Tffiffiffiffiffiffiffiffiffi

4πT
p : ð9Þ

From Eq. (8), one can show that the HK satisfies an integral
equation whose kernel is nothing but the HK of the free
particle [35]. This last fact obstructs the obtention of the
solution via iterated kernels and one then needs to recur to
Laplace-transform techniques.
However, one may also derive from Eq. (8) a simpler

integral equation. In order to do so, we perform a change of
variables s1 ≔ t1, s2 ≔ t2 − t1, s3 ≔ t3 − t2, etc., and
obtain

Kδðx;y;TÞ¼K0ðx;y;TÞ−ζ

Z
T

0

dsK0ðx;L;sÞfðsÞ; ð10Þ

where the function fðsÞ is defined as

fðs1Þ ≔ K0ðy; L;T − s1Þ

− ζ

Z
T−s1

0

ds2ffiffiffiffiffiffiffiffiffiffi
4πs2

p
�
K0ðy; L;T − s1 − s2Þ

− ζ

Z
T−ðs1þs2Þ

0

ds3ffiffiffiffiffiffiffiffiffiffi
4πs3

p

× ðK0ðy; L;T − s1 − s2 − s3Þ þ � � �Þ
�
: ð11Þ

Now it should be clear that fðsÞ satisfies an integral
equation of Volterra type involving a rather simple kernel:

fðs1Þ ¼ K0ðy; ζ;T − s1Þ −
ζffiffiffiffiffiffi
4π

p
Z

T

0

ds2
Θðs2 − s1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs2 − s1Þ
p fðs2Þ;

ð12Þ

whose solution can be straightforwardly obtained by
considering the method of the iterated kernel. Following
this path we get

fðsÞ ¼
Z

T

0

ds1Γ2ðs1 − sÞK0ðy; L; T − s1Þ; ð13Þ

where Γ2, the series of iterated kernels, can be resummed as

Γ2ðs2 − s1Þ ≔ δðs1 − s2Þ −
ζ

4
Θðs2 − s1Þ

×

�
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πðs2 − s1Þ
p

− ζeðζ2=4Þðs2−s1Þerfc
�
ζ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − s1

p ��
: ð14Þ

We have additionally introduced the complementary error
function
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erfcðxÞ ≔ 2ffiffiffi
π

p
Z

∞

x
e−t

2

dt: ð15Þ

At this point, a direct replacement of the obtained fðsÞ in
Eq. (10) yields the following expression for the HK:

Kδðx; y;TÞ ¼ K0ðx; y;TÞ − ζ

Z
T

0

Z
T

0

ds1ds2K0ðx; L; s1Þ

× Γ2ðs1 − s2ÞK0ðy; L; T − s2Þ: ð16Þ

The proofs of the fact that this expression is equivalent to
the one obtained in [30] and that it explicitly satisfies the
so-called convolution property of propagators,

Kδðx; y; SÞ ¼
Z
R
dzKδðx; z; S − TÞKδðz; y;TÞ; ð17Þ

are left to Appendixes A and B, respectively.
Besides these local expressions, one may also consider

the trace of the HK. A direct computation gives

KδðTÞ ≔
Z

dxKδðx; x;TÞ

¼
R
dxffiffiffiffiffiffiffiffiffi
4πT

p þ 1

2

�
eζ

2T=4erfc

� ffiffiffiffi
T

p
ζ

2

�
− 1

�
: ð18Þ

As customary, the leading term in a small-proper-time (T)
expansion involves the volume of the manifold, which in
Eq. (18) has been expressed as a divergent integral over the
whole real line.1 Although Eq. (18) agrees with the results
obtained in [35] for the first coefficients in a small proper-
time expansion, it disagrees with the expression stated in
[6]. In effect, beyond the fact that they already include the
mass contribution to the HK, we have an additional
constant term (−1=2). The reason for this discrepancy
seems to lie on the regularization chosen in [6], where the
authors consider a large interval of length L, at which ends
they impose periodic boundary conditions. In any case, the
importance of this constant factor can be seen both in
the ζ → 0 and ζ → ∞ limits: in the first limit one recovers
the trace of the free HK, while in the second one Eq. (18)
reproduces the trace of the Dirichlet propagator, as
expected.

B. Perturbative computations
in an inhomogeneous background

Let us now generalize the operator in Eq. (5) to a flat
D-dimensional Euclidean space. To simplify the notation
and without loss of generality, we divide the coordinates as
x ¼ ðxk; xDÞ, where xk are theD − 1 coordinates parallel to
the plate and xD the perpendicular one. In addition, we will

allow a dependence of the delta’s coupling on the parallel
coordinates through inhomogeneities that will be called
ηðxkÞ. Notice that a possible dependence on the Euclidean
time is included as well. The operator of our interest is thus

ΔðDÞ
δ ¼ −∂2 þ ðζ þ ηðxkÞÞδðxD − LÞ: ð19Þ

We will not focus on the precise field theory that gives
origin to this operator. Just to mention an example, it could
be the case that ζ were a coupling constant and η were a
field. However, we could also think of ζ þ ηðxkÞ as the
vacuum expectation value of a quantum field that interacts
with the field ϕ. We will come back to this issue later on, in
Sec. III, where we analyze the emergency of divergencies in
the massless model for D ¼ 4.
In any case, as done in the previous subsection, its HK

can be interpreted in the worldline formalism as

Kðx; y;TÞ ¼
Z

qðTÞ¼y

qð0Þ¼x
DqðtÞe−SðDÞ

; ð20Þ

if one introduces the appropriate first-quantization action,
namely

SðDÞ ¼
Z

T

0

dt

�
_q2ðtÞ
4

þ ζðqkðtÞÞδðqDðtÞ − LÞ
�
: ð21Þ

Expression (20) has the advantage that it is especially
well suited for perturbative computations. In fact, if we
consider small inhomogeneities, the expansion of the HK
up to quadratic order in η reads

Kðx; y;TÞ ¼
Z

xðTÞ¼y

xð0Þ¼x
DxðtÞe−

R
T

0
dt½ð1=4Þ_x2ðtÞ−ζδðxDðtÞ−LÞ�

×

�
1þ

Z
T

0

ds1ηðxk1ÞδðxD1 − LÞ

þ 1

2

Z
T

0

ds1ds2ηðxk1Þηðxk2ÞδðxD1 − LÞ

× δðxD2 − LÞ þ � � �
�
; ð22Þ

where the subscripts in the coordinates are devised to
describe their dependence on the s parameters, i.e.,
xi ≔ xðsiÞ. Two comments are now in order. First, the
η-independent term in formula (22) can be computed
exactly, given that it factorizes into the product of the
HK of the Laplacian in D − 1 dimensions, times the HK of
the operator Δδ previously studied (from this zeroth-order
term one can compute the effective action for the homo-
geneous case, Γð0Þ). Second, the linear term will be
considered to vanish by assuming that the mean of the
inhomogeneities vanishes.

1A formal treatment of this divergence involves the introduc-
tion of a smearing function [36].
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Having said so, we will focus on the term which is
quadratic in η in Eq. (22) and compute its contribution to
the trace of the HK, which will be called Kð2Þ. The
computation is standard, albeit lengthy; we will conse-
quently omit the details that lead us to

Kð2ÞðTÞ ≔
Z

dkk

ð2πÞD−1 jη̃ðkkÞj2γðkk; ζ; TÞ; ð23Þ

where we have introduced the Fourier transform of the
inhomogeneities,

ηðxkÞ≕
Z

dD−1kk

ð2πÞD−1 e
ikkxk η̃ðkkÞ; ð24Þ

as well as the kernel

γðkk;ζ; TÞ≔ 1

ð4πÞðD−1Þ=2
1

TðD−5Þ=2

Z
1

0

dsð1− sÞe−Tsð1−sÞðkkÞ2

×KδðL;L;Tð1− sÞÞKδðL;L;TsÞ: ð25Þ

By replacing these results into Eq. (3), we obtain our
master formula for the contribution to the effective action
which is quadratic in η:

Γð2Þ ≔ −
1

2

Z
dkk

ð2πÞ3 jη̃ðk
kÞj2Fðkk; ζ; m2Þ; ð26Þ

written in terms of the form factor

Fðkk; ζ; m2Þ ≔ 1

ð2πÞD−4

Z
∞

0

dT
T

e−m
2Tγðkk; ζ; TÞ: ð27Þ

Formula (26) is valid for any dimension D and for regular
inhomogeneities η that, as stated before, could also depend
on the Euclidean time. Notice also that it is nonperturbative
(or exact) in the (constant) coupling ζ and nonlocal because
of the form factor’s kk dependence.
In the particular case ζ ¼ 0, the form of the result (26)

would remind the reader the expression usually obtained
when considering quantum fields on weak nonsingular
backgrounds [37,38]. When ζ ≠ 0, the resummation
implied in the form factor involves contributions coming
from terms with any power of the singular background
field.
Coming back to expression (26), after a rescaling of T

we obtain

Fðkk; ζ; m2Þ ≔ 1

ð2πÞD−4

Z
∞

0

dτ
τ
e−τγðkk; ζ; τ=m2Þ; ð28Þ

which is suitable for an expansion in powers of ðkkÞ2=m2.
This would be the analog of the Schwinger-DeWitt
expansion [39], that in this case becomes a formal (local)

series expansion in terms of derivatives of ηðxkÞ. For
massless fields, we expect in general a nonlocal effective
action. Even if the presence of the additional scale ζ could
make us think the contrary, in the next section we will see
that the effective action does not admit a derivative
expansion; that is, the form factor cannot be expanded
in integer powers of ðkkÞ2=ζ2.
Unfortunately, a closed expression for the integrals

involved in expression (26) is not available to us for
arbitrary dimensions. Nevertheless, having in mind a
dimensional regularization, we can analyze the region of
convergence of the integral in the complex D plane.
In order to perform such an analysis notice that, if
ζ > 0, the HK at coincident points possesses the following
asymptotic expansions:

KδðL;L;TÞ ∼
8<
:

1ffiffiffiffiffiffi
4πT

p − ζ
4
þ � � � ; T ≪ 1;

1ffiffi
π

p
ζ2

1
T3=2 − 6ffiffi

π
p

ζ4
1

T5=2 þ � � � ; T ≫ 1:
ð29Þ

This means that for small T, and disregarding a convergent
integral in s, we have the power counting

1

T
γðkk; ζ; TÞ ∼ 1

TðD−1Þ=2 ; T ≪ 1; ð30Þ

so that we should impose ReD < 3 if we desire a
convergent integral in T.
On the remaining limit, namely for large T, if the field is

massive, there is no additional restriction. Instead, the
massless case is more subtle: we can split the s integral into
two, one for s ∈ ð0; 1=2Þ and the other for s ∈ ð1=2; 1Þ.
Each of these integrals contains a propagator whose
expansion for large T provides an additional factor T−3=2,
while not interfering in the convergence of the s integral;
this yields a power counting

1

T
γðkk; ζ; TÞ ∼ 1

TðDþ1Þ=2 ; T ≫ 1: ð31Þ

In other words, one needs to impose the further condition
ReD > 1 to guarantee the convergence of both the integrals
in T and s.
Of course one could made a rigorous proof of the

preceding statements, for example considering Fubini’s
theorem and the bound (C3) from Appendix C. Without
entering into details, for a sufficiently regular ηðkkÞ the
expression (26) is well defined at least in the region in
which 1 < ReD < 3. In particular, in the physically rel-
evant case D ¼ 4 a regularization should be provided. This
will be performed in the following section.
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III. A MASSLESS FIELD IN D= 4

A. Computation of the form factor and renormalization

Consider now the situation of a massless field living in D ¼ 4. As explained before, the integrals involved in expression
(26) is in principle valid in the region 1 < D < 3. We will now see that its analytic continuation to D ¼ 4 shows a pole,
forcing us to perform a renormalization.
To simplify the task, we will divide the form factor into three terms that we will define in the following2:

Fðkk; ζÞ ¼ F1 þ F2 þ F3: ð32Þ

The first one is made from the contribution of two free propagators and reads

F1 ≔
1

22D−3πð3D−7Þ=2

Z
∞

0

dT

TðD−3Þ=2

Z
1

0

dsð1 − sÞe−sTð1−sÞðkkÞ2 1

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sð1 − sÞp

¼ 1

23D−5πð3D=2Þ−4
Γð3−D

2
ÞΓðD−2

2
Þ

ΓðD−1
2
Þ jkkjD−3: ð33Þ

In the limit where D → 4 we obtain

F1 ¼ −
jkkj
32π2

: ð34Þ

The second one comes from the sum of two contributions, each one coming from the product of one free propagator and
one erfc function:

F2 ≔ −
ζ

22D−3πð3D−7Þ=2

Z
∞

0

dT

TD=2−1

Z
1

0

dsffiffiffi
s

p e−sð1−sÞTðkkÞ2
Z

∞

0

due−ðζ=2Þu
e−u

2=4Tð1−sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tð1 − sÞp

¼ −
ζ5−D

22D−4πð3D−7Þ=2

Z
1

0

ds
Z

∞

0

du
Z

∞

0

dT

TðD−3Þ=2
ð1 − sÞD=2−2ffiffiffi

s
p e−Tða−2sþuþu2Þ: ð35Þ

The simplifications in the second line involve the successive rescalings T → T
ð1−sÞζ2 and u → 2

ζ Tu and the definition a ¼ jζj
jkkj.

At this point, the integral in the proper time T can be performed. In order to isolate the divergences in D ¼ 4, one can
introduce the customary parameter μ to render ζ dimensionless and write

F2 ¼ −
μ

22D−4πð3D−7Þ=2

�
ζ

μ

�
5−D

Γ
�
5 −D
2

�Z
1

0

dsffiffiffi
s

p
Z

∞

0

du

� ð1 − sÞD=2−2

ða−2sþ uþ u2Þð5−DÞ=2 −
ð1 − sÞD=2−2

ð1
2
þ uÞð5−DÞ þ

ð1 − sÞD=2−2

ð1
2
þ uÞð5−DÞ

�
:

ð36Þ

This leaves thus the singularity at D ¼ 4 unveiled:

Fdiv
2 ≔ −

μ

22D−4πð3D−7Þ=2

�
ζ

μ

�
5−D

Γ
�
5 −D
2

�Z
1

0

dsffiffiffi
s

p
Z

∞

0

du
ð1 − sÞD=2−2

ðuþ 1
2
Þð5−DÞ

¼ −
μ

23D−7πð3D=2Þ−4

�
ζ

μ

�
5−D Γð5−D

2
ÞΓðD

2
− 1Þ

ΓðD−1
2
Þ

1

ð4 −DÞ : ð37Þ

The remaining contributions to F2 yield a finite contribution, as can be seen from a direct computation:

2The region of convergence of each term alone can be proved to contain the region 2 < ReD < 3 by employing the bound (C2) in
Appendix C.
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Ffin
2 ≔

ζ

32π2

�
ð2þ aÞ log

�
1þ 2

a

�
− 2 − 2 log 2

�
: ð38Þ

Lastly, we have the contribution from the product of two
erfc functions:

F3 ≔
ζ2

22D−5πð3D−9Þ=2

Z
∞

0

dT

TðD−3Þ=2

Z
1

0

dsð1 − sÞe−k2sð1−sÞT

×
Z

∞

0

Z
∞

0

du1du2K0ðu1; 0;TsÞK0ðu2; 0;Tð1 − sÞÞ:

ð39Þ

One can reverse the order in the integrals and discover by
direct integration that the result is convergent in D ¼ 4. A
closed expression for C involves Lerch’s transcendent
function Φ, to wit

F3 ¼
ζa

128π2ð1þ aÞΦ
�

1

ð1þ aÞ2 ; 2;
1

2

�
: ð40Þ

Combining the above results, the form factor in D ¼ 4
for a massless field reads

Fðkk; ζÞ ¼ ζ

16π2
1

D − 4
þ FLðkk; ζÞ þ FNLðkk; ζÞ; ð41Þ

where we have defined a finite local and a finite “nonlocal”
contribution3:

FLðkk; ζÞ ¼
ζ

32π2

�
γ − 4þ log

�
μ2

16π3ζ2

��
; ð42Þ

FNLðkk; ζÞ ¼
ζ

32π2

�
−
1

a
þ ð2þ aÞ log

�
1þ 2

a

�

þ a
4ð1þ aÞΦ

�
1

ð1þ aÞ2 ; 2;
1

2

��
; ð43Þ

where γ is Euler’s constant.
The divergent part of the form factor does not depend on

kk and produces the following divergence of the effective
action:

Γð2Þ
div ¼

ζ

32π2
1

4 −D

Z
dxkη2ðxkÞ: ð44Þ

This result coincides with the one obtained in Ref. [20],
where it is shown that the divergence of the effective action
for a potential of the form vðxkÞδðxD − LÞ is proportional to
the integral over the surface of v3ðxkÞ. In our case we have
vðxkÞ ¼ ζ þ ηðxkÞ, and we are obtaining here the term that

is quadratic in ηðxkÞ, with the correct coefficient.
Consistently with this, we have also checked that the
divergent part of the effective action for an homogeneous
plate reads

Γð0Þ
div ¼

ζ3

96π2
1

4 −D

Z
dxk: ð45Þ

Because of these divergences, we should appeal to a
renormalization process.

B. The renormalization

As can be inferred from the divergence in Eq. (44), the a2
coefficient4 of the HK in the Seeley-DeWitt expansion
turned out to be nonvanishing. As usual, this implies that
we should introduce a renormalization procedure.
As explained in the introduction, a frequently used

renormalization criterion consists in introducing counter-
terms containing classical fields. These counterterms are
chosen in such a way that the divergences can be absorbed
in the couplings of the theory and the large mass limit for
the renormalized energy gives a vanishing result [25].
Given that we are considering a massless field, this option
is not available in our case. One may to avoid this by
introducing a finite mass, renormalizing with the preceding
criterion and afterward taking the massless limit. However,
as could be expected, one would usually find fictitious
logarithmic divergences.
Let us be even more explicit. One can employ the

expansions in Eq. (29) for small proper time T and then
replace in Eqs. (25) and (26) to obtain the large-mass
expansion of the effective action. Introducing the renorm-
alization scale μ and considering an expansion around four
dimensions, D ¼ 4 − ε, we are lead to

Γð2Þ
m¼∞ ¼

�
m
64π

þ ζ

64π2

�
2

ε
þ log

�
4π3μ2

m2

�
− γ

��

×
Z

dxkη2ðxkÞ: ð46Þ

Then the naive subtraction and limit

Γð2Þ
ren;m¼∞ ¼ lim

ε→0
ðΓð2Þ − Γð2Þ

m¼∞Þ ð47Þ

would be well defined, as long as the field is not massless.

If instead we try to take the massless limit of Γð2Þ
ren;m¼∞,

we then find the above-mentioned logarithmic divergence.
The same behavior is observed, for example, in the case of
a homogeneous delta potential using the results in [6].

3The contribution that we are calling nonlocal, upon a series
expansion, may actually contain some terms that are local.

4Or a4: it depends on the convention used to number the
coefficients, which may include semi-integers or only integers. In
any case, we refer to the coefficient which in D ¼ 4 accompanies
the zeroth power of the proper time.
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Notice also that, as explained in [25], the coefficients
accompanying the powers of m in (46) can be related to the
Seeley-DeWitt coefficients of the massless operator’s HK.
This can be readily verified by comparing expression (46)
with the coefficients listed in [35]; as said before, the
logðm2Þ term corresponds to the a2 HK coefficient, which
is nonvanishing in our model.
For our purposes, we will just introduce a counterterm

for the divergent term. Both the meaning of the divergent
piece (44) and its renormalization will depend on the
specific initial field theory. In particular the kk-independent
term of the form factor will be defined only after fixing a
renormalization prescription. If one sticks to the image of ζ
being a coupling, then the divergence could be absorbed
into a redefinition of the mass of the field that describes
the inhomogeneities. If instead one considers the theory
previously described where ζ þ ηðxkÞ is the vacuum
expectation value of another field, then the renormalization
involves a cubic term. Calling O the composite operator
whose coupling will absorb the divergence in Eq. (44), in
the following we will just assume that the renormalization
prescription is such that the couplings of all composite
operators other than O can be taken to be their correspond-
ing one-loop contributions.5 A further analysis of these
aspects will be left to a future publication.
As a way to ascertain the validity of our results, notice

that the form factor coincides, up to the ambiguous constant
term, with the expression one obtains using the Gel’fand-
Yaglom theorem. We include a sketch of this derivation in
Appendix D, mimicking what is done in [28] for the case of
two interacting layers.
This alternative calculation also suggests that the nonlocal

part of the form factor does not depend on the regularization
scheme.6 The uniqueness of general Casimir results, in the
sense of regularization and renormalization independence,
has been widely discussed in the bibliography [27,40].
Turning to our case, in addition to the preceding argument
one can also give a HK explanation as follows.
It has been shown in Ref. [35] that the divergences

arising from the quantum fluctuations of a scalar particle in
an arbitrary curved manifold of D ¼ 4 dimensions, subject
to an interaction with curved delta plates, are given by a
finite number of geometric invariants. This means that one
will always be able to introduce just a finite number of
counterterms to proceed with the renormalization. Whether
this process will end up to be predictive or not will depend
on the existence and interpretation of the finite terms.
For the case under consideration in this article,

the possible divergent terms are four:
R
dxkψ ,

R
dxkψ2,R

dxkψ ;aa and
R
dxkψ3, where ψðxÞ ¼ ζ þ ηðxÞ and ψ ;aa

means the covariant Laplacian on the plates. The first two

of them vanish because we are using dimensional regu-
larization and the third one because it is just a boundary
contribution. Regarding the fourth term, the η contribution
vanishes by assumption, and the η2 one is given in Eq. (44),
while the remaining η3 goes beyond the approxima-
tion used.
As an overall result, only the local term is subject to a

renormalization and is therefore not a prediction of the
theory. The nonlocal terms are indeed a prediction of
the theory,7 analogously to what happens with the logR
term for the ground energy of a sphere [25]. We will
further discuss these aspects in Secs. III D and IV, when
we will investigate some examples in Euclidean and
Minkowski space.

C. Smooth and rapidly varying inhomogeneities

From Eqs. (26) and (27) we see that, when the inho-
mogeneities are smooth, the effective action is dominated
by the small-kk limit of the form factor. Conversely, short
wavelengths are relevant for rapidly varying inhomogene-
ities. We will then study the behavior of the form factor in
these two opposite limits, noting that the constant ζ
provides the mass scale to compare with the wavelengths
of the inhomogeneities, choosing either a ≫ 1 or a ≪ 1.
The expansion of the form factor for smoothly varying

inhomogeneities is given by the expression

FNLðkk; ζÞ ¼
3ζ

32π2

�
1 −

2

27a2
þ 8

225a4
−

8

135a5
þ 176

2205a6

−
32

315a7
þOða−8Þ

�
: ð48Þ

Recall that the leading term, i.e., the local contribution,
would be involved in the renormalization process, in which
also the FL contribution of Eq. (42) takes part.
By looking into the first three terms of expansion (48),

one could have thought that it could have been made only
of even powers of a, meaning that the expansion would
have been in powers of the Laplacian in a so-called
derivative expansion. Instead, the term a−5 signals the
presence of half-integer powers of a, which render
the expression nonlocal. They will be also crucial to the
emergence of a nonvanishing vacuum decay probability in
the Minkowski case, which will be analyzed in Sec. IV. It is
interesting to point out that a similar nonanalytic term,
proportional to kk5, appears in the self-energy of a Dirichlet
mirror with small geometric deformations [41].
The nonlocality is also observed in the small-a expan-

sion of the form factor, which reads
5At least at a certain energy scale relevant to the problem.
6Similar results are obtained by regularizing with an UV

momentum cutoff Λ the proper-time integrals,
R∞
0 dT →

R∞
1=Λ2 dT.

7As said before, strictly speaking this is valid if one does not
impose additional finite renormalizations for these terms.
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FNLðkk; ζÞ ¼
kk

32π2

�
−1 − 2a log

�
a
2

�
þ a2

�
− log

�
a
2

�

þ π2

8
þ 1

�
þOða3Þ

�
: ð49Þ

Indeed, there are integer and semi-integer positive powers
of k in such an expansion, as well as logarithmic terms that
appear as soon as the inhomogeneity η interacts with a
constant distribution over the layer, i.e., whenever ζ is
nonvanishing. Notice also that the leading term could have
been guessed from a dimensional analysis. This is the
reason why it appears also in other effects related to the
Casimir energy, such as the roughness correction [42].

D. Gaussian inhomogeneities

The preceding expressions can be readily used to analyze
physical situations in which the inhomogeneities are time
independent. In that case, considering a four-dimensional
Euclidean space, expression (26) simply reduces to

Γð2Þ
TI ≔ −

T0

2

Z
dkk

ð2πÞ2 jη̃ðk
kÞj2Fðkk; ζÞ; ð50Þ

where the relevant Fourier variables kk are “spatial” and the
length of the Euclidean time domain has been written as an
overall factor T0.
To be more explicit, consider now the particular case

where the inhomogeneities have a Gaussian isotropic form

ηðxkÞ ≔ η0
2πσ2

e−ðxk−xk0Þ2=2σ2 ; ð51Þ

centered at xk
0 and with a width characterized by σ; η0 is a

parameter of length dimension that measures its amplitude.
Aside from η0, the overall normalization has been chosen
such that its integration over the whole space xk gives unity.

Consequently its Fourier transform acquires the simple
expression

η̃ðkkÞ ¼ η0e−ðk
k2σ2=2Þ−ikkx0k : ð52Þ

Replacing this particular profile in Eq. (50) and discarding
the divergent contribution as well as the local FL factor
we get

Γð2Þ
TI

T0

≔ −
jη0j2
2ð2πÞ2

Z
dkke−kk2σ2FNLðkk; ζÞ: ð53Þ

This choice corresponds to a particular renormalization
condition, on which our results will depend; we will come
back to this issue in the end of this section.
Even if a closed expression for the integral in Eq. (53)

is not available, a numerical integration can be readily
performed. In the left panel of Fig. 1 we show a density plot

of the contribution Γð2Þ
TI per unit time as a function of σ and

ζ, while in the right panel we plot it as a function of σ for
several values of ζ, setting in both cases the amplitude η0
to one.

First of all, notice that Γð2Þ
TI increases as σ tends to zero,

namely when the first term in the rhs of Eq. (49) prevails.
This is to some extent hidden in the right panel of Fig. 1 for
large values of ζ, because the negative minimum also gets
shifted toward smaller values of σ. Since in the small σ limit
the Gaussian becomes a delta function, the divergence is to
be expected for two reasons: neither the interaction with a
point delta potential in D > 2 is well defined, nor the
product η2 which would involve two deltas.

Secondly, for fixed ζ and large σ, the value of Γð2Þ
TI tends

to zero. This is merely related to the normalization chosen
for the Gaussian. Additionally, we observe that for fixed σ
the contribution changes sign as ζ increases, tending to a
linear behavior. This agrees with the explicit expansion of

Γð2Þ
TI for small and large σζ:

FIG. 1. Contribution Γð2Þ
TI to the effective action per unit time for Gaussian inhomogeneities: the left panel is a density plot as a function

of ζ and σ, while the right panel corresponds to a plot as a function of σ for several values of ζ. All the dimensional quantities are
measured in arbitrary units, and we have chosen η0 ¼ 1.
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Γð2Þ
TI

T0

¼
(

1
512π3σ3

ð ffiffiffi
π

p þ 4 logðσζÞσζ þ 2ðγ − logð4ÞÞσζ þ � � �Þ; σζ ≪ 1;

1
σ3
ð− 3σζ

256π3
þ 1

1152π3σζ
− 1

1200π3σ3ζ3
þ � � �Þ; σζ ≫ 1:

ð54Þ

Nevertheless, this fact heavily depends on the chosen
renormalization condition. As a way to clarify this asser-
tion, consider the subtraction

Γð2Þ
m¼0

T0

≔ −
jη0j2
2ð2πÞ2

Z
dkke−kk2σ2

�
FNLðkk; ζÞ − 3ζ

32π2

�
;

ð55Þ

which corresponds to a renormalization that will be called
“null-mass” condition. Analogous to the previous case, we

include in the left panel of Fig. 2 a density plot of Γð2Þ
m¼0 per

unit time as a function of ζ and σ, while the right panel
corresponds to a plot as a function of σ for different values of
ζ. From them it can be seen that, contrary to the precedent
situation, the contribution to the effective action is strictly
positive and shows no local minima. As emphasized before,
this does not imply that the effective action has no physical
meaning; it just points out the fact that one should formulate
a theory describing the degrees of freedom encoded in η
and state a consistent renormalization prescription.

IV. WICK ROTATION AND DYNAMICAL
CASIMIR EFFECT

Time-dependent inhomogeneities excite the quantum
vacuum, with the subsequent particle creation. A quantity
that measures the dissipative effects of the external time-
dependent conditions on the quantum field is the vacuum
persistence amplitude, that can be computed from the
effective action ΓM in Minkowski space as follows:

h0outj0ini ¼ eiΓM : ð56Þ

The probability of pair creation P is determined by the
imaginary part of the effective action

1 − P ¼ jh0outj0inij2 ¼ e−2ImΓM : ð57Þ

When the effective action is computed perturbatively we
have, to lowest order, P ≃ 2ImΓM.
Coming back to our model, one of the main advantages

of the master formula (26) is that it admits a Wick rotation
from Euclidean to Minkowski space. Indeed, one can show
that a Wick rotation x0 → ix0 encounters no singularities in
the complex plane; the resulting effective action ΓM in
Minkowski space is

Γð2Þ
M ¼ 1

2

Z
dkkdk0

ð2πÞ3 jηMðk0;kkÞj2FðkkM; ζÞ; ð58Þ

where the Fourier transform shall be defined as

ηMðxkÞ ¼
Z

dkkdk0

ð2πÞ3 e−ik
0x0þikkxkηMðk0;kkÞ; ð59Þ

and the expressions involving the norm of kkE in
Euclidean space should be understood by introducing a
negative imaginary part inside the square root,

i.e., jkkEj → jkkMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kk2 − k20 − i0

q
.

Taking into account that the form factor F is a real
function of the Euclidean momentum, the imaginary part of
the Minkowskian effective action reads

FIG. 2. Nonlocal contribution to the effective action (in the “null-mass” renormalization) per unit time (
Γð2Þ
m¼0

T0
) for Gaussian

inhomogeneities: the left panel is a density plot as a function of ζ and σ, while the right panel corresponds to a plot as a function of σ for
several values of ζ. All the dimensional quantities are measured in arbitrary units, and we have chosen η0 ¼ 1.
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ImΓð2Þ
M ¼ 1

2

Z
dkkdk0

ð2πÞ3 jηMðk0;kkÞj2θððk0Þ2 − kk2Þ

× Im
�
F
�
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0Þ2 − kk2

q
; ζ
��

ð60Þ

in terms of the Heaviside function θ. Expression (60) is the
analog in our problem of well-known formulas for the
vacuum persistence amplitude (consider for example
quantum fields in the presence of classical electro-
magnetic fields [43] or quantum fields on curved space-
times [44]). Notice that this expression is independent of
the renormalization prescription, which only involves a real
and local term. Additionally, for massive quantum fields
of mass m2 the imaginary part will contain a factor
θððk0Þ2 − kk2 − 4m2Þ, which is nothing but the threshold
for pair production.

A. Gaussian inhomogeneities

To show the plasticity of these formulas in Minkowski
space, consider once more a Gaussian toy model:

ηGðxkÞ ¼ η0
e−ðxk−ykÞ2=2σ2s

2πσ2s

e−ðx0−y0Þ2=2σ2tffiffiffiffiffiffiffiffiffiffi
2πσ2t

p ; ð61Þ

so that η0 is a parameter of dimension length square in
D ¼ 4 and, making explicit the Minkowskian metric, its
Fourier transform reads

ηGðkkÞ ¼ η0e−ðk
k2σ2s=2Þ−½ðk0Þ2σ2t =2�−ikkykþik0y0 : ð62Þ

For a moment, consider the term which accounts only for
the interaction among the inhomogeneities η, namely set
ζ ¼ 0. A straightforward replacement in Eq. (58) gives the
following formula for the effective action:

Γð2Þ
M;G

			
ζ¼0

¼ −
jη0j2

26ð2πÞ4
"

π

σ3s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2s þ σ2t

p −
2i

σ3sσ
2
t

 
σs −

σtsinh−1ðσsσtÞffiffiffiffiffiffiffiffiffiffiffiffi
σ2s
σ2t
þ 1

q
!#

; ð63Þ

from which the following expansions for the vacuum persistence amplitude can be immediately obtained:

ImΓð2Þ
M;G

			
ζ¼0

∼
jη0j2

24ð2πÞ4

8>>><
>>>:

1
2σ2sσ

2
t
½1þ logð σt

2σs
ÞðσtσsÞ2 þ � � ��; σt ≪ σs;

1
3σ4t

½1 − 4
5
ðσsσtÞ2 þ � � ��; σs ≪ σt;

2−
ffiffi
2

p
arcsinhð1Þ
4

1
σ4
≈ 0.0941937

σ4
; σt ¼ σs ¼ σ:

ð64Þ

Notice first of all that ImΓð2Þ
M;Gjζ¼0

is always positive, as can
be proved from expression (63). Secondly, Eq. (64) means
that for inhomogeneities highly localized in time we obtain
a divergent contribution for the imaginary part, while the
real part remains finite, as could be expected for a sudden
perturbation. The opposite situation is obtained in the case
of spatially localized inhomogeneities, where the real part
diverges, the imaginary part remaining finite.
Turning our attention to the complete effective action

(58) with Gaussian inhomogeneities, the numerical com-
putations can be easily handled. In particular, in Fig. 3 we

show the imaginary part of Γð2Þ
M;G: the left panel corresponds

to a density plot as a function of ζ and σt (for fixed σs),
while the right panel is a double-log plot as a function of σs
(for fixed ζ and σt).

Once more, we observe that ImΓð2Þ
M;G is positive, as it

should be according to its interpretation. Next, it is

important to notice that Γð2Þ
M;G is a decreasing function with

respect to all the involved variables, with asymptotic power
law behaviors. As an example, in the right panel of Fig. 3

we depict its σ−2s asymptotic behavior for large σs. In spite
of that, the nature of these decreases is decidedly different:
while the decrease with ζ for a regular η could be ultimately
related to the a−5 factor in the expansion (48) (see also the
next section), the behavior with σs;t heavily depends on the
chosen inhomogeneities.

Last, ImΓð2Þ
M;G diverges for small σt but converges for

small σs; that is, the delta limit of the space distribution is
well defined for this quantity.

B. Harmonic inhomogeneities

Let us now focus on perturbations η which are homo-
geneous in space and have a harmonic time dependence. In
particular we will consider a generalization, to an arbitrary
dimensionD, of the model proposed in [16] to simulate the
dynamical Casimir effect. We introduce thus

ηHðtÞ ¼ η0 cos ðω0tÞe−jtj=T; ð65Þ
a harmonic inhomogeneity with frequency ω0 whose
amplitude is modulated by an exponential as a way to
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regularize the expressions; η0 has dimensions of mass and
in the following we will take the limit of large T. Under this
assumption its Fourier transform simplifies, yielding

ηHðk0ÞηHð−k0Þ ¼
π

2
jη0j2T½δðk0 − ω0Þ þ δðk0 þ ω0Þ�;

ω0T ≫ 1; ð66Þ

and rendering the evaluation of the effective action in
Eq. (58) immediate. Given that the effective action becomes
proportional to A, the spatial area of the surfaces where the
inhomogeneities live, as well as to the characteristic time T,

we find it more appropriate to consider the expression per
unit time and area:

Γð2Þ
M;H

AT
¼ jη0j2

4
Fð−iω0; ζÞ: ð67Þ

As physically guessed, we can see that the behavior will be
fixed by the relative size of the two scales of the system, ω0

and ζ. Considering the imaginary part of (67), relevant for
the computation of the decay rate of the vacuum per unit
time and area of the delta sheets, we obtain the following
expansions:

ImðΓð2Þ
M;HÞ

AT
¼ jη0j2ω0

16π2

8<
:

1
8
½1 − πζ

ω0
þ ðlogð2ω0

ζ Þ þ π
8
2 þ 1Þ ζ2

ω2
0

þ � � ��; ζ ≪ ω0;

1
45

ω4
0

ζ4
½1 − 12ω2

0

7ζ2
þ 96ω4

0

35ζ4
þ � � ��; ζ ≫ ω0:

ð68Þ

The qualitative behaviors of the expansions in Eq. (68)
could have certainly been guessed by looking at the
formulas given in Sec. III C for the form factor: for large

ω0 the main term is the first in Eq. (48), given only by the
geometry of the inhomogeneities, while for small ω0 the
first term corresponds to the first contribution in Eq. (49)

FIG. 4. Plot of ImðΓð2Þ
M;HÞ per unit time and area for harmonic inhomogeneities. The left panel corresponds to a density plot as a

function of ζ and ω0, while the right panel is a plot as a function of ω0 for several values of ζ. All the dimensional quantities are measured
in arbitrary units and η0 ¼ 1 is chosen.

FIG. 3. Imaginary part of Γð2Þ
M;G for Gaussian inhomogeneities. The left panel corresponds to a density plot as a function of ζ and σt for

σs ¼ 0.1, while the right panel is a double-log plot as a function of σs for fixed ζ ¼ 1. and σt ¼ 0.05. All the dimensional quantities are
measured in arbitrary units, and η0 ¼ 1 is chosen.
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that prevented a derivative expansion (the a−5 term).
Regarding the latter, it is suggestive to notice its analogy
with the imaginary part of the effective action for a single
perfect mirror in the usual dynamical Casimir effect
configuration [11], which is also proportional to ω5

0 (notice
that to perform a correct comparison, one should take the
appropriate scaling η0 ∼ ζ2).
To obtain exact results regarding the effective action, one

can rely on numerical computations. Those shown in Fig. 4
agree with the expansions in Eq. (68). In effect, the density

plot in its left panel, which corresponds to ImΓð2Þ
M;H per unit

time and area as a function of ζ and ω0, shows a decreasing
(increasing) function of ζ (ω0), respectively. In addition, the
right panel in Fig. 4 displays its plot as a function of ω0, for
several values of ζ. The power law and the linear behavior,
corresponding to small and large values of ω0, are clearly
depicted.

V. CONCLUSIONS

In this paper we studied the effective action for a
quantum scalar field in the presence of a thin and
inhomogeneous layer. After presenting a novel derivation
of the exact HK for the homogeneous case, we computed
the effective action using a perturbative approach in the
inhomogeneities. The general expression for a massive
scalar field in D dimensions was obtained, viz. Eq. (26),
showing that is not well defined for D ≥ 3.
We analyzed in detail the case of a massless field in

D ¼ 4 using dimensional regularization, for which we
showed that the divergent term is local in the inhomoge-
neities, while the remaining finite part of the effective
action is nonlocal both for smooth and rapidly varying
inhomogeneities. We performed some cross-checks of our
calculations, comparing the divergent part with the general
results obtained in Ref. [20] and computing the finite
nonlocal part using a different approach based on the
Gel’fand-Yaglom theorem [28]. Judging by our results, the
nonlocal part seems to be regularization independent. In
doing so we also discussed some technical aspects regard-
ing the renormalization for massless fields, which basically
imply that the local term is not a prediction of the model.
For time-independent inhomogeneities, the effective

action gives the vacuum self-energy of the mirror. We
analyzed the dependence of the effective action with the
parameters of Gaussian inhomogeneities. We then con-
sidered spacetime-dependent inhomogeneities. In this
case, we applied our results to compute the vacuum
persistence amplitude, which is determined by the imagi-
nary part of the Lorentzian effective action. After a Wick
rotation of the Euclidean effective action, we obtained a
general formula for the vacuum persistence amplitude,
which was applied to several examples of interest in the
context of the dynamical Casimir effect. The imaginary

part of the Wick-rotated effective action is always finite
and positive definite, as expected. Since the calculation of
the vacuum persistence amplitude for spatially inhomo-
geneous mirrors with time-dependent properties can be
employed to model the particle creation produced by
mirrors of finite size, we expect that our general formulas
could be of practical application.
More generally, the HK approach used in this paper is a

suitable tool to compute local quantities, as the expectation
value of the stress tensor. This is a compelling topic for
future research, since we expect divergences in the renor-
malized stress tensor when evaluated near the thin layer.
These divergences should depend on the local inhomoge-
neities and would be similar to those appearing for non-
planar geometries with perfect boundary conditions, that
depend on the local curvature [18]. In this scenario, the
consideration of combined effects produced by geometry
and inhomogeneities deserves further attention.
Finally, in order to go beyond the employed η2 approxi-

mation, nonperturbative numerical computations following
the lines of [45] could be performed. Some of these ideas
are currently being pursued.

ACKNOWLEDGMENTS

S. A. F. is grateful to G. Gori and the Institut für
Theoretische Physik, Heidelberg, for their kind hospitality.
S. A. F. acknowledges support by UNLP, under project
Grant No. X909 and “Subsidio a Jóvenes Investigadores
2019.” F. D. M. was supported by ANPCyT, CONICET,
and UNCuyo.

APPENDIX A: EQUIVALENCE WITH THE
EXPRESSION FOR Kδ OBTAINED IN [31]

In order to prove that formula (16) is indeed equivalent to
the one obtained in [31] (up to a rescaling ζ ¼ 2a, T ¼ 2t,
where a and t correspond to the notation in [31]), we recast
the ζ-dependent part of Kδ as

ΔKðTÞ ≔ Kδðx; y;TÞ − K0ðx; y;TÞ ðA1Þ

¼ ðK0ðx; L; ·Þ � Γ2ð·Þ � K0ðL; y; ·ÞÞðTÞ; ðA2Þ

where the operator � means the “Laplacian” convolution,

ðf � gÞðtÞ ¼
Z

t

0

dτfðτÞgðt − τÞ: ðA3Þ

Then one can consider ΔK̃ðsÞ, the Laplace transform
of ΔKðTÞ; according to the convolution theorem of
the Laplace transform, it is simply given by the
Laplace transform of the functions involved in the con-
volution (A1):
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ΔK̃ðsÞ ¼ K̃0ðx; L; sÞΓ̃2ðsÞK̃0ðL; y; sÞ ðA4Þ

¼ ζe−
ffiffi
s

p ðjx−Ljþjy−LjÞ 1

2
ffiffiffi
s

p ðζ þ 2
ffiffiffi
s

p Þ . ðA5Þ

Consider now a ζ such that ReðζÞ > 0. Antitransforming
ΔK̃ðsÞ we obtain

ΔKðTÞ ¼ ζ

2πi

Z
γþi∞

γ−i∞
ds

esT−
ffiffi
s

p ðjx−Ljþjy−LjÞ

2
ffiffiffi
s

p ðζ þ 2
ffiffiffi
s

p Þ ; ðA6Þ

where γ is such that all the singularities of the integrand lie
on ReðsÞ < γ. We can then deform the contour in the
complex plane to encircle the half line ð−∞; ζ2Þ, where the
square root has a cut. After a change of variables w2 ¼ s,
we use Schwinger’s trick

1

ζ þ iw
¼
Z

∞

0

ds1e−s1ðζþiwÞ ðA7Þ

and perform the integral in w. Thus, considering the
analytic continuation in ζ, we obtain the promised result

ΔKðTÞ ¼ 1

2

Z
∞

0

due−uζ=2K0ðjx − Lj þ jy − Lj þ u; 0;TÞ;

ðA8Þ

or equivalently

Kδðx; y;TÞ ¼ K0ðx; y;TÞ −
ζ

2

Z
∞

0

due−uζ=2K0ðjx − Lj

þ jy − Lj þ u; 0;TÞ: ðA9Þ

APPENDIX B: A DIRECT PROOF OF THE
CONVOLUTION PROPERTY (17)

One of the benefits of Eq. (16) is that it provides a direct
proof of the convolution property (17). Since we have not
found such a proof in the literature,8 we include it in this
appendix. As a first step, let us define a reduced iterated
kernel as

Γ2ðz2 − z1Þ ≔ Γ̄2ðz1 − z2Þ − δðz1 − z2Þ: ðB1Þ

From this definition and considering formula (14), it is
immediate to prove the following important identities,
which we will call iteration properties:

Γ2ðz3 − z1Þ

¼
8<
:

ζffiffiffiffi
4π

p
R
T2
z1

dz2
1ffiffiffiffiffiffiffiffiffi

z2−z1
p Γ̄2ðz3 − z2Þ; if z1 < z3 < T2;

ζffiffiffiffi
4π

p
R z3
T1
dz2 1ffiffiffiffiffiffiffiffiffi

z3−z2
p Γ̄2ðz2 − z1Þ; if T1 < z1 < z3:

ðB2Þ

Now notice that, after employing (16), the product in the
rhs of (17) involves four terms. The first of them, upon
using the convolution property of the free propagator,
becomes

Z
dyK0ðx; y; TÞK0ðy; z; SÞ ¼ K0ðx; z; T þ SÞ: ðB3Þ

The remaining three terms will instead combine in such a
way that they reproduce the desired contribution, namely

ζ

Z
TþS

0

dz1dz2K0ðx;L;z1ÞΓ̄2ðz2−z1ÞK0ðL;z;TþS−z2Þ:

ðB4Þ

In order to prove so, one term of the product in the rhs of
Eq. (17)—still considering the replacement given by
Eq. (16)—will just be simplified using the convolution
of the free propagators:

ζ

Z
T

0

dz1dz2K0ðx; L; z1ÞΓ̄2ðz2 − z1ÞK0ðL; z; T þ S − z2Þ:

ðB5Þ

In another one, we will also perform a translation z3; z4 →
z3 þ T; z4 þ T after convoluting the involved free propa-
gators:

ζ

Z
S

0

dz3dz4K0ðx; L; z3 þ TÞΓ̄2ðz4 − z3ÞK0ðL; z; S − z4Þ

¼ ζ

Z
TþS

T
dz3dz4K0ðx; L; z3ÞΓ̄2ðz4 − z3Þ

× K0ðL; z; T þ S − z4Þ: ðB6Þ

The remaining contribution requires more steps to be
brought to the required form. In a summarized way, we
have

8By direct we mean using the explicit expression for the
propagator.
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ζ2
Z

T

0

dz1dz2

Z
TþS

T
dz3dz4K0ðx; L; z1ÞΓ̄2ðz2 − z1ÞK0ðL; L; z3 − z2Þ × Γ̄2ðz4 − z3ÞK0ðL; z; T þ S − z4Þ

¼ ζ2ffiffiffiffiffiffi
4π

p
Z

T

0

dz1

Z
TþS

T
dz4

Z
T

0

dz2

�Z
TþS

z2

dz3 −
Z

T

z2

dz3

�
K0ðx; L; z1Þ

× Γ̄2ðz2 − z1Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z3 − z2
p Γ̄2ðz4 − z3ÞK0ðL; z; T þ S − z4Þ

¼ ζ

Z
T

0

dz1

Z
TþS

T
dz4K0ðx; L; z1ÞK0ðL; z; T þ S − z4Þ

×

�Z
T

0

dz2Γ̄2ðz2 − z1ÞΓ2ðz4 − z2Þ −
Z

T

0

dz3Γ2ðz3 − z1ÞΓ̄2ðz4 − z3Þ
�
; ðB7Þ

where in the second line we have made explicit the HK for
coincident forms, while in the third line we have employed
the iteration properties (B2). Finally, considering Eq. (B1)
we have

ðB7Þ ¼ ζ

Z
T

0

dz1

Z
TþS

T
dz4K0ðx; L; z1Þ

× K0ðL; z; T þ S − z4ÞΓ2ðz4 − z1Þ: ðB8Þ
Given that Γ2 involves a Heaviside function, adding
expressions (B5), (B6) and (B8), one reproduces
formula (B4).

APPENDIX C: BOUNDS INVOLVING THE ERFC
FUNCTION

There exist some simple upper bounds involving the
complementary error function that serve to deal with the
integrals appearing in the computations of this article. First,
consider the bounds

0 ≤ ea
2

erfcðaÞ ≤ 1ffiffiffi
π

p
a
; ðC1Þ

valid for a > 0. Indeed, the lower bound is immediate,
while from the definition of the erfc we have the following
straightforward derivation:

2ffiffiffi
π

p ea
2

Z
∞

a
dueu

2 ¼ 2affiffiffi
π

p
Z

∞

1

due−ðu2−1Þa2

¼ 2ffiffiffi
π

p
a

Z
∞

0

due−uððu=a2Þþ2Þ

≤
2ffiffiffi
π

p
a

Z
∞

0

due−2u

¼ 1ffiffiffi
π

p
a
: ðC2Þ

In addition,we can also prove that the propagatorKδ has an
upper bound for negative ζ. The derivation, valid again for
a > 0, is mutatis mutandis the same as in expression (C2):

1ffiffiffi
π

p
a
− ea

2

erfcðaÞ ¼ 1ffiffiffi
π

p
a
−

2ffiffiffi
π

p
a

Z
∞

0

due−uððu=a2Þþ2Þ

¼ 1ffiffiffi
π

p
a

Z
∞

0

due−2uð1 − e−u
2=a2Þ

≤
1ffiffiffi
π

p
a

Z
∞

0

due−2u
u2

a2

¼ 1

4
ffiffiffi
π

p
a3

: ðC3Þ

APPENDIX D: GEL’FAND-YAGLOM APPROACH

In this appendix we obtain some of the previous results
using the Gel’fand-Yaglom approach described in
Ref. [28]. It has been shown there that the self-energy
for a thin mirror with time-independent inhomogeneities
reads

E ¼ 1

2

Z þ∞

−∞

dk0
2π

Tr log

�
I þ 1

2
ffiffiffiffiffiffi
H0

p ζðxkÞ
�
; ðD1Þ

where H0 ¼ −∇2
k þ k20.

Writing

ζðxkÞ ¼ ζ þ ηðxkÞ; ðD2Þ

we can expand the self-energy in powers of η. The second
order reads
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Eð2Þ ¼ −
1

16

Z þ∞

−∞

dk0
2π

Tr

��
I

I þ ζ
2H0

η

H0

�
2
�

ðD3Þ

and corresponds to Γð2Þ
TI =T0 in Eq. (50).

The two-point function appearing in the above equation
can be explicitly written as

Nðxk; ykÞ ≔ I

H0 þ ζ
2

ðxk; ykÞ ¼
Z

dkk

ð2πÞ2
eik

k·ðxk−ykÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ kk2

q
þ ζ

2

:

ðD4Þ

Replacing Eq. (D4) into Eq. (D3) we get

Eð2Þ ¼ −
1

16

Z
dk0
2π

Z
dxk

×
Z

dykNðxk; ykÞηðykÞNðyk;xkÞηðxkÞ: ðD5Þ

In terms of Fourier transforms we find

Eð2Þ ¼ −
1

2

Z
dkk

ð2πÞ2 jη̃ðk
kÞj2Fðkk; ζÞ; ðD6Þ

with

Fðkk; ζÞ ¼ 1

8

Z
dp0dp
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 þ ðpþ kkÞ2

q
þ ζ

2

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
0 þ p2

p
þ ζ

2

: ðD7Þ

This expression has an UV divergence, and some regu-
larization is implicitly assumed. However, we will compute

ΔFðkk; ζÞ ¼ Fðkk; ζÞ − Fð0; ζÞ; ðD8Þ

which is finite and independent of the regulator.
To compute the integral we work in p-space spherical

coordinates and assume kk ¼ jkkjẑ:

ΔFðkk; ζÞ ¼ 1

32π2

Z
∞

0

dpp2

Z
π

0

dθ sin θGðp; θ; kkÞ;

ðD9Þ

Gðp; θ; kkÞ ¼ 1
ζ
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ kk2 þ 2pkk cos θ

p 1
ζ
2
þ p

−
1

ðζ
2
þ pÞ2 : ðD10Þ

Performing the angular integral and defining as before
a ¼ ζ=jkkj we find

ΔFðkk; ζÞ ¼ jkkj
32π2

Z
∞

0

dpp2

�
−

8

ðaþ 2pÞ2

þ 2

pð2pþ aÞ
�
1þ p − jp − 1j

þ a
2
log

�
aþ 2jp − 1j
aþ 2ðpþ 1Þ

���
: ðD11Þ

The integral in p can be computed analytically, and the
result coincides, up to a constant term, with the one
obtained using the HK approach in Sec. III. Indeed, we find

ΔFðkk; ζÞ ¼ FNLðkk; ζÞ −
3ζ

32π2
; ðD12Þ

where FNLðkk; ζÞ is given in Eq. (43). Note that if we
consider ηðxkÞ as a background field, the constant term
can be absorbed into a redefinition of its mass, as discussed
in Sec. III. Note also that, although in this appendix we
considered time-independent inhomogeneities, on general
grounds we expect the form factor to be a function of the
modulus of kk, and therefore the result in Eq. (D12) is valid
in the general case.
This calculation is a nontrivial cross-check of our results

that also shows that the nonlocal part of the form factor
does not depend on the regularization scheme.
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