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ABSTRACT
In this article, we study a fractional control problem that models the maximization of the pro�t obtained by exploiting a
certain resource whose dynamics are governed by the fractional logistic equation. Due to the singularity of this problem, we
develop di�erent resolution techniques, both for the classical case and for the fractional case. We perform several numerical
simulations to make a comparison between both cases.
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1. INTRODUCTION
It is very well known that the logistic equation describes the population growth. The continuous
Logistic model is described by a �rst order ordinary di�erential equation. The model describes
the population growth that may be limited by certain factors like population density, [19]. The
continuous form of the logistic equation is,

ẋ(t) = rx(t)(1 −
x(t)
K ) .

In the above equation, x(t) indicates population at time t , r > 0 represents the Malthusian parameter
expressing the growth rate of species and K denotes the carrying capacity.

Motivated by its applications in di�erent scienti�c areas (electricity, magnetism, mechanics, �uid
dynamics, medicine, etc., [4, 23, 24, 26]), fractional calculus is in development, which has led to large
growth in its study in recent decades. The fractional derivative is a nonlocal operator, [20, 37],
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making fractional di�erential equations good candidates for modeling situations in which it is im-
portant to consider the history of the phenomenon studied [22], unlike the models with a classical
derivative where this is not taken into account. There are several de�nitions of fractional deriv-
atives. The most commonly used are the Riemann-Liouville fractional derivative and the Caputo
fractional derivative. It is important to note that while the Riemann-Liouville fractional derivative
[36], is historically the most studied approach to fractional calculus, the Caputo fractional derivat-
ive is more popular among physicists and scientists due to the fact that the formulation of initial
value problems with this type of derivative is more similar to the formulation with the classical
derivative.

The fractional order logistic equation has been discussed in the literature, [15, 34]. A detailed
study of existence, uniqueness, stability and approximate solutions of this equation can be found
in [1, 7, 13, 21, 27, 40].

When the logistic equation is used to describe the natural evolution of a species, it is logical
to think about the exploitation of this resource. For this reason consider a natural resource man-
agement problem using fractional derivatives. The fractional equation can better represent the
evolution of the resource, in fact in this work we want to see how a fractional derivative a�ects the
optimal extraction decision.

The principal objective of this work is to solve an optimal control problem of extraction man-
agement. Due to the nature of the problem, it can be turned into a Fractional Variational problem.
In the last years numerous works have been developed extending the theory of the variational
calculus [41] to problems of fractional variational calculus [2, 12, 14, 25, 32, 33, 38]. With the pur-
pose of solving fractional variational problems, there exist two theorems of optimality conditions:
an Euler-Lagrange equation which involves Caputo and Riemann-Liouville fractional derivatives
[3, 5, 6, 10, 30, 31], and another Euler-Lagrange equation that involves only Caputo derivatives
[8, 11, 16, 28]. As it is not yet known which of these theorems is the most suitable for solving this
type of problem, for qualitative reasons the second method will be used to solve our problem. The
structure of this article is as follows: in Section 2, the classical control problem and its solution, the
fundamental concept of fractional derivatives and fractional control and variational problems, are
presented. In Section 3, the solution of a fractional control problem, the comparison between both
problems and numerical approximations of the solutions are discussed. Finally, the last section, is
dedicated to the conclusions.

2. PRELIMINARIES
Some known facts are summarised for the reader’s convenience.

2.1. A simple optimal control problem
We present a classical optimal control model, which consists of maximizing the total extraction
(or harvest) of a certain renewable resource in the interval [0, T ], where a �rst order ordinary
di�erential equation describes the evolution of the dynamics,

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
T
∫
0
e−�tℎ(x(t)) dt

ẋ(t) = rx(t)(1 −
x(t)
K ) − ℎ(x(t))

x(0) = x0
x(T ) = xT
ℎmin ≤ ℎ(x(t)) ≤ ℎmax .

(2.1)

T represents the �nal time, x0 the initial condition, xT the �nal condition, ℎmin and ℎmax minimum
and maximum harvest and e−�t represents a discount factor with � ≥ 0 the instantaneous annual
discount rate which can be zero.

The natural resource follows a logistic growth function, where r > 0 is the intrinsic growth rate,
K > 0 the carrying capacity of the resource and ℎ(t) is the harvest.
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Now we will proceed to solve the problem (2.1).
Clearing ℎ(x(t)) from the dynamics and replacing it in the functional to maximize results,

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

max
T
∫
0
e−�t [rx(t)(1 −

x(t)
K ) − ẋ(t)] dt

x(0) = x0
x(T ) = xT
ℎmin ≤ ℎ(x(t)) ≤ ℎmax ,

which is a variational problem with Lagrangian

L(t, x, ẋ) = e−�t [rx(t)(1 −
x(t)
K ) − ẋ(t)] .

Then, its Euler-Lagrange equation results
)L
)x

−
d
dt

)L
)ẋ

= 0,

from which is obtained
r (1 − 2

K x(t)) − � = 0.
That is, the optimal population is constant

x∗ =
K
2 (1 −

�
r )

, (2.2)

while the optimal harvest is

ℎ∗ = rx∗(1 −
x∗

K ) , (2.3)

then,

ℎ∗ =
K
4
r2 − �2

r
. (2.4)

REMARK 2.1. It can be seen that since the solution of the Euler-Lagrange equation x∗(t), is a constant
function, it will not be able to verify the imposed boundary conditions. For this reason, it can be
said that the problem is singular.

For its resolution, the Nearest Feasible Paths theorem will be used, and its proof can be seen in
[39]. This theorem, as its name implies, shows that the optimal solution is to go as fast as possible to
x∗(t). With this result, the method consists in �nding xa(t) the solution to the problem that begins
in x(0) = x0 and uses the minimum harvest ℎmin if x0 < x∗(t) or uses the maximum harvest ℎmax
if x0 > x∗(t), until it reaches the value x∗(t) in the time tmin to be determined.

Then it must be found xb(t), a solution to the problem that uses the minimum harvest ℎmin if
xT > x∗(t) or uses the maximum harvest ℎmax if xT < x∗(t), until it reaches the value x(T ) = xT ,
from the time tmax to be determined so that it is the �rst time when xb(t) gets the value x∗(t).

In summary, the following optimal solution is obtained

x∗(t) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

xa(t) if 0 ≤ t ≤ tmin

K
2 (1 − �

r ) if tmin ≤ t ≤ tmax

xb(t) if tmax ≤ t ≤ T

(2.5)

and the optimal harvest obtained with this procedure is

ℎ∗(t) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

ℎmin if x(t) > x∗(t)

K
4
r2−�2
r if x(t) = x∗(t)

ℎmax if x(t) < x∗(t),

(2.6)
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taking into account that for it must be satis�ed ℎmin ≤ K
4
r2−�2
r ≤ ℎmax .

REMARK 2.2. The problem without discount is obtained as a particular case, writing � = 0 in the
equations (2.5) and (2.6).

In the next section, this problem will be solved but in its fractional version. To see more about
fractional calculus refer to appendix at the end of the paper.

2.2. Fractional control and variational problems
To solve a fractional control problem, tools of fractional variational analysis will be used. For this,
a brief introduction to them is presented.

Consider the following problem of the fractional calculus of variations: �nd a function x ∈ �
aE

that optimizes (minimizes or maximizes) the functional

J (x) = ∫
b

a
L(t, x, Ca D

�
t x) dt,

with a Lagrangian L ∈ C1([a, b] × ℝ2) and
�
aE = {x ∶ [a, b]→ ℝ ∶ x ∈ C1([a, b]), Ca D

�
t x ∈ C([a, b])},

subject to the boundary conditions x(a) = xa , x(b) = xb .
Now the Euler-Lagrange equation for this problem will be stated, its proof is in [28].

THEOREM 2.3. Let x be an optimizer of J in �
aE with L ∈ C2 ([a, b] × ℝ2) subject to boundary condi-

tions x(a) = xa , x(b) = xb , then x satis�es the fractional Euler-Lagrange di�erential equation

)L
)x

+ C
t D

�
b [

)L
) Ca D�t x ]

= 0. (2.7)

3. MAIN RESULT
Now we are ready to prove the following main result.

3.1. Fractional model
The fractional version of the problem proposed in the �rst section is,

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
T
∫
0
e−�tℎ(x(t)) dt

C
0 D�t [x] (t) = rx(t)(1 −

x(t)
K ) − ℎ(x(t))

x(0) = x0
x(T ) = xT
ℎmin ≤ ℎ(x(t)) ≤ ℎmax .

(3.1)

The only di�erence with the problem exposed in Section 2.1, is that in the dynamic equation

C
0 D

�
t [x] (t) = rx(t)(1 −

x(t)
K ) − ℎ(x(t)), (3.2)

the �rst-order derivative no longer appears, but now intervenes C
0 D�t [x] (t), the left Caputo frac-

tional derivative of order 0 < � ≤ 1.
The derivatives with fractional order contains partially or totally the history, temporary future

or the spatial behavior of the function, averaged in some way. This transforms the fractional di�er-
ential equations on suitable candidates for the modeling of memory phenomenon or subsequent
e�ects, those in which what happens at a point on the space or at an instant of time depends on an
interval (spatial or temporal) that contains the point or the instant.

The Riemann-Liouville fractional derivative had an important role in the development of the
fractional calculus theory, and was used successfully in strictly mathematical applications. But



Mathematica Pannonica New Series 27 /NS 1/ (2021) 1, 21-34 5

when it was using for mathematical modeling of real physical phenomena with fractional di�eren-
tial equations, the problem of the initial conditions also of fractional order emerged. These types
of conditions are not physically interpretable and present a considerable obstacle when making
practical use of fractional calculus. The Caputo di�erential operator, in contrast to the Riemann-
Liouville operator, uses derivatives of integer order as initial conditions, that is, initial values that
are physically interpretable as in the models with integer derivatives. The de�nition that follows
represented a notable practical advance in the study of physical phenomena such as those of the
viscoelastic type and others.

Finally, the fractional derivative at t of a function x is a non-local operator, depending on past
values of x (left derivatives) or future values of x (right derivatives). In physics, the right fractional
derivative of x(t) is interpreted as a future state of the process x(t). For this reason, the right deriv-
ative is usually neglected in applications, when the present state of the process does not depend on
the results of the future development. However, the left fractional derivative of x(t) is interpreted
as a past state of the process x(t), in which memory e�ects intervene.

Since the evolution of a certain resource depends on its past, we have decided to choose the left
Caputo fractional derivative for modeling its evolution, see [17].

Now the problem (3.1) will be solved.
Clearing ℎ(x(t)) from the dynamic equation (3.2) and replacing it in the functional to maximize,

it results,
⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

max
T
∫
0
e−�t [rx(t)(1 −

x(t)
K ) −

C
0 D�t [x] (t)] dt

x(0) = x0
x(T ) = xT
ℎmin ≤ ℎ(x(t)) ≤ ℎmax .

This is a variational problem, now fractional, with fractional Lagrangian

L(t, x, C0 D
�
t [x]) = e

−�t
[rx(t)(1 −

x(t)
K ) − C

0 D
�
t [x] (t)] ,

belonging to C2 ([0, T ] × ℝ2).
Using Theorem 2.3, its fractional Euler-Lagrange equation (2.7) results,

)L
)x

+ C
t D�T [

)L
) C0 D�t [x]]

= 0,

from which we have

e−�t r (1 − 2
K x(t)) − �(T − t)

1−�e−�TE1,2−� (�(T − t)) = 0,

where E1,2−� (�(T − t)) is the Mittag-Le�er function of two parameters, de�ned in equation (3.11).
We can conclude that the optimal solution is

x∗� (t) = K
2 (1 − �

r (T − t)
1−�e−�(T−t)E1,2−� (�(T − t))) . (3.3)

And the optimal harvest is obtained from this expression

ℎ∗� (t) = rx
∗
� (t)(1 −

x∗� (t)
K ) − C

0 D
�
t [x

∗
� ] (t). (3.4)

Note that in the classical case the optimal population is constant, which is not happening in this
case, therefore in the optimal harvest a term appears with the Caputo derivative of x∗� (t), that due
to its di�culty, we must calculate it numerically.
REMARK 3.1. We can see that, as in the classical case, the optimal solution x∗� (t), although it is not
a constant, will also not verify the established boundary conditions. This means that we are once
again faced with a singular problem.
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For its resolution, it would be possible to resort again to a Nearest Feasible Paths theorem, but in
a fractional version. However, it has not been carried out yet because the proof of the theorem re-
quires the use of a fractional Green theorem, which at the moment is only available for rectangular
regions, [35], and its version is necessary for all types of regions.
REMARK 3.2. The solution of the problem without discount (� = 0) is a particular case of the solution
of the problem (3.1).

The optimal population is x∗� (t) = K
2 and the optimal harvest is obtained from this expression

ℎ∗� (t) = rK
4 .

It can be observed that the solution is the same for the classical case. In the case with � = 0, the
solution and the optimal harvest is the same for all 0 < � ≤ 1. The reason of this is that there is no
time-dependent factor that multiplies C

0 D�t [x∗� ] (t) in the fractional variational problem resulting
from taking � = 0.

Its fractional Euler-Lagrange equation is

r (1 − 2
K x(t)) +

C
t D�T [(−1)] = 0,

then,
r (1 − 2

K x(t)) = 0.

Since the Caputo derivative of a constant is also zero, as in the case of the classical derivative, then
the same Euler-Lagrange equation is obtained for all 0 < � ≤ 1 and its solution is independent of
that value.

To perform a graphic analysis of the solutions to the discounted problem in both the fractional
and classical cases, we must see a speci�c example.

3.2. Example and comparison
Consider r , K , �, x0, xT , T , ℎmin and ℎmax as in the example The Paci�c Halibut Fishery, in [18],
and 0 < � ≤ 1.

The problem results,

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
10
∫
0
e−0.01tℎ(x(t)) dt

C
0 D�t [x] (t) = 0.71 x(t)(1 −

x(t)
80.5) − ℎ(x(t))

x(0) = x0
x(10) = x10
10 ≤ ℎ(x(t)) ≤ 15.

Solving this as in the previous section, from (3.3) and (3.4), one obtains

x∗� (t) = 40.25 (1 − 0.01
0.71 (10 − t)

1−�e−0.01 (10−t)E1,2−� (0.01 (10 − t))) . (3.5)

While the optimal harvest is

ℎ∗� (t) = 0.71 x
∗
� (t)(1 −

x∗� (t)
80.5 ) − C

0 D
�
t [x

∗
� ] (t). (3.6)

In Figure 1, the solutions corresponding to � = 1, � = 0.9, � = 0.8, � = 0.6 and � = 0.4 were
shown. It can be noticed that when � tends to 1, the solutions converge to the classical solution.
Also, it can be observed that the solutions not verify the established boundary conditions, their
initial and �nal values change.

From now on, a �xed value of � is assumed to evade the problem of needing a fractional Nearest
Feasible Paths theorem, being able to obtain the boundary conditions x(0) and x(10) of this frac-
tional solution, in order to make a comparison with the classical problem (with � = 1).
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38

40

α = 1
α = 0.9
α = 0.8
α = 0.6
α = 0.4

Figure 1. Solutions for � = 1, � = 0.9, � = 0.8, � = 0.6 and � = 0.4.

The following problem will be considered,
⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
10
∫
0
e−0.01tℎ(x(t)) dt

C
0 D�t [x] (t) = 0.71 x(t)(1 −

x(t)
80.5) − ℎ(x(t))

x(0) = 38.6896
x(10) = 40.25
10 ≤ ℎ(x(t)) ≤ 15.

A comparison of the results will be made between � = 1 (classical version) and � = 0.6 (fractional
version).

Solving the problem in its classical version as in the previous section, using (2.2) and (2.4) we
have x∗(t) = 39.6831 and ℎ∗(t) = 14.2859.

It can be observed that x∗(t) does not verify the required boundary conditions, therefore, the
Nearest Feasible Paths theorem will be used to solve the problem.

As explained in the last section we obtain the optimal solution as a most rapid approach to x ∗,

x∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

20.9703 + 62.3013 e0.388979t

1.1523 + e0.388979t
if 0 ≤ t ≤ 0.2322

39.6831 if 0.2322 ≤ t ≤ 9.8678

889.931 + 62.3013 e0.388979t

48.9008 + e0.388979t
if 9.8678 ≤ t ≤ 10 = T

(3.7)

and the optimal harvest obtained with this procedure is

ℎ∗(t) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

10 if 0 ≤ t ≤ 0.232235

14.2859 if 0.232235 ≤ t ≤ 9.8678

10 if 9.8678 ≤ t ≤ 10 = T .

(3.8)

The solution of its fractional version as in equation (3.5) is

x∗0.6(t) = 40.25 (1 − 0.01
0.71 (10 − t)

0.4e−0.01 (10−t)E1,1.4(0.01 (10 − t))) . (3.9)

While the optimal harvest as in equation (3.6) is

ℎ∗0.6(t) = 0.71 x
∗
0.6(t)(1 −

x∗0.6(t)
80.5 ) − C

0 D
0.6
t [x∗0.6] (t). (3.10)
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39

40

41

42
x∗(t)

x∗0.6(t)

Figure 2. Optimal populations of classic and fractional problems.

In Figure 2, the optimal populations corresponding to both cases can be observed. It can be
noticed that the optimal solution given by the fractional problem, x∗0.6(t), is lower than the optimal
population of the classical problem, x∗(t), most of the time. It means that the version with � = 0.6
shows a deterioration of the state of the stock with respect to the case � = 1which is only recovered
at the end by the fact that it has to verify the �nal condition.

2 4 6 8 10

10

12

14

16
h∗(t)

h∗0.6(t)

Figure 3. Optimal harvests of classical and fractional problems.

In Figure 3, the optimal harvests are considered. Since C
0 D0.6t [x∗0.6] (t) cannot be obtained exactly,

we will proceed to use a fractional numerical method of L1 type, [9, 29]. It can be noticed that
although with the fractional problem the extraction of the resource is smaller than with the classical
case for most of the points, which is logical because in the fractional model the resource grows
more slowly, it only decreases to a greater extent at the end of the interval near T and until the
�nal extraction in T turns out being larger than in the classical case.

This way, it is possible to make a comparison of the pro�t obtained in each case,
Classical case pro�t: 134.411.

Fractional case pro�t: 133.828.

To make an analysis of this, consider the following graphic of the resources evolution without
harvest with the given initial condition.

It can be noted that the use of a fractional dynamic equation, which makes the resource grow
more slowly as in Figure 4, does not vary considerably the pro�t compared to the classical case.
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α = 1
α = 0.6

Figure 4. Populations of the classical and fractional problems without harvest.

Lastly, it can be stated what happens to the population x(t) if we take the optimal harvest of the
classic problem ℎ∗1 and consider it in the fractional dynamic equation of the resource.

We must solve {
C
0 D�t [x] (t) = 0.71 x(t)(1 −

x(t)
80.5) − 14.2859

x(0) = 38.6896.
Since this equation has no known exact solution, it will be approximated using the Adams fractional
method, which consists of using Euler’s method to obtain uPn+1 (predictor), and the trapezoidal
fraction rule to get un+1 (corrector),

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

uPn+1 =
m−1
∑
j=0

t jn+1
j!

uj0 +
n
∑
j=0

bj,n+1f (tj , uj ),

un+1 =
m−1
∑
j=0

t jn+1
j!

uj0 +
n
∑
j=0

aj,n+1f (tj , uj ) + an+1,n+1f (tn+1, uPn+1).

For more details refer to [9, 29].

2 4 6 8 10

38

39

40

41

42
x∗1(h

∗
1(t))

x∗0.6(h
∗
1(t))

x∗0.6(h
∗
0.6(t))

Figure 5. Optimal populations of the classical and fractional with di�erent har-
vest problems.

In Figure 5, the population obtained from the fractional dynamic equation, taking the optimal
harvest of the classical control problem, is lower than the obtained by taking the optimal harvest
of the fractional problem, as we expected.
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Furthermore, if we assume that the "true evolution" of the resource is considering � = 0.6 in
the dynamic equation and that the harvesting agency considers the dynamic equation of � = 1 to
be erroneous, the loss is only due to the di�erence between harvest. Also note that the di�erence
between the pro�t obtained could be more signi�cant if the instantaneous pro�t function, which
in this case is only the harvest, was also depending on the stock as in Remark 1.

CONCLUSIONS
In this article, we have studied a fractional control problem that models the maximization of the
pro�t obtained by exploiting a certain resource. An explanation of the proposed model has been
made. Due to the singularity of the problem, di�erent resolution techniques have been developed:
for the classical case an Euler-Lagrange equation and the Nearest Feasible Paths theorem; and for
the fractional case a fractional Euler-Lagrange equation and numerical methods. Although we have
seen the need of a non-existent fractional Nearest Feasible Paths theorem, we have been able to
make a comparison between the classical and fractional results for a certain value of the fractional
order. It is also observed that the order of time fractional derivative signi�cantly a�ects the popula-
tion growth. Hence, we conclude that fractional derivatives may be more suitable for modeling the
evolution of natural resources that naturally have a resilience problem. As a future investigation,
it is proposed that the extension of the fractional Nearest Feasible Paths theorem should be ex-
plored and the optimal control problem should be extended for more complex instantaneous pro�t
functions.
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APPENDIX: INTRODUCTION TO FRACTIONAL CALCULUS
In this section certain de�nitions and properties of the fractional calculus will be presented. For
more details refer to [20, 36, 37].
DEFINITION 3.3. The Mittag Le�er function with parameters �, � , is de�ned by

E�,� (z) =
∞
∑
k=0

zk

Γ(�k + �)
, (3.11)

for all z ∈ ℂ.
DEFINITION 3.4. The Riemann-Liouville fractional integral operator of order � ∈ ℝ+0 is de�ned in
L1[a, b] by

aI �t [f ](t) =
1

Γ(�) ∫
t

a
(t − s)�−1f (s) ds. (3.12)

DEFINITION 3.5. (Left and Right Caputo Fractional Derivatives)
The left and right Caputo fractional derivatives of order � ∈ ℝ+0 are de�ned, respectively, by

C
a D

�
t [f ](t) =

1
Γ(n − �) ∫

t

a
(t − s)n−1−�

dn

dsn
f (s)ds

and
C
t D

�
b [f ](t) =

(−1)n

Γ(n − �) ∫
b

t
(s − t)n−1−�

dn

dsn
f (s)ds,

with n = ⌈�⌉ and
dnf
dtn

∈ L1[a, b].
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