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Abstract: We propose entropic order parameters that capture the physics of generalized
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ditivity and Haag duality) of the net of operator algebras attached to space-time regions.
We observe that different types of symmetries are associated with the breaking of these
properties in regions of different non-trivial topologies. When such topologies are con-
nected, we show that the non locally generated operators generate an Abelian symmetry
group, and their commutation relations are fixed. The existence of order parameters with
area law, like the Wilson loop for the confinement phase, or the ’t Hooft loop for the dual
Higgs phase, is shown to imply the existence of more than one possible choice of algebras
for the same underlying theory. A natural entropic order parameter arises by this non-
uniqueness. We display aspects of the phases of theories with generalized symmetries in
terms of these entropic order parameters. In particular, the connection between constant
and area laws for dual order and disorder parameters is transparent in this approach, new
constraints arising from conformal symmetry are revealed, and the algebraic origin of the
Dirac quantization condition (and generalizations thereof) is described. A novel tool in
this approach is the entropic certainty relation satisfied by dual relative entropies associ-
ated with complementary regions, which quantitatively relates the statistics of order and
disorder parameters.
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1 Introduction

Transcending the weak coupling regime has been a recurring theme in the context of QFT
in the past decades. Many pressing reasons motivate this interest. We have the everlasting
confinement problem in gauge theories [1, 2], examples of non-Fermi liquid behavior at low
temperatures in condensed matter theory [3], electromagnetic dualities in QFT [4], and the
holographic duality [5].

In the quest of understanding strong coupling phenomena, it is natural to seek suf-
ficiently robust features that remain valid at any value of the coupling. This includes
looking for alternative descriptions, or new structures, which may be studied in a control-
lable manner. The present article is framed within the Haag-Kastler algebraic approach
to QFT [6, 7]. This approach has been fruitful for progress at the conceptual level. As
described below, it can be considered a minimalistic approach, that only assumes very
general and basic properties about the way operator algebras are assigned to space-time
regions. Moreover, it is the natural approach for the description of entanglement entropy
and other statistical measures of states [8].

Structures that transcend the perturbative regime are generally connected to sym-
metries, whether space-time or internal ones. Examples are conformal symmetry, super-
symmetry, global and local symmetries, and the recently introduced generalized global
symmetries [9]. However, most of the time the way these symmetries are considered is
linked to the Lagrangian QFT definition, relying on a weak coupling regime.

There are two notable exceptions. For the case of global symmetries, a first principle
algebraic approach was carried out by Haag, Doplicher, and Roberts [10–13]. They studied
the imprint of the symmetry already in the neutral (observable) sector of the theory.
They found that the superselection sectors arising by including charged operators in the
model were seen to be in correspondence with certain endomorphisms of the observable
algebra. Having identified the imprint, one can try to reverse the logic. Given a structure of
endomorphisms with certain defining properties, called in the literature DHR superselection
sectors, one seeks to derive the symmetry group itself. This problem was completed leading
to the reconstruction theorems [14]. For the case of conformal symmetries, a first principle
approach started with the works of Polyakov, Ferrara, Grillo, and Gatto [15, 16], known
as the conformal bootstrap, and which is being used with great success at present [17].
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One would like to extend the algebraic approach to other kinds of symmetries, such
as local ones. This extension turns out to be more complicated. The reason is that for
local symmetries, the associated charged operators cannot be localized in a ball. One can
measure their charge at arbitrarily long distances employing local operators only. An ex-
ample is an electric charge which can be measured by the electric flux at infinity. Some
modifications of the DHR formalism were proposed in this regard. One considers sectors
which, instead of being localizable in balls, are localizable in cones that extend out to
infinity [18–20]. This approach departs from the local QFT philosophy it started with,
due to the infinite cones. It would be better to understand all kinds of symmetries al-
ready in a bounded region of Minkowski space-time and keep aligned with the local QFT
attitude. We would also like to include symmetries associated with higher dimensional
cones. Presumably, these would be related to the generalized symmetries introduced more
recently in [9]. But from the algebraic perspective, the higher dimensional cones would
represent superselection charges with infinite energy in an infinite space, and they have
been discarded in that regard.

In this article, we propose a unified approach to symmetries in QFT which is funda-
mentally local. We do not want to resort to a Lagrangian or any local current, and we want
to be able to frame the description talking about the vacuum state on subregions of flat
topologically trivial Minkowski spacetime. To connect with more conventional approaches,
we seek to define order parameters that signal the presence and breaking of the symme-
tries, allowing a broad characterization of phases in QFT’s. As will be clarified through
the text, order parameters in this context are naturally defined using information theory,
and we call them entropic order parameters. These can be related to operator order pa-
rameters, though not to the standard singular line operators that are usually considered.
In particular, these operators cannot be renormalized arbitrarily.

Quite surprisingly, such a path to symmetries in QFT has a simple and geometrical
starting point, based on causality. In QFT, causality is enforced by the requirement of
commutativity of operators at spatial distances. This is summarized by

A(R) ⊆ A(R′)′ , (1.1)

where A(R) is the algebra of operators localized in a certain region R, R′ is the set of
points causally disconnected from R, and A′ is the commutant of the algebra A, that is,
the set of all operators that commute with all the operators in A. Naively, one could be
inclined to believe that this relation might be saturated in a QFT, i.e, we would have the
equality in (1.1). Such saturation is called Haag duality, or duality for short.1 It turns
out that something more interesting can happen. The previous inclusion does not need
to be saturated. Indeed, as we will describe, it is precisely in the difference between both
algebras where generalized symmetries appear. This difference consists of operators that
cannot be locally generated in R but are still commuting with operators in R′. Therefore, if
we include them in the algebra of R to restore duality, we introduce a violation of additivity,

1Haag duality should not be confused with the dualities relating different descriptions of the same QFT
or linking different QFT’s.

– 2 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
7

the property stating that operators in a region are generated as products of local operators
inside the region. The tension between duality and additivity in these theories cannot
be resolved.

The observation that global symmetries entail violations of Haag duality was known a
long time ago, see for example [7]. The reason is that one can form observables out of the
product of local charged operators. If one chooses a region R which is disconnected, so that
it has non-trivial homotopy group π0, then Haag duality will not hold due to the existence
of charge-anti-charge operators localized at different disconnected patches. These non-
local operators are called intertwiners. This type of breaking of Haag duality was studied
in full detail for two-dimensional conformal field theories in [21], where the structure of
the algebra was unraveled and shown to be controlled by the structure of superselection
sectors. In higher dimensions, the analysis was complemented in [22], by describing the
breaking of duality in the region R′ complementary to R. This region has a non-trivial πd−2
homotopy group, and the violation of duality is due to the existence of twist operators,
that implement the symmetry locally. This will be described in more detail below.

While the relation between duality violation for topological non-trivial regions and
global symmetries was appreciated, the starting point for the algebraic derivation of global
symmetries was the DHR endomorphisms [10–13]. In this paper, we take the breaking of
duality as the fundamental physical feature, from which the symmetries could be derived.
This seemingly mild change of perspective eases the way to generalizations. We will be able
to discuss symmetries by focusing on the “kinematical” properties of algebras and regions
in the vacuum. For this purpose, we avoid studying superselection sectors, which may have
a dynamical input, or may require infinite cones for their description. We observe that
different types of symmetries are related to the breaking of duality for regions of different
topologies. While global symmetries entail the breaking of duality for regions with non-
trivial π0 or πd−2, we observe that generalized symmetries arising from gauge symmetries
appear for QFT’s in which duality is broken for regions with non-trivial π1 or πd−3. Going
up in the ladder, in QFT’s with higher form-generalized symmetries, duality is broken
for regions with non-trivial πi or πd−2−i. We argue that for any i ≥ 1, the symmetries
are bound to form an Abelian symmetry group. Finally, we show that the breaking of
the duality of the complementary regions πi and πd−2−i is due to the existence of non-
local operators with specific commutation relations between themselves. Physically, these
dual non-local operators correspond to order and disorder parameters, and their behavior
characterizes the phases of the theory.

As a by-product of this analysis, it follows that the Dirac quantization condition nicely
fits into the algebraic framework. It turns out to be simply originated when enforcing
causality of the net of algebras. Although this might sound trivial, the causality of the
net becomes threatened in situations where the inclusion (1.1) is not saturated. Enforcing
duality and causality directly provides the generalized quantization condition.

Having identified the connection between the failure of duality and generalized symme-
tries in QFT’s, in the second part of the article we proceed to construct order parameters
that sense their presence and their breaking. We start by showing that the non-local
order-disorder operators that violate additivity are the only ones that can display area
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laws, typical of confinement of electric or magnetic charges in gauge theories. Equivalently,
the breaking of duality in the appropriate region is seen as a necessity for the existence of
order parameters with area law behavior, like the Wilson loop of the fundamental repre-
sentation in pure gauge theories.

The choice of operator order parameters is not unique. Indeed there is an infinite
number of possibilities. This is somewhat in contrast with the previous inclusion of alge-
bras (1.1), which is robust and completely unambiguous. Natural order parameters should
arise from such inclusions. To accomplish this, it seems more natural to us to resort to
information theory. In fact, given an inclusion of the previous type, entropic order pa-
rameters can be defined as the relative entropy between the vacuum and a state in which
we have sent to zero all expectation values of non-local operators. This relative entropy
is a well-defined notion of uncertainty for the algebra of non-local operators, and it will
play a central role in the article. The entropic approach to global symmetries recently
developed in [22], which in turn was inspired by the work [23] concerning free fermions in
two dimensions, is here generalized to regions of different topology.

On one hand, the choice of relative entropy is convenient because it is robust and
standard. But more importantly, it allows us to quantitatively relate the physics of order
and disorder parameters. This is due to a general property of relative entropies called
certainty principle [22, 24]. In the present light, it relates the entropic order parameter with
the entropic disorder parameter, for complementary geometries. In other words, quoting
a specific example, the statistics of Wilson loops and ’t Hooft loops in complementary
regions, are precisely related to each other by the certainty relation.

We will compute the entropic order and disorder parameters for symmetries and phases
in QFT’s in several cases of interest. In some instances, we can check compatibility with
the certainty principle, or use this relation to understand their behavior. We will start with
QFT’s with global symmetries, and consider scenarios with conformal symmetry and with
spontaneous symmetry breaking. Both phases will be seen to be distinguished already at
a qualitative level by the order parameters, as they should. Similarities with the phase
structure of gauge theories that arise from the present approach will be highlighted. Inter-
estingly, for scenarios with spontaneous symmetry breaking, the computations are related
to the solitons/instantons of the theory, as could have been anticipated. We then move to
the case of gauge theories. We will first analyze the case of the Maxwell field, which can
be done in great detail, and where the match between the order and disorder approaches
will be confirmed with surprisingly good accuracy. We then analyze several interesting
constraints that appear in gauge theories with conformal symmetry in four dimensions.
In this scenario, a specific relative entropy becomes enough constrained to be determined
analytically. We finally move to the Higgs phase, which as explained by ’t Hooft in [25],
is dual to the confinement scenario, and where semiclassical physics may be used to study
the entropic order parameters.

A final remark is in order. One of the initial motivations for this work was to under-
stand issues about entanglement entropy in gauge theories. Several specific regularizations
of entropy were proposed in the literature, which pointed to some UV ambiguities of en-
tropy in gauge theories [26–30]. As explained in [22, 31, 32], such ambiguities do not
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survive the continuum limit. In this paper, we find that for specific QFT’s (the ones with
generalized symmetries), there is more than one possible algebra for a region of specific
topology. These multiple choices are macroscopic and physical, and they pertain to the
continuum model itself. They have no relation with regularization ambiguities, nor with
the description in terms of gauge fields. Corresponding to the multiplicity of algebras there
are multiple entropies for the same region. These entropies measure different quantities
and therefore should not be understood as ambiguities. The relative entropy order param-
eters introduced in this paper are precisely well-defined notions of the differences between
these entropies.

2 Algebras, regions, and symmetries: additivity versus duality

In the algebraic approach, a QFT is described by a net of von Neumann algebras. This
is an assignation of an operator algebra to any open region of space-time. The particular
QFT model is determined by how the algebras in the net relate to each other and with
the state.

We will restrict to consider only causal regions, which will be typically denoted by R
below. Causal regions are the domain of dependence of subsets of a Cauchy surface. In
this paper, we will be interested in the properties of algebras assigned to causal regions
based on the same (arbitrary) Cauchy surface C. These regions will have in general non-
trivial topologies whose properties are the same as the ones of subregions of C (typically the
surface t = 0) in which they are based. Hence, we will often make no distinction between
a d− 1 dimensional subset of C and its causal d-dimensional completion. In this sense, our
description of the structural properties of the net of algebras focuses on quite kinematical
aspects. This description may also apply to non-relativistic theories, lattice theories, or
finite volume models

The algebras A(R) attached to regions R satisfy the basic relations of isotony

A(R1) ⊆ A(R2) , R1 ⊆ R2 , (2.1)

and causality
A(R) ⊆ (A(R′))′ , (2.2)

where R′ is the causal complement of R, i.e. the space-time set of points spatially separated
from R, and A′ is the algebra of all operators that commute with those of A. For any von
Neumann algebra we always have A′′ = A. A (causal) net is an assignation A(R) of
algebras to regions satisfying (2.1) and (2.2).

Extensions of these relations are expected to hold for sufficiently complete models but
are not granted on general grounds. For example, (2.2) could be extended to the relation
of duality (also called Haag’s duality)

A(R) = (A(R′))′ , (2.3)

and we could also expect a form of additivity

A(R1 ∨R2) = A(R1) ∨ A(R2) , (2.4)
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where R1∨R2 = (R1∪R2)′′, A1∨A2 = (A1∪A2)′′ are the smallest causal regions and von
Neumann algebras containing R1, R2, and A1,A2 respectively. The relation (2.4) means
the algebra of the bigger region is generated by the operators in the smaller ones. We will
call a net complete if it satisfies (2.3) and (2.4) for all R based on the same Cauchy surface.
The main focus of the paper concerns nets that are not complete in this sense, and how
this incompleteness is related to generalized symmetries in the QFT.

The de Morgan laws

(A1 ∨ A2)′ = A′1 ∩ A′2 ,
(R1 ∨R2)′ = R′1 ∩R′2 , (2.5)

are universally valid for regions and algebras. From these relations it follows that if we
have unrestricted validity of duality (2.3) and additivity (2.4), we have the intersection
property

A(R1 ∩R2) = A(R1) ∩ A(R2) . (2.6)

Conversely, additivity follows from unrestricted validity of duality and the intersection
property. Therefore the intersection property is another aspect of duality and additivity.2

We are interested in studying algebra-region problems determined by the topology
of the regions. Our starting point is a net A(R) where we assume additivity holds for
topologically trivial regions whose union is also topologically trivial, i.e., A(R1 ∨ R2) =
A(R1)∨A(R1), where R1, R2, and R1∨R2, all have the topology of a ball. This statement
means that the algebra of R is generated by the algebras of any collection of balls (of any
size) included in R and whose union is all R. This accounts for the idea that the operator
content of the theory is formed by local degrees of freedom. This can be summarized by
saying that any localized operator of the theory is locally generated.3 However, a different
question is whether any operator of a certain algebra A(R) is locally generated inside
R itself when the region is topologically non-trivial. Below we will see several examples
demonstrating that the existence of non locally generated operators in such A(R) is not
an uncommon phenomenon.

Let us be more precise. Given a net, we can always construct an additive algebra for
a region R as

Aadd(R) =
∨

B is a ball, B⊆R
A(B) . (2.7)

This provides to us a minimal algebra, in the sense that it contains all operators which
must form part of the algebra because they are locally formed in R. The assignation of
Aadd(R) to any R gives the minimal possible net and if Aadd(R) ( A(R) it follows that
there are more than one net.

2Interestingly, the algebras (assumed to be factors) and causal regions both have the structure of or-
thocomplemented lattices in the order theoretical meaning, and the relations (2.3), (2.4), and (2.6) for a
complete theory can be interpreted as a homomorphism of lattices. See the discussion in [6], section III.4.

3A well-known counterexample is a conformal generalized free field with a two-point function |x−y|−2∆.
This field appears in the large N approximation of holographic theories, and it is equivalently described in
terms of a free massive field in AdS. It is not difficult to see through this relation that algebras of many
small overlapping balls will not generate the algebra of the causal union of the balls. See [33].
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In this freedom of choosing the operator content of different regions, the greatest
possible algebra of operators that can be assigned to R and still satisfies causality must
correspond to a minimal one assigned to R′,

Amax(R) = (Aadd(R′))′ . (2.8)

We anticipate that, in general, the assignation Amax(R) does not form a (local) net since
Amax(R) and Amax(R′) may not commute. Also, it is evident that if Aadd(R) ( Amax(R),
it follows that the additive net does not satisfy duality. In this situation one can enlarge
the additive net by adding non locally generated operators, to generate a net satisfying
duality (2.3). In general, this may be done in multiple ways. We will call such nets
Haag-Dirac (HD) nets for reasons that will become apparent later on. By construction,
Haag-Dirac nets satisfy duality

AHD(R) = (AHD(R′))′ , (2.9)

but in general, they will not satisfy additivity. Therefore, there is a tension between duality
and additivity which cannot be resolved in these incomplete theories. Notice that for a
global pure state the entropy of an algebra A is equal to the one of its algebraic complement
A′. The present discussion shows this does not translate to an equality of entropies for
complementary regions, except for a HD net.

To be more concrete, let us call a ∈ Amax(R) to a collection of non locally generated
operators in R such that

Amax(R) = (Aadd(R′))′ = Aadd(R) ∨ {a} . (2.10)

In the same way we have operators b ∈ Amax(R′) non locally generated in R′ such that

Amax(R′) = (Aadd(R))′ = Aadd(R′) ∨ {b} . (2.11)

Evidently, the dual sets of operators {a} and {b} cannot commute with each other. Other-
wise it would be Amax(R) ⊆ (Amax(R′))′ = Aadd(R) and these operators would be locally
generated. Given the existence of non locally generated operators a in R, the necessity of
the existence of dual complementary sets of non locally generated operators b in R′ is due
to the fact that for two different algebra choices A1,2 for R there are two different choices
A′1,2 associated with R′. The later cannot coincide because of the von Newman relation
A′′ = A.

Since the dual non locally generated operators {a} and {b} do not commute, when
constructing Haag-Dirac netsAHD(R) satisfying duality, we have to sacrifice some operators
of Amax(R) or Amax(R′), to keep the net causal. The assignation Amax(R) for all R does
not form a net. A possible choice is Amax(R) for R and Aadd(R′) for R′ or vice-versa,
and usually there are some intermediate choices. In particular, if the topologies of R and
R′ are the same, both of these choices are not very natural and may break some spatial
symmetries.4

4When referring to the topology of an infinite region, i.e. the complement of a bounded one, we will
think that the full space Rd−1 is compactified to a sphere Sd−1.
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An important remark is the following. Even if some non locally generated operator is
excluded from the algebra of R, this does not mean it does not exist in the theory. All
non locally generated operators that could be assigned to R are always formed locally in
a ball containing R and thus its existence cannot be avoided. They will always belong to
the algebra of this ball. In particular, the full operator content (which is generated by all
the operators in all balls) of different nets is the same. The particularity of the theories
that we are interested to describe in this paper is that they admit more than one possible
(local) net constructed out of the same set of operators. For simplicity, throughout this
article, we will often call the operators such as a and b as “non-local operators”, meaning
they are not locally generated (or not additively generated) in a specific region.

Notice also that the fact that the sets {a} and {b} form complementary sets of observ-
ables based on complementary regions does not imply a violation of causality. The reason
is that to construct {a} in a laboratory from microscopic operators we need to have access
to a ball including R which non trivially intersects R′.

The operators a may be chosen to form irreducible classes [a] in A(R) under multipli-
cation by locally generated operators.5 With the class [a] there is also the adjoint class [ā].
Because A(R) is an algebra, these classes must close a fusion algebra between themselves
[a][a′] =

∑
a′′ [n]a′′aa′ [a′′], with [n]a′′aa′ = 0, 1. These fusion rules simply indicate which classes

appear in the decomposition.6 The same will happen with the complementary operators
[b][b′] =

∑
b′′ [ñ]b′′bb′ [b′′]. We will describe several specific examples below.

In the applications of this paper, these dual fusion rules are associated with group
representations and their conjugacy classes. This brings in the idea of symmetries. In the
specific models we analyze, duality is seen to fail when the algebras are constructed as the
invariant operators under certain symmetries. Examples are orbifolds of a global symmetry
and gauge-invariant operators for some gauge theories. We will see that the particular
topology of R where duality or additivity fails depends on the type of symmetry involved.
Orbifolds show algebra-region “problems” when one of the homotopy groups π0(R) or
πd−2(R) is non-trivial.7 The case of ordinary gauge symmetries might give problems for
regions with non-trivial π1(R) or πd−3(R). Higher homotopy groups correspond to the case
of gauge symmetries for higher forms gauge fields. In these examples, the gauge symmetry
plays an auxiliary role in the construction of the models, but it does not play a direct role
in the final theory. However, the algebra of the non locally generated operators does play
a fundamental role. It can be interpreted as a generalized symmetry in the sense of [9].

5The subset [a] of A(R) is the set generated as
∑

λ
Oλ1 aO

λ
2 , with Oλ1 and Oλ2 locally generated operators

from Aadd(R). It is irreducible if there are no non trivial subspaces of [a] invariant under the left and right
action of the additive algebra. The class [1] coincides with Aadd(R) and [1][a] = [a][1] = [a]. We assume
both Aadd(R) and Aadd(R′) have no center (are factors), see [34]. This is an expected property in the
continuum QFT. A center would produce an irreducible sector unrelated to non locality.

6Provided we can choose spatially separated representatives a, a′ in the same region R (as in all examples
in this paper) this algebra is commutative, namely [n]a

′′

aa′ = [n]a
′′

a′a.
7Spontaneously broken global symmetries allow the construction of a net where duality fails for balls.

We will describe this situation and its corresponding order parameter in section 3.4.
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(Ψi,r
2 )†

τc

Ψi,r
1

R1 R2

Figure 1. A region formed by two disjoint balls R1 and R2 (grey region) containing the intertwiner
formed by a charge-anti-charge operator. In the complement S of the two balls, which has a non-
contractible d− 2 dimensional surface, lives the twist operator.

2.1 Regions with non-trivial π0 or πd−2. Global symmetries

We consider the subalgebra O of a theory F , consisting of operators invariant under a
global symmetry group G acting on F . The theory O = F/G is called an orbifold. These
models were treated in more detail in [22]. In this case, we take regions R with non-trivial
π0(R), that is, disconnected regions. The complement R′ will have non trivial πd−2(R′).
The simplest example is two disjoint balls R1 and R2, and its complement S = (R1 ∪R2)′,
which is topologically a “shell” with the topology of Sd−2 × R. In this section, we will
focus on the case of an unbroken symmetry, where the Hilbert space generated out of the
vacuum by invariant operators consists of invariant states. The discussion, in this case, can
be done without appealing to the theory F . We will deal with the modifications produced
by a non-invariant vacuum state in section 3.4.

Let ψi,r1 , ψi,r2 be charge creating operators in R1 and R2 in the theory F , corresponding
to the irreducible representation r, and where i is an index of the representation. The
intertwiner corresponding to this representation

Ir =
∑
i

ψi,r1 (ψi,r2 )† , (2.12)

is invariant under global group transformations and belongs to the neutral theory O, see
figure 1. It commutes with operators in Oadd(S), but it cannot be generated additively by
operators in the neutral algebras O(R1) and O(R2) since the charged operators ψi,r belong
to the field algebra F but not to O.

In a dual way, there are twist operators τg implementing the group operations in R1
and acting trivially in R2. These commute with O(R1) and O(R2), that is, uncharged
operators in R1 or R2, but they do not commute with the intertwiners, which have charged
operators in R1. The twists can be chosen to satisfy8

τgτh = τgh , U(g)τhU(g)−1 = τghg−1 , (2.13)

8See [35–37] for the construction of twist operators using the split property.
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where U(g) is the unitary global symmetry operation. For a non-Abelian group, the twists
are not invariant. The combinations of twist operators invariant under the global group

τc =
∑
h∈c

τh , (2.14)

are labeled by group conjugacy classes c ⊂ G, such that gcg−1 = c for all g ∈ G. These
operators belong to the neutral algebra O. While the full model F , which includes the
charge creating operators, satisfies duality and additivity, this is not the case for the neutral
model O. In fact, we have9

(Oadd(R1R2))′ = Oadd(S) ∨ {τc} ,
(Oadd(S))′ = Oadd(R1R2) ∨ {Ir} . (2.15)

This shows explicitly that, retaining additivity, duality fails for the two-component region
R1R2 and its complement S. The reason is the existence of operators (twists and inter-
twiners) in the model in these regions which cannot be additively generated inside the same
regions by operators localized in small balls. However, the intertwiners and twists can be
generated additively inside the model O in sufficiently big regions with trivial topology.

For finite groups, the number of independent twists coincides with the number of
intertwiners. This is because the number nC of conjugacy classes of the group is equal
to the number of irreducible representations. For Lie groups, there is an infinite number
of irreducible representations, and the same occurs for conjugacy classes. In this case, as
described in more detail below when discussing gauge theories, it is the duality between
“electric” and “magnetic” weights the one ensuring that both sets of operators run over
dual lattices.

As shown in appendix A, we can choose the intertwiners to satisfy a closed algebra.
More concretely we get the fusion algebra

Ir1Ir2 =
∑
r3

nr3r1r2Ir3 , Ir̄ = (Ir)† , I1 = 1 , (2.16)

where r̄ is the representation conjugate to r, and nr3r1r2 are the fusion matrices of the group
representations

[r1]⊗ [r1] = ⊕r3 nr3r1 r2 [r3] , (2.17)

providing the number of irreducible representations of type r3 appearing in the decomposi-
tion of the tensor product of r1 and r2. Because nr3r1r2 = nr3r2r1 the algebra (2.16) is Abelian.
The same can be said of the twist algebra. From (2.13) we get

τc1τc2 =
∑
c3

mc3
c1c2τc3 , (2.18)

with mc3
c1c2 the fusion coefficients of the conjugacy classes.

The two Abelian algebras of twists and intertwiners do not commute with each other.
For finite groups, they can be embedded in the non-Abelian matrix algebra of |G| × |G|

9Here and throughout this article, R1R2 denotes de union R1 ∪R2.
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matrices (see appendix A). A similar embedding works for Lie groups, but the embedding
algebra needs to be infinite-dimensional. For Abelian symmetry groups, the commutation
relations take a very simple form

τg Ir = χr(g) Ir τg , (2.19)

where χr(g) is the group character.
The DHR theory of ball localized superselection sectors gives examples of the failure

of additivity-duality for regions with non-trivial π0, πd−2 for any dimension. The theory
shows that under quite general conditions for these types of sectors and provided d ≥ 3,
the fusion algebras arise from a group, as described above [10, 11, 13, 14]. More general
fusion rules may appear in d = 2 [7, 19, 34]. As shown by the reconstruction theorem in
such papers, starting with the model O with this type of duality failure a new theory F
exists where charged operators cure these duality and additivity problems. The symmetry
group is globally represented in F acting on the charged fields. It is important to remark
that this reconstruction does not “modify” the subtheory O since the correlation functions
of invariants operators do not change after the charged operators are included. This does
not seem to have a transparent analog in gauge theories.

2.2 Regions with non-trivial π1 or πd−3. Gauge theories

In this section, we move our focus towards theories that violate duality for regions having
non-trivial π1(R). From the dual perspective, these theories will also show problems for
regions with non-trivial πd−3(R′). The failure of duality or additivity for these types of
regions gives rise to a failure of the intersection property for topologically trivial regions A
and B, with an intersection R or R′, see figure 2.10

The main working example in this situation will be that of gauge theories. However,
before describing the specific non-local operators associated with gauge theories, we want
to show how the structure arising from a failure of duality-additivity in these types of
regions is rather fixed on general grounds, without referring to gauge fields. In particular,
it is possible to show that the dual non-local operators form dual Abelian groups, and the
commutation relations are fixed.

For gauge theories, these features appear when there is a subgroup of the center of the
gauge group which leaves invariant all matter fields. For pure gauge theories, as we will
show below, the non-local operators correspond to ’t Hooft and Wilson loops associated
respectively to the center Z of the gauge group and its dual group Z∗, the group of its
characters (which is isomorphic to Z). All other independent Wilson and ’t Hooft loops
are locally generated. Any finite Abelian group can be formed in this way with a gauge
theory because the cyclic group Zn is the center of SU(n) and any finite Abelian group is
a product of cyclic groups. In d = 4, R and R′ have the same topology of S1, and both
the Wilson and ’t Hooft loops are now non-local operators in the same ring R. For pure

10In general we think in d ≥ 4 since for d = 3 the breaking of additivity/duality in regions with non-trivial
π1(R) and πd−3(R′) = π0(R′) could arise from both global symmetries or gauge symmetries. This interesting
feature makes the discussion less transparent. We will comment on it later. In any case, statements about
gauge theories are valid for d = 3 as well.
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a

b

R

R

A B

Figure 2. Left: duality and additivity cannot be valid simultaneously for a ring-like region (solid
torus) R. The operator a is not additive in R. The interlocked operator b is again not additive in
the complement R′. a and b do not commute with each other. For commuting algebras attached
to R and R′, either a or b have to belong to the respective algebra (but not both of them at the
same time), and additivity is lost. Right: violation of the intersection property. The figure shows a
section of two spherical cap regions A and B intersecting in the ring R (here d = 4). A non-additive
operator in R is additive in both the topologically trivial regions A and B. It then necessarily
belongs to the intersection of the algebras of A and B. This implies that additivity for R cannot
be maintained at the same time as the intersection property.

gauge fields, the group of non-local operators is then Z × Z∗ in d = 4. Adding matter
fields, several subgroups of Z × Z∗ can be realized. We describe the non-local operators
for a Maxwell field and non-Abelian (pure) gauge theories. In the appendix B we compute
explicitly the non-local operators for arbitrary gauge fields in a lattice.

2.2.1 The non-local operators form Abelian groups

Now we show that the dual algebras of non-local operators correspond to dual Abelian
groups, and the structure of the commutation relations is fixed. We keep the discussion
as simple as possible. A mathematically precise proof would follow the ideas of the DHR
analysis for global symmetries, see [7] and [38]. Some natural assumptions have to be made.
Borrowing the terminology of that analysis, an underlying assumption is that the non-
local operators are transportable. This just states that the non-local sectors are preserved
by deformations. More precisely, for any two (open) regions R1 and R2 with the same
topology (in particular, they are homotopic to each other), we assume there is a one-
to-one correspondence between the non local sectors [a]1 and [a]2 located in R1 and R2
respectively. This correspondence has two steps. First, any non local operator a for a
region R is a non local operator for an homotopic region R̃ if R ⊆ R̃. Second, the tube of
homotopy R12 connecting R1 and R2 has the same topology of R1 and R2, and includes
both of these regions. Therefore, non-local operators in either R1 or R2 give non-local
operators in R12, and the classes can be matched.

A simple property is that given two arbitrary regions R1 and R2, if R1 is included in a
topologically trivial region R0 disjoint from R2, then any non locally generated operators
based in R1 and R2 must commute with each other. This follows from the assumption that
non locally generated operators in a region R1 become locally generated in the topologically
trivial region R0 containing R1. In this case, we say that R1 and R2 are not linked.
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a
R2

a a
R2

a

B1 B2 B3 B4
≠

a a

B1 B2 B3 B4

R1 R1

Figure 3. Upper panel: reconnecting a loop operator using local operators in the shaded region.
Lower panel: this cannot be done for non Abelian twists.

To show the Abelianity of the non-local algebra, we first refer to the upper panel in
figure 3 (see appendix B for the explicit construction of these operations in lattice gauge
theories). We take two non-linked loop regions R1 and R2, and take a loop operator of
class a (dashed curve) in the complement of R1, R2, which is linked once with R1 and R2.
The product of two disjoint loop operators of class a, each one linked once with just one of
the two rings R1 and R2 (upper right panel of figure 3), belongs to the same class as the
original single component loop of class a. This is because the algebra of non-local operators
in the two rings R1 and R2 is the tensor product of the algebras of non-local operators in
R1 with the ones in R2.11 It is not difficult to see that the original one-component loop of
type a based on (R1R2)′ has the same action on the non-local algebra of the region R1R2
as the product of the two independent loops of class a. Then, the single component loop
and the two loops belong to the same class. They must be related by local operations in
(R1R2)′. This is represented by the shaded region in the figure. This is an important step
in showing that the non-local algebra is Abelian.

The lower panel of figure 3 shows why this fails for the case of twist operators in
QFT’s with non-Abelian global symmetries. What in the previous case were two spatially
separated rings R1 and R2, in this case consists of four spatially separated balls B1, B2,
B3 and B4. It is no longer the case that the algebra of non-local operators in the four balls
is the tensor product of the non-local operators (intertwiners) in B1 and B2 with the ones
in B3 and B4. The reason is that we can cross intertwiners between B2 and B3. In the
non-Abelian case, the twist on the lower-left panel does not have the same action on this
algebra as the product of two twists on the right panel. The reason is that the invariant
non-Abelian twists are sums of twists corresponding to a given conjugacy class of the group
(see equation (2.14)) and the products of two of these twists generally decompose into a
sum of invariant twists of different classes.

11There may be interplays between symmetries related to different topological characteristics. We are not
studying these scenarios in the paper and assume algebras-region problems for only one type of topology.
In the present case, the non-local operators of R1R2 are due to non-contractible loops. They are products
of non-local operators in each of the rings.
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ā

a a

Figure 4. The operators of the form aā are locally generated inside a ring R, marked with the
dashed line.

We conclude we can glue and split loops associated with the same class in this form.
Now let us take a simple ring R drawn with a dashed line in figure 4. Inside the ring, we
can place an elongated loop of class a. This is a folded version of the loop in the left upper
panel of the figure 3. This loop is locally generated inside R since its topology can be
shrunk inside R. If we glue two extremes of this loop (the same operation as in figure 3),
we obtain two single component loops inside R, as shown in the left panel of figure 4. The
product of these two loops must, therefore, be equivalent to the trivial class since it is
locally generated. They have to correspond to conjugate classes in the ring R, which are
the only ones that can contain the identity in their product. This gives

[n]a′aā = 0 , a′ 6= 1 , (2.20)

and it implies that the fusion rules arise from an Abelian group. Let us see how this comes
about. The product of classes is associative and commutative. We already have the unit
and the inverse, [1][a] = [a] and [a][ā] = [1], where [1] is the class of locally generated
operators. To realize the structure of an Abelian group, we further need to prove that the
fusion of two arbitrary classes gives rise to only one class. Such fusion takes the generic form

[a1][a2] =
∑
a3

[n]a3
a1a2 [a3] . (2.21)

Multiplying this expression by [ā1] we get the class [a2] on the left-hand side, which must
be equal to the right-hand side. The right hand side results in the sum of the classes
[ā1][a3]. These classes must then all be equal to the class [a2]. Assume now there is
more than one class, say [a′] and [a′′], in the right hand side of (2.21). We must have
[a2] = [ā1][a′] = [ā1][a′′]. Multiplying by [a1] in this expression we get that in fact [a′] and
[a′′] are equal. Therefore, for fixed a1 and a2, the coefficient [n]a3

a1a2 can only be non zero
for just one class [a3]. This defines an Abelian group Ga for the product of classes. The
elements of the group are just the classes, which contain an inverse and an identity, and
the product in the group is the product of classes. All this argument runs in the same way
for the classes [b] associated with the non-local operators in R′. These dual classes form a
group Gb. Below we will show how to choose actual operators of the theory representing
the abstract fusion of classes. In other words, we will find loop operators representing the
Abelian symmetry groups.

This argument does not hold in this generality for regions with non-trivial π1(R) in
d = 3, as shown by the examples of global symmetries having non-Abelian groups discussed
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in the preceding section. As explained above, the reason is that in d = 3 (two spatial
dimensions) the operation of figure 3 does not hold in general. Still, for pure gauge theories
in d = 3, the proof holds (see appendix B), and we have an Abelian group for the non-local
sectors.

The same proof of Abelianity should work for sectors corresponding to regions with
the topology of spheres Sk for 0 < k < d− 2. The conclusion is that living aside the case
of dimensions 0 and d− 2, which includes the case of global symmetries, in all other cases
the product of a class [a] and its inverse [ā] is an operator that is locally generated on the
appropriate region.

A slightly different chain of arguments is as follows. We can imagine we started with
a different and bigger set S of sectors s. These abstract sectors could run for example
over all the irreducible representations of a certain non-Abelian group, whether of discrete
or Lie type, as it is the case of Wilson loops for non-Abelian gauge theories. To run the
argument we only assume these sectors satisfy some generic notion of fusion rules

s ∗ s′ =
∑
s′′

N s′′
ss′ s

′′ . (2.22)

Here the fusion coefficients might be associated with a non-Abelian symmetry group, or
with a more general structure. We only ask the fusion algebra to be Abelian N s′′

ss′ = N s′′
s′s,

which follows from the locality principle in QFT.
But crucially, not all the sectors s ∈ S are non locally generated in the region R. All

the sectors being produced in the fusion of arbitrary products of ss̄ are locally generated,
for the same reason as above. Let us call the set of sectors appearing in arbitrary products
of ss̄ by S1. By construction, S1 defines a subcategory of the category S. The true classes
associated with the violation of Haag duality arise as the quotient of the whole set S by
the sectors in S1. In the literature of tensor categories, see [39], this is called the universal
grading of S, and the associated group the universal grading group. Grading of a category
S by a group G is a partition of S of the form

S = tg∈GSg , (2.23)

such that for any sg ∈ Sg and sh ∈ Sh the product sg ∗ sh belongs to Sgh. The universal
grading, as its name suggests, can always be found, and it is associated with S1 being
formed by arbitrary products of ss̄. For symmetric fusion rings, like the ones we are
considering, the resulting universal braiding group G, shown to be associated with the
breaking of Haag duality, is necessarily Abelian.

An analogous result holds for theories with k-form symmetries [9]. The proof of
Abelianity in such work relies on the Euclidean continuation of the QFT, in particular
the Euclidean continuation of the generators of the generalized global symmetry. Here we
did not invoke a particular Hamiltonian and no relativistic symmetry was necessary for
the argument. The Abelian nature just follows from the physical requirement that the
true non-local classes should be not locally generated. This directly forces us to consider
the universal grading of the original fusion rules above alluded, which is necessarily an
Abelian group.
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2.2.2 Algebra of non-local operators

We have shown that the classes of non locally generated operators in R form an Abelian
group. We now want to show we can take operator representatives of these classes providing
the actual group operations. An Abelian group G is a product of cyclic subgroups Zn1 ⊗
Zn2 · · · . If we can construct operators for any of the cyclic subgroups, then it is enough to
take representatives for each of the factor cyclic subgroups in different spatially separated
non linked rings (in order that they commute with each other) inside the region R to get
representatives for the full group.

Then, let Ca = {[ak]}, k = 0, · · · , n − 1 be a cyclic factor of order n of the group Ga
associated with the class [a] in R. Let ã be a representative of [a], an actual operator in the
theory. Choosing ã such that ãã† is invertible, the unitary operator â = ã/

√
ãã† = ã/|ã|

belongs to the same class [a]. We have ân = U , with U unitary, commuting with â, and U ∈
[1]. All the spectral projections of U belong to the algebra of locally generated operators
and commute with â. Using the spectral decomposition we can construct V = U−1/n by
taking the nth root of the eigenvalues, with the same spectral projections. With these
observations there are now many choices for V . Any of them will do the work. Define
a = V â. We have ak belongs to the class [ak], and a0 = an = 1. The operators ak then
provide a representation of the cyclic subgroup Ca. The same can be done for the other
cyclic subgroups in R and also for the operators b ∈ [b] with the group operation laws of
Gb for the dual classes [b] in R′.

Having constructed the operator representatives of the symmetry, consider the unitary
transformation x 7→ bxb−1. It maps Aadd(R′) into itself, since for x in this additive algebra,
bxb−1 is in the identity class. It also maps its commutant Amax(R) = A(R)∨{a} into itself.
We also observe that this automorphism of Amax(R) does not depend on the precise choice
of representatives b. This is because any other choice arises from b as products of locally
generated operators in R′, and these operators commute with all x ∈ Amax(R).

It will be more useful to define the following maps of Amax(R), associated with each
irreducible representation r of Gb,

Er(x) = |G|−1 ∑
b∈Gb

χ∗r(b) b x b−1 , x ∈ Amax(R) , Er′(Er(x)) = δrr′ Er(x) . (2.24)

The third equation just follows by direct evaluation.
A not so transparent property of the previous map is that Er(a) ∈ [a]. The reason is

that we can choose a representative a of [a] in R, such that it is actually supported in a
smaller ring R̃ ⊂ R. Then, for the purpose of the action (2.24) on a, we can replace the
b operators by new ones inside R but outside R̃. Then, the map is composed by locally
generated operators in R, and hence, they cannot change the class [a]. Finally, from the
last equation in (2.24), it is clear that if Er(a) 6=0 for some r, then Er′(a)=0 for all r 6=r′.

The previous observations imply there is a one to one correspondence between repre-
sentations r of Gb and the non local classes [a]. It has to be one-to-one since otherwise
there would be linear combinations of elements of different classes which vanish, or the b
operators would not be linearly independent. Therefore we can label the representations
r of Gb by the class labels a, such that Er(a) = Ea(a) ∈ [a] 6= 0. Further, we can show
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that Ea(a1) = a1, for any a1 of [a]. First let us define ã = Ea(a), for which E(ã) = ã and
ã ∈ [a]. Now, any element a1 of [a] can be written by taking ã and multiplying by arbitrary
products of locally generated operators. Therefore

Ea(a1) = Ea

(∑
λ

Oλ1 ã O
λ
2

)
=
∑
λ

Oλ1 E(ã)Oλ2 = a1 , (2.25)

where Oλ1 , Oλ2 are additive elements on R. In particular

Ea(a) = a . (2.26)

Essentially, the intuition is that the previous map is a projection of Amax(R) into its dif-
ferent classes [a]. In the context of von Neumann algebras, projections are often associated
with conditional expectations, which we will describe below in detail. In this case, Ea is
not a conditional expectation for a 6= 1. The reason is that for a 6= 1 the target space is not
actually an algebra since the non-trivial classes do not contain the identity by construction.
The map is better seen as a projection in a vector space.

In any case, using both (2.24) and (2.26) it follows that

b a = bEa(a) = χa(b) a b , (2.27)

or equivalently
a b = χb(a) b a , (2.28)

with χa(b) = (χb(a))−1 = (χb(a))∗. Since all operators in [a] and [b] are constructed by
multiplying the representatives a and b by arbitrary products of locally generated operators
in R and R′ respectively, and these commute between each other, it follows that the same
commutation relation holds for all other elements of [a] and [b].

Finally, in order to construct a maximal causal net satisfying duality, we have to
take subsets of dual operators {a} and {b}, such that they satisfy causality and close under
fusion. This is equivalent to take maximal sets of pairs of non-local operatorsM = {(ai, bj)}
such that

(ai1 , bj1) ∈M , (ai2 , bj2) ∈M → (ai1ai2 , bj1bj2) ∈M and χai(bj) = χbj (ai) = 1 . (2.29)

These maximal causal nets were called Haag-Dirac nets in the introduction exactly for this
reason. The generalized Dirac quantization condition χa(b) = 1 arises in the local algebraic
approach by requiring Haag duality and causality.

To summarize, we conclude that the number of elements in {a} and {b} is the same.
Besides, {a} is the group of characters of {b}, and the other way around. The dual
Abelian groups arising from the breaking of Haag duality are Pontryagin duals of each
other. The commutation relations are fixed to be (2.27), and the phases χa(b) in this
relation form the table of characters of the symmetry group. The Dirac quantization
condition arises by enforcing causality of the net. Remarkably, these features are simply
inescapable consequences of the violation of Haag duality for regions with non-trivial π1
and πd−3 in local QFT. In particular, we have not defined the dual operators, say the b’s,
by their commutation relations with the a’s, as it is usually done since ’t Hooft’s original
work [25]. Also, we have not assumed any symmetry group structure and charged operators
to start with.
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2.2.3 Standard non-local operators

Interestingly, given a region R with non-local operators, there is a standard way to obtain
representatives of the non-local operators. The construction generalizes the Doplicher-
Longo construction of standard twists [35, 36].12 These standard operators are uniquely
defined by the condition

JR a JR = a , (2.30)

where JR is the vacuum Tomita-Takesaki reflection corresponding to Aadd(R).
The existence of these operators is a simple consequence of a theorem that states

that any automorphism of a von Neumann algebra with a cyclic and separating vector is
implementable by a unitary operator, and one can choose the unitary to be invariant under
the conjugation J (see [7] theorem 2.2.4). In the present case, the algebra is (Aadd(R))′, the
automorphism is the one induced by the non-local operators of type a (which is independent
of the representative), and the vector state is the vacuum. Then we get a unitary a invariant
under the modular conjugation of (Aadd(R))′ which is the same as the modular conjugation
of Aadd(R), and hence (2.30). By construction, the algebra of the standard operators a and
b is the expected one. By the same reason a belongs to (Aadd(R′))′ but not to Aadd(R),
and it is a non local operator in R.

Further interesting properties follow from the fact that the standard operator leaves
the natural cone P of vectors invariant. This cone is defined as the one generated by all
vectors of the form OJO|0〉 for O in the algebra [7]. The important point here is that
vectors in the natural cone include the vacuum and have a positive scalar product. If
follows that ai|0〉 ∈ P and 〈0|ai|0〉 > 0. This last equation also entails 〈0|aiaj |0〉 > 0.

This interesting construction gives, for example, standard smeared non-local Wilson
and ’t Hoof loops (for the center of the gauge groups) defined exclusively by the vacuum
and the geometry of the chosen region. In particular, they enjoy all the symmetries that
these regions and the vacuum state may have.

2.2.4 Maxwell field

A simple example of these scenarios is the Maxwell field in d = 4. This is the Gaussian
theory of the electric and magnetic fields satisfying the equal-time commutation relations

[Ei(~x), Bj(~y)] = iεijk ∂kδ
3(~x− ~y) . (2.31)

Equivalently, the theory can be described by the normal oriented electric and magnetic
fluxes ΦE and ΦB, defined on two-dimensional surfaces with boundaries ΓE and ΓB. For
such fluxes, we have a commutator proportional to the linking number of ΓE and ΓB,

[ΦE ,ΦB] = i

4π

∫
ΓE

∫
ΓB

~x1 − ~x2
|~x1 − ~x2|3

d~x1 × d~x2 . (2.32)

We will always assume these fluxes to be smeared over positions of ΓE and ΓB such that
the flux operators are well-defined linear operators and not operator-valued distributions.

12The Doplicher-Longo construction is however associated with a type I factor that splits the algebra of
two balls. Here this split is not needed.
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If the smearing region for ΓE and ΓB lies respectively inside a region with the topology of
a ring R and its complement R′, and the integral of the smearing function adds up to one
(which we will also assume in the following), equation (2.32) still holds for the smeared
fluxes. In d = 4 the topology of R′ is the same as the topology of R. It is S1 × R2 and it
has non-trivial π1(R).

Because ∇E = ∇B = 0 the fluxes are conserved. The surface over which they are
defined can be deformed, keeping the boundary fixed, without modifying the operator. In
turn, by deforming the surface of the flux we can take it away from some local operator
lying in the original surface. Therefore, one concludes that the fluxes will commute with
the locally generated operators associated with the complementary ring.

We can write a bounded electric flux operator (’t Hooft loop) T g = eigΦE , and a
magnetic flux operator (Wilson loop) W e = eiqΦB , for any g, q ∈ R. When they are linked,
the commutation relations between them follows from (2.32)

T gW q = ei q gW qT g . (2.33)

This non-commutativity implies these operators cannot be locally generated in the rings in
which they are based. For example, if T g were locally generated in R (where its boundary
lies) this would imply, by the arguments given above, it necessarily commutes with W q

based on the complementary ring. But this is not possible according to (2.33). Notice this
is an explicit example of relation (2.27).

Therefore, the algebra of a ring R and its complement R′ (also a ring) cannot be
taken additive without violating duality. The reason is that the commutant of the additive
algebra of the ring contains both the electric and magnetic loops of any charge based on
R′, and this is not additive. We have

Amax(R′) ≡ (Aadd(R))′ = Aadd(R′) ∨ {W q
R′T

g
R′}q,g∈R , (2.34)

and analogously by interchanging R ↔ R′. Here we have denoted W q
R′ and T gR′ for the

Wilson and ’t Hooft loops based on R′.
One can repair duality at the expense of additivity by defining the ring algebras to

contain, on top of the locally generated operators, some particular set of non locally gener-
ated ones. To form a (local) net, such choice has to respect causality. A natural condition
is to add operators with electric and magnetic charges (q, g) to all rings. This choice does
not ruin translation and rotation invariance. Given two dyons (q, g) and (q′, g′) in the
same ring, the one formed by their product (q + q′, g + g′), and the conjugates (−q,−g)
and (−q′,−g′), should also be present to close an algebra. Therefore, the set of all dyons
should be an additive subgroup of the plane, giving a lattice

(q, g) = n(q1, g1) +m(q2, g2) , (2.35)

where n,m ∈ Z, and (q1, g1), (q2, g2) ∈ R2 are the generating vectors of the lattice. Locality
between a would-be dyon T gW q with charges (q, g) in R and another one (q̃, g̃) in R′ (i.e.
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the vanishing of the phase in (2.33)) results in the Dirac quantization condition13

qg̃ − q̃g = 2πk , (2.36)

for an integer k. This is compatible with (2.35) provided that q1 g2 − g1 q2 ∈ 2πZ. If
we want to construct a Haag-Dirac net, we need to take a maximal set of charges that
satisfy (2.36). This forces us to choose

q1 g2 − g1 q2 = 2π . (2.37)

This is the most general condition for a U(1) symmetry. However, for the case of the
relativistic Maxwell field, in solving for the space of solutions of the previous equation, we
need to take into account that there is a duality symmetry (see, for example, [4])

(E + iB)→ eiφ(E + iB) , (q + ig)→ eiφ(q + ig) . (2.38)

Then, there is a hidden free parameter in the solution of (2.37) that moves us between
isomorphic Haag-Dirac nets. This freedom can be eliminated by writing the different
solutions as

(q, g) =
(
q0

(
ne + θ

2πnm
)
, g0nm

)
, (2.39)

where q0 > 0 and θ ∈ [0, 2π) are parameters, g0 = 2π/q0, and ne, nm ∈ Z.14 Writing
the two real parameters as a single complex one τ = θ/(2π) + 2πi/q2

0, the Haag-Dirac
nets verifying duality and causality are determined by this parameter, AHD(τ). In this
parametrization there is a residual duality symmetry, since nets with τ ′ = τ +1, τ ′ = −1/τ
are isomorphic.

Nets with θ 6= 0, π are not time reflection symmetric. Notice that in a specific model
describing electric charges and monopoles, when adding a topological θ term to the La-
grangian (or equivalently considering the θ vacua), we change the lattice of charges accord-
ing to the Witten effect [40]. We see such a parameter here, as arising from the previous
freedom we encountered in describing the lattice of charges.

The nets constructed in this way will satisfy duality, but they will not satisfy additivity.
Additivity can be recovered if we couple the theory to charged fields. For example, if we
have a field ψ of electric charge q, we can now consider Wilson line operators of the form

ψ(x)eiq
∫ y
x
dxµAµψ†(y) . (2.40)

Taking products of consecutive Wilson lines, and allowing for the fusion of the fields with
opposite charges at the extremes of the lines we want to join, the Wilson loopW q in R (with
the specific charge q), becomes an operator in the additive algebra of R. In the same way,

13The Dirac quantization condition is typically a statement that arises when we include charges in the
model, as we comment below. But indeed, it is more naturally originated in a setup without charges when
studying causal nets of the form described here.

14We can also consider the limiting cases when q → 0 (g → ∞) and q → ∞ (g → 0). In the first case,
the HD net is formed by adding all the Wilson loops for a ring-like regions and none of the ’t Hooft loops.
The second case is the opposite.
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if we have magnetic charges g, the ’t Hooft loops T g corresponding to this charge should
be additive in R, and with a dyon (q, g) we can break the operators T gW q. For the theory
to still satisfy locality the charges have to satisfy (2.36). This is now converted into the
Dirac-Schwinger-Zwanziger (DSZ) quantization condition for the charges. As mentioned
before, this condition is seen here as a consequence of causality in the net of algebras
for the theory without charges. In this way, by adding a full set of charged fields with
charges corresponding to a HD net, we can make the theory “complete” in the sense of
both satisfying duality and additivity. If we do not add charged operators for a full lattice,
there still will be some problems between algebras and regions, which can be studied by
taking a quotient by the new locally generated loops.

Let us close this section with an important remark. In the presence of charged fields,
the flux operators T gW q continue to exist even if (q, g) does not belong to the lattice. But
they now depend on a surface rather than a closed curve. Since ∇E = ∇B = 0 is modified,
the flux on a given surface cannot be deformed to other surfaces with the same boundary.
Then, in this scenario, the operator belongs to a topologically trivial region and cannot be
associated with a ring.

2.2.5 Non-Abelian Lie groups

In this section, we consider the case of non-Abelian Lie groups, whose features can be
described directly in the continuum limit.15 We start with pure gauge theories, without
charged matter. Later we will consider the effect of adding matter fields. The objective is
again to understand the failure of duality and additivity for these theories.

For generic pure gauge theories, as for the Maxwell field, the set of gauge-invariant
non-local operators, with the potential of being non additively generated, is given by the
Wilson and ’t Hooft loops [25, 41, 42]. Although Wilson loops are one-dimensional in all
dimensions, ’t Hooft loops are only one-dimensional objects in four spacetime dimensions,
where they were at first defined. In other spacetime dimensions, ’t Hooft operators are
defined for d− 3 dimensional surfaces (see appendix B for an explicit construction). This
suggests that Wilson loops are the right candidates to violate additivity in regions with non-
trivial π1, while the dual ’t Hooft operators are the right candidates to violate additivity
in regions with non-trivial πd−3. In d = 4, both operators potentially contribute to the
violation of duality in ring-shaped regions.

Let us start with the Wilson loops. These are defined for each representation r as

Wr := TrrP ei
∮
C
dxµArµ , (2.41)

where C is a loop in space-time and P is the path order. There is one independent Wilson
loop per irreducible representation of the gauge group. As shown in appendix B, they can
be chosen in order to satisfy the fusion rules of the (gauge) group representations

WrWr′ =
∑
r′′

N r′′
rr′Wr′′ . (2.42)

15For a detailed analysis of the failure of duality and/or additivity of gauge theories we refer to appendix B,
where we give explicit lattice constructions of all the involved operators.
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We now seek to know whether Wilson loops are unbreakable or not. A Wilson loop
of representation r can be certainly broken into pieces if there are charged fields φr in the
model transforming under the representation r. With such charged field, we can construct
Wilson lines

φr(x)Pei
∫ y
x
dxσAσ φ†r(y) . (2.43)

These lines decompose the Wilson loop of representation r into a product of operators
localized in segments. Although we are considering pure gauge theories without charges, we
cannot escape the fact that, for non-Abelian gauge fields, the gluons are charged themselves.
They are charged under the adjoint representation. Indeed, we can form the following
Wilson line, terminated by curvatures

Fµν(x)Pei
∫ y
x
dxσAσ Fαβ(y) , (2.44)

where all fields are in the adjoint representation of the Lie algebra. We conclude that a
loop operator in the adjoint representation can be generated locally by multiplying several
of these lines along a loop. Since the adjoint Wilson loop is locally generated, the same
can be said for all representations generated in the fusion of an arbitrary number of adjoint
representations. Therefore, the ‘truly” non-local Wilson loops, those violating Haag duality,
are labeled by the equivalence classes that arise when we quotient the set of irreducible
representations by the set of representations generated from the adjoint.16

To understand in precise terms what we mean by the last statement we need to invoke
several notions from the theory of representations of Lie groups. Since introducing and
describing them in detail would take some time and space, and it will certainly interrupt
the flow of the presentation, we will assume here knowledge of such topic, and refer to the
references [43–50] for more details. For the present context, the most important notions
we need are the weight and root lattices. For a Lie algebra g, a Cartan subalgebra h is
a maximal Abelian subalgebra. If h is generated by l elements, the Lie algebra is said to
have rank l. Since h is Abelian, it can be diagonalized in every irreducible representation
of the algebra. A weight associated with a certain eigenvector in certain irrep is defined as
the l-component vector formed by the eigenvalues of the Cartan subalgebra generators. It
turns out that the weights form a lattice

Λω :=
{

l∑
i=1

aiω
(i) with ai ∈ Z

}
, (2.45)

generated by arbitrary linear combinations with integer coefficients of a set of fundamental
weights ω(i). The number of fundamental weights is equal to the rank. Physically, this
lattice contains the information of all the representations of the algebra. In this lattice,
each irreducible representation is labeled by a dominant weight. In the weight lattice, such
dominant weights are in one-to-one correspondence with orbits of the Weyl group, and
then we have

Λdom ∼ Λω/W . (2.46)
16This is the gauge theory analog of the general discussion in the previous section concerning the universal

grading of the set of representations.
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These equivalence classes label all the (inequivalent) irreducible representations, and there-
fore, all (inequivalent) Wilson loops. Furthermore, for every Lie group, there is a universal
representation called the adjoint representation. It is the representations in which the Lie
algebra transforms into itself. The weights of the adjoint representation are called roots.
The roots also form a lattice, called the root lattice

Λroot :=
{

l∑
i=1

aiα
(i) with ai ∈ Z

}
. (2.47)

It is generated from a set of l fundamental roots α(i). Physically, while the weight lattice
contains all possible weights, and therefore all weights appearing in arbitrary products of
fundamental representations, the root lattice contains all weights appearing in arbitrary
products of the adjoint representation.

The dominant weights appearing in the root lattice can be isolated in the same way
as before, employing the Weyl group

Λroot-dom ∼ Λroot/W . (2.48)

The non locally generated classes of Wilson loops are then labeled by

WLnon-local ∼ Λdom/Λroot-dom ∼ (Λω/W )/(Λroot/W ) ∼ Λω/Λroot ∼ ΛZ , (2.49)

where ΛZ is equivalent to Z∗, the group of representations of the center Z of the gauge
group G. These representations form the dual of the Abelian group Z, which is isomorphic
with Z.17

One can construct actual representatives of such non-additive classes using the generic
construction described in the previous section. We conclude that we can find a set of
non additively generated operators in a ring satisfying the algebra of the characters of the
center of the group. This quotient is an example of the universal grading alluded to in the
previous section.

A similar discussion goes for ’t Hooft loops, when one starts with the dual description
in terms of the dual GNO group [42, 51]. Then, this results in a non additively generated
’t Hooft loop (violating duality for regions with non-trivial πd−3) per element of the center of
the gauge group, as they were originally defined in [25]. A construction of such non-additive
’t Hooft loops, which do not use the dual description, is provided in appendix B. Such
construction also allows constructing the non-additive Wilson loops using the dual group.
One can also label the ’t Hooft loops by the conjugacy classes of the gauge group. These

17In the original work [25], ’t Hooft loops were defined only in correspondence with the center of the gauge
group. A natural question arose as to why we have so many more Wilson loops (for Lie groups an infinite
number of them), and so few ’t Hooft loops. This was clarified in [42] by enlarging the set ’t Hooft loops. It
was noticed there that ’t Hooft loops can be defined for any dominant magnetic weight. Here we have taken
a complementary approach for the clarification of such an issue. From the present perspective, the only
important Wilson loops are the non-locally generated ones. These are in one-to-one correspondence with
the dual Z∗ of the center Z of the gauge group, which is isomorphic to the center Z itself. The equality
in number from the Wilson loops and the ’t Hooft loops arises here by this drastic reduction of significant
Wilson loops.
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conjugacy classes are in one-to-one correspondence with orbits of the Cartan subalgebra
under the Weyl group [43], as it is the case for magnetic monopoles [51]. But again, labeled
in this way, not all ’t Hooft loops are non-locally generated.

We conclude that the physical symmetry group violating Haag duality in pure gauge
theories is Z∗×Z, where Z∗ is generated by the non-breakable Wilson loops and Z by the
non-breakable ’t Hooft loops. We thus find the algebraic origin of the generalized global
symmetries described in [9]. Haag-Dirac nets can be constructed by enforcing duality and
causality to the net. These conditions were studied in [52], and the lattices found there are
seen here as labeling HD nets.18

Finally, let us mention how these features change when one includes matter. For d > 4,
matter fields will break non-local operators only if they are charged under the center Z of
the group (electrically charged fields) or the dual Z∗ of the center (magnetically charges
fields). Let us callMe ⊆ Z∗ andMm ⊆ Z to the electric and magnetic charges with respect
to Z and Z∗ respectively. These can fuse, and then Me and Mm are subgroups. These
charges have to satisfy the generalized Dirac quantization condition (2.29) by causality.
All operators in Z, which do not commute with Me, can no longer be considered operators
that live in a ring, and are now only operators that exist in balls. Then, the remaining
’t Hooft loops in the ring are given by (Z∗/Me)∗ ⊆ Z, which is a subgroup of Z. Mm is
included in this subgroup due to the Dirac quantization condition, and the loops in Mm

are now locally generated, broken by magnetic charges. Hence, the remaining non locally
generated ’t Hooft loops in the ring are given by (Z∗/Me)∗/Mm. Analogously, the non local
Wilson loops will be (Z/Mm)∗/Me. In a complete theory, these isomorphic groups should
be trivial. For d = 4, the group of non locally generated operators for a pure gauge theory
is Z × Z∗, which is now naturally isomorphic to Z∗ × Z. Let the subgroup of dyons be
D ⊆ Z × Z∗ and its isomorphic image D∗ ⊆ Z∗ × Z. We have that the group of non-local
operators is given by ((Z∗ × Z)/D∗)∗/D.

2.3 Generalizations

The same arguments apply for QFT’s in which the violation of Haag duality appears for
regions R with non-trivial πn, whose complementary regions R′ have non-trivial πd−n−2.
There are particular instances that need to be taken with special care. But in general,
a violation of duality due to some operators which can be localized in regions with non-
trivial πn, for n ≥ 1, d − n − 2 ≥ 1, will give rise to an Abelian group. The reason is the
same as before. A region with such properties is connected. Therefore, if an operator of

18We want to remark a possible source of confusion. In the literature, see, for example, the mentioned [52]
and the lecture notes written by Tong [53], it is sometimes stated that the solution of the appropriate Dirac
quantization condition implies that some theories have some loop operators and not others. For example,
in a pure gauge theory, if we have all Wilson loops, we cannot have ’t Hooft loops transforming under the
center of the dual group. We clarify here that this statement only applies to the net, not to the full content
of the QFT. In a ball-shaped region, we always have all Wilson and ’t Hooft loops. It is only the assignation
of algebras to regions with non-trivial topology, namely the specification of the net of algebras, which is
constrained by the Dirac quantization condition. This was transparently seen in the Maxwell field scenario
described earlier, where the loop operators are simply electric and magnetic fluxes. See [54] for a discussion
on this point from a different perspective with similar conclusions.
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a given representation r lives in a region R (with such topological properties), then the
representation rr∗ can be additively generated inside the region. This implies that the set
of non additively generated operators corresponds to the universal grading of the associated
tensor category. This universal grading results in an Abelian group.

Examples of these types of symmetries should come from p-form gauge fields Aµ1µ2···,
but we will not consider explicit examples in this paper. This construction again connects
with the generalized global symmetries described in [9]. We remark that the Abelianity of
the sectors we have discussed is rooted in the analysis of Haag duality and it can be proven
without the necessity of going to Euclidean space.

Among the zoo of possible situations, there are some specially interesting cases in
which both R and R′ are “ring” like regions sharing the same topology. This occurs for
n = (d − 2)/2, in which both regions have non trivial π(d−2)/2. This possibility only
appears in even dimensions. In particular, in d = 4, we have both Wilson and ’t Hooft
loops violating duality of the ring R and its complement R′, which is also a ring. In
this case, the groups Ga and Gb of complementary (simple linked) regions are not only
dual to each other, but there is also a natural isomorphism arising from transporting the
non-local operators from R to R′ by deformations. These situations have the additional
interest that, for some geometries, one can construct conformal transformations mapping
the complementary regions as we discuss further below.

It is an interesting program to understand what kind of non-local algebras could more
generally appear in different topologies, under some simple assumptions such as that the
local algebras have trivial centers and the sectors are homotopically transportable. For
example, regions with knots would not be necessarily equivalent to other topologically
equivalent ones without them. This general analysis may reveal interesting new cases
depending on the assumptions.

A different simple example that is not covered by ordinary gauge theory is the case
of higher helicity fields. The free (linearised) graviton is described by a field hµν with
gauge invariance hµν → hµν + ∂µξν + ∂νξµ. Gauge invariant operators are generated by
the curvature tensor Rαβγδ, which is conserved in all its indices. This conservation should
give rise to flux operators across two-dimensional surfaces that are not locally generated
operators on the one-dimensional boundary. However, in contrast to the gauge theories
described above, the non-local operators are indexed with space-time indices. We might
anticipate from this observation a breaking of the Lorentz symmetry for a HD net.

3 Entropic order parameters

In this section, we seek to construct entropic order parameters that capture the physics of
generalized symmetries. In other words, we want to find natural entropic order parameters
that can distinguish, from a unified perspective, different phases of QFT’s. In particular,
these entropic order parameters should capture the confinement, Higgs, and massless phases
in gauge theories.

Taking as a starting motivation the confinement phase, it is well-known that the Wilson
loop of a fundamental representation was initially devised as an order parameter for it [41].
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The expectation value of such a Wilson loop can decay exponentially fast with the area of
the loop. This behavior is indicative of confinement since it implies a linear quark-antiquark
potential. On the other hand, a perimeter law scaling of the Wilson loop excludes the
possibility of confinement.

However, in theories such as QCD, whose matter content includes charged fields in
the fundamental representation, the Wilson loop has a perimeter law even if quarks are
confined. Moreover, even in the absence of charged matter fields, the same holds for the
Wilson loops in the adjoint representation. It seems no coincidence that these two examples
concern precisely line operators that are locally generated in the ring.

These observations trigger the following hypothesis. The right order parameters in
QFT’s, characterizing the phase of some generalized symmetry, should be the appropriate
non-additive operators discussed in the previous section. These are the operators that
violate Haag duality in the appropriate region. In turn, the right entropic order parameters
should be those able to capture the physics of the non-additive operators. The objective of
this section is to build on this hypothesis, define the right entropic order parameters, and
study them in different phases of several systems.

We start by setting the idea that non-additive operators are the right order parameters
on firmer ground. To do so, we argue that for any general QFT it is not possible to construct
a loop order parameter displaying an area law by employing only operators that are locally
generated in the ring. We can wave only a sub-perimeter law behavior (perimeter law, or
even a constant law). This implies that the existence of a confinement order parameter
requires a non locally generated operator, with the associated failure of the additivity
property for ring-like regions.

Associated with this failure of additivity, and as discussed in the previous section,
there will be multiple choices of nets of algebras. We will use this multiplicity to define
natural “blind” entropic order parameters, which do not rely on a particular operator,
but just on the algebraic structure of the net of algebras. We will show that such entropic
order parameters can be defined both for order parameters, such as intertwiners and Wilson
loops, and for disorder parameters, such as twists and ’t Hooft loops. It turns out that both
perspectives, order vs. disorder, are related through the entropic certainty relation [24].

We will finally use all these tools to analyze different known phases in QFT’s, such
as spontaneous symmetry breaking scenarios, Higgs and confinement phases, and confor-
mal ones.

3.1 An area law needs non locally generated operators

Let us first recall that the exponential decay of the expectation value of an (appropriately
smeared) line operator is always bounded from below by an area law [55]. To explain this,
we refer to figure 5, which shows an arrangement of four partially superimposed rectangular
loop type operators. We call these loops W11̄, W22̄, W12̄ and W21̄. These are formed by
products of two half-loops on the right half plane (labeled W1 and W2) reaching just to
the plane of reflection drawn with the dashed line, and their reflected CRT images (labeled
W1̄ and W2̄ respectively). The application of reflection positivity in the Euclidean version,
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1̄ 1 22̄

Figure 5. The construction of Bachas that shows the convexity of the quark-antiquark poten-
tial [55].

or CRT positivity in real time,19 leads to the inequality

〈(aW1 + bW2)(a∗W1̄ + b∗W2̄)〉 ≥ 0 , (3.1)

for any constants a and b. In particular, the determinant of the matrix of coefficients for
this quadratic expression is positive

〈W12̄〉〈W21̄〉 ≤ 〈W11̄〉〈W22̄〉 . (3.2)

Writing 〈W 〉 = e−V (x,y), with x, y the two sides of the rectangle, it follows from this relation
and the analogous one produced by reflecting in the x axis that the potential V (x, y) must
be concave in the two variables

∂2
xV (x, y) ≤ 0 , ∂2

yV (x, y) ≤ 0 . (3.3)

Then, the slopes ∂xV (x, y) and ∂yV (x, y) never increase. As these slopes cannot become
negative (hence making the loop expectation value increase without bound), they will
converge to a fixed non-negative value in the limit of large size. If the coefficient of xy in
V (x, y) for large size is non zero we have an area law. If it is zero, we have a sub-area
law behavior. No loop operator expectation value can go to zero faster than an area law
〈W 〉 ∼ e−cA as the size tends to infinity. This calculation holds for any loop, whether
locally or non locally generated in the ring, provided they are locally generated in the
plane, and they are CRT reflection symmetric.20 The derivation can be justified more
rigorously in a lattice model [55].

Now we focus on loop operators formed additively in a ring. We want to show the
expectation values of these operators cannot decay faster than a perimeter law 〈W 〉 ≥
c e−µR, where R is the loop radius. The presentation will be rather sketchy. In appendix C
we expand on how these arguments could be made mathematically precise.

It is more convenient to use circular loops for our present purposes. As the loops are
locally generated, we can imagine forming a partial operator W (l1, l2) in an arc (l1, l2) of

19CRT positivity is associated with the CRT (or CPT) symmetry of QFT [56]. It is also known as wedge
reflection positivity [57], or Rindler positivity. It follows from Tomita-Takesaki theory (see [7]), but it holds
more generally in any purification of a quantum system [58]. In the present case, this is the purification of
the vacuum state in the Rindler wedge by the global vacuum state in the whole space. These inequalities
are manifestations of the positivity of the Hilbert space scalar product.

20For non locally generated loops, the half loops have to close in the plane of reflection.
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1

1̄

2

2̄

Figure 6. Reflection positivity applied to line operators along angular portions of a ring. Operators
1 and 2 reach to the reflection plane, and 1̄ and 2̄ are their CRT reflections.

the ring of longitudinal size l = l2 − l1. The idea is that we now construct a loop of a
certain size, not by increasing the size of a smaller loop as above, but by increasing the
size of an operator in an arc until the arc closes into a ring.

We assume rotational invariance and define the potential

〈W (l1, l2)〉 = e−V (l) . (3.4)

We can use CRT positivity again in this case, as shown in figure 6. The result is

V ′′(l) ≤ 0 . (3.5)

Therefore, the slope of V ′(l) is non increasing and

〈W 〉 ≥ e−2πRV ′(0)−V (0) . (3.6)

If the loops are formed as products of small pieces in a rotationally symmetric way, we
can form loops of larger radius starting with the same cross-section. For such a sequence
of loops of different radius, we have the same value V ′(0), independently of the radius.
Equation (3.6) gives us a perimeter law, or more precisely a sub-perimeter law behavior.
In particular, this excludes the possibility of an area law or any other law where the
potential increases faster than linearly in the perimeter.

Applying the same idea to the case of non locally generated loop operators in the ring
fails. The reason is that we cannot define the partial (non-closed) line operators. Using
a non-gauge-invariant Wilson line introduces several problems when some gauge fixing is
chosen. If we do not fix the gauge, the expectation value of this line operator is zero, and the
potential infinity. This prevents the calculation to give any useful bound. When we have
charged operators to define the relevant Wilson line, and consequently the loop operator
can be broken into pieces, its expectation value cannot decay faster than a perimeter law.

We expect similar results to hold for spherical shells of different dimensions k, based
on the same arguments. General operators should have an area or sub-area law behavior
V . Rk+1, generalizing (3.3). Besides, additive operators will not be able to display “area
law” (V ∼ Rk+1). Their expectation values will be restricted to have a sub-perimeter law
behavior (here V . Rk), and they will not be appropriate order parameters. The argument
leading to this statement should parallel the one deriving (3.6).
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3.2 Definition and general properties of entropic order parameters

Let’s now move towards constructing sensible entropic order parameters signaling the pres-
ence or absence of generalized symmetries in QFT’s. As discussed until now, these gener-
alized symmetries manifest themselves through the violation of duality and additivity for
different regions with different topologies. In all the cases considered, these violations have
been related to definite non-additive “order” operators {a} (such as intertwiners, Wilson
loops, or high dimensional generalizations), and definite non-additive “disorder” operators
{b} (such as twists and ’t Hooft loops). These operators close specific algebras, typically
given by fusion algebras associated with a certain group of generalized symmetries.

Since both order and disorder operators, when properly chosen, generate self-consistent
von Neumann algebras {a} and {b}, the first obvious information theoretic notion coming
to our minds is the von Neumann entropy

S{a}(ω) := −Tr{a} ω logω
S{b}(ω) := −Tr{b} ω logω , (3.7)

where for a given algebra M, the symbol TrM instructs us to take the canonical trace
associated with it [59]. The symbol ω on the right-hand-side denotes the reduced density
matrix of the state ω in the corresponding algebra. Although we will also implicitly study
these quantities, it turns out there are better suited entropic order parameters for the
characterization of symmetries. In particular, we notice that the quantities (3.7) have an
unpleasant dependence on the choice of the non-local operators.

To motivate new order parameters, we follow the logic described in [24]. Let us first
remind that for a finite d-dimensional Hilbert space, the von Neumann entropy can be
written equivalently as

SM(ω) := −TrM (ω logω) = log d− SM (ω | τ) , (3.8)

where τ = 1/d is the maximally mixed density matrix, and SM (ω | τ) is a quantity known
as relative entropy. The relative entropy is defined for two quantum states in the same
algebra and, in the finite dimensional scenario, is defined by

SM (ω | ϕ) := TrM (ω (logω − logϕ)) . (3.9)

Intuitively, relative entropy is a measure of distinguishability between the two underlying
states. Relation (3.8) expresses that the uncertainty measured by the von Neumann entropy
is also measured by the distance between the given state and the state with maximal
uncertainty. Since there is a minus sign in the previous relation, the higher the relative
entropy in (3.8), the smaller the uncertainty of ω onM.

Using relative entropy has several advantages. First, relative entropy displays mono-
tonicity under general quantum channels and restrictions onto subalgebras [59]. We will use
this property frequently in the applications below. Second, relative entropy is well-defined
across different types of algebras, including type-III von Neumann algebras appearing in
QFT. This will ease the application to QFT, as it avoids many potential issues just from
the start.

– 29 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
7

Finally, using relative entropy suggests certain generalizations. Notice that in (3.8),
the maximally mixed state τ can be equivalently written as the composition21 of ω with a
map E :M→ 1, defined by E(m) := 1

dTr(m)1. Rewriting the relative entropy in (3.8) as

SM(ω|ω ◦ E) (3.10)

suggests a couple of generalizations to this notion of uncertainty. First, the map E(m) :=
1
dTr(m)1 is one example of a whole space of maps of the type E : M → 1, as we de-
scribe below. Second, instead of using the identity as the target algebra, we could choose
any subalgebra N ⊂ M. The relevant maps E : M→ N are called conditional expecta-
tions [59, 60]. They are positive, linear, and unital maps from an algebraM to a subalgebra
N . They leave the target algebra invariant, and they further satisfy the following bimodule
property

E (n1mn2) = n1E (m)n2 , ∀m ∈M, ∀n1, n2 ∈ N . (3.11)

These maps are the mathematical definition of what restricting our observational abilities
means (see [59] for an extensive review). Examples of conditional expectations are tracing
out part of the system

F := O ⊗A , E(O ⊗A) := Tr(A)
dA

O ⊗ 1A , (3.12)

or retaining the neutral part O of an algebra F under the action of a certain symmetry
group G

E(F ) := 1
G

∑
g∈G

τg F τ
−1
g , F ∈ F . (3.13)

From a general standpoint, if M = N ∨ Q is the algebra generated by N and certain
subalgebra Q, we say the conditional expectation “kills” Q.

For our purposes, one of the most important properties of these maps, which we will
use continuously, is that they can be used to lift a state in the subalgebra N to a state in
the larger algebraM. This lift is defined as

ωN 7→ ωN ◦ E . (3.14)

The generalization we are seeking is thus

SM(ω | ω ◦ E) E :M→N . (3.15)

If M = N ∨ Q, this quantity measures the uncertainty of Q in the state ω, given the
knowledge of N . The fact that side correlations with the algebra N are taken into account
in this quantity will be very important for QFT applications.

We now define the order-disorder entropic parameters in the following manner. If the
algebra of non-additive operators {a} lives in a certain region R, this provides us with a
natural inclusion of algebras

Aadd(R) ⊆ Amax(R) = Aadd(R) ∨ {a} . (3.16)
21A state over an algebra A is a linear positive normalized functional ω : A → C from the operators to

the complex numbers, giving expectation values. In this sense, we use the terminology of states as functions
on operators.
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Associated with this inclusion, we should have a space of conditional expectations

E : Amax(R)→ Aadd(R) , (3.17)

leading to the following entropic order parameter

SAmax(R)(ω | ω ◦ E) . (3.18)

This entropic order parameter was considered in [22] for the case of global symmetries,
inspired by ideas in ref. [23]. See also [61].

A parallel story works for the “disorder” operators {b}. We remind that they belong to
the complementary region R′, and they provide us with the following inclusion of algebras

Aadd(R′) ⊆ Amax(R′) = Aadd(R′) ∨ {b} , (3.19)

with its associated space of conditional expectations

E′ : Amax(R′)→ Aadd(R′) , (3.20)

and the following entropic disorder parameter

SAmax(R′)(ω | ω ◦ E′) . (3.21)

An important difference between these order parameters and the von Neumann en-
tropies (3.7) is that these relative entropies are purely geometric objects depending only on
the region R and the state ω (typically the vacuum state in our applications). They do not
depend on a particular choice of operators in R. The other difference is that they include
the side correlations between the order-disorder operators with the appropriate additive
algebras. This turns out to be important, as we now describe.

The order-disorder algebras do not commute between themselves. These commutation
relations are completely fixed, as shown in equation (2.19). These commutation relations
imply fundamental uncertainty principle type bounds between the two algebras. Such
implications, which arise from quantum complementarity, can be accommodated in the
entropic formulation. This problem was considered in detail in [24], inspired by the result
in [22]. To analyze it, we notice there is a natural way to understand quantum comple-
mentarity in this context.

Given a generic inclusion of von Neumann algebras N ⊆M and a conditional expec-
tation E :M→N , there is a natural complementarity diagram

M E−→ N
l ′ l ′ (3.22)

M′ E′←− N ′ .

In this diagram, going vertically takes the algebras M and N to its commutantsM′ and
N ′ respectively. Going horizontally in the arrow direction means restricting to the target

– 31 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
7

subalgebra. IfM = N∨Q and N ′ =M′∨Q̃, then E kills Q ⊂M, and the dual conditional
expectation E′ kills Q̃ ⊂ N ′.

Notice that while N commutes withM′, the algebrasM and N ′ do not commute with
each other. The only operators that do not commute with each other are the ones in Q and
Q̃. These are the ones killed by the appropriate conditional expectations. These algebras
Q and Q̃ are called complementary observable algebras (COA) [24]. They generalize the
notion of complementary operators to operator algebras.

As a simple example, take M as the Abelian algebra X generated by the position
operator. Then choose a conditional expectation that kills the full M = Q = X . In other
words E : X → 1. The complementarity diagram becomes in this case

X E−→ 1

l ′ l ′ (3.23)

X E′←− X ∨ P .

where P is the algebra generated by the momentum operator. As expected, we conclude
that the algebras X and P forms a COA.

The case of interest to us, which will be a recurring theme in the following sections,
concerns the one associated with order-disorder parameters in QFT. This is

Aadd(R) ∨ {a} E−→ Aadd(R)
l ′ l ′ (3.24)

Aadd(R′) E′←− Aadd(R′) ∨ {b} .

Let us now continue with the general case (3.22). Associated with such a diagram, we
have an entropic order parameter for the upper side, namely SM(ω|ω ◦E), and an entropic
order parameter for the lower side, namely SN ′(ω|ω ◦ E′). In [24] the following relation
between those was derived22 for a pure global state ω

SM (ω|ω ◦ E) + SN ′
(
ω|ω ◦ E′

)
= log λ . (3.25)

The constant λ ≥ 1 is a certain fixed number called the algebraic index of the conditional
expectation E, which is equal to the one corresponding to the dual conditional expectation
E′ and independent of the state ω. In the examples of this paper λ = |G|, the order of
a finite symmetry group G. This relation was called entropic certainty relation in [22],
where it was first derived for the case of global symmetry groups. The original references
defining the algebraic index are [64–66]. On the study of the index in a generic inclusion
of finite-dimensional algebras, see [67, 68].

In the proof of the previous relation, a fundamental step is to understand the space of
conditional expectations E in a generic inclusion of algebras N ⊂ M. The study of this

22After the publication of this paper in the arXiv database, this relation was derived in the context of
type III von Neumann algebras [62], setting the certainty relation in a firm mathematical ground for QFT.
We have also become aware of the work [63], dealing with a similar type of ideas in a more mathematically
oriented context.
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space has been carried out in different scenarios. To our knowledge, the first references
studying it were [69–72]. In the context of the inclusion of factors in type III algebras,
it was studied in [66]. In [24], it was recently analyzed from a somewhat more physical
perspective. Intuitively, the result is the following. Let us denote the space of conditional
expectations fromM to N as C(M,N ). If the target algebra N has a center spanned by
projectors PNj , then any E ∈ C(M,N ) is of the form

E(m) =
zN⊕
j=1

Ej(mj) , mj := PNj mP
N
j ∈Mj , (3.26)

where Ej ∈ C(Mj ,Nj). But now the inclusion Nj ⊂Mj has a trivial center in the target
algebra. Then one can prove that for such inclusions, the space C(Mj ,Nj) is isomorphic
to the space of states in the relative commutantMj ∩N ′j . Notice that if the original target
algebra is a factor (it has a trivial center) and the relative commutant is also trivial, the
space C(Mj ,Nj) contains only one element.

This is typically the case for the applications in continuum QFT, where the algebras
have trivial centers, and the relative commutant (for the cases we are considering in this
paper) is also trivial.23 The conditional expectations are unique in this context and can
be computed using the non-local operators themselves. We will show the explicit form of
these conditional expectations in the next sections. In the lattice approximation of the
continuum QFT, there might be several choices of conditional expectations. However, it
is expected that the relative entropies for fixed states should approach in the continuum
limit to the same values independently of the particular choice.

Returning to the general case, it can also be proven, for finite von Neumann alge-
bras [69–72], that there always exists a conditional expectation preserving the trace. In
this case

tr(m) = tr(E(m)) . (3.27)
For these trace preserving conditional expectations, we have that [22]

SM (ω|ω ◦ E) = SM (ω ◦ E)− SM (ω) , (3.28)

where on the right-hand side we have von Neumann entropies. Important examples of
trace preserving conditional expectations are group averages. They will play a central role
below, although the framework is more general. Therefore, one can think that the relative
entropy order parameter, in the continuum limit of a QFT, is a well-defined version of the
subtraction of two cutoff entropies. It also teaches us that this subtraction is monotonic
with the region. Implied by this same monotonicity, the continuum limit in a cutoff theory
is independent of the details of the cutoff.

Applying the generic certainty relation (3.25) to the case of entropic order-disorder
parameters, characterized by the diagram (3.24), we obtain for a pure global state ω

SAadd(R)∨{a} (ω|ω ◦ E) + SAadd(R′)∨{b}
(
ω|ω ◦ E′

)
= log λ . (3.29)

23The argument for this triviality is that, in order to commute with the full local algebra of the region,
an operator has to be localized in its boundary, but they do not exist operators localizable in a d − 2
dimensional surface. There is not enough room in the boundary of the region to smear a field operator
(operator-valued distributions) such as to construct a well-defined linear operator in the Hilbert space.
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From this expression and the positivity of relative entropy, we obtain the individual bounds

SAadd(R)∨{a} (ω|ω ◦ E) ≤ log λ , SAadd(R′)∨{b}
(
ω|ω ◦ E′

)
≤ log λ . (3.30)

Moreover, from the entropic certainty relation (3.29), other bounds can be obtained using
monotonicity of relative entropy under quantum channels or algebra restrictions. For ex-
ample, for the applications in QFT described below, we will typically use that the certainty
relation, together with monotonicity of relative entropy, implies

S{a} (ω|ω ◦ E) ≤ SAadd(R)∨{a} (ω|ω ◦ E) ≤ log λ− S{b}
(
ω|ω ◦ E′

)
, (3.31)

and similarly

S{b}
(
ω|ω ◦ E′

)
≤ SBadd(R)∨{b}

(
ω|ω ◦ E′

)
≤ log λ− S{a} (ω|ω ◦ E) . (3.32)

From the physical point of view, the certainty relation includes uncertainty relations for
the non-commuting and non-local operators {a} and {b}. This is the reason why the two
upper bounds (3.30) cannot be realized at the same time, which would imply maximal
expectation values for these operators simultaneously. But instead of being an inequality,
it is an equality. In this sense, it can be thought of as a generalization of the equality of
entropies for complementary algebras in a global pure state to the case of non-commuting
algebras [24].

How the certainty relation is realized is easily guessed in certain limits. If the expec-
tation values of the operators {a} tend to zero (for example when the region R is very thin
and fluctuations of a are large), the states ω and ω ◦ E will not be easily distinguished.
These states differ precisely in that ω ◦ E assigns exactly zero expectation value for any
non-local operator a. The order parameter, in this case, goes to zero while the dual disorder
one saturates the bound

SAadd(R)∨{a} (ω|ω ◦ E)→ 0 , SAadd(R′)∨{b}
(
ω|ω ◦ E′

)
→ log λ . (3.33)

Analogously, when the expectation values of b goes to zero we have

SAadd(R)∨{a} (ω|ω ◦ E)→ log λ , SAadd(R′)∨{b}
(
ω|ω ◦ E′

)
→ 0 . (3.34)

Interesting physical information about the phase of the theory can be learned from the
geometric setup in which these limits are achieved, and from the subleading terms in these
expressions.

Summarizing, symmetries are associated with the appearance of two different algebras
for the same region, the additive algebra Aadd and the maximal algebra Amax. Entropic
order parameters of these symmetries are then naturally suggested from the fact that two
different states (ω and ω◦E) can be produced out of the vacuum for the same algebra Amax.
Furthermore, the relative entropy between these states satisfies a remarkable relation that
ties the statistics of complementary dual non-local operators of complementary regions.
Another natural geometric order parameter would be produced by expectation values of
the standard non-local operators described in section 2.2.3. Indeed, the definition of these
operators involves the full algebra in the region R. We will not study these standard
operators further in the present paper.
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3.3 Improving bounds by including additive operators

In the previous section, with the help of the relative entropy, we have defined entropic
order parameters associated with a generic region R and its complement R′. The relative
entropy is a measure of distinguishability, and the order parameter essentially compares
the vacuum state on the additive and non-additive algebras. If we restrict attention to just
one arbitrary set of non-local operators, the relative entropy is smaller than the optimal,
and the certainty relation is not saturated. However, a natural way to approximate the
values of the entropic order parameters is to start from the knowledge of the expectation
values of some algebraically closed set of non-local operators. From the certainty relation
and the monotonicity of relative entropy we have

S{a} (ω|ω ◦ E) ≤ SAadd(R)∨{a} (ω|ω ◦ E) ≤ log λ− S{b}
(
ω|ω ◦ E′

)
, (3.35)

for particular algebras of non local operators {a} in R and {b} in R′. These upper and
lower bounds are simple functions of the expectation values of the non-local operators.
The bounds (3.35) can be improved by searching for the best non-local operators in each
region, that is, the ones with higher expectation values. Including the information on the
additive algebra, or, equivalently, on the multiple possible choices of non-local operators in
R, should also improve the bounds obtained from (3.29). In this section, before treating
specific QFT examples, we want to get more intuition about these features. Concretely,
we will look at how including larger sets of approximately decoupled non-local operators
in a region (which is a particular way of including additive operators) improves the bounds
in a characteristic way. In this scenario, the bound approximates saturation exponentially
fast in the number of decoupled operators.

To motivate the calculation below, consider the order parameter for the case of global
symmetry. We have a region formed by two single component regions as in figure 7, and
we consider the case in which these regions are very near to each other. In the limit where
they touch each other, the non-trivial twists are squeezed between the two regions and
their expectation values go to zero. Then, we expect that the relative entropy over the
intertwiners tends to the maximal value log |G| [22]. We want to have a handle on how this
limit is approached. To produce a lower bound to this relative entropy, we can compute it in
the algebra of any of the (unitary) intertwiners drawn along the surface in figure 7. These,
however, will have some specific expectation values which may differ significantly from the
maximal one 〈I〉 = 1. Large expectation values 〈I〉 . 1 are needed to achieve a maximal
relative entropy log |G|. To find such improved thick intertwiners may be a complex task.
The idea is then to use an algebra of many intertwiners along the surface, that can be taken
to be uncorrelated to each other in good approximation, to improve the bound. We must
remark that we are not enlarging the number of independent intertwiners, which is indeed
impossible. There is only one independent intertwiner per irreducible representation of the
symmetry group. In other words, all these “new” intertwiners that we are adding can be
written, in a non-trivial way, in terms of the original intertwiners and some particularly
chosen additive operators of the two regions. It is the contribution of the additive operators
which greatly improves the result of the computation.
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Figure 7. Approximately decoupled intertwiners formed by charge-anti-charge operator pairs along
the boundaries of the two nearby regions.

More concretely, let us take dual sets of non-local operators belonging to dual Abelian
groups Ga and Gb. They obey bab−1 = χa(b)a, where χa is the character of the represen-
tation a. As we will describe in detail below, the corresponding conditional expectation
killing the operators a is E(x) = |G|−1∑

b bxb
−1. We are interested in understanding the

sub-leading terms in the approach of the relative entropy SAadd(R)∨{a}(ω|ω ◦ E) to the
saturation limit log |G|.

With the knowledge of the expectation values of the operators {a}, we can produce
a lower bound just restricting the calculation of the relative entropy to this subalgebra.
As explained in more detail in the next section, it is convenient to use the orthogonal
projectors

Pb := 1
|G|

∑
a∈Ga

χa(b)∗a , (3.36)

which are labelled by the elements b ∈ Gb. The expectation values of these projectors
give a probability distribution pb := 〈Pb〉. The action of the conditional expectation is
E(Pb) = 1/|G|. The relative entropy over the subalgebra {a} is then the classical relative
entropy between the probability distribution (pb)b∈Gb and the uniform distribution, i.e.

S{a}(ω|ω ◦ E) = H(p | |G|−1) = log |G| −H(p) . (3.37)

Let us now suppose that we have in Aadd ∨ {a} a sequence of N commuting subal-
gebras of non local {ai}, i = 1, · · · , N , and assume that they have identically distributed
uncorrelated expectation values. That is, we have the Abelian algebra G⊗Na generated by
the projectors P ib with

ω(P 1
b1 · · ·P

N
bN

) = pb1 · · · pbN . (3.38)

Since h−1Pbh = Phb1 for all h ∈ Gb, the state ω ◦E in this algebra is given by the mixture
of N states ωh (h ∈ Gb) as

ω ◦ E = 1
|G|

∑
h∈G

ωh , (3.39)

ωh(P 1
b1 · · ·P

N
bN

) = phb1 · · · phbN . (3.40)

Then, each of the states ωh just permutes the probability distributions (pb) 7→ (phb).
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We want to understand the relative entropy in the limit of large N . We can reason
using the operational interpretation of the classical Shannon relative entropy [73]. Let us
call β = P 1

b1
· · ·PNbN to a generic sequence of projectors labelled by the sequence (b1, · · · , bN ).

The state ω has a probability distribution that is highly peaked around the set of projectors
where β contains each Pb a number ∼ pbN of times. Let us call βp to this set of projectors
where the fraction of each Pb is determined by the probability distribution p(b). According
to Shannon’s theorem, this set of projectors form a fraction ∼ eNH(p) of the total number
eN log |G| of projectors, and they all have the same probability ω(βp) ∼ e−NH(p). On the
other hand, consider the set of projectors βq corresponding to sequences having a different
fraction of elementary projectors determined by the probability distribution q(b). These
are ∼ eNH(q) projectors, and they have a probability

ω(βq) ∼ e−NH(q)e−NH(q,p) , (3.41)

where H(q, p) is the classical relative entropy between the “one site” probability distribu-
tions [73]. The probability of the βq sequences is exponentially suppressed compared to βp
by the relative entropy between these distributions. As a consequence, of all states in the
mixture (3.39) only the one with h = 1 will have significant overlap with ω, and we expect
that the relative entropy converges to the maximum value log |G| exponentially fast.

To see this in more detail, we have to compute

S{a}⊗N (ω|ω ◦ E) =
∑
β

ω(β) log
(

ω(β)
|G|−1∑

h∈G ωh(β)

)

= log |G| −
∑
β

ω(β) log

1 +
∑
h 6=1

ωh(β)
ω(β)

 . (3.42)

For h ∈ Gb and p a probability distribution over the group elements, we call hp to the
distribution hp(b) = p(hb). Separating the sum in the different probability distributions q
we have

log |G| − S{a}⊗N (ω|ω ◦ E) ∼
∑
q

e−NH(q,p) log

1 +
∑
h 6=1

e−N(H(q,hp)−H(q,p))

 . (3.43)

This already tells us that, assuming hp 6= p for all h, we will have an exponential decay
with N . If hp = p for some h, the a operator expectation values do not break all the b
symmetries, and cannot provide the maximum value log |G| asymptotically. We exclude
this case.

Evidently, in the large N limit, for each q, the sum inside the logarithm will be dom-
inated by a particular h such that H(q, hp) = H(h−1q, p) is minimal. Replacing this sum
by the best h, the saddle point approximation gives

q̃(p,h)(b) =
√
p(b)p(hb)∑

b

√
p(b)p(hb)

. (3.44)

This distribution satisfies H(q̃(p,h), p) = H(q̃(p,h), hp), and therefore we have

log |G| − S{a}⊗N (ω|ω ◦ E) ∼ e−N minh 6=1H(q̃(p,h),p) . (3.45)
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If we have many uncorrelated algebras {ai} with different expectation values, we expect a
sum over the single classical relative entropies in the exponent,

log |G| − S{a}⊗N (ω|ω ◦ E) ∼ e−
∑

i
minh 6=1H(q̃i(pi,h),pi) . (3.46)

Let us check the previous calculation in the simplest scenario of Gb = Z2. In this
case we have only one non local operator a 6= 1, and the orthogonal projectors are simply
P± = (1± a)/2. Then we have

〈a〉 = 1− 2p , 〈P−〉 = p , 〈P+〉 = 1− p . (3.47)

A collection of uncorrelated equally distributed ai gives us the state over the multiple
projectors

pωs1···sN = 1
2N

N∏
α=1

(1 + sα(1− 2p)) , (3.48)

where the subindices sα takes the values ±. The conditional expectation E acts by aver-
aging a projector P 1

+P
2
− · · · with the one where the indices have changed signs. Hence the

state transformed with the conditional expectation is

pω◦Es1···sN = 1
2N+1

[
N∏
α=1

(1 + sα(1− 2p)) +
N∏
α=1

(1− sα(1− 2p))
]
. (3.49)

The relative entropy is

S(ω | ω ◦ E) = S(ω ◦ E)− S(ω) = −
N∑
k=0

(
N

k

)
rk log(rk)−NH(p) , (3.50)

with

H(p) = − (1− p) log (1− p)− p log p , (3.51)

rk = 1
2 (1− p)k pN−k + 1

2 (1− p)N−k pk . (3.52)

The sum cannot be done analytically. Numerically, the formula (3.50) agrees with the
saddle point calculation (3.45) to leading order, and gives a sub-leading logarithm term,

S(ω | ω ◦ E) ∼ log(2)− k e−NH(( 1
2 ,

1
2 )|(p,1−p))− 1

2 logN . (3.53)

There is an interesting corollary of this calculation. For a gapped theory with topolog-
ical contributions to the entropy, the topological term in the mutual information appears
when the distance between the regions is smaller than the correlation length. However, we
can also take regions separated from each other more than the correlation length, and the
topological term will still appear in this case if the regions are exponentially large. This is
because we can achieve saturation if we can take a sufficiently large number of uncorrelated
intertwiners even if the intertwiner’s expectation values are exponentially small.

– 38 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
7

3.4 Global symmetry

In this section, we study entropic order parameters for theories with global symmetries.
The algebraic structure of such theories was described previously in section (2.1) for the
case of an unbroken symmetry. Summarizing that discussion, in these theories we focus on
the global symmetry invariant algebra O. There is a breaking of Haag duality in a pair of
disconnected balls due to the existence of intertwiners (2.12). These are neutral operators
formed by a charged operator on one region and a compensatory anti-charge operator on
the other region. There is one independent intertwiner per irreducible representation. In
the complementary region, which has the topology of a spherical shell Sd−1 × R, there is
also a breaking of duality due to the existence of twists operators (2.13), which implement
the symmetry group locally and do not commute with the intertwiners (2.19).

We take two disconnected ball like regions R1 and R2 and their complement, the “shell”
S = (R1R2)′. As we described above, there are two choices for the algebra of R1R2, namely,
the additive algebra O(R1R2) and the additive algebra plus the intertwiners O(R1R2)∨{I}.
Similarly, we have two choices of algebras for S, the additive one O(S) and the additive
one plus the (invariant) twists O(S) ∨ {τ}. The quantum complementarity diagram reads

O(R1R2) ∨ {I} EI−→ O(R1R2)
l ′ l ′ (3.54)

O(S) Eτ←− O(S) ∨ {τ} .

We have called EI and Eτ to the dual conditional expectations to emphasize they “kill”
the intertwiners and twists, respectively. The associated entropic certainty relation relating
the dual order/disorder parameters is [22]

SO(R1R2)∨{I} (ω|ω ◦ EI) + SO(S)∨{τ} (ω|ω ◦ Eτ ) = log |G| . (3.55)

In this case, the algebraic index is |G|, the order of the group. With the help of the enlarged
theory, F that includes the charged operators, the intertwiners relative entropy can also
be written as [22]

SO(R1R2)∨{I} (ω|ω ◦ EI) = IF (R1, R2)− IO(R1, R2) , (3.56)

where on the right-hand-side appears the difference between the mutual information on
the two models.

These order parameters were studied at length in [22], with a focus on the topological
contributions to the entropy. This corresponds to the limit in which R2 is nearly comple-
mentary to R1. In this case, SO(R1R2)∨{I} (ω|ω ◦ EI) can be understood as the difference
between regularized von Neumann entropies between the model with charges F and the
orbifold O in a single ball R1. Here, our focus is on how these relative entropies behave
as order/disorder parameters for phases of the theory. To understand this, the opposite
geometry of far separated balls will also be useful, as well as the understanding of the
subleading terms at saturation, which are important in distinguishing phases.
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We recall that for global symmetries, the orbifold theory O comes together with the
theory F containing charged operators. If the state ω is not invariant under the symmetry
(whether the case of spontaneous symmetry breaking (SSB) or simply any non-invariant
state, even in a compact space), acting with the algebra O on such a state produces
a Hilbert space representation containing charged states and charged operators. If the
symmetry is completely broken, the representation includes all charged operators in F
as well. For simplicity, we will treat the case where the symmetry is completely broken.
Partial symmetry breaking can be dealt in a similar way.

For the theory F , as well as for its subalgebra O, there are several different possibilities
of algebra inclusions to play with in addition to O(R1R1) ⊆ O(R1R2)∨{I}. In particular,
the subnet O does not satisfy duality for single component regions R since the commutant
includes charged operators in the complement R′. Instead, starting from the inclusion
O(R) ⊂ F(R) for a ball R we get the complementarity diagram

F(R)
Eψ−→ O(R)

l ′ l ′ (3.57)

F(R′) Eτ←− F(R′) ∨G .

Notice that in this equation the elements of the global group G could be replaced by twists
implementing the group operations on the sphere R. We have called Eψ to the conditional
expectation (implemented by the twists), which eliminates the charged operators ψ in the
ball. Dually, Eτ is implemented by the charged operators, and its effect is to set to zero the
twists (and the elements of the global group G). The relevant entropic order parameters
satisfy the certainty relation

SF(R)(ω|ω ◦ Eψ) + SF(R′)∨G(ω|ω ◦ Eτ ) = log |G| . (3.58)

The relative entropy SF(R)(ω|ω ◦ Eψ) is an order parameter for symmetry breaking.
It goes to zero for regions much smaller than the symmetry breaking scale, and to log |G|
for regions much larger than this scale [22]. It vanishes if ω is invariant under the group,
i.e., an unbroken symmetry vacuum. This is because the two states that it compares are
identical in this case. Then, according to (3.58), we must have SF(R′)∨G(ω|ω◦Eτ ) = log |G|
for an invariant state ω. It is a consequence of the non-local operators U(g) ∈ G having
maximal expectation values 〈U(g)〉 = 1 in this case.

In the rest of this section we will focus on the relative entropy for disconnected regions
SO(R1R2)∨{I} (ω|ω ◦ EI) as an order parameter for symmetry breaking. This is the one
having a natural generalization to higher form symmetries. Depending on the correlation
functions of charged operators, rather than on the one-point functions, the information it
contains is of a more local nature than the single ball order parameter. We will revisit this
issue in section 4.
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The generalization of (3.54) for a scenario that may display symmetry breaking is
obtained by thinking of all algebras as subalgebras of the theory F . This gives us

O(R1R2) ∨ {I} EI−→ O(R1R2)
l ′ l ′ (3.59)

F(S) ∨G Eτ←− F(S) ∨ {τ} ∨G ,

and certainty relation

SO(R1R2)∨{I} (ω|ω ◦ EI) + SF(S)∨{τ}∨G (ω|ω ◦ Eτ ) = log |G| . (3.60)

This equation generalizes (3.55) to general pure states ω on F , and coincides with (3.55)
when ω is a globally invariant state.

We want to understand the behavior of these relative entropies in different phases.
To this end, we start by explaining how to put bounds on the entropic order parame-
ters. These bounds come from entropies on the algebras of non-local operators, and they
depend on their expectation values. These bounds follow by applying the generic rela-
tions (3.31) and (3.32) to the appropriate complementarity diagram. For example, for the
diagram (3.55) they become

S{I} (ω|ω ◦ E) ≤ SO(R1R2)∨{I} (ω|ω ◦ E) ≤ log |G| − S{τ}
(
ω|ω ◦ E′

)
, (3.61)

and
S{τ}

(
ω|ω ◦ E′

)
≤ SO(S)∨{τ}

(
ω|ω ◦ E′

)
≤ log |G| − S{I} (ω|ω ◦ E) . (3.62)

After describing the generic formulas for the bounds, we will analyze the order parameters
in symmetric and broken symmetry phases.

3.4.1 Bounds from operator expectation values

The algebra of a fixed set of twists was described in section 2.1. We have

τgτh = τgh , U(g)τhU(g)−1 = τghg−1 , (3.63)

where U(g) are the global symmetry operators. For non-Abelian groups, the twists are not
(in general) observables since they are not invariant under the symmetry group. We can
produce invariant combinations by averaging over the conjugacy classes24

τc =
∑
h∈c

τh . (3.64)

These invariant twists generate a closed algebra with fusion coefficients given by the fusion
of conjugacy classes (see equation (2.18)). This is an Abelian algebra. For computing the

24We will be writing the formulas for a finite group, but similar formulas appear for Lie groups. As usual,
we just need to change the sums by integrals with a measure given by the Haar measure on the Lie group
manifold.
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entropy in this Abelian algebra, it is convenient to choose a diagonal basis for the fusion.
Define the projectors

Pr = dr
|G|

∑
g

χ∗r(g)τg . (3.65)

They are labeled by the set of inequivalent irreducible representations. We have

PrPr′ = δr,r′ Pr ,
∑
r

Pr = 1 . (3.66)

We are interested in the conditional expectation Eτ in this algebra, which is dual to the
conditional expectation associated with the intertwiners. This kills all twists except the
identity [22]

Eτ (τg) = δg,11 . (3.67)

Therefore, from (3.65) we get

Eτ (Pr) = d2
r

|G|
1 . (3.68)

Any state ω in this Abelian algebra is determined by the probabilities on the different
projectors

qr := 〈Pr〉 . (3.69)

Then, the relative entropy becomes

S{τ}(ω|ω ◦ Eτ ) = log |G|+
∑
r

qr log qr −
∑
r

qr log d2
r . (3.70)

This is the formula for the twists relative entropy presented in [22]. We have S{τc}(ω|ω ◦
Eτ ) ∈ [0, log |G|], which follows by taking into account |G| =

∑
r d

2
r . If the group is Abelian,

this is equal to log |G| − S{τc}, where S{τc} is the von Neumann entropy on the (invariant)
twist algebra.

We want now to compute the relative entropy in the algebra generated by the in-
tertwiners. In [22], this computation was approached by enlarging the theory to include
charged operators. Although the quantitative final result is bound to be the same, it proves
useful for later use in gauge theories to have an approach based only on neutral operators.
We should then work only with the algebra of intertwiners. As shown in appendix A,
this is again an Abelian algebra where the intertwiner Ir corresponding to the irreducible
representation r is represented by the fusion matrix N (r), whose entries are given by the
coefficients of the fusion of representations N (r)

r′r′′ = nr
′′
rr′ . These matrices commute with

each other because of the commutativity of the fusion algebra. Therefore they can be
simultaneously diagonalized. It is convenient to label the basis vectors, where the matrices
are simultaneously diagonalized, by the conjugacy classes c of the group. The number of
conjugacy classes is the same as the number of irreducible representations. The expression
of the matrices on this basis is given by

N (r) ≡ δc,c′ χr(c) = diag(χr(c)) . (3.71)
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This results in the right algebra because the product of characters satisfy

χr(c)χr′(c) =
∑
r′′

nr
′′
rr′χr′(c) . (3.72)

From this formula and the orthogonality of characters, it is simple to derive

N (r)
r1r2 =

∑
c

dc
|G|

χr1(c)χr(c)χr2(c)∗ , (3.73)

where dc is the number of elements in the conjugacy class c. The matrix S that diagonalizes
the matrices N (r), namely S−1N (r)S = diag(χr(c)), is

Sr1,c =
√
dc
|G|

χr1(c) , S−1
c,r1 =

√
dc
|G|

χr1(c)∗ . (3.74)

This matrix is unitary. In terms of these matrices25

N (r)
r1r2 =

∑
c

Sr1,c
Sr,c
S1,c

S∗r2,c , (3.75)

which is Verlinde’s formula for group representations. The projectors over the diagonal
are now

Pc =
∑
r

dc
|G|

χ∗r(c)I(r) ≡
∑
r

dc
|G|

χ∗r(c)N (r) , (3.76)

as follows from the orthogonality of the characters. The conditional expectation kills all
non-trivial intertwiners

EI(N (r)) = δr,1 1 , (3.77)

and therefore
EI(Pc) = dc

|G|
1 . (3.78)

Defining the probabilities of the minimal projectors

qc = 〈Pc〉 , (3.79)

the associated relative entropy becomes

SI(ω|ω ◦ EI) = log |G|+
∑
c

qc log qc −
∑
c

qc log dc . (3.80)

The interest of formulas (3.70) and (3.80) is that they relate entropic quantities with
operator expectation values.

The certainty relation plus monotonicity of relative entropy imply the bounds (3.61)
and (3.62). These can be used now to constrain the order parameters by using the operator
expectation values. For example we have that

log |G|+
∑
c

qc log qc−
∑
c

qc log dc ≤ SO(R1R2)∨{I} (ω|ω ◦ EI)≤−
∑
r

qr log qr+
∑
r

qr log d2
r .

(3.81)
25There is a dual version of these formulas in the basis of representations, where twists are diagonal

while the intertwiners are non-diagonal. These are based on the fusion rules of the conjugacy classes of the
group (2.18) (see [74] page 404).
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3.4.2 Symmetric phase

Below we will only consider finite groups. For Lie groups see [22]. Let us consider the
case of a CFT and two nearly complementary regions given by a ball R1 of radius R and
the complement R2 of a ball of radius R + ε. The two regions are separated by a thin
spherical shell of width ε. As argued in [22], the twist expectation values in a thin shell in
a symmetric phase will be exponentially small in the area A of the shell

〈τc〉 ∼ e−c0
A

εd−2 , τc 6= 1 . (3.82)

The twist does not change the vacuum state in the bulk of the region, and only a local
contribution from the boundary arises. The constant c0 depends on the twist and its precise
form (smearing).

With this information, we can use the formulas in the previous section to put bounds
to the entropic order parameters. We obtain

qr = 〈Pr〉 = dr
|G|

∑
g

χ∗r(g)〈τg〉 = d2
r

G
+ kr e

−c0 A

εd−2 ≡ q̄r + δq̄r , (3.83)

where kr is some constant that does not play an important role in what follows. We have
defined q̄r := d2

r
G , and from the normalization of probability we have that

∑
r δq̄r = 0. This

implies the last term in (3.70), coming from the non-Abelian nature of the group, does not
contribute to the correction. Introducing such probabilities in (3.70) and expanding in δq̄r,
one finds that the first order correction vanishes. The first correction appears at second
order in δq̄r

S{τc}(ω|ω ◦ Eτ ) ∼ e
−2c0 A

εd−2 . (3.84)

To understand the origin of this formula in terms of the intertwiners, we can apply the
ideas of section 3.3. To have such an exponential approach to saturation, one possibility
is to find intertwiners with expectation values exponentially close to 1. Instead of that,
we just need to locate many independent intertwiners along the surface of the shell. The
number of almost uncorrelated intertwiners will be proportional to the area. In the limit
of small separation ε, they can be separated enough between themselves to have small
cross-correlations. Using the results of the previous section 3.3 this implies

S{I}(ω|ω ◦ EI) ∼ log |G| − k e−c1
A

εd−2 , (3.85)

for some constant k. Using (3.84)–(3.85) and the bounds (3.61) and (3.32) that follow from
the certainty relation, we get for the shell order parameter

SO(S)∨{τc} (ω|ω ◦ Eτ ) ∼ e−c
A

εd−2 , (3.86)

where 2c0 < c < c1. The exact value of the dimensionless coefficient c depends on the
theory, which, in general, is not easy to compute.

To match the terminology of line operators in gauge theories, we will call this a perime-
ter law for the shell order parameter, although it seems strange in the present case. We are
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taking the convention that for a non-local operator associated with a region of topology
Sk×Rd−k−1, with a fixed width and large radius R of the sphere Sk, we will call perimeter
law to the case in which the expectation value decays with the exponential of Rk. As we
have discussed above, this is the maximal rate of decay for locally generated operators. We
will call area law if it decays exponentially with Rk+1. This is the maximal possible decay
rate of non-local operators.

From this result, the certainty relation (3.55), by means of (3.61) and (3.32), gives for
the intertwiner order parameter the form

SO(R1R2)∨{I} (ω|ω ◦ EI) ∼ log |G| − k e−c
A

εd−2 , (3.87)

for some constant k. This is the dual version of the perimeter law.
In the vein of adding more intertwiners to improve the lower bound to the intertwiner

relative entropy, one could ask why not locate intertwiners all over the region, and not only
along the boundary. Doing this we obtain a number of intertwiners proportional to the
volume of the region N ∼ V/εd−1. However, for intertwiners localized all over the region,
with one charged operator on each side of the shell, the expectation values decay fast as
we get further from the shell. In fact, these expectation values will decay at least with a
certain power, which depends on the conformal dimension of the charged operator.

〈Ir〉 ∼
ε2∆

R2∆ . (3.88)

The relative entropies over each individual intertwiner will go as ∼ ε4∆

R4∆ . We can make a
rough estimate considering these intertwiners uncorrelated (which is hardly the case in a
CFT) using (3.46). To overcome the area term, we need ∆ < 1/4, which is beyond the
unitarity bound for d ≥ 3. Therefore, the right scaling already arises just by considering a
set of intertwiners close to the entangling surface, consistent with the twist result.

In the opposite geometric limit, in which the distance L between the regions R1 and
R2 is large compared to their size R, the roles of intertwiners and twists are qualitatively
interchanged. In this scenario, the intertwiners decay as

〈I〉 ∼ R2∆

L2∆ , (3.89)

where ∆ is the scaling dimension of the lowest dimensional operator charged under the
group. This gives us a lower bound to the intertwiner order parameter. Noticing that
corrections to saturation on the relative entropy only come at second order, this will scale
as (R/L)4∆. However, from (3.56) and the results about the mutual information for well-
separated regions [75] in a CFT, we get that this is the correct scaling,

SO(R1R2)∨{I} (ω|ω ◦ EI) ∼
R4∆

L4∆ = e−4∆ log(L/R) . (3.90)

This is a logarithmic law. We will also say this is a sub-area law, while the area law, in this
case, would correspond to an exponent linear in L.
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This enforces the following behavior for the twists

SO(S)∨{τc} (ω|ω ◦ Eτ ) ∼ log |G| − k e−4∆ log(L/R) , (3.91)

and it implies the potentially useful fact that, in principle, it is possible to obtain the
leading charged conformal dimension of the theory from the behavior of the expectation
value of the best wide twists.

For two balls in a CFT, these relative entropies are functions of the cross-ratio η, and
we have quite different unrelated behavior in the two limits of η → 0 and η → 1. There is
(apparently) nothing that connects the behavior in the two limits.

In the massive case, the changes are quite obvious. The area law for thin shells is the
same except if we take εm� 1. In this case, the intertwiner contribution is exponentially
suppressed, and we get

SO(R1R2)∨{I} (ω|ω ◦ EI) ∼ 0 , SO(S)∨{τc} (ω|ω ◦ Eτ ) ∼ log |G| . (3.92)

If εm � 1, the twist operators can be chosen such that 〈τ〉 ∼ 1, even if the size of the
shell is large enough compared to ε. This is a constant law for the twist parameter. On
the other hand, for very separated balls, we get

SO(R1R2)∨{I} (ω|ω ◦ EI) ∼ e−2mL , SO(S)∨{τc} (ω|ω ◦ Eτ ) ∼ log |G| − c e−2mL . (3.93)

This corresponds to an area law for the intertwiner parameter. This area law, simple as
it is, can also be understood from a dual point of view, by noticing that we can insert
many uncorrelated twists with approximately constant expectation values in between the
line that separates the two charged operators.

Summarizing, we have described the characteristic pairs area vs. constant laws, and
perimeter vs. sub-area laws, for the dual order parameters of thin regions. These dual
behaviors have a rational explanation in terms of the certainty relation.

3.4.3 Spontaneous symmetry breaking

From the previous discussion, one can anticipate that something qualitatively different is
going to happen for scenarios with spontaneous symmetry breaking. In these cases, the
correlation functions of intertwiners do not go to zero at large distances. The reason is
that the one-point functions of charged operators in the vacuum do not vanish. For R1
and R2 of fixed size and large separation, we get a constant law for the order parameter

SO(R1R2)∨{I} (ω|ω ◦ EI) ∼ const . (3.94)

Choosing charged operators bigger than the SSB scale, we can have large expectation values
〈I〉 ∼ 1. In this limit, we obtain

SO(R1R2)∨{I} (ω|ω ◦ EI) ∼ log |G| . (3.95)

For the dual order parameter, it is interesting to look at the geometry of a thin shell.
In the limit of large radius of the shell, we can now set a volume worth of different and ap-
proximately uncorrelated intertwiners crossing the shell, with constant expectation values.
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Using this large set of intertwiners and the certainty relation it follows, from the results of
section 3.3, that we must have

SF(S)∨{τ}∨G (ω|ω ◦ Eτ ) ∼ e−c V . (3.96)

In other words, we expect the approach to saturation to be exponentially fast in the volume
V of the region enclosed by the shell. This is an “area law” for the shell order parameter
(in the terminology adapted to the loop operators). Again we have area vs. constant laws
for dual order parameters, coming from the certainty relation and the decoupling of the
relevant dual non-local operators.

To study these features in more detail, we consider the simple case of a Z2 broken
symmetry φ → −φ associated with real scalar field with a double-well potential V (φ).
Call the two vacua | ± v〉. Starting with the (non-trivial) twist, we should first find its
expectation value. Taking a large ball R, the expectation value is the path integral in
Euclidean space with a boundary condition

〈τ〉 = Zτ
Z

=
∫
φ(0−,~x)=−φ(0+,~x) ,~r∈R Dφ e−S∫

Dφ e−S
. (3.97)

When analyzing this expectation value, there are subtleties coming from the regularization
at the borders. The operator has to be smeared there. But this smearing will contribute
with a term proportional to the boundary area in the effective action. This will be super-
seded by the volume contribution, as long as the region is sufficiently large. Accordingly,
we will think about the large volume limit and neglect boundary terms.

To compute the expectation value, we use a semiclassical limit. We thus need to find
solutions to the classical equations of motion

∂µ∂
µφ = V ′(φ) , (3.98)

with the appropriate boundary conditions. In this limit, such path integral is computing
a configuration where the field goes to +v at infinity in every direction. To achieve that,
and the boundary condition at t = 0, the field should take the value φ(~x) = 0 at t = 0
inside the ball, and grows positively as we move away from t = 0 in any direction of
time. This is a configuration with a non-trivial field around t = 0 that has the form of
an instanton interpolating between −v and v in the time direction, but where we change
the sign of the negative part of the trajectory. This is still a solution to the equations of
motion because of the action of the twist (see the left panel in figure 8). The action is the
same as the one of the instanton.26 Thus, we are computing an instanton corresponding
to the tunneling from one vacuum to the other inside the spherical region. This has finite
action if we keep the volume large but finite. Analogously, we are computing an overlap
〈τ〉 ≡ 〈v|τ |v〉V = 〈−v|v〉V of the two vacua in the region of volume V . In the large volume

26We can as well compute 〈v|τ g| − v〉 = 〈v|τ |v〉 where g is the global group operation. In this case, the
twisted boundary condition seats outside R and there is nothing in R. We have then to interpolate between
−v and v, so the calculation in this form gives directly the instanton.
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limit, this transition amplitude is just originated from a translation-invariant solution,
for which

d2φ

dt2
= V ′(φ) , (3.99)

which is an instanton in one dimension. One can alternatively think of it as a domain
wall. Call the corresponding one-dimensional action of this one-dimensional instanton SI ,
which, however, has d − 1 dimensions in energy. This is the usual instanton action of a
non-relativistic degree of freedom φ in a double-well potential V (φ) (see [76] for specific
examples and general features). We are ignoring subleading corrections from fluctuations
around the saddle point. The total action has a factor of the volume, and we get

〈τ〉 ∼ e−SIV . (3.100)

This allows us to compute the coefficient of the volume term of the expectation value of
the twist, which does not depend on the shape of the region, as far as this region is large
enough. As opposed to the conformal scenario, the leading coefficient of the exponent can
be explicitly computed. The entropic order parameter in the twist algebra is then given by

S{τ}(ω|ω ◦ Eτ ) ∼ e−2SI V . (3.101)

We remind that the factor of 2 in the exponents appears because the correction to for-
mula (3.70) comes at second order.

We should be able to find a volume scaling using the certainty relation and the inter-
twiner relative entropy as well, connecting (3.94) with (3.96). To find such a contribution,
we need to understand how to choose our intertwiner. First, we define a homogeneously
smeared operator φA over a region A. Doing its spectral decomposition, we define projectors
on the space of positive and negative eigenvalues of φA, namely PA+ and PA− respectively.
Since the global symmetry acts as τAφAτ−1

A = −φA, we then have

τAP
A
± τ
−1
A = PA∓ . (3.102)

Associated with these projectors there is a charged operator V A = PA+ − PA− . This trans-
forms as φ itself. There are similar projectors PB± , associated with homogeneous smearing
of the scalar field for an outside region B. With those, we can find an analogous charged
operator V B in that region. With these charged operators we define the following inter-
twiner I ≡ V AV B, which satisfies I2 = 1. Considering the region B large enough and
〈φ〉 = v > 0, we can set 〈PB− 〉 = 0, 〈PB+ 〉 = 1. Then, the probabilities of the projectors
P± = (1± I)/2 are 〈P+〉 = 1− 〈PA− 〉/2 and 〈P−〉 = 〈PA− 〉/2.

To compute this expectation value, we again turn to the path integral. Now, we are
in the situation of the right panel of figure 8. The value of the field is negative inside the
region at t = 0 because of the insertion of the projector, and the classical solution prefers
to sit at φ = −v there. The solution is now formed by two consecutive instantons taking
us from v to −v and again to v in the time direction. Then, we have

p ∼ e−2SI VA . (3.103)
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ϕ = v

ϕ = v

ϕ = 0

ϕ = v

ϕ = v

ϕ = − v

Figure 8. Left panel: path integral calculation of the expectation value of the twist inserted at
t = 0 on the marked region. The shaded area illustrates the region where the field significantly
deviates from v. Right panel: calculation of the expectation value of the projector P−.

We could have obtained this result also from the approximation 〈v|PA− |v〉 ∼ 〈v| −
v〉A〈−v|v〉A ∼ |〈v|τA|v〉|2.

The relative entropy in the intertwiner algebra is found to be

S{I}(ω|ω ◦ EI) ∼ log(2)− k e−2SI VA , (3.104)

where k includes subleading factors depending on the size of the region. From this, we
get an upper bound to the twist relative entropy. The best bound follows by enlarging A
to cover most of the region. Combining this upper bound with the lower bound arising
from (3.101), we get for the twist order parameter

SF(S)∨{τ}∨G (ω|ω ◦ Eτ ) ∼ e−2SI V . (3.105)

This gives exactly the value of exponent c in (3.96).
For computing an upper bound to the intertwiner order parameter, we could as well

have followed the calculation at the end of section (3.3), considering many regions of size
VA small compared to V . We have to insert the probability p = 〈PA− 〉/2 in formula (3.53).
For N such regions A inside the ball R and covering it, from (3.53) we get

log(2)− S{I}(ω|ω ◦ EI) ∼ e−N SI VA ∼ e−SI V . (3.106)

We get a worse upper bound than (3.105), but still shows the volume law is obligatory
from the existence of multiple uncorrelated intertwiners.

3.4.4 Summary

The entropic order parameters clearly distinguish between the phases of QFT in these
scenarios. The ordinary operator order parameters are usually studied in the limit of sharp
localized unsmeared operators. This means point-like, string-like, surface-like operators,
etc. To compare with these operator order parameters we have analyzed the relative
entropies for “thin” geometries. For example, we consider two balls far away separated
from each other for the intertwiner order parameter and a large thin shell for the twist
order parameter. For these geometries, the symmetry broken phase has a constant law
for the intertwiner relative entropy and specific exponential decay with the volume of
the enclosed regions for the twist parameter. In contrast, in the symmetric phase, this
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behavior is not possible. In the symmetric phase, if the charged fields become gapped,
the intertwiner parameter decays to zero exponentially with the distance at large distances
(an “area law”) and the twist parameter has a constant law. This is the dual behavior of
the SSB phase. The conformal regime is intermediate in the sense that none of the order
parameters displays an “area law” nor a constant law.

It is not so surprising that the physics of these phases are captured by the relative
entropies because they are related to the expectation values of the associated order-disorder
operators. What is interesting is that the entropic approach, due to the certainty relation,
relates, in a quantitative manner, the characterization of the phases in terms of the order
or the disorder parameters. The present approach shows they are dual to each other, the
duality relation given by the certainty relation (3.55).

In this sense, it is quite clear that it would not be possible to have area-area behavior for
both order/disorder parameters. Such putative phase conflicts with the certainty relation.
Indeed, we have seen that the area behavior of one parameter is always tied to the constant
behavior of the other. This is because to fulfill the certainty relation where one parameter
decays exponentially with the area, an area worth of the dual operators with independent
and approximately constant expectation values is necessary. It would be interesting to
prove these interrelations more rigorously.

3.5 Gauge symmetry

We consider the algebra of a simple ring (solid torus) R, which contains non-contractible
one dimensional loops. Its complement R′ contains non contractible Sd−3 surfaces. The
group of non-local operators is Abelian. For d = 4, these two complementary “rings” have
the same topology once we compactify the space at infinity.

Let us first consider d > 4, where the ring and its complement have different topologies.
In analogy with the case of global symmetries, we have two possible acceptable algebras for
the same region R (other algebras containing only subgroups of the non-local operators can
be considered as well). Here, the relevant algebra is the one containing the non-contractible
Wilson loops and the additive operators in R. Dually, for R′, the relevant algebra is the
one containing the non-breakable ’t Hooft loops and the additive operators in R′. To ease
the notation, and to highlight the type of non-local operators and algebra a given region
contains, in this section, we rename the different algebras as

A(R) := Aadd(R) , A(R′) := Aadd(R′) , (3.107)
AW (R) := Aadd(R) ∨ {W} , AT (R′) := Aadd(R′) ∨ {T} .

In d > 4, notice that AW (R) ≡ Amax(R) and AT (R′) ≡ Amax(R′).
Any element x ∈ AW (R) can be decomposed as

x =
∑
r

xrWr , (3.108)

for a fixed set {Wr} of non locally generated Wilson loop operators going along the ring
R, where r are the irreducible representations of the corresponding Abelian group Z (the
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center of the gauge group for pure gauge theories). The elements xr belong to the additive
algebra A(R). We can now use the conditional expectation that kills the Wilson loops
previously studied

EW : AW (R)→ A(R) , EW (x) = x1 . (3.109)

Then, we have two natural states on AW (R). The first one is the vacuum ω, and the second
is ω ◦EW . A “magnetic” order parameter (since it measures magnetic fluctuations) is then
given by

SAW (R)(ω|ω ◦ EW ) . (3.110)

Analogously, any operator y ∈ AT (R′) can be written as

y =
∑
z

yz Tz , (3.111)

where the subindex z runs over Z. We can again define a conditional expectation that
eliminates the non-trivial ’t Hooft loops

ET : AT (R′)→ A(R′) , ET (y) = y1 . (3.112)

The “electric” order parameter is then

SAT (R′)(ω|ω ◦ ET ) . (3.113)

Both of these order parameters vanish for theories having only global symmetries, which
do not have duality problems for rings. In the same way, the order parameters for global
symmetries vanish for theories containing only gauge sectors. The order parameters only
detect their associated symmetries.

Considering this scenario, the observations done until this moment can be condensed
in the following complementarity diagram

AW (R) EW−→ A(R)
l ′ l ′ (3.114)

A(R′) ET←− AT (R′) ,

with an associated entropic certainty relation

SAW (R) (ω|ω ◦ EW ) + SAT (R′) (ω|ω ◦ ET ) = log |Z| . (3.115)

Let us now consider the case of d = 4, where R and R′ have the same topology. Both
are conventional rings once we compactify the space at infinity. In other words, ’t Hooft
loops are one dimensional loops. This implies that the maximal algebra for R, namely
(A(R′))′,27 contains both non-local Wilson and ’t Hooft loops, all based on R. We call this
maximal algebra

AWT (R) := (A(R′))′ = A(R) ∨ {Wr} ∨ {Tz} . (3.116)
27We remember that we are calling A(R) to the additive (minimal) algebra.
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These two sets of non-local loops can be chosen such they commute within each other, and
we can expand a general element x ∈ AWT (R) as

x =
∑
z,r

xz,r TzWr . (3.117)

We can also define a new conditional expectation EWT : AWT (R) → A(R) satisfying
EWT (x) = x1,1. In this case, the complementarity diagram reads

AWT (R) EWT−→ A(R)
l ′ l ′ (3.118)

A(R′)
E′WT←− AWT (R′) ,

with an associated entropic certainty relation

SAWT (R) (ω|ω ◦ EWT ) + SAWT (R′)
(
ω|ω ◦ E′WT

)
= 2 log |Z| . (3.119)

As explained in section 2.2.5, charged fields can break the group formed by non-
local Wilson and ’t Hooft loops {WrTz} to subgroups, which may not have this particular
product structure. The above still applies to such a scenario just by taking the conditional
expectations that kill all remaining non-local operators, and where 2 log |Z| is replaced by
the order of the group of non-local operators. In the above scenario, or more generally when
the group of non-local operators has a subgroup, we can choose other non-local algebras
associated with such subgroups and define their corresponding relative entropies (order
parameters). We describe these parameters in the case of a {WrTz} group.

There are other possible choices of algebras for R. One is AW (R) := A(R) ∨ {Wr},
which contains the non-local Wilson loops but excludes the non-local ’t Hooft loops. Equiv-
alently, we have AT (R) := A(R) ∨ {Tz}, which contains the non-local ’t Hooft loops
but excludes non-local Wilson loops. This leads to two other natural order parameters,
SAW (R)(ω|ω ◦ EW ) and SAT (R)(ω|ω ◦ ET ). The associated complementarity diagrams are

AW (R) EW−→ A(R) AT (R) ET−→ A(R)
l ′ l ′ l ′ l ′

AW (R′)
E′T←− AWT (R′) , AT (R′)

E′W←− AWT (R′) .
(3.120)

The certainty relations read in this case

SAW (R)(ω|ω ◦ EW ) + SAWT (R′)(ω|ω ◦ E′T ) = log |Z| , (3.121)
SAT (R)(ω|ω ◦ ET ) + SAWT (R′)(ω|ω ◦ E′W ) = log |Z| . (3.122)

We can show that these relative entropies are not all independent. We will adopt here
a simplified notation for the relative entropies detailing only the content of the non-local
operators of the two algebras connected by the conditional expectation. For example, we
define SWT,0(R) := SAWT (R) (ω|ω ◦ EWT ) and SWT,T (R) := SAWT (R) (ω|ω ◦ EW ). Using
this notation, the certainty relations described above are

SW,0(R) + SWT,W (R′) = ST,0(R) + SWT,T (R′) = log |Z| , (3.123)
SWT,0(R) + SWT,0(R′) = 2 log |Z| . (3.124)
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Using the conditional expectation property [77], we obtain

SWT,0(R) = SW,0(R) + SWT,W (R) = ST,0(R) + SWT,T (R) . (3.125)

These relations combined give, for example, the symmetry relations

ST,0(R) + SW,0(R′) = SW,0(R) + ST,0(R′) . (3.126)

Curiously, from these observations, it follows that all asymmetries between parameters
corresponding to Wilson loops and the ones corresponding to ’t Hooft loops are equal

SW,0(R)− ST,0(R) = SW,0(R′)− ST,0(R′) = SWT,T (R)− SWT,W (R)
= SWT,T (R′)− SWT,W (R′) . (3.127)

If there was a form of duality under the interchange of non-additive electric and magnetic
loops, all these quantities would be zero. Finally, it is worth mentioning that these relative
entropies satisfy certain inequalities. From monotonicity of the relative entropy, we have

SWT,0(R) ≥ SW,0(R), ST,0(R) , SWT,T (R) ≥ SW,0(R) , SWT,W (R) ≥ ST,0(R) . (3.128)

These relations and (3.125) imply

SWT,0(R) ≥ SW,0(R) + ST,0(R) . (3.129)

This last inequality also follows from the commuting square property of the conditional
expectations EW , ET , and EWT = EW ◦ET = ET ◦EW , and their respective algebras [77].

3.5.1 Bounds from Wilson and ’t Hooft operator expectation values

The algebra generated by an independent set of non-local ’t Hooft loops is isomorphic to
the algebra of an Abelian group Z, whereas the algebra generated by an independent set
of non-local Wilson loops is isomorphic to the algebra of its (irreducible) representations.
Therefore, the formulas for the relative entropies for these algebras are the ones obtained
for twist and intertwiners, but specializing for Abelian groups. In particular, the algebra
of a fixed set of ’t Hoof loops is

Tz1Tz2 = Tz1z2 , (3.130)

where the z1, z2 ∈ Z. All these operators are unitary. Again, it is convenient to define
projectors labeled by irreducible representations

Pr := |Z|−1 ∑
z

χ∗r(z)Tz , PrPr′ = δr,r′ Pr ,
∑
r

Pr = 1 . (3.131)

The conditional expectation is analogous to the twist conditional expectation (3.67)

ET (Tz) = δz,1 , ET (Pr) = 1
|Z|

. (3.132)

Any state ω in this Abelian algebra is determined by the probabilities of the different
sectors

qr = 〈Pr〉 . (3.133)
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The relative entropy in the algebra of the ’t Hoof loops becomes

S{Tz}(ω|ω ◦ ET ) = log |Z|+
∑
r

qr log qr = log |Z| − ST , (3.134)

where ST is the von Neumann entropy over the ’t Hooft loop algebra. We have S{T}(ω|ω ◦
Eτ ) ∈ [0, logZ].

For the Wilson loops, the situation is similar but replacing representations by elements
of the group and vice versa. The minimal projectors of the Algebra are then

Pz := |Z|−1 ∑
r

χ∗r(z)Wr , (3.135)

with probabilities
qz = 〈Pz〉 . (3.136)

The conditional expectation kills all non-trivial Wilson loops,

EW (Wr) = δr,1 , EW (Pz) = 1
|Z|

. (3.137)

The relative entropy in the algebra of Wilson loops becomes

S{Wr}(ω|ω ◦ EW ) = log |Z|+
∑
z

qz log qz = log |Z| − SW , (3.138)

where SW is the von Neumann entropy on the Wilson loop algebra.
Reducing the certainty relation to the subalgebras of non-local Wilson and ’t Hooft

loops (using monotonicity of the relative entropy) and using the previous expressions, we
derive an uncertainty relation for the von Neumann entropies

log |Z| ≤ SW + ST . (3.139)

3.5.2 Ring order parameter for the Maxwell field

In this section, we compute upper and lower bounds for a ring relative entropy for the
free Maxwell field. We find the behavior of this relative entropy to be surprisingly well
determined by these bounds.

Let us take a ring formed by the revolution around the z axes of a disk D of radius
R, such that the inner radius of the ring is L (see figure 9). In this case, Aadd(R) is the
additive algebra of the electric and magnetic fields inside the ring.28 For the Maxwell field,
the symmetry group of the non-local operators in a ring forms an infinite non-compact
group R2 of electric and magnetic charges, and the order parameters arising from the
comparison of Amax(R) and Aadd(R) are divergent for any R. Therefore, we consider the
bigger algebra for R a subalgebra of the maximal one. This is obtained by adding to
Aadd(R) a closed group of Wilson loops corresponding to charges that are integer multiples
of some fixed charge q > 0. We call this algebra AWq(R). We will be interested in the
relative entropy SAWq (ω|ω ◦EW ) for this choice of algebra, where EW eliminates the non-
additive Wilson loops. In the following, we adopt the simplified notation of the previous
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Figure 9. A ring formed by the revolution around the z axes of a disk D of radius R, such that
the inner radius of the ring is L.

section and call simply A(R) to the additive algebra Aadd(R) and AWT (R) to the maximal
one Amax(R).

The complementarity diagram is then

AWq(R) EW−→ A(R)
l ′ l ′ (3.140)

AW,Tg(R′)
ET←− AWT (R′)

The algebra AW,Tg(R′) contains all non-local Wilson loops, and the non-local ’t Hooft
loops with charges integer multiples of g := 2π/q. These are the ones that commute with
the Wilson loops in AWq(R). The difference between AWq(R) and A(R) is a group Z of
Wilson loops, while the difference between AWT (R′) and AW,Tg(R′) is its dual group U(1)
of ’t Hooft loops. The dual conditional expectation, denoted by ET = E′W , eliminates the
’t Hooft loops with non-integer multiple of the minimal magnetic charge g. Because these
dual groups contain an infinite number of elements, the index is infinite. It will turn out
that the relative entropy SAWq (R)(ω|ω◦EW ), arising from a discrete group, is finite, though
it can take arbitrarily large values depending on the geometry. The complementary relative
entropy SAWT (R′)(ω|ω ◦ET ) diverges, as it should be due to the divergence on the index in
the certainty relation.29 However, we will be able to use a subtracted form of the certainty
relation to get an upper bound to SAWq (R)(ω|ω ◦ EW ) from the expectation values of the
’t Hooft loops.

A choice of smeared Wilson loops can be written in cylindrical coordinates, appropriate
for the ring geometry, as

Wqn = ei q n
∫
D
dr dz α(r,z)

∫ 2π
0 dϕ r (ϕ̂·A(r,z,ϕ)) . (3.141)

28The radius of the torus R should not be confused with the name of the ring-like region itself.
29The divergence in the relative entropy, due to a continuous group of non local operators, appears for

SAWq (R)(ω|ω ◦ EW ) as a − log(q) behaviour in the limit of a continuous group q → 0.
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We have used smearing functions localized at t = 0. To quantize the charge, we have to
impose ∫

D
dr dz α(r, z) = 1 . (3.142)

These loop operators form a group Z that gives rise to the following ring algebra

AWq = A ∨ {Wqn} . (3.143)

This algebra is independent of the smearing functions α since changes in α can be produced
by additive operators in the ring.

Lower bound. Let start by computing a lower bound to this relative entropy. We
evaluate the relative entropy in the subalgebra Wq generated by the non-local Wilson
loops (3.141) without additional additive operators. By monotonicity of relative entropy,
we have

SWq(ω|ω ◦ EW ) ≤ SAWq (ω|ω ◦ EW ) . (3.144)

The algebra {W} of Wilson loops is Abelian, and it can be represented as the pointwise
multiplicative algebra of functions on k ∈ [−π, π) by the identification

Wqn ↔ fn(k) = eikn . (3.145)

The probability density in the k-space, corresponding to the state ω, is then given by the
relation

〈Wqn〉 =
∫ π

−π
dk P (k) eikn . (3.146)

On the other hand, being exponential operators in a free theory, the Wilson loops have
expectation values

〈Wqn〉 = e−
1
2 q

2n2 〈Φ2
B〉 , (3.147)

where ΦB =
∫
D dr dz α(r, z)

∫ 2π
0 dϕ r (ϕ̂ · A(r, z, ϕ)) is the magnetic flux operator. Then,

using Poisson summation formula for inverting (3.146), we get

P (k) =
∞∑

n=−∞

e−ink

2π e−
1
2 q

2n2〈Φ2
B〉 = e

− k2
2q2〈Φ2

B
〉

√
2π
√
q2〈Φ2

B〉
Θ3

(
ikπ

q2〈Φ2
B〉
, e
− 2π2
q2〈Φ2

B
〉

)
, (3.148)

where Θ3 is the elliptic function. This gives the probability distribution corresponding to
the vacuum state. The state ω ◦ EW on the algebra Wq of Wilson loops just gives zero
expectation value to all Wilson loops except for n = 0, which corresponds to the identity
operator. Then, the probability distribution in the k-space corresponding to the state
ω ◦ EW is the uniform distribution Q(k) = (2π)−1. Then, the relative entropy is

SWq(ω|ω ◦ EW ) =
∫ π

−π
dk P (k) log(P (k)/Q(k)) =

∫ π

−π
dk P (k) log(2πP (k)) . (3.149)

This depends through (3.148) on the smearing function α and the “elementary” charge q.
Later, we will analyze this dependence in more detail.
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A simplification of these expressions can be obtained in the limits of large and small
q2〈Φ2

B〉. For q2〈Φ2
B〉 � 1, we can convert the sum (3.148) into an integral, and get

P (k) ∼ e
− k2

2q2〈Φ2
B
〉√

2πq2〈Φ2
B〉

, (3.150)

SWq(ω|ω ◦ EW ) ∼ 1
2

(
log

(
2π

q2〈Φ2
B〉

)
− 1)

)
, q2〈Φ2

B〉 � 1 . (3.151)

Note that in the limit of a non compact Wilson loop group q → 0, this relative entropy
diverges logarithmically with the charge as SWq(ω|ω ◦ EW ) ∼ −1

2 log q2, and the same
happens for the ring order parameter SAWq (ω|ω ◦ EW ).

In the opposite limit, q2〈Φ2
B〉 � 1, only the first terms in the sum (3.148) give a

non-negligible contribution, and we get

P (k) ∼ 1
2π + cos(k)

π
e−

1
2 q

2〈Φ2
B〉 , (3.152)

SWq(ω|ω ◦ EW ) ∼ e−q
2〈Φ2

B〉 , q2〈Φ2
B〉 � 1 . (3.153)

The best lower bound is obtained for the largest relative entropy for the subalgebra. This
corresponds to a smearing function in which 〈Φ2

B〉 is minimal, producing the largest differ-
ence between the ω and ω ◦ EW expectation values. These latter are zero for non-trivial
Wilson loops. To solve this problem, we first express 〈Φ2

B〉 in terms of α. From (3.141),
writing the (r, z) coordinates as a vector u ∈ D, we have

〈Φ2
B〉 = α ·K · α =

∫
D
d2u d2u′ α(u)K(u, u′)α(u′) , (3.154)

K(u, u′) = rr′

2π

∫ 2π

0
dϕ

cos(ϕ)
(z − z′)2 + r2 + r′2 − 2rr′ cos(ϕ)

= 1
2

(
(z − z′)2 + r2 + r′2√

((z − z′)2 + r2 + r′2)2 − 4r2r′2
− 1

)
, (3.155)

where in (3.155) we have used the correlator of the vector potential in Feynmann gauge

〈Ai(x)Aj(0)〉 = 1
(2π)2

δij
x2 . (3.156)

Now, from (3.155), we see that finding α such that 〈Φ2
B〉 is minimal corresponds to mini-

mizing α ·K · α subject to the constraint α · 1 = 1, where 1(u) = 1 is the function that is
identically 1 on the disk D. The solution is

α = K−1 · 1
1 ·K−1 · 1 ≡

∫
D d

2uK(−1)(u, u′)∫
D d

2u d2u′K(−1)(u, u′)
, (3.157)

〈Φ2
B〉 = α ·K · α = (1 ·K−1 · 1)−1 =

(∫
D
d2u d2u′K(−1)(u, u′)

)−1
. (3.158)

These depend on the ring parameters L and R only through the cross-ratio

η = R2

(R+ L)2 ∈ (0, 1) , (3.159)
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η = 1/200 η = 7/10

Figure 10. Three dimensional plot of the smearing function α that minimizes the flux. In this
example, η = 1/200 (left) and η = 7/10 (right).

which determinss the geometry of the ring (see appendix D). Consequently, the lower bound
SWq(ω|ω ◦ EW ) will also be a function of the cross ratio η (and q). We have computed
numerically the smearing function (3.157) discretizing the kernel in a square lattice with
site labels (i, j)↔ (r, z). In these coordinates, the ring (R,L) is given by the set of points
(i, j) such that (i−L−R)2 +j2 ≤ R2 with L ≤ i ≤ L+2R and −R ≤ j ≤ R. Alternatively,
for the ring (R, η), we have (i− R(1−√η)√

η −R)2 + j2 ≤ R2 with R(1−√η)√
η ≤ i ≤ R(1−√η)√

η +2R,
and −R ≤ j ≤ R. As it shown in figure 10, α evolves from being rotationally invariant
but mostly concentrated on the boundary for small η (thin ring), to a crescent moon
concentrated on the inner left boundary of the disk for η ∼ 1.

The relative entropy can be solved analytically in terms of η for the opposite regimes
L/R� 1 and L/R� 1. Let us start by considering the limit of thin rings η � 1. In this
case, the expression of the kernel K is rotational and translational invariant

K(u, u′) ∼ L

2
1

|u− u′|
. (3.160)

Moreover, in this regime, K ·α is proportional to the Coulomb potential, and therefore, the
condition K · α = const means α is proportional to a charge density on a conductor disk.
The solution to this problem can be obtained for squeezed ellipsoids using oblate spherical
coordinates and then taking the limit of the disk. The solution is

α = 1
2πR
√
R2 − r̃2

, (3.161)

where r̃ is the radial coordinate in the disk. This is in agreement with the profile shown
in figure 10 for η = 1/200. From (3.160) and (3.161), we see that the flux that gives the
best lower Wilson loop bound for large L/R and fixed q satisfies

〈Φ2
B〉 = π

4
L

R
. (3.162)

This gives an exponentially small relative entropy

SWq(ω|ω ◦ EW ) ∼ e−q2 π
4
L
R ∼ e−q2 π

4 η
−1/2

, ηq−4 � 1 , η � 1. (3.163)

Now we study the opposite regime L/R � 1. For this geometry corresponding to
η ∼ 1, it is convenient to consider the complementary region of the ring. This is a thin
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ring with cross-ratio η̃ = 1 − η corresponding to the ratio L̃/R̃ � 1 of the new radius of
the torus. Then, in this limit, the original geometry of a ring with L/R � 1 turns out to
approach a much simpler one given by the complement of a large tube of radius R̃. The
smear function in this setup is translation invariant along the z direction, and the kernel
K is the same as the one already found above. Moreover, translation invariance implies
that the equivalent problem cannot depend on z but only on the radial coordinate r

α(r, z) = α̃(r)
2πL̃

, with
∫ ∞
R̃

dr α̃(r) = 1 , (3.164)

〈Φ2
B〉 = (2πL̃)−1

∫
dr dr′ α̃(r)K̃(r, r′)α̃(r′) , (3.165)

K̃(r, r′) =
∫ ∞
−∞

dz K(z, r, r′) . (3.166)

We could not solve this limit analytically. However, employing dimensional arguments, the
flux giving the best lower bound in this limit has to be proportional to R̃/L̃

〈Φ2
B〉 = c

R̃

L̃
, (3.167)

where the constant c can be evaluated numerically by inverting a discretized version of the
kernel K̃. We get

c ' 1
π
∼ 0.318 . (3.168)

The relation between new and original variables can be obtained from the cross-ratio in
this limit (see appendix D)

1− η = 2L
R

= η̃ = R̃2

L̃2 . (3.169)

Finally, from (3.151), (3.162) and (3.169), the best lower bound is

SWq(ω|ω ◦ EW ) ∼ 1
2

log

√2π
q2c

√
R

L

− 1

 (3.170)

= 1
2

(
log

( 2π
q2c

(1− η)−
1
2

)
− 1

)
, q4(1− η)� 1, (1− η)� 1 .

From the above equation, the relative entropy increases logarithmically for wide rings
R/L→∞.

Upper bound. Having found a lower bound, let us now proceed with an upper bound.
Such an upper bound can be found by considering the dual algebra of ’t Hooft loops in the
complement ring. Regularizing the continuous group by discrete subgroups, and taking the
limit afterward, we can still use the certainty relation to put an upper bound based on the
statistics of the ’t Hooft loops on R′. The divergences of the index and the complementary
relative entropy SAWT

(ω|ω ◦ ET ) cancel to each other when we use an algebra of ’t Hooft
loops to get upper bounds. We then get (see appendix E)

SAWq (ω|ω ◦ EW ) ≤ ST − STg =: ∆S , (3.171)
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where ST is the entropy in the full algebra of ’t Hooft loops, and STg is the one in the
algebra of loops with magnetic charges, which are integer multiples of

g = 2π
q
, (3.172)

due to the Dirac quantization condition. Note that the upper bound (3.171) is not (at
least in an evident way) a relative entropy, but a difference of entropies on continuous
Abelian algebras. This is the result of applying the entropic certainty and uncertainty
relations restricted to the case of a subgroup30 of the total symmetry gauge group (see
appendix E). To calculate the entropy in T , we note that this algebra is represented as the
one of complex-valued functions on the full real line by the identification Tx ↔ eixk with
x ∈ R. The probability density, corresponding to the state ω, has then a formula analogous
to (3.150). Substituting the sum by an integral in (3.148), we get

P (k) = e
− k2

2〈Φ2
E
〉√

2π〈Φ2
E〉

, (3.173)

giving an entropy ST

ST = −
∫ +∞

−∞
dk P (k) logP (k) = 1

2
(
1 + log(2π〈Φ2

E〉)
)
. (3.174)

Regarding the entropy STg , the calculation follows the same line as the lower bound
one. Note the ’t Hooft loops in Tg are represented as eigkn, k ∈ g−1[−π, π). A calculation
analogous to the one in the previous section gives the probability density

Q(k) = e
− k2

2〈Φ2
E
〉√

2π〈Φ2
E〉

Θ3

(
ikπ

g〈Φ2
E〉
, e
− 2π2
g2〈Φ2

E
〉

)
. (3.175)

The entropy is then

STg = −
∫ π/g

−π/g
dk Q(k) logQ(k) . (3.176)

The upper bound is then given by ST − STg using equations (3.174) and (3.175). This is
a function of g ≡ (2π)/q and 〈Φ2

E〉. Again, we have to use the best loop smearing with
the smallest 〈Φ2

E〉 to get the lowest entropy difference and the best upper bound. By
electromagnetic duality, this is given by the same function used for the magnetic flux, but
evaluated in a complementary cross-ratio

〈Φ2
E〉(η) = 〈Φ2

B〉(1− η) . (3.177)

Let us then compute the limits of wide and thin loops. The limit g2〈Φ2
E〉 � 1 allows

us again to convert the sums into integrals and integrate over the real line in (3.176). The
30We are only considering discrete charges multiples of q.
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leading order in STg exactly cancels ST . The entropy difference is given by the following
integral

∆S = −2
∫ ∞
π/g

dk
e
− k2

2〈Φ2
E
〉√

2π〈Φ2
E〉

log

 e
− k2

2〈Φ2
E
〉√

2π〈Φ2
E〉

 ∼
√

2π√
g2〈Φ2

E〉
e
− π2

2g2〈Φ2
E
〉 . (3.178)

Replacing 〈Φ2
E〉 ∼ cR/L and g = 2π/q, we get

∆S = 1
2

√
q2L√

2πcR
e−

q2L
8cR ,

L

R
� 1 , q2L

R
� 1 , (3.179)

which is compatible with (3.163) because c ≥ (2π)−1. This confirms, in this regime, that
the relative entropy has a perimeter law

SAWq (ω|ω ◦ EW ) ∼ e−x q2 L
R , 0.39 ∼ (8c)−1 ≤ x ≤ π/4 ∼ 0.78 . (3.180)

For g2〈Φ2
E〉 � 1, we get Q(k) ∼ |g|2π up to exponentially small terms. Then, we get

∆S = ST + log(g/(2π)) = 1
2
(
1 + log(g2〈Φ2

E〉/(2π))
)
. (3.181)

From (3.162) and (3.177), we get 〈Φ2
E〉 = π

4

√
R
2L and

∆S = 1
2

log

 π2

2
√

2q2

√
R

L

+ 1

 ,
R

L
� 1 , q−4R

L
� 1 . (3.182)

This is compatible with (3.170).
The upper and lower bounds give a surprisingly precise determination of the ring order

parameter in this limit,

SAWq (ω|ω ◦ EW ) ∼ 1
4 log

(
R

q4L

)
+ κ ,

R

L
� 1 , q−4R

L
� 1 (3.183)

with

0.81 ∼ 1
2 log

(√
2π
ce

)
≤ κ ≤ 1

2 log
(
π2e

2
√

2

)
∼ 1.12 . (3.184)

We conclude that, while the relative entropy in the ring can be very large for thick rings,
it always differs from the one on the best Gaussian Wilson loop algebra by less than half
a bit.

The numerical calculation of the lower and upper bounds on intermediary regimes
is shown in figure 11 for different charges. The upper pair of curves corresponds to the
electron charge.
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q = 2π

q = 1

q = 4πα

0.0 0.2 0.4 0.6 0.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

�

SAWq (�|� � EW )

Figure 11. Relative entropy upper (black) and lower (red) bounds for different charges, using
numerical evaluation of the function 〈Φ2

B〉(η) (see text). The lowest pair of curves correspond to
the case of equal electric and magnetic charges q = g =

√
2π. The upper pair to the electron charge.

At η = 1, the curves diverge logarithmically. Approaching η = 0, they go to zero exponentially
fast. This is not seen in the two upper curves because it happens for quite a small η.

3.5.3 Ring order parameters in CFT’s

For a CFT there are no scales and the order parameters are dimensionless conformally
invariant functions of the geometry. One can take advantage of the conformal symmetry
and consider the toroidal rings previously described for the Maxwell field. We will consider
d = 4 in this section. The relative entropies must be a function of the cross-ratio η

(see equation (3.159)). The complementary ring has a cross-ratio 1 − η, as described in
appendix D. All relative entropies are increasing functions of η due to monotonicity.

For small width R and large size L, all relative entropies associated with the ring
should vanish exponentially fast in the perimeter

S ∼ e−c
L
R , (3.185)

matching the behavior of the loop operator expectation values. Indeed, the loop operators
in this ring have a perimeter law, and this gives a lower bound. An upper bound follows
from the certainty relation. Using a perimeter worth of small loops, wrapped around the
thin ring and well separated between themselves, we can show a perimeter law for an upper
bound for thin loops. This follows from the ideas described in section 3.3 about how to
improve bounds with the help of uncorrelated dual operators. However, we cannot produce
stronger upper bounds using larger dual loops crossing the bulk of the ring. This is because
these large dual loops expectation values must decay fast with the size and have non-trivial
correlations in the conformal case, preventing the direct application of the ideas in 3.3.

Accordingly, for large width, we expect the parameters to saturate the bound and
approach log |Z| in the finite group case. From the certainty relation, we expect

S ∼ log |Z| − k e−c
L
R . (3.186)
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For a continuous Abelian group U(1)n, the order parameter involving the elements of the
group is divergent for any η because the group is continuous. It has to be so to match the
certainty relation with divergent index too. However, the dual group of representations Z∗

is infinite and discrete for a compact group Z. We expect that the corresponding relative
entropy to behave as in the case of n Maxwell fields studies in the previous section. In the
limit of wide rings R/L� 1, we then have

SWT,0(R) ∼ n

2 log(R/L) , SW,0(R), ST,0(R), SWT,T (R), SWT,W (R) ∼ n

4 log(R/L) .
(3.187)

The case of finite groups and conformal symmetry is quite special, given the tendency
of gauge theories based on non-Abelian Lie groups to confine. It is achieved with a special
balance of gauge and matter degrees of freedom. The matter fields should transform accord-
ingly the adjoint representation of the gauge group to preserve the generalized symmetry
of the center of the gauge group. A famous case is N = 4 SU(N) SYM theories.

Given the duality relation between η and 1− η, there are some peculiar features in the
conformal case for finite groups. The certainty relation gives

SWT,0(η) + SWT,0(1− η) = 2 log |Z| . (3.188)

In particular, we have
SWT,0(1/2) = log |Z| . (3.189)

Both relations are rather surprising. The relative entropy for a fixed cross-ratio should be
dependent on the dynamics that set the expectations values of the non-local operators and
their relation with the rest of the algebra. The relation (3.189) tells that, for example, in
conformal SYM theories this relative entropy does not depend on the coupling constant.

Likewise, from the other properties studied in section 3.5, we obtain

SW,0(1/2) + SWT,W (1/2) = ST,0(1/2) + SWT,T (1/2) = log |Z| . (3.190)

The first equation is easily understood if there is an analogous to electromagnetic duality
symmetry. However, these equations do not seem to require some form of duality equating
’t Hooft and Wilson loops.

3.5.4 Confinement and Higgs phases

The duality between the confinement and Higgs phases was transparently argued in
’t Hooft’s work [25]. In such a work, he defined the dual disorder parameters, latterly
called ’t Hooft loops. They were defined by their simple commutation relations with the
order parameters (Wilson loops). It was argued that, although the confinement phase
might be difficult to approach given strong coupling issues, the dual physics can be studied
in the Higgs phase at weak coupling.

In the confinement phase, the “electric” charges (the quarks) are confined, and this
can be measured by the area law of the Wilson loop. In the Higgs phase, the magnetic
charges are the ones confined, and the ’t Hooft loops are the operators displaying area law.
The ’t Hooft loop, a “disorder” parameter, is the natural order parameter for the Higgs
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Figure 12. A ring interlocked by thin loops. A number of thin loops proportional to the area can
be placed keeping them separated at a fixed distance.

phase. Although the physics of both phases is similar (or dual), the Higgs phase can be
approached semi-classically.

In this section, we want to analyze what we expect for the entropic order parameters
in these phases. This provides a different perspective to the physics already known, where
new light is shed by the certainty relation. This relation is valid at any coupling, and it
relates the physics of order and disorder parameters. In the confinement-Higgs scenarios,
it relates the physics of Wilson and ’t Hooft loops.

As described for global symmetries, spontaneous symmetry breaking implies that the
expectation value of the intertwiner should go to a constant, and the certainty relation then
implies that the twist expectation values decay exponentially with the volume. In such a
phase, the intertwiner factorizes into the non-vanishing product of one-point functions of
the charged operators. A volume worth of constant intertwiners can be used to induce
a volume law for the twist expectation value. This is very different from the conformal
scenario, where the intertwiner expectation value shows some decay typical of a conformal
field theory, and the twist expectation value decays with the area of the boundary.

For gauge symmetries, we have a very similar picture. Both confinement and Higgs
phases are expected to become gapped. We will focus on the Higgs phase, where we have
semi-classical control. But the same (or dual) behavior is expected in the confinement
phase. The gauge field then becomes massive. This has the consequence that the loop
operators become uncorrelated and, further, as shown below, the Wilson loop displays an
approximately constant behavior. This implies through the certainty relation that the dual
loop (the ’t Hooft loop in the Higgs phase) is bound to display an area law. This is because
we can place an area worth of constant uncorrelated Wilson loops crossing the sectional
area of the ’t Hooft loop as it is shown in figure 12.

In the literature, this phenomenon is interpreted as a symmetry breaking of the ring
generalized symmetry [9]. However, loops are almost always considered as line operators,
without width. In this limit, the loop operator dual to the one displaying area law shows
a perimeter law in general, as it happens in the conformal scenario, rather than a constant
one. This constant behavior of loop operators is invoked in the literature to make a parallel
to the case of spontaneous symmetry breaking of a global symmetry. It is argued that
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the loops can be dressed by local operators to convert the perimeter law into a constant
behavior, while this cannot be done in the case of an area law. But by the very same
means, a constant behavior can be induced as well for any loop operator having perimeter
law, including the conformal case. However, for our purposes, this is unsatisfactory. The
reason is that we need the loop operators to be real (smeared) operators satisfying a group
law. This tells us that they cannot be dressed arbitrarily. There is no way to dress a loop
in the conformal regime to have constant behavior while keeping the group fusion rules.
Otherwise, the corresponding relative entropy will not have the perimeter law dependence
on R/ε that it has. This is not the case of a massive field. The dressing is here replaced
by looking at operators that are smeared in a ring of a certain width. To get a constant
law, we need to widen the ring size and be away from the conformal phase.

To test this behavior, we study the Higgs phase. In this scenario, the gauge field
appearing in the Wilson loop has become massive, and this should lie at the root of the
expected constant scaling. We thus consider a Wilson loop for a massive vector field.
This is of course the case of Wilson loops inside a superconductor, which is a specific
simple scenario of the Higgs phase. In the massive case, the Wilson loop typically shows a
perimeter law. We want to show that with transversal smearing in a size larger than the
scale of the inverse mass, we can do better and obtain a Wilson loop whose expectation
value is (almost) constant, independent of the perimeter.

We have to compute the expectation value of a Wilson loop in the classical regime

〈W 〉 = 〈ei
∫
d4x J(x)·A(x)〉 = e−

1
2

∫
d4x d4y Jµ(x)∆µν(x−y)Jν(y) =: e−V , (3.191)

where the Wightman correlator of a massive vector field is

∆µν(x) =
∫

d4p

(2π)3 e
−ip·xδ(p2 −m2)θ(p0)

(
−gµν + kµkν

m2

)
. (3.192)

Since, for the moment, we are interested in the perimeter term, we take an operator
invariant in the ẑ direction with a current in that direction given by

J(x) = α(y) ẑ , (3.193)

where we have written y = (x0, x1, x2). We also need to normalize the charge of the
operator W accordingly to ∫

dy α(y) = 1 , (3.194)

and impose α(y) to has its support inside the causal development of a region of size R in
the coordinates x1 and x2.

Plugging this into (3.191), and considering a tube of large length L, the leading linear
L dependence of the exponent V becomes

V = 1
2L

∫
d3y1 d

3y2 α(y1)α(y2)G(y1 − y2) , (3.195)

with
G(y) =

∫ ∞
−∞

dx3 ∆33(y, x3) =
∫

d3p

(2π)2 δ(p
2 −m2)θ(p0)e−ip·y . (3.196)
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Writing the smearing functions in momentum space, we obtain from (3.195) the perime-
ter law

V = 1
2L

∫
d3p

(2π)2 δ(p
2 −m2)θ(p0)|α̃(p)|2 . (3.197)

The condition (3.194) on α gives the constraint α̃(0) = 1. The mass shell in (3.197)
is separated from the point p = 0, and the Fourier transform of the smearing function
can be chosen to be exponentially small outside p ∼ R−1.31 Therefore, we can device a
smearing function such that the coefficient of the perimeter goes to zero exponentially fast
formR� 1. Note that a pure spatial smearing function α(y) = δ(t)β(x1, x2) is not allowed
for this exponential suppression, and we can get a power law suppression at most. One
may doubt this improvement from spatial smearing to spacetime smearing given the fact
that the fields at t 6= 0 can still be written at t = 0 using the equations of motion. However,
in writing the fields at t = 0, our loop operator will also contain a term of the conjugate
momentum of A (the electric field) at t = 0 in the exponent. This is what achieves the
additional suppression of the exponent and the increase in the expectation value of the
loop. This is an instance of improvement produced by the locally generated operators on
the expectation value of a non locally generated one.

We conclude that the coefficient of the perimeter law for a massive field can be made
exponentially small for loops wider than the mass scale. We can have an almost constant
law for wide enough Wilson loops. The gap then implies uncorrelated loops, and an area
law for the ’t Hooft loop should arise from the certainty relation.

Let us see directly how this area law appears in the classical regime in the Higgs
phase. The ’t Hooft loop is a singular gauge transformation of the center of the gauge
group on a surface Σ of area AΣ and boundary in a ring R. For simplicity, let us think
in a group Z2, where we have only one (non-trivial) ’t Hooft loop. This is the case of
a spontaneously broken SU(2) gauge theory. To break it without converting the Wilson
loops in the fundamental representation into local operators in the ring, we need to couple
the gauge fields with adjoint Higgs fields. More than one Higgs is necessary to break the
symmetry completely. We will not enter into the details of the model building. We use the
Euclidean path integral to compute the expectation value of the ’t Hooft loop. Far from
the surface Σ, and at both sides of it at x0 = 0, the Higgs fields stay into their vacuum
values such that they are continuous at large distances outside the loop. So we expect a
Higgs configuration that remains in its vacuum value at x0 = 0 at spatial infinity, deviating
from it only near the Σ. We are interested in the area term, so we choose a large loop and
neglect the boundary effects. Then, in this large surface limit, the configuration of interest
is only dependent on the coordinates x0 and x1, where x1 is the coordinate perpendicular
to Σ. The ’t Hooft loop sits at (x0, x1) = (0, 0) in this plane. The two Wilson loops W1
and W2 in the fundamental representation in figure 13 pass through the ’t Hooft loop at
x0 = x1 = 0, closing above and below x0 = 0. They get a factor −1 (the central element
in the gauge group SU(2)) due to the ’t Hooft loop insertion. Then, the configuration is

31It cannot has compact support because the Fourier transform of a function of compact support is an
entire function.
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Σ

ϕ0 ϕ0
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x0

ϕ(θ)

ϕ(θ)

Figure 13. The vortex-instanton configuration giving the ’t Hooft loop expectation value.

such that the circulation Pei
∫ x1<0
x1>0 dxµAµ of the gauge field, on the upper plane and far from

x0 = 0, is −1. The same, in a time reflected manner, happens on the lower plane. The
classical solution is a “vortex-instanton” that exists because of the insertion of the ’t Hooft
loop. The Higgs field, as usual for these vortex configurations, accompanies the rotation of
the gauge field such as to minimize the action. It rotates, from x1 � 0 to x1 � 0, an angle
2π in the group parameter. But, it ends up at the same vacuum value φ0 because a 2π
rotation is the identity on the adjoint representation. The full configuration has the same
action as a 4π rotation vortex. The instanton action SI is a quantity with two dimensions
of energy (it is an action density over the surface). We get

〈T 〉 ∼ e−AΣ SI . (3.198)

This gives a lower bound on the corresponding relative entropies32

SWT,W (R), ST,0(R) & e−2AΣ SI . (3.199)

This also gives an upper bound to the relative entropy corresponding to Wilson loops in
the wide complementary ring.

Now we compute an upper bound. For that, we need to understand how the sufficiently
wide Wilson loop in the fundamental representation approaches maximal expectation value.
We follow the same route as for the case of intertwiners in section 3.4.3. The Wilson loop
can be decomposed into orthogonal projectors P± = (1±W )/2 (we are using W 2 = 1 for
Z2). We have 〈P+〉 ∼ 1 and 〈P−〉 = p � 1. The expectation value of the projector P−
follows again by inserting it into the path integral. The gauge field is then constrained
to produce a 2π rotation in the gauge group at x0 = 0 along the path of the loop. This
rotation has to be completed to a full 4π rotation in returning back through negative
or positive times. Therefore, we have two vortices of 4π rotation, one after the other in
the time direction, which have the same classical action as the one previously discussed
(see figure 14). They can be positioned anywhere along the path of the loop, but the

32Small expectation values affect the relative entropy quadratically.

– 67 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
7

x1
x2

x1

x0

Figure 14. Field configuration computing the expectation value of the projector over negative
values of the Wilson loop. The Wilson loop is interlocked with the ’t Hooft loop previously discussed.
In the plane x1, x2 it occupies the region between the two circles in the picture. It also extends in
the x3 direction (perpendicular to the figure plane) such that its (x2, x3) cross-section fits inside
the ’t Hooft loop. The shaded area in the x1, x2 plane and the two spots in the x0, x1 plane show
the position of the non-trivial action in the classical solution contribution to the expectation value
of the projector over negative eigenvalues of the Wilson loop. The extension over the x3 direction
is not shown.

contribution is quite concentrated around a cross-section of the loop of area A. We then get

p ∼ e−2ASI . (3.200)

The entropy on the algebra of W , for small p, behaves as S{W} ∼ −p log(p). Therefore,
taking the transversal area A ∼ AΣ to be as wide as possible for a loop interlocked with
the ’t Hooft loop, we get the leading exponential behavior of the upper bounds

SWT,W (R), ST,0(R) . e−2AΣ SI . (3.201)

This is nicely consistent with (3.199) and gives the exact coefficient of the area in the
exponent of the entropic order parameter. The same calculation shows that wide rings
have a Wilson loop order parameter going exponentially fast to log(2).

4 Remarks on RG flows of order parameters

Having studied the order parameters in different phases, the main challenge becomes to
understand the running of these parameters with the scale. A related objective would be
to arrive at some conclusions about the possible realizations of a certain symmetry in the
IR and UV. In this final section, we make a few comments on these questions.

For any type of symmetry, the analysis of spontaneous symmetry-breaking scenarios
is typically phrased as follows. At low energies, the symmetry might be broken. This
is signaled by some order parameters approaching a constant value and the dual order
parameter decaying exponentially with some characteristic exponent. At high energies,
where we approach some conformal fixpoint, the symmetry is restored. This is signaled
again by the behavior of the order/disorder parameters. The question we want to comment
on concerns the transition between the different phases through the RG flow.
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For scaling regions, the terminology of phases and parameters is simplified considerably.
Under scaling, the relative entropy corresponding to a region R of certain topology might
show different behaviors. A first case is when it either goes to zero or tends to log |G|
(or the logarithm of the order of a subgroup) as we scale R to infinity, and this happens
independently of the precise shape of R. A second possibility is that the limit value is
some value in the range (0, log |G|), and it depends on the conformal geometry of R. In the
first case, one of the symmetries (order vs disorder) is unbroken but the dual symmetry is
broken. In the second case, which is the conformal one, we are forced to associate with it
the idea that none of the symmetries is broken nor unbroken in the present sense.

In the same line, scaling non-local operators33 leads, in the symmetry breaking scenario,
to expectation values 1 or 0 in the large scaling limit. This is independent of the details
of the shape. We just need to scale the characteristic length of the region to infinity.
Operators with expectation value 1 correspond to the unbroken symmetry. They form a
group because a1|0〉 ∼ a2|0〉 ∼ |0〉 implies 〈0|a1a2|0〉 = 1. In the conformal case, it leads to
operators with intermediate expectation values, which depends on the conformal geometry
of the region.

These observations suggest that the breaking of asymmetry is tied to a gap. At least,
it seems tied to the absence of correlations between the relevant non-local operators. This
is simply because unitary operators, which their expectation values are saturated to 1,
have zero connected correlations between themselves. The same will happen for operators
with zero expectation value due to the commutation relations. If 〈a1〉 = 〈a2〉 = 0 for non
local operators seated at spatially separated regions R1 and R2, we can use an operator b
commuting with a2 but not with a1 and satisfying 〈b〉 ∼ 1, to show

〈a1a2〉 = 〈b a1a2〉 = χb(a1)〈a1a2 b〉 = χb(a1)〈a1a2〉 = 0 . (4.1)

The usual terminology in terms of area/perimeter laws for line operators is a bit more
cumbersome, especially because we can enlarge line operators in only one direction. For
example, the improvement from perimeter to constant law for a loop operator occurs as
we increase the width. It holds only in certain cases and for loops that are wide enough.
Further, this constant law does not persist without a perimeter term for exponentially large
loops of constant width. The reason for these nuisances is that line operators are UV and
IR operators at the same time, according to the two widely different scales involved in their
geometry.

From the present perspective of the RG flow, one would like to prove that some phase
are realized in the IR by connecting this phase with the departure of conformal behavior
in the UV. For example, to prove confinement, it may not be necessary to compute the
area law of Wilson loops in the IR, but to address the question of which UV behavior
leads inevitably to this area law if that were possible. This approach would of course be
especially appealing, given that for asymptotically free gauge theories, the UV is under
perturbative control.

33In order to associate unique operators to spacetime regions we can use the standard construction
described in section 2.2.3.
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In investigating the change of the order parameters with the scale, it is not possible
to use directly monotonicity of relative entropy for scaling regions. The reason is that, for
non-trivial topologies, none of the two scaled regions will be contained in the other one. In
the scaling limit, the order parameters are ordered by the inclusion ordering on conformally
equivalent shapes (i.e. ordered by the value of the cross-ratio in the special ring shapes used
in the paper). This ordering is trivially realized in the case of broken symmetries, where
the scaling limit of the relative entropy is independent of the shape.

Even if the simple monotonicity property is not enough to obtain a UV-IR connection,
the heuristic ideas around entropic order parameters in this paper suggest that there is
indeed a tendency for the increase of asymmetry between dual order parameters as we
move to larger regions. If some non-local operators have larger expectation values than the
complementary ones, say 〈a〉 > 〈b〉, this seems to seed still larger expectation values for the
operators a in larger regions (and smaller ones for the operators b), through the certainty
relation. Though it is not clear how to keep under control the effect of correlations, it
suggests that the expectation of some connection between the UV and IR asymmetries may
not be hopeless. With the purpose to illustrate further this point, in the next subsection we
construct an (admittedly quite crude) toy model. But first, let us end this section discussing
briefly some special entropic order parameter that exists only for global symmetries.

For the case of global symmetries, we can describe this tendency to symmetry breaking
in more precise terms by using the theory F containing charged operators. In this case,
there is a simpler relative entropy than the ones studied so far concerning the geometry
of two balls. It is the relative entropy in just one topologically trivial region introduced
in [22], and mentioned in section 3.4,

SF(R)(ω|ω ◦ Eψ) . (4.2)

The reason this quantity has not been much discussed above is that it is not easily gener-
alizable to the case of gauge symmetries. In any case, it was studied at sufficient length
in [22].

This quantity will be trivially zero if there is no SSB, just because the two compared
states are identical in this scenario. However, in an SSB scenario, this relative entropy will
be non-zero at all scales. Furthermore, by monotonicity, it is always an increasing function
of the region R. This leads to the following conclusion. Even if the relative entropy goes
to zero at the UV, however, small the deviation from zero for small regions, will not go
down again as we move to the IR scaling the region. More interestingly, it cannot remain
at a small value. To observe this we notice that for this relative entropy, the role of
the intertwiners in the two-ball order parameter discussed above is played by the charged
operators inside the ball. If there is a charged operator with a non-zero expectation value
we can take many copies of this operator separated by large distances between each other,
such that they are statistically independent. Using the results of section 3.3, we conclude
that this will make the relative entropy grow until it reaches log |G| if the symmetry is
completely broken. If the symmetry is only partially broken to a subgroup H ⊂ G, it will
tend to log(|G|/|H|) instead. This argument exposes the general idea described above.
Once a global symmetry is broken in the UV, notwithstanding the size of breaking, there is
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no way back. The symmetry will be completely broken in the IR.34 The same could be said
about an explicit breaking, driven by a small perturbative relevant operator in the UV.

From the operatorial point of view, detecting SSB in the UV is also easy in the F
theory: it corresponds to a non-zero expectation value of a charged operator. However, this
expectation value is non-perturbative, and then not easy to understand in the perturbed
UV theory. The same remark applies to the relative entropy (4.2). Even if this relative
entropy shows the irreversibility of the SSB phenomenon, there is no clear indication on
how to exploit it in the UV.

If we fix attention to operators in the neutral model O, a signal of SSB for small
regions is difficult to separate from UV fluctuations. Correlators of a charged-anti-charged
neutral operator (intertwiner) will be almost conformal, and concavity properties for short
distances do not tell if this will end up as a constant, a conformal, or a massive case, as
we move to large distances (see appendix C.1). However, once it has set to a constant
expectation value, by reflection positivity, the expectation value of the intertwiner will not
start decaying again.

4.1 Toy model for the RG flow

This model is intended to illustrate more concretely the instability of the asymmetry be-
tween dual order parameters, and how it drives symmetry breaking. We think in a simple
case of a Z2 symmetry. We have the non-local surface operators a and b of dimensions k
and d−2−k respectively. To describe RG flows, we fix a way of scaling a specific region R.
Any such (sufficiently symmetric) region R can be characterized by two length scales r and
ε. For example, for k = 1, we have loops, r is the radius of the loop, as a one-dimensional
object, while ε is the width of the loop. We will fix ε to be sufficiently small and scale r
from ε to infinity.35 Thus, we take generalized thin loops. Notice the dual region of a thin
loop is not a thin loop.

Ideally, we would want to find the relative entropies for the algebras of the two types of
thin loops associated to the dual non local operators as functions of r. We call these relative
entropies Sthin,a(r) and Sthin,b(r). They are not dual to each other because they are not
based on complementary regions. We call Sthick,a(r) and Sthick,b(r) to the relative entropies
in the complementary regions. We also call Sa(r) and Sb(r) to the relative entropies on
the (finite dimensional) thin loop algebras {1, a} and {1, b}, excluding further additive
operators. While the exact computation seems out of reach, the certainty relation together
with monotonicity of relative entropy, gives

Sa(r) ≤ Sthin,a(r) = log(2)− Sthick,b(r) , (4.3)
Sb(r) ≤ Sthin,b(r) = log(2)− Sthick,a(r) . (4.4)

34However, we remark that this does not mean there could not be new effective symmetries appearing at
the IR. If we attempt to extend this effective (local) symmetry at the IR to the UV, it will probably get
badly non-local, or highly broken, such as to make these relative entropies of regions either ill-defined or
divergent.

35This does not mean r needs to be in the IR nor ε in the UV scales.
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For r/ε� 1, we can let many dual thin loops cross the original thin loop, as in figure 12.
We can then use the results in section 3.3 to estimate upper bounds for the right-hand-side
of these equations using a large number of decoupled dual thin loops, under the simplified
assumption that we can neglect correlations between the thin loops. To obtain the best
upper bound we need to locate as many thin loops as we can. The optimal configuration
is the one where we place increasingly big thin loops to fill the original one (see figure 12).
Writing lengths in units of ε, we can use formula (3.46) to obtain an inequality with the form

Sa(r) ≤ S0
a e
−
∫ r

0 dr′ (r−r′)k b(r) ,

Sb(r) ≤ S0
b e
−
∫ r

0 dr′ (r−r′)d−2−k a(r) , (4.5)

where S0
a and S0

b are constants and we have defined the function a(r) (respectively b(r))
to be the classical relative entropy between two probability distributions: the first one is
the homogeneous distribution (1/2, 1/2), and the second one is pa(r) (respectively pb(r))
associated with the generalized thin loops of radius r (the probability of the two projections
(1 ± a)/2 (respectively (1 ± b)/2)). For thin loops, the probabilities pa(r) and pb(r) are
near the distribution (1/2, 1/2) and we can approximate

Sa(r) ∼ a(r) , Sb(r) ∼ b(r) . (4.6)

This gives a pair of coupled inequalities involving only two unknown functions

a(r) ≤ a0 e
−
∫ r

0 dr′ (r−r′)k b(r)

b(r) ≤ b0 e
−
∫ r

0 dr′ (r−r′)d−2−k a(r) .

In these equations, a0 and b0 are the boundary conditions as r → 0. The content of these
uncertainty relations can be further analyzed by the related equations

ã(r) = a0 e
−
∫ r

0 dr′ (r−r′)k b̃(r) , (4.7)

b̃(r) = b0 e
−
∫ r

0 dr′ (r−r′)d−2−k ã(r) . (4.8)

This pair of coupled integral equations can be easily solved numerically. Notice that, if in
some interval of the radius r one of the functions is approximately constant, then the other
function decays exponentially fast to zero with the expected scaling with r. For example,
for d = 4 and k = 1, the case of pure gauge theories in four dimensions, if one of the
functions remains constant, then the other decays with an area law. The behavior shows
similarities for different dimensions and k. To be more explicit, we can take d = 2 and
k = 0, where we can analytically solve the previous equations (which are equivalent to the
differential equations ã′ = b̃′ = −ãb̃)

ã(r) = a0
(a0 − b0)

a0 − b0 e(b0−a0)r , (4.9)

b̃(r) = b0
(b0 − a0)

b0 − a0 e(a0−b0)r . (4.10)
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If a0 > b0, the limit for r → ∞ gives ã → a0 − b0 constant and b̃ → 0 exponentially fast
(area law). If a0 < b0, the opposite happens. There is a tendency of the RG flow to fall in
one of the two possibilities and never come back, and the outcome only depends on data
for small loops. The IR fate is controlled in this simplified toy model by the order between
the dual entropic parameters. For other cases, to find the dual constant/area behavior for
each of the parameters, we need to input from the start an asymmetry between the initial
conditions. If that asymmetry is given, the outcome of the equations is a long period in
which one of the functions remains constant and the other decays with the appropriate
dual scaling.

The main drawback of this toy model lies in the fact that in the UV, the assumption
that non-local operators are uncorrelated is invalid. Related to this comment, an interesting
behavior in the previous case of d = 2, k = 0 arises if we take the limit (a0 − b0)� a0. In
this scenario, there is a regime, when r � (a0 − b0)−1, obeying a power law

b(r) ∼ a(r) ∼ 1
r
, (4.11)

pointing to a phase transition with some universal behavior when we cross the critical
initial conditions a0 = b0. The precise functional decay in this regime should again not
be taken seriously since, in the conformal scenario, we cannot use the approximation of
uncorrelated thin loops.

5 Conclusions

In the description of a QFT in terms of algebras and regions, some basic relations are
structurally natural. One of them is Haag duality, expressing that a region should con-
tain all admissible operators allowed by causality. The other is additivity, expressing that
operators in a region should be generated by local degrees of freedom in the same region.
However, these properties are not required by the consistency of the theory. Only suffi-
ciently complete theories should satisfy all these properties. In this paper, we have put
forward the idea that the algebraic origin of symmetries in QFT is most naturally framed
as the violation of these properties in regions with specific topology.

This point of view seems to be fruitful. To start with, considering algebras constructed
additively, it is the case that different classes of symmetries correspond to violations of
duality for regions with different topologies. We thus can see generalized symmetries as
tied to violations of duality for regions with non-trivial homotopy groups π0, π1, π2, etc.
These violations correspond respectively to global, local, and generalized symmetries, which
are thus treated on the same footing. The focus on these simple properties of the net of
algebras allows us to describe these symmetries without appealing to topological non-trivial
spaces, excited states, or superselection sectors.

One key consequence that arises when taking duality as the fundamental starting
point is that whenever duality is violated for a region with a non-trivial πk, then duality
is also violated for the complementary region, which has non-trivial πd−2−k. Besides, the
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operators that violate duality in the complementary region are in one-to-one correspondence
with those in the original region, and the commutation relations between both algebras are
uniquely determined. This provides a unified perspective on order/disorder parameters.
These can be just defined as the operators which are responsible for the violation of the
duality condition. They necessarily are not locally generated in the region in question,
and everything else follows from this. For global symmetries, we have intertwiners and
twists. For local symmetries, we have (unbreakable) Wilson and ’t Hooft loops, and the
commutation relations that arise in our construction are exactly those enforced by the
original definition in ’t Hooft’s seminal work [25]. Generalized symmetries follow similar
patterns. In this light, the Dirac quantization condition, together with its generalizations,
follows when enforcing causality on a possible completion of a net of algebras showing
violations of duality.

Regarding gauge symmetries, being not physical symmetries, its true meaning has
become a recurring theme in QFT. From the present perspective, the breaking of duality
for ring-shaped regions is an unambiguous physical remnant of the gauge symmetry. As we
have shown, it is also related to a good definition of confinement order parameters. Indeed,
loop order parameters satisfying area law necessarily need to violate duality in a ring.
In this precise sense, the conventional confinement order parameters imply a violation of
duality. In turn, this means that the inclusion of algebras A(R) ⊆ (A(R′))′ is not saturated,
and entropic order parameters suggest themselves from the non-trivial inclusion.

The last part of the paper has been devoted to study the properties of entropic order
parameters in several cases of interest. In this context, there are some aspects to highlight.
The first one is the use of the entropic certainty relation. This quantitatively relates the
physics of order and disorder parameters in complementary regions. We have confirmed
such a prediction in different cases. The certainty relation gives a useful and geometri-
cal picture of the origin and relations between the different laws followed by dual order
parameters. A constant law for one order parameter forces an area law for the dual one.
Area law for both parameters, or even area and perimeter laws, would be forbidden: the
fluctuations in both parameters were high enough to prevent saturation of the certainty
relation.

However, it is fair to say that we feel we have not yet understood how to profit from
these relations in full force. For example, though it is known that area-area laws for com-
plementary parameters should be forbidden, and we see a compelling heuristic reason for
this, we could not prove this, in the present approach, in a rigorous manner. Including some
information on the correlations between loops would be important for further progress. In
the same lines, our approach shows the importance to understand the behavior of wide
loops, which are dual to thin loops. These latter have been the focus of almost all past
efforts. A simple heuristic reasoning suggests that the change of a loop with the size is
seed by the behavior of the dual loop in a self-consistent manner. A further understanding
of this self-consistency is important to have a clearer picture of the RG flow on the order
parameters.
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A Intertwiners with simple fusion rules

In this appendix, we show how to construct intertwiners satisfying the simple fusion rules
of section 2.1, and how the algebra of intertwiners and invariant twists can be embedded
in a |G| × |G| matrix algebra.

We start from the existence of charge creating operators in ball R1 corresponding to
the regular representation of the group [22, 38]. These operators {Vg}g∈G satisfy∑

g∈G
VgV

†
g = 1 , V †g Vg′ = δg,g′ , τ †hVgτh = Vh−1g . (A.1)

In particular, we have orthogonal projectors

T (g) := VgV
†
g ,

∑
g∈G

T (g) = 1 , (A.2)

forming a basis for the regular representation of the group

T (g)T (g′) = δg,g′ T (g) , (A.3)
τ †hT (g)τh = T (h−1g) . (A.4)

We decompose this regular representation, with basis vectors T (g), into irreducible repre-
sentations. This is achieved by

U i,jr :=
∑
g∈G

Rijr (g)T (g) , (A.5)

where Rijr are the matrices of the irreducible representation r. In this way, for each fixed
j = 1 · · · dr, the operators U i,jr transform as a vector of the representation r in the index
i, i.e.

τ †hU
i,j
r τh =

∑
g∈G

Rijr (g)T (h−1g) =
∑
g∈G

Rijr (hg)T (g) = Rikr (h)
∑
g∈G

Rkjr (g)T (g) = Rikr (h)Uk,jr .

(A.6)
In the decomposition of the regular representation into irreducible representations, the
representation of type r appears dr times (one for each value of the index j). Because the
operators T (g) are Hermitian, we have for the conjugate representation r̄

U i,jr̄ = (U i,jr )† . (A.7)

Now we consider the following operators based on two disjoint balls R1 and R2,

Ir :=
dr∑

i,j=1
U i,jr (R1)(U i,jr (R2))† =

∑
g,h∈G

χr(gh−1)TR1(g)TR2(h) . (A.8)

– 75 –



J
H
E
P
0
4
(
2
0
2
1
)
2
7
7

It is immediate that these operators are invariant under global group transformations (act-
ing on both R1 and R2 simultaneously), and they are formed by linear combinations of
operators with charge r in R1 and r̄ in R2. Therefore, they are intertwiners of representa-
tion r. Using equation (A.3) and

χr1(g)χr2(g) =
∑
r3

nr3r1r2 χr3(g) , (A.9)

where nr3r1r2 is the fusion matrix of the group representations, we get intertwiners that close
the fusion (Abelian) algebra

IrIr′ =
∑
r′′

nr
′′
rr′Ir′′ . (A.10)

We also have from (A.8)
Ir̄ = (Ir)† , I1 = 1 . (A.11)

It is clear from (2.13), (2.14), (A.3), and (A.4) that these intertwiners and the invariant
twists belong to the finite dimensional algebra of invariant operators of the form∑

a,b,c∈G
f(a, b, c)TR1(a)TR2(b) τc , (A.12)

where f(a, b, c) = f(ga, gb, gcg−1) for all g ∈ G imposes invariance under the global group.
This algebra has dimension |G|2, and the invariant twists and intertwiners form Abelian
subalgebras.

B Gauge field on a lattice

We consider pure gauge fields on the lattice based on a compact group G. We take a square
lattice and think in terms of a finite group for simplicity. The basic variables (at fixed time)
are elements U(ab) ∈ G of the gauge group G assigned to each oriented link l = (ab) joining
neighbor lattice vertices a and b. The link l̄ = (ba) with the reverse orientation is assigned
the inverse group element Ul̄ = U(ba) = U−1

(ab) = U−1
l , and hence it does not correspond to a

different independent variable. The gauge transformations correspond to variables ga ∈ G
attached to the vertices a of the lattice. The gauge transformation law is

U ′(ab) = gaU(ab)g
−1
b =: Ug(ab) . (B.1)

Consider the vector space V of all complex wave functionals |Ψ〉 := Ψ[U ], where U =
{Ul} is an assignation of group elements to all links. The inner product in V is defined as

〈Ψ1|Ψ2〉 =
∑
U1∈G

...
∑

UNL∈G
Ψ1[U ]∗Ψ2[U ] , (B.2)

where Ul is the variable corresponding to the link l = 1, ..., NL, for a lattice with NL links.
The gauge transformation at a vertex a is implemented by a unitary operator Cga in V

(CgaΨ)[U ] = Ψ[U ′] , (B.3)
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with the gauge transformed variables U ′ given by (B.1) with gx = g δa,x (x any vertex).
Gauge transformations based at different points commute with each other.

The physical Hilbert space is the subspace H ⊂ V of gauge invariant functionals

CgaΨ = Ψ , ∀a vertex, g ∈ G . (B.4)

The subspace H is also a Hilbert space with the scalar product (B.2). Gauge invariant
operators form a subalgebra A ⊂ B(V) of the algebra B(V) of all operators in V

A := {X ∈ B(V), (Cga)−1XCga = X, ∀a vertex, g ∈ G} . (B.5)

The subalgebra A maps H in itself. This is formalized employing a conditional expectation

E : B(V)→ A , E(X) :=
∏
a

1
|G|

∑
g∈G

(Cga)−1XCga . (B.6)

This conditional expectation acts locally in the lattice. The gauge invariant gauge trans-
formation operators are

C̃ca = E(Cga) = 1
nc

∑
h∈c

Cha , (B.7)

where c ⊂ G is a conjugacy class of G and nc is its number of elements, form a set of gauge
invariant constraint operators in A labeled by the conjugacy classes of G. These generators
commute with all the elements of A and generate the center of this subalgebra. All C̃ca act
as the identity on H giving constraints analogous to the Gauss law. A representation of A
where the global center is not mapped to the identity contains external charges.

B.1 Local generators of the algebra

We now want to construct a set of generators of A to understand the local properties of
the gauge invariant operator algebra. A complete set of local operators for each link in
B(V) is defined by

(Û (r) ij
l Ψ)[U ] := U

(r) ij
l Ψ[U ] , (B.8)

where U (r) ij
l := Rijr (Ul) is the numerical value of the matrix element i, j corresponding to

Ul ∈ G in the representation r. These operators are the analogous to the position operators
in the description of a quantum system in terms of wave functions. The analogous to the
momentum operator are labeled by elements g of G,

(Lgl Ψ)[U1, ..., ULN ] = Ψ[U1, ..., gUl, ..., ULN ] . (B.9)

We have (Lgl )† = Lg
−1

l and Lg1
l L

g2
l = Lg1g2

l . Furthermore, these operators form a unitary
representation of the group.36 Gauge transformations are implemented by Cga =

∏
b L

g
(ab).

36An operator Rgl analogous to Lgl but acting on the right, (Rgl Ψ)[U1, ..., ULN ] = Ψ[U1, ..., Ulg, ..., ULN ],
can be simply written Rgl = Lg

−1

l̄
. Rg1

l and Lg2
l commute for all g1, g2 ∈ G.
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Operators Û (r) ij
l for different r (and l) clearly commute. However, they are not gauge

invariant. A gauge invariant operator can be constructed with products of link operators
in a closed oriented line. These are the well-known Wilson loop operators

W r
Γ := Û r(a1a2)Û

r
(a2a3)...Û

r
(aka1) , (B.10)

(W r
ΓΨ)[U ] = χr(U(a1a2)U(a2a3)...U(aka1))Ψ[U ] = χr(UΓ) , (B.11)

where Γ = a1a2...aka1 is an oriented closed path made by links in the lattice, the ma-
trix indices are contracted, and χr is the character of the representation r. These mag-
netic operators are then labelled by closed lines and group representations. We have
(W r

Γ)† = W r̄
Γ = W r

Γ̄, where Γ̄ is Γ with the reversed orientation. W r
Γ is unitary only

if the representation is one dimensional. Wilson loops for elementary plaquettes will be
called plaquette operators.

Wilson loops (at t = 0), together with the constraint operators C̃ca, form a maximal
commuting subalgebra of gauge-invariant operators. Then, the physical Hilbert space H,
where all constraints are trivial, is the linear span of polynomials on Wilson loops [78].
These polynomials can be thought of as polynomials of the Wilson loop operators acting
on the trivial state Ψ[U ] = 1. Different bases are also useful. For example, it is possible to
decompose the products Û r1l · · · Û

rk
l for the same link l into a linear combination of the Û rl

for different r using the Glebsch-Gordan decomposition. This shows that the wave function
is at most linear in each of the Û rl . This gives place to the spin network representation [79].

Gauge invariant local electric operators can be defined for each link l and conjugacy
class c of the group as

Ecl :=
∑
h∈c

Lhl ∝ E(Lgl ) . (B.12)

A general gauge invariant electric operator (for the link l) can be constructed by linear
combinations of these operators. More specifically, for any element k =

∑
g kgg, kg =

khgh−1 ∈ C (for all h ∈ G), of the center of the group algebra, the electric operator

Ekl :=
∑
g∈G

kg L
g
l . (B.13)

is gauge invariant. It is immediate that Ekl (and in particular Ecl ) commutes with all
Wilson loops not passing through the link l and with all other electric variables based on
any link. However, it does not commute with Wilson loops passing through the link l.
Using the minimal (orthogonal) projectors of center of the group algebra

Pr = dr
|G|

∑
g∈G

χ∗r(g)g , Pr Pr′ = δrr′Pr ,
∑
r

Pr = 1 , (B.14)

which are labeled by irreducible representations, we can construct electric projectors for
any link l of the lattice

Erl := dr
|G|

∑
g∈G

χ∗r(g)Lgl , (Erl )† = Erl , Er
l̄

= E r̄l , Er
l E

r′
l = δrr′E

r
l ,

∑
r

Erl = 1 . (B.15)
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It is immediate that these operators are also gauge invariant since they are of the
form (B.13), where kg = drχ

∗
r(g)/|G|.

Let us decompose the wave function in different terms according to the representation
assigned to the link l

Ψ[U ] =
∑
r,ij

U
(r)ij
l f rij [U ] =

∑
r,ij

Rijr (Ul) f rij [U ] , (B.16)

where the wave functions f rij [U ] do not depend on the variable Ul of the site l. Each term
of this decomposition is gauge invariant since

Erl Ψ[U ] = U
(r)ij
l f rij [U ] . (B.17)

Let us choose the representation of the algebra in the Hilbert space of gauge-invariant
vectors H. All gauge constraints are then set to the identity, i.e. C̃ca ≡ 1, and the global
algebra representation has a trivial center. With the elementary operators described above,
we can form local algebras attached to subsets of links of the lattice by taking the algebras
generated by the magnetic plaquette and electric link operators which can be formed in
the subset. These algebras will be additive by definition. Subalgebras assigned to disjoint
lattice subsets are mutually commuting. We now have to understand the interplay between
duality and additivity properties for algebras of different regions.

B.2 Additivity and duality

To a given subset R ⊂ {1, · · · , NL} of the lattice we have assigned an additive algebra
Aadd(R) generated by all plaquettes and electric link operators in R. Our first task is to
understand whether a Wilson loop with path Γ ⊂ R belongs to Aadd(R), that is, whether
it can be generated additively inside the region. We will show first that it can be generated
additively if the path Γ is contractible inside R. This is elementary for Wilson loops of a one
dimensional representation (for example, any irreducible representation of Abelian groups).
In that case, for two loops Γ1l and l̄Γ2, sharing the link l with opposite orientation, we have

χr(UΓ1Ul)χr(U−1
l UΓ2) = χr(UΓ1Γ2). (B.18)

Thus, bigger loops can be produced by multiplying smaller ones. Provided that for any
contractible loop Γ inside the region R there is a surface inside R with boundary Γ,
contractible Wilson loops will be a product of plaquette operators in the region.

To do the same job for non-Abelian representations, we need to use some electric
generators (inside R) to sew the plaquette magnetic operators. We have for two loops
sharing the link l∑
r′

Er
′
l W

r
(Γ1l)W

r
(l̄Γ2)E

r′
l Ψ[U ]=

∑
r′

Er
′
l χr(UΓ1Ul)χr(U−1

l UΓ2)Er′l
∑
r′′

U
(r′′)ij
l f r

′′
ij [U ] (B.19)

=
∑
r′

Er
′
l χr(UΓ1Ul)χr(U−1

l UΓ2)U (r′)ij
l f r

′
ij [U ]

=
∑
r′

Er
′
l U

(r)mn
Γ1

U
(r)nm
l U

(r)ts ∗
l U

(r)ts
Γ2

U
(r′)ij
l f r

′
ij [U ]

= d−1
r

∑
r′

Er
′
l U

(r)mn
Γ1

U
(r)nm
Γ2

U
(r′)ij
l f r

′
ij [U ] = 1

dr
W r

(Γ1Γ2)Ψ[U ] .
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In passing from the second to the third line we have used the fact that in the Klebsch-
Gordan decomposition of U (r)nm

l U
(r)ts ∗
l only the component proportional to the identity

can keep U
(r′)ij
l into the representation r′, as is required by the projector Er′l . We can

then replace U (r)nm
l U

(r)ts ∗
l by the term proportional to the identity in the Clebsch-Gordan

decomposition, namely (rn, r̄t|1)(1|rm, r̄s) = d−1
r δntδms. Therefore, we get

W r
(Γ1Γ2) = dr

∑
r′

Er
′
l W

r
(Γ1l)W

r
(l̄Γ2)E

r′
l . (B.20)

Then, Wilson loops along Γ can be generated by plaquette and electric operators lying on
a surface bounded by Γ.

Now, the question remains whether a Wilson loop based on Γ can be generated addi-
tively inside a region R containing Γ but not containing any surface Σ with ∂Σ = Γ. Let
us take a simple region R with the topology of a ring S1×Rd−2, and consider a loop Γ that
winds around the S1 direction once. We will also ask R to be wide enough to contain a
one dimensional closed strip of plaquettes bounded by Γ on one side and another loop Γ̃ on
the other side. Γ̃ is just displaced a link with respect to Γ. We take plaquette operators of
the representation r with boundaries in Γ and Γ̃, and sew them in order to produce locally,
after the final plaquette is added, the operator W r

ΓW
r̄
Γ̃. Sewing plaquettes to W r̄

Γ̃ we can
displace it laterally to finally obtain, by local operations in R, W r

ΓW
r̄
Γ based on the same

loop Γ.
For two generic Wilson loops based on the same path, we have the fusion rule

(W r1
Γ W r2

Γ Ψ)[U ] = χr1(UΓ)χr2(UΓ)Ψ[U ] (B.21)
=
∑
r3

nr3r1r2 χr3(UΓ) Ψ[U ] =
∑
r3

nr3r1r2 (W r3
Γ Ψ)[U ] ,

where nr3r1r2 = nr3r2r1 are the fusion matrices of the group representations. Therefore, we
obtain that the following operator is locally generated

W r
ΓW

r̄
Γ =

∑
r′

nr
′
rr̄W

r′
Γ . (B.22)

We want to select only one Wilson loop in this linear combination. Notice that, in the
operation of sewing two loops along a link in equation (B.19), we have started with two
loops in different representations, the result would have vanished. Then, we can sew the
operator (B.22) with a plaquette operator in representation r′ sharing a link with Γ to
obtain a Wilson loop in representation r′ along a curve deformed from Γ in only one
plaquette. We can move this back to the loop Γ sewing a plaquette again. Then, we finally
conclude that we can locally generate in the ring R any Wilson loop W r′

Γ such that nr′rr̄ 6= 0
for some representation r.

Loops winding n times with n > 1 along the S1 direction of the region R can be
deformed using local operators to wind n times along the same line Γ. This corresponds
to χr(UnΓ ). As a function of UΓ, this is a class invariant function. It can be decomposed
into a linear combination of characters with coefficients that depend on the group. Then,
it can be decomposed into elementary loops of different representations winding just once
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along Γ. If we have a product of two loops along curves winding once, it can be locally
transformed into a product of loops for the same path Γ, which can be also decomposed into
elementary loops of different irreducible representations. Then, when seeking to understand
the non locally generated operators, we only need to worry about the case of simple loops
winding once.

The locally generated loops can fuse, and the result is also locally generated. Locally
generated loops form a subalgebra of the fusion algebra. For an Abelian group we have
nr
′
rr̄ = 0 for any r′ 6= 1, and non contractible loop cannot be formed additively in this way.

To see the structure of the loops that are not locally generated, and to prove they are such,
we have to discuss ’t Hooft loops, which are certain combinations of electric operators.

For a z in the center Z of the group G, the class [z] consist of a single element z, and
according to (B.12), Ezl = E

[z]
l = Lzl is gauge invariant. For any (d−2)-dimensional surface

Σ in the dual lattice and each element z ∈ Z, we define the ’t Hooft operator

T zΣ :=
∏
l⊥Σ

Ezl . (B.23)

This is analogous to the electric flux through Σ. Recalling that Cza ≡ 1 in the H represen-
tation, we can multiply these operators in a volume A of the lattice to get

1 =
∏
a∈A

Cza =
∏
l⊥∂A

Ezl . (B.24)

We have used here the fact that as z commutes with all elements of the group, the action of
the gauge transformations on the interior links of A cancel. Therefore, the electric “flux”
corresponding to z vanishes on any closed surface. In consequence, the flux is the same
operator for two surfaces with the same boundary. This means that the ’t Hooft operator
corresponding to z is independent of the precise surface Σ in the definition, and it depends
only on the boundary ∂Σ. For later convenience, we call this (d − 3) dimensional closed
surface Γ′. The outcome is that we have ’t Hooft loop operators T zΓ′ , for any z ∈ Z and
any (d−3) dimensional closed surface Γ′. We also have (T zΓ′)† = T z

−1
Γ′ = (T zΓ′)−1, i.e., these

operators are unitary.
We could have used the electric fields Ecl for any conjugacy class c in (B.23), but if

g /∈ Z this operator does not commute with local operators along the surface, and therefore,
it is not an operator that can be thought of as to be localized along the boundary of Σ.

For a one dimensional loop Γ interlocked with Γ′ (winding number one), it is not
difficult to see that

T zΓ′W
r
Γ = φr(z)W r

ΓT
z
Γ′ , φr(z) := χr(z)

dr
. (B.25)

This uses the irreducibility of the representation r, which implies, through Schur’s lemma,
that z is represented inside the loop as a matrix proportional to the identity for z ∈ Z.
Then χr(Uz) = φr(z)χr(U). The value φr(z) is a phase which corresponds to one of the
(one dimensional) representations of Z, and we have φr(z) = φr(z−1)∗ = φr̄(z)∗. A similar
calculation shows that a ’t Hooft loop commutes with all Wilson loops with a zero winding
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number with Γ′. This is because they cross the same number of times the surface Σ in
opposite directions giving factors φr(z) and φ∗r(z) an equal number of times. Another way
to see this is that, for zero winding between Γ and Γ′, we can deform Σ to lie outside the
support of Γ.

Choosing a Γ′ in the complement of the region R and interlocked with Γ, we conclude
that Wilson loops along Γ for a representation where φr(z) 6= 1 for some z ∈ Z cannot be
locally generated in the ring R. Any locally generated operator must commute with the
’t Hooft loop, and this operator does not commute with W r

Γ if φr(z) 6= 1.
Then, we have two sets of representations, both of them closed under fusion. One is

formed by the representations generated by the fusion of rr̄ for all r, which we have shown
that give locally generated WL. The other set is the one formed by the representations
that are trivial (proportional to the identity) in the center of the group. The complement
of this set (i.e., the representations that are non-trivial on the center) has been shown to
provide WL that cannot be locally generated.

Any representation r restricted to the center of the group can be put into a diagonal
form, where the diagonal elements are proportional to phases. The conjugate representation
r̄ is given by the conjugate matrices, and rr̄ is proportional to the identity. Therefore the
first set of representations is included in the second. We knew this already from the above
reasoning about the locally generated representations. We will now show how these two
sets coincide.

We need to introduce the adjoint representation DAd(g) of a group. This is a |G|-
dimensional representation in the group algebra (viewed as |G|-dimensional vector space)
given by the adjoint action, defined as

DAd(g)

∑
h∈G

bhh

 =
∑
h∈G

bh ghg
−1 . (B.26)

The group algebra is isomorphic to a space of block-diagonal matrices
⊕

rMdr×dr , where
an element of the group is represented on the block r by the corresponding irreducible
representation. The adjoint action reduces to the adjoint action of Dr(g) on each block,
which is equivalent to the tensor product representation rr̄. Therefore, the character
of the adjoint representation is χAd(g) =

∑
r χr(g)χr̄(g), and it contains all irreducible

representations that can be formed by fusion of rr̄. On the other hand, if we view the
adjoint action on a basis |h〉 given by the elements of the group, the adjoint action produces
a permutation of the basis elements and we have DAd(g)hh′ = δh,gh′g−1 . Then, the character
is also χAd(g) =

∑
h δh,ghg−1 , i.e. χAd(g) is the number of elements of the group that

commute with g. The elements of the group that commute with g form a subgroup,
which is called the centralizer of g and is denoted by C(g). Then, χa(g) = |C(g)|. It
is immediate that χAd(z) = |G| for z ∈ Z and χAd(g) < |G| for g /∈ Z. In consequence,
limn→∞

χa(g)n
|G|n = θZ(g), the characteristic function of the center, which equals 1 for elements

on Z and 0 otherwise. Fusing the adjoint representation with itself n times we get the
character χa(g)n, and it follows that, for n large enough, this will contain any irreducible
representation which is constant on the center of the group. This proves the statement that
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r̄

r

Figure 15. A Wilson loop of representation r in the lattice formed by two plaquettes joined by
a line transited in the two opposite directions. This acts as a Wilson line for the representations
arising from decomposing r ⊗ r̄.

the fusion algebra generated by rr̄ for all r coincides with one of the characters which are
constant on the center.37 We denote by Ξ1 the set of Wilson loop operators corresponding
to this set of characters.

This proves that all Wilson loops which commute with the ’t Hooft loops are locally
generated in the ring. Those that do not commute with at least one ’t Hooft loop are not
locally generated. Further, any character ϕs of Z (irreducible representation of Z) induces
a representation of G whose character evaluated on Z is proportional to ϕs. Therefore, for
every ’t Hooft loop there is a Wilson loop that does not commute with it. In other words,
’t Hooft loops are not locally generated in the complement R′ of R.

The character χr of each irreducible representation of G when evaluated on Z is pro-
portional to the character ϕs of one irreducible representation of Z. Then, Wilson Loops
W r

Γ are divided into equivalence classes Ξs according to the characters ϕs, s = 1, · · · , |Z|
of Z. The class of the identity is the one formed by locally generated loops Ξ1. Further,
Ξ1Ξs = Ξs, and the different classes select Wilson loops that are locally transformable to
each other. The dual sets of non locally generated operators in R and R′ are then labeled
respectively by z ∈ Z, and s ∈ Z∗, Z∗ is the group of irreducible characters (representa-
tions) of Z.

As we mentioned before, in a gauge theory in the continuum, the adjoint Wilson loop
can be broken into pieces by the Wilson lines (2.44) formed with the curvature as charged
fields. In the lattice, this type of Wilson line is represented by two plaquettes joined by
a segment that is passed in the two opposite directions (see figure 15). The plane of the
plaquettes represents the indices of the curvature in (2.44). The adjoint representation on
the Lie algebra is the adjoint representation of the group discussed above when we look at
elements near the identity.

In fact, in analogy to the case of finite groups, for a Lie group the adjoint representation
generates all the representations that arise from fusing rr̄. As an example, for the group
SU(2), the adjoint representation of spin 1 generates all integer spin representations, and
the same is true for the fusion j × j for any j. Only half-integer representations are not
locally generated. The center of the group is isomorphic to Z2, and it is formed by the

37One may wonder if the irreducible representations contained in the adjoint without further fusing it
with itself (that is, representations in rr̄ for all r) is enough to obtain all representations constant in the
center. This is known as Roth’s conjecture [80]. It does hold in most groups but some counterexamples
show that further fusing is sometimes necessary [81, 82].
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identity and the 2π rotation. The corresponding ’t Hooft loops commute with the Wilson
loops of integer spin representations. For SO(3), Wilson loops of all representations are
locally generated, and the center is trivial.

B.3 Algebra and maximal nets

Summarizing, as dual non-local operators in a (pure) gauge theory we have Wilson loops
Ws labeled by the characters (irreducible representations) χs ∈ Z∗ of the center Z of the
gauge group, and ’t Hooft loops labeled by elements of Z. For d = 4, the set of non-local
operators in a ring is doubled since both types of loops live in regions with topology S1×R2.
Hence, in this case, the group of non-locally generated operators group is Z × Z∗.

Explicit construction of Wilson loop operators Ws follows by choosing one representa-
tive of each class Ξs and applying the same construction as in section 2.2.2. The commu-
tation relations between Wilson and ’t Hooft loops follow from (B.25)

WsTz = χs(z)TzWs . (B.27)

A maximal local net satisfying duality requires choosing a set of non-local operators for R
and R′, which cannot be enlarged without violating additivity. A relevant case is d = 4,
where both types of operators live in the same topology. In this case, we can form dyons
labeled by a pair (z, s), where z ∈ Z and s ∈ Z∗. The set of chosen dyons should be closed
under fusion and conjugation

(z1, s1)(z2, s2) = (z1z2, s1s2) , (B.28)
(z, s)∗ = (z−1, s−1) (B.29)

where s−1 ≡ s̄. Locality implies the generalized Dirac-Zwanziger quantization condition

χs2(z1) = χs1(z2) , (B.30)

for any pair of dyons. This is automatically consistent with (B.28)–(B.29). As in the
Maxwell case, there could be several solutions for a maximal set satisfying these conditions,
including taking all the electric charges {(1, s) : s ∈ Z∗} or all the magnetic monopoles
{(z, 1) : z ∈ Z}. Several examples are worked out for the centers of Lie groups in [52].
We do not know the classification of solutions to this problem for general finite Abelian
groups.

C Perimeter law for additive operators

We want to show that the vacuum expectation values of operators in the additive algebra
of a ring-like region, with topology S1 × Rd−2, decrease at most with a perimeter law

〈W 〉 ≥ k e−µR , (C.1)

for large radius R, where k and µ are constants that depend on the operator. This would
prohibit an area law, the expected behavior of confinement order parameters, for additively
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generated operators. However, for this statement to make sense, we have to further qualify
the operatorW living in a ring on how it is supposed to depend on the size of the ring. First,
we have to construct a sequence of operators WR for different ring radius R in such a way
that they represent “the same type of operator” but for different ring regions. Otherwise,
we can obtain any behavior 〈WR〉 as a function of R by multiplying the operator by an
arbitrary function of the radius. We also need to increase the size of the ring keeping the
cross-section constant. It would also be convenient to use only operators with positive
expectation values.

We first discuss a simple case of correlators of operators localized in two balls. This
corresponds to the order parameters of global symmetries, instead of gauge symmetries.

C.1 Two point correlators

We look at the behavior of the vacuum correlator of a pair of operators localized in two
balls when the distance between the two balls R goes to infinity. We conveniently take
operators Oi(x) := eiPxOie

−iPx, with Oi (i = 1, 2) fixed operators localized in a ball.
We define

f(R) := 〈O1(−~R)O2(~R)〉 , (C.2)

where ~R = Rn̂ with n̂ a unit vector.38 The clustering property in QFT implies

lim
R→∞

f(~R) = 〈O1〉〈O2〉 . (C.3)

Looking at the behavior of f(R) with R, we have already selected a sequence of operators
for different distances by translating fixed operators in the same ball. The norm of the
operators are also fixed. Several improvements of (C.3) are well known. For example, the
unitarity bound |f(R) − f(∞)| ≤ cR−(d−2) for conformal models, and |f(R) − f(∞)| ≤
c e−m0R for gapped ones, where m0 is the mass gap. If f(∞) = 0, these give upper bounds
on the asymptotic behavior of |f(R)|.

However, on the contrary, in an inequality such as (C.1), we intend a lower bound.
Indeed, there is also a lower bound associated with the clustering of operators. To see
this, we have to select operators with positive expectation values such that f(R) could not
be zero or change sign. This is easily done by taking O1 and O2 to be CRT conjugate
operators

O1(−~R) = JO2(~R)J =: O2(~R) , (C.4)

with J the CRT operator, which coincides with the Tomita-Takesaki reflection for the
Rindler wedge and the vacuum state. In the above equation, we used a CRT reflection
with respect to some wedge region W such that O2(~R) is inside W for all R > 0.39 By
wedge reflection positivity, or CRT positivity (see for example [57])

f(R) = 〈O(~R)O(~R)〉 > 0 . (C.5)

38For large R, the leading behavior of f(R) will not depend on n̂.
39It is not difficult to see that we can always take a wedge region satisfying this property.
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This cannot vanish for a non-trivial operator. In a massive theory and provided that
f(∞) = 0, this will decay exponentially fast. We will now show that it cannot decay faster
than exponentially in any theory.

Writing
f(R) =: e−V (R) , (C.6)

wedge reflection positivity tell us that40

V ′′(R) ≤ 0 . (C.7)

The slope V ′(R) cannot be negative for any R. Otherwise, if V ′(R0) < 0 for some R0, (C.7)
would imply a slope always negative for R > R0, leading to increasingly negatives V (R)
and a violation of the clustering property. Hence, V (R) is increasing and concave. This
means that there is a limit for the slope

V ′∞ = lim
R→∞

V ′(R) ≥ 0. (C.8)

If V ′∞ > 0 is positive, we have an “area law” for large radius

f(R) ∼ e−RV ′∞ , R→∞. (C.9)

If V ′∞ = 0, we may have different situations. A perimeter law would be f(R) ∼ const. =
|〈O〉|2. An intermediate case is the conformal case V (R) ∼ log(R). The potential cannot
increase faster than the “area”, in analogy with the result for loops.

For an orbifold, the intertwiner, which is a non locally generated operator in the two
balls, has a constant law if the symmetry is spontaneously broken, and area law or some
milder logarithmic law if the symmetry is not broken. Hence, it is a good order parameter
for symmetry breaking. However, an operator locally generated (not an intertwiner) can
also have both area and constant law. This is a difference with what we expect for operators
on rings, where locally generated operators (hence non-good for order parameters) have a
potential that increases at most as the perimeter. This is, in part, because an operator in
the two balls may be locally generated for a particular orbifold, but it might also be an
intertwiner for other groups. A way to regain the expected behavior of locally generated
operators is to take O as a CRT positive operator, O = QQ̄. This prevents 〈O〉 = 0
and leads to a constant law. In this case, O(~R)O(~R) can never be an intertwiner for any
orbifolding since it is the product of non charged operators.

C.2 Constructing additive ring operators

In analogy with the previous discussion, we limit the operator order parameters to be CRT
positive operators, i.e., operators of the form

W =
∑
ij

λijOiOj , (C.10)

40In addition, f(R) is a completely monotonic function [83].
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with λij a positive definite matrix and Oi localized in the right wedge. We could also take
limits of these types of operators. In particular, this gives 〈W 〉 > 0. We also impose W to
be localized in a ring and invariant under the rotation symmetry of the ring (see below).
In principle, this should allow us to select a “cross-section” for the operator from which to
construct the sequence of operators for different ring radius. Both these properties (rota-
tion symmetry and CRT positivity) can be also imposed on non locally generated loops.
Nevertheless, we only consider the case of locally generated operators in this appendix.

To begin with, we can divide the angular span of the ring in N pieces, and consider
operators Oi11 localized in the first of these angular sectors. With the aim to construct
an operator invariant under the subgroup of rotations ZN , we consider operators in other
angular sectors Oikk , k = 0, · · · , N − 1 which are rotations of angle 2πk/N of Oi11 along the
ring. A ZN invariant operator is of the form

W =
∑

i1,··· ,iN−1

Λi1,··· ,iN−1

∏
k

Oikk , (C.11)

where Λi1,··· ,iN−1 is invariant under cyclic permutations. We can write this in “tensor
network form”

Λi1,··· ,iN−1 = T a1a2
i1

T a2a3
i2
· · ·T aNa1

iN
, (C.12)

where the indices ai run over a sufficiently large set and are contracted. In this way, we
get a representation in a “Wilson loop form”

W = Oa1a2
1 Oa2a3

2 · · ·OaNa1
N , (C.13)

as a path ordered product of matrices of operators with Oabi = T abl O
l
i. Each Oabi is obtained

from rotating Oab1 .
Now we impose CRT positivity which requires that OabN = Oba1 , where the modular

conjugation is respect to the plane separating the two. It is convenient to impose Oab1 = Oba1 ,
with respect to the plane bisecting the first angular sector. These relations, together with
rotation symmetry, imply that the operator W is CRT positive. We also have that all
partial operators

Wk1,k2 = Oa1a2
k1

Oa2a3
k1+1 · · ·O

ana1
k2

(C.14)

are also CRT positive with respect to the plane dividing them in two.
The same reflection positivity argument used in section 3.1 shows that these operators

have concave potential. We then have

〈W−k,k′〉〈W−k′,k〉 ≤ 〈W−k,k〉〈W−k′,k′〉 , (C.15)

with the convention of mod N classes for the position indices. Then, writing 〈Wk1,k2〉 =
e−V (k2−k1), and for k, k′ > 0, we have

2V (k1 + k2) ≥ V (2k1) + V (2k2) . (C.16)

Call the difference V (1) − V (0) = µ. If µ ≤ 0, the function V (k) is upper bounded by
V (0). If µ ≥ 0 we have

V (k) ≤ µk + V (0) . (C.17)
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Therefore,
〈W 〉 ≥ e−µN−V (0) , (C.18)

for some µ ≥ 0, and the value of µ depends only on the expectation value of two adjacent
operators.

Then, we can use the same matrix operator as a seed for creating operators in larger
circles using rotations in larger circles. When N and R are large, and R/N = c fixed, the
two adjacent operators may have to be readjusted for larger circles by a very tiny contrary
rotation of the reflected operators. In the limit, the value of µ converges, and we get the
lower bound

〈W 〉(R) ≥ e−2π (µ/c)R−V (0) , R→∞ . (C.19)

C.3 Wilson type operators

The CRT positive, rotational invariant, and additive operators form an algebraically closed
convex cone. To get a result at this level of generality we should analyze how to take limits
of ZN symmetric to rotational symmetric operators. We do not pursue the mathemati-
cal details of this construction any further. Rather, we analyze the case of Wilson type
operators of the form

W = TrPei
∮
dsA(s) , (C.20)

which are suggested both by the standard presentation of Wilson loops and by the preceding
discussion. Here P is the path order, A(s) is the rotation of A(0), and A(0) is a matrix
of fields smeared in the direction perpendicular to the loop. A(0) is the cross-section from
which we can obtain a sequence of operators for rings of different radius by using rotations
for different circles. CRT positivity is then reduced to

Aab(0) = −Aba(0) . (C.21)

Define the partial operators

W (s1, s2, ε) = TrPei
∫ s2+ε
s1−ε

dsA(s)α(s)
, (C.22)

where α(s) is a smearing function equal to one inside the interval (s1, s2), zero outside
(s1 − ε, s2 + ε) and smooth everywhere. The shape of the smearing function between one
and zero is the same for any interval (s1, s2). The concavity holds for the expectation
values of these operators. To get the perimeter law for W , we then only have to take care
of the step going from an almost closed loop to a closed one. Between the closed loop and
loops with one gap and two gaps, there is also an inequality from CRT by reflecting in
some plane that does not pass through the gap. Given that the loops with one and two
gaps satisfy perimeter laws with the same perimeter coefficient, it follows the perimeter
law for the full closed loop.

If A(s) is a gauge field in some representation where the loop cannot be broken by
charged fields, the construction does not work. The partial operators are not gauge-
invariant. If we fix the gauge, several problems appear. If we do not, the partial operators
have zero expectation value. Notice that nothing goes wrong, except that we cannot use
the calculation to put a useful lower bound on the closed loop.
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D Conformal transformations of the ring

Consider a ring R formed by rotating around the z axis a circle of radius R, centered
around the point z = 0, x = r0, in the plane z, x. Written in cylindrical coordinates, the
surface of the ring is given by the equation

(r − r0)2 + z2 = R2 . (D.1)

The intersection with the plane x, y is the circular corona with inner radius L := r0 − R
and outer radius r0 + R. In Cartesian coordinates, the surface of the ring corresponds to
the quartic equation

(L2 + 2LR+ x2 + y2 + z2)2 − 4(L+R)2(x2 + y2) = 0 . (D.2)

A natural parameter describing the geometry of this ring in the conformal case is the
cross-ratio η between the four points x = (−L− 2R,−L,L,L+ 2R), of the intersection of
the x axis with the surface of the ring

η = R2

(R+ L)2 . (D.3)

We have η ∈ (0, 1), with the limit 0 corresponding to thin rings and 1 to thick ones.
We want to show that the geometry of the complement R′ of the ring is conformally

equivalent to another ring with cross-ratio η′ = 1− η, that is

R′(1− η) ∼ R(η) . (D.4)

From the relation
R′2

(R′ + L′)2 = η′ ≡ 1− η = L(L+ 2R)
(R+ L)2 , (D.5)

we have R′/L′ ∼ 2/(R/L)2 for small R/L, and R′/L′ ∼
√

2L/R in the limit of large R/L.
To obtain the conformal transformation on R3 that maps the interior of the torus with

the exterior, we use the (conformal) stereographic projection that maps the whole euclidean
plane (plus the infinity) onto the unit sphere41

ϕ : R3 ∪ {∞} ↔ S3 ⊂ R4 , (D.6)

where ϕ(0, 0, 0) = (0, 0, 0,−1) and ϕ(∞) = (0, 0, 0, 1). On the sphere, a torus surface can
be described by the equation42

x2
1 + x2

2 = α , 0 < α < 1 . (D.7)

41This transformation can be thought as the restriction of a transformation from R4 to R4 which is a
(conformal) inversion respect to a sphere of radius 2 centered on (0, 0, 0, 1).

42Equation (D.7) automatically implies that the other two coordinates satisfy the equation x2
3+x2

4 = 1−α.
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A natural way to parametrize it is

x1(s1) =
√
α cos(s1) , (D.8)

x2(s1) =
√
α sin(s1) , (D.9)

x3(s2) =
√

1− α cos(s2) , (D.10)
x4(s2) =

√
1− α sin(s2) , (D.11)

where s1, s2 ∈ (−π, π]. Applying the inverse of the stereographic projection (D.6) to the
above parametrization, we can explicitily check that the transformed surface in R3 satisfies
the equation (D.2) for

Lα = 2
√

1− α√
α+ 1 and Rα = 2α√

(1− α)α
. (D.12)

This torus has cross-ratio ηα = 1 − α. In the same way, we can check that the interior of
the torus is the region on the sphere described by the inequality

x2
1 + x2

2 ≤ α , (D.13)

whereas the exterior region is then described by the opposite inequality. The advantage of
describing the torus on the sphere is that we immediately see that the exterior of a torus
is also a torus because it is described by the region

x2
3 + x2

4 ≤ 1− α . (D.14)

In the same way, using the inverse of another stereographic projection ϕ̃ : R3∪{∞} ↔ S3 ⊂
R4 on the plane x1 = 0,43 the region (D.14) is mapped into a torus in R3 with dimensions
L1−α and R1−α, and cross ratio η1−α = α.

Then, the transformation T = ϕ̃−1 ◦ ϕ maps the plane R3 ∪ {∞} onto itself, it is
conformal by definition, and it maps the interior region of a torus with dimensions (Lα, Rα)
(cross ratio ηα = 1− α) onto the exterior region of a torus with dimensions (L1−α, R1−α)
(cross ratio η1−α = α). We were able to explicitly compute this (orientation preserving)
conformal transformation x̃ = T (x). It reads

x̃1 = 8(x1 − 2)
(x1 − 4)x1 + x2

2 + x2
3 + 4

+ 2 , (D.15)

x̃2 = 8x3
(x1 − 4)x1 + x2

2 + x2
3 + 4

, (D.16)

x̃3 = 8x2
(x1 − 4)x1 + x2

2 + x2
3 + 4

. (D.17)

Due to the conformal invariance of the problem, it is important to remark that the above
transformation has to be considered as a transformation that maps the equivalence class
of torus interiors with cross-ratio η onto the equivalence class of torus exteriors with cross-
ratio 1 − η. Moreover, given any torus with dimensions (L,R), it is no longer true that

43This stereographic projection maps ϕ̃(0, 0, 0) = (−1, 0, 0, 0) and ϕ̃(∞) = (1, 0, 0, 0).
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the transformation (D.15)–(D.17) sends it to a torus. This transformation only works if it
is applied to the representative within the conformal class having the dimensions (D.12),
where η = 1 − α. If we start with any generic torus (L,R) in the conformal class of
cross-ratio η, we have first to apply a dilatation x 7→ λx with

λ = 2√
L(L+ 2R)

. (D.18)

After this transformation, we obtain a torus in the same conformal class satisfying (D.12),
and it is to this new torus that we have to apply (D.15)–(D.17).

E Relative entropy of a subgroup of non local operators

Let G be an Abelian group of non-local operators and H ⊆ G a subgroup. In this appendix,
we study an upper bound to the relative entropy SA∨H(ω|ω ◦ EH), which “compares” the
state ω with the one resulting from erasing the information on the expectation values of
the operators in H. Let G̃ := G∗ and H̃ := H∗ be their dual groups. We have the
complementary diagram

A ∨H EH−→ A

↓′ ↓′

A′ ∨ G̃/H
EH̃←− A′ ∨ G̃

(E.1)

Here G̃/H is a subgroup of G̃ formed by all the characters which are the identity over
H (and hence the operators in this subgroup commute with the operators in H). The
conditional expectations are

EH(x) = 1
|G|

∑
g̃∈G̃

g̃ x g̃−1 , (E.2)

EH̃(x) = 1
|H|

∑
h∈H

hxh−1 . (E.3)

An upper bound follows from the certainty relation

SA∨H(ω|ω ◦ EH) = log |H| − SA′∨G̃(ω|ω ◦ EH̃) ≤ log |H| − SG̃(ω|ω ◦ EH̃)
= log |H| − SG̃(ω ◦ EH̃) + SG̃(ω) . (E.4)

The algebra of the group G̃ can be represented as the algebra of complex-valued functions
on G through the characters g̃ 7→ χg̃(·). The probabilities pg are obtained from the g̃
expectation values as

pg = 1
|G|

∑
g̃

χg̃(g)∗ ω(g̃) . (E.5)

The entropy is then
SG̃(ω) = −

∑
g∈G

pg log pg . (E.6)
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The state ω ◦ EH̃ in G̃ is computed using the explicit form of the conditional expectation

ω ◦ EH̃(g̃) = ω

( 1
|H|

∑
h∈H

hg̃h−1
)

= 1
|H|

∑
h∈H

ω(g̃)χg̃(h) . (E.7)

The probabilities qg of this new state are then given by

qg = 1
|G||H|

∑
g̃,h

χg̃(g−1h)ω(g̃) . (E.8)

For each element g ∈ G, there are |H| elements gH with equal probability qg. Then, for
each element x ∈ G/H (which we identify with a representative in G) we can define a
probability

q̃x := 1
|G|

∑
g̃∈G̃,h∈H

χg̃(x−1h)ω(g̃) = |H|
|G|

∑
g̃∈G̃/H

χg̃(x)∗ ω(g̃) ,
∑

x∈G/H
q̃x = 1 . (E.9)

Calling
S
G̃/H

(ω) = −
∑

x∈G/H
q̃x log(q̃x) , (E.10)

we get
SG̃(ω ◦ EH̃) = log |H|+ S

G̃/H
(ω) . (E.11)

This gives for the upper bound (E.4)

SA∨H(ω|ω ◦ EH) ≤ SG̃(ω)− S
G̃/H

(ω) . (E.12)
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