
J. Noncommut. Geom. 15 (2021), 113–146
DOI 10.4171/JNCG/397

© 2021 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license.

Algebraic bivariant K -theory and Leavitt path algebras

Guillermo Cortiñas and Diego Montero�

Abstract. We investigate to what extent homotopy invariant, excisive and matrix stable
homology theories help one distinguish between the Leavitt path algebras L.E/ and L.F / of
graphs E and F over a commutative ground ring `. We approach this by studying the structure
of such algebras under bivariant algebraicK-theory kk, which is the universal homology theory
with the properties above. We show that under very mild assumptions on `, for a graph E with
finitely many vertices and reduced incidence matrix AE , the structure of L.E/ in kk depends
only on the groups Coker.I � AE/ and Coker.I � At

E
/. We also prove that for Leavitt path

algebras, kk has several properties similar to those that Kasparov’s bivariant K-theory has for
C�-graph algebras, including analogues of the Universal coefficient and Künneth theorems of
Rosenberg and Schochet.
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1. Introduction

This article is the first part of a two part projectmotivated by the classification problem
for Leavitt path algebras [2]. We consider homological invariants of such algebras;
we investigate to what extent they help one distinguish between them. In this first part
we investigate general graphs and their algebras over general commutative ground
rings; the second part [6] focuses mostly on purely infinite simple unital algebras over
a field. We fix a commutative ring ` and write L.E/ for the Leavitt path algebra of a
graph E over `. Here a homology theory of the category Alg` of algebras is simply a
functor X WAlg` ! T with values in some triangulated category T . If S is a set and
A 2 Alg`, we writeMSA for the algebra of those matricesM WS �S ! Awhich are
finitely supported. A homology theory X is MS -stable if for s 2 S and A 2 Alg`,
the inclusion �sWA!MSA, �s.a/ D �s;s ˝ a induces an isomorphism X.�s/. Write
E0 and E1 for the sets of vertices and edges of the graph E. We call X E-stable
if it isME0tE1tN-stable. Thus if E0 and E1 are both countable, E-stability is the
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same as stability with respect toM1 D MN . We are interested in those homology
theories which are excisive, (polynomially) homotopy invariant and E-stable. For
example Weibel’s homotopy algebraic K-theory KH has all these properties and,
if ` is either Z or a field, then

KH�.L.E// D K�.L.E//

is Quillen’s K-theory. There is also a universal homology theory with all the above
properties, j WAlg` ! kk ([7, 11]); this is the bivariant K-theory of the title. For
two algebras A;B 2 Alg`, the statement j.A/ Š j.B/ is equivalent to the statement
that X.A/ Š X.B/ for any excisive, homotopy invariant and E-stable homology
theory X . Let �W kk ! kk be the inverse suspension; if A;B 2 Alg`, put

kkn.A;B/ D homkk.j.A/;�nj.B//; kk.A;B/ D kk0.A;B/:

By [7, Theorem 8.2.1], setting the first variable equal to the ground ring we recover
Weibel’s homotopy algebraic K-theory KH [16]:

kkn.`; B/ D KHn.B/:

Set
KHn.B/ WD kk�n.B; `/:

Recall that a vertex v 2 E0 is regular if it emits a nonzero finite number of edges
and that it is singular otherwise. Write reg.E/ and sing.E/ for the sets of regular
and of singular edges. Let AE 2 Zreg.E/�E0 be the matrix whose .v; w/ entry is the
number of edges from v to w and let I 2 ZE

0�reg.E/ be the matrix that results from
the identity matrix upon removing the columns corresponding to singular vertices.
It follows from [3] that if KH0.`/ D Z, KH�1.`/=0 and E0 is finite, then for the
reduced incidence matrix AE we have

KH0.L.E// D Coker.I � AtE /: (1.1)

We show here (see Section 6) that, abusing notation, and writing I for I t ,

KH 1.L.E// D Coker.I � AE /: (1.2)

For n � 0, let Ln be the Leavitt path algebra of the graph with one vertex and n
loops. Thus L0 D ` and L1 D `Œt; t�1�. We prove the following structure theorem
(Theorem 6.10).
Theorem 1.3. Assume that KH0.`/ D Z and KH�1.`/=0. Let E be a graph such
that E0 is finite. Let d1; : : : ; dn, dindiC1 be the invariant factors of the torsion
group �.E/ D tors.K0.L.E//, s D # sing.E/ and r D rk.KH 1.L.E//. Let
j WAlg` ! kk be the universal excisive, homotopy invariant, E-stable homology
theory. Then

j.L.E// Š j
�
Ls0 ˚ L

r
1 ˚

nM
iD1

LdiC1

�
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In particular, any unital Leavitt path algebra with trivial KH0 is zero in kk. For
example both L2 and its Cuntz splice L2� ([12]) are zero in kk. We also have the
following corollary; here, and in any other statementwhich involves the image under j
of the Leavitt path algebras of finitely many graphs E1; : : : ; En, j is understood to
refer to the tniD1Ei -stable j .
Corollary 1.4. Let ` be as in Theorem 1.3. The following are equivalent for graphs
E and F with finitely many vertices.
(i) j.L.E// Š j.L.F //.
(ii) KH0.L.E// Š KH0.L.F // and KH 1.L.E// Š KH 1.L.F //.
(iii) KH0.L.E// Š KH0.L.F // and # sing.E/ D # sing.F /.

Proof. It is not hard to check, using (1.1) and (1.2) (see Lemma 6.7) that the groups
KH0.L.E// and KH 1.L.E// have isomorphic torsion subgroups and that

# sing.E/ D rkKH0.L.E// � rkKH 1.L.E//: (1.5)

The corollary is immediate from this and the theorem above.

To put the above result in perspective, let us recall that E. Ruiz and M. Tomforde
have shown in [14] that if ` is a field, L.E/ and L.F / are simple and both E and F
have infinite emitters, then condition (iii) of the corollary holds if and only if L.E/
and L.F / are Morita equivalent. Our result applies far more generally, but it is in
principle weaker, since kk-isomorphic algebras need not be Morita equivalent. For
exampleL2 is not Morita equivalent to the 0 ring. Observe also that the identity (1.5)
helps us replace the graphic condition about # sing by the purely K-theoretic or
homological condition about KH 1.

By (1.2) and [8, Theorem 5.3], when E is finite and regular KH 1.L.E// is
isomorphic to the group of extensions of the C �-algebra of E by the algebra of
compact operators. We shall see presently thatKH 1.L.E// is also related to algebra
extensions

0!M1 ! E ! L.E/! 0:

One can form an abelian monoid of homotopy classes of such extensions (see
Section 2); wewriteExt.L.E// for its group completion. We show in Proposition 6.5
that, under the assumptions of Theorem 1.3, if in additionE1 is countable andE has
no sources, then there is a natural surjection

Ext.L.E//� KH 1.L.E//: (1.6)

As another similarity with the operator algebra case, we prove (Corollary 7.20) that
if ` and E are as in Theorem 1.3 and R 2 Alg`, then there is a short exact sequence

0! Ext1Z.KH0.L.E//;KHnC1.R//! kkn.L.E/;R/
ŒKH0;

�KH1�
�!

Hom.KH0.L.E//;KHn.R//˚ Hom.Ker.I � AtE /;KHnC1.R//! 0: (1.7)
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Observe that, for operator algebraic K-theory,

K
top
1 .C

�.E// D Ker.I � AtE /;

so substituting K top and KK for KH and kk in (1.7) one obtains the usual UCT
of [13, Theorem 1.17]. Moreover, in Proposition 7.23 we also prove an analogue of
the Künneth theorem of [13, Theorem 1.18].

Up to here in this introduction we have only discussed results that hold for E
with finitely many vertices and for ` such that KH0.`/ D Z and KH�1` D 0.
With no hypothesis on ` we show that if E and F have finitely many vertices and
� 2 kk.L.E/;L.F // then

� is an isomorphism ” KH0.�/ and KH1.�/ are isomorphisms. (1.8)

It is however not true that unital Leavitt path algebras with isomorphicKH0 andKH1
are kk-isomorphic, even when ` is a field (see Remark 5.11). Thus in view of
Corollary 1.4, the pair .KH0; KH 1/ is a better invariant of Leavitt path algebras
than the pair .KH0; KH1/.

Next let ` and E be arbitrary and let R 2 Alg`. If I is a set, write

R.I / D
M
i2I

R;

for the algebra of finitely supported functions I ! R. Let X WAlg` ! T be an
excisive, homotopy invariant, E-stable homology theory. Further assume that direct
sums of at most #E0 summands exist in T and that for any family of algebras
fRi W i 2 I g the natural mapM

i2I

X.Ri /! X
�M
i2I

Ri

�
is an isomorphism if #I � #E0. We prove in Theorem 5.4 that there is a distinguished
triangle in T of the following form

X.R/.reg.E//
I�At

E // X.R/.E
0/ // X.L.E/˝R/: (1.9)

This applies, in particular, when we take X D KH , generalizing [3, Theorem 8.4].
Thus we get a long exact sequence

KHnC1.L.E/˝R/
.E0/
! KHn.R/

.reg.E//

I�At
E

�! KHn.R/
.E0/
! KHn.L.E/˝R/: (1.10)

When R is regular supercoherent we may substitute K for KH in (1.10), general-
izing [3, Theorem 7.6] (see Example 5.5). Infinite direct sums are not known to
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exist in kk; however finite direct sums do exist, and j does commute with them.
Hence when E0 is finite and ` is arbitrary, we may take X D j above to obtain a
distinguished triangle

j.R/reg.E/
I�At

E // j.R/E
0 // j.L.E/˝R/: (1.11)

This triangle is the basic tool we use to establish all the results on unital Leavitt path
algebras mentioned above.

The rest of this article is organized as follows. Some notations used throughout
the paper (in particular pertaining matrix algebras) are explained at the end of this
introduction. In Section 2 we recall some basic notions about algebraic homotopy,
prove some elementary lemmas about it, and use them to define, for every pair of
algebras A and R with R unital, a group Ext.A;R/ of virtual homotopy classes
of extensions of A by M1R. In Section 3 we recall some basic properties of kk
and quasi-homomorphisms. Also, we prove in Proposition 3.12 that if �i WAi !
MSiAi (i 2 I ) are corner inclusions, S is an infinite set with #S � #.tiSi / and
j WAlg`!kk is the universal excisive, homotopy invariant andMS -stable homology
theory, then j.

L
i �i / is an isomorphism even if I -direct sums might not exist in kk.

Section 4 is devoted to the characterization of the image under j WAlg` ! kk of the
Cohn path algebra C.E/ of a graph E. The latter is related to Leavitt path algebra
L.E/ by means of an exact sequence

0!K.E/! C.E/! L.E/! 0; (1.12)

where K.E/ is a direct sum of matrix algebras. The algebra C.E/ receives a canon-
ical homomorphism 'W `.E

0/ ! C.E/. We prove in Theorem 4.2 that the universal
excisive, homotopy invariant,E-stable homology theory j maps ' to an isomorphism

j.`.E
0// Š j.C.E//: (1.13)

The proof uses quasi-homomorphisms, much in the spirit of Cuntz’ proof of Bott
periodicity for C �-algebra K-theory. As a corollary we obtain that if KH0.`/ D Z
and E and F are graphs, then for the universal excisive, homotopy invariant, E tF -
stable homology theory j we have (Corollary 4.3)

j.C.E//Šj.C.F //” KH0.C.E//ŠKH0.C.F //” #E0D#F 0: (1.14)

In Section 5 we use Proposition 3.12 to prove that j.`.reg.E/// Š j.K.E//. Putting
this together with (1.14) we get that, for arbitrary ` and E, the kk-triangle induced
by (1.12) is isomorphic to one of the form

j.`.reg.E///
f
! j.`.E

0//! j.L.E//:



118 G. Cortiñas and D. Montero

We show in Proposition 5.2 that for each pair .v; w/ 2 E0 � reg.E/ the composite

�vf iw W `! `

induced by the inclusion at thew-summand and the projection onto the v-summand is
multiplication by the .v; w/-entry of I�AtE . We use this to prove (1.9) (Theorem5.4).
The exact sequence (1.10), the fact that K can be substituted for KH when R is
regular supercoherent, as well as triangle (1.9), are deduced in Example 5.5. The
equivalence (1.8) is proved in Proposition 5.10. Beginning in Section 6 we work
under the Standing assumptions 6.1, which are that

KH�1` D 0 and KH0.`/ D Z:

The surjection (1.6) is established in Proposition 6.5. The fact thatKH0.L.E// and
KH 1.L.E// have isomorphic torsion subgroups and the identity (1.5) are proved in
Lemma 6.7. Theorem 1.3 and Corollary 1.4 are Theorem 6.10 and Corollary 6.11.
In Section 7 we introduce a descending filtration

fkk.L.E/;R/i W 0 � i � 2g

on kk.L.E/;R/ for every algebra R and every unital Leavitt path algebra L.E/ and
compute the slices (Theorem 7.12)

kk.L.E/;R/i=kk.L.E/;R/iC1:

We use this to prove the universal coefficient theorem (1.7) in Corollary 7.20 and the
Künneth theorem in Proposition 7.23.
Notation 1.15. A commutative ground ring ` is fixed throughout the paper. All
algebras, modules and tensor products are over `. If A is an algebra and X � A

a subset, we write span.X/ and hXi for the `-submodule and the two-sided ideal
generated by X . At the beginning of this Introduction we introduced, for a set S and
an algebra A, the algebraMSA of finitely supported S � S -matrices. We write

MS DMS` and �s;t 2MS

for the matrix whose only nonzero entry is a 1 at the .s; t/-spot .s; t 2 S/. We also
consider the algebra

�S .R/ WD fA W S � S ! R j # suppAi;�; # suppA�;i <1g

of those matrices which have finitely many nonzero coefficients in each row and
column. If #S D n <1, then �S DMS DMn is the usual matrix algebra. We use
special notation for the case S D N; we writeM1 forMN and � for �N . Observe
thatM1R is an ideal of �.R/. Put

†.R/ D �.R/=M1R: (1.16)
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The algebras �.R/ and †.R/ are Wagoner’s cone and suspension algebras [15].
A �-algebra is an algebra R equipped with an involutive algebra homomorphism
R ! Rop. For example ` is a �-algebra with trivial involution. If R is a �-algebra,
the conjugate matricial transpose makes both �S .R/ andMSR into �-algebras.

2. Homotopy and extensions

Let ` be a commutative ring. Let Alg` be the category of associative, not necessarily
unital algebras over `. If B 2 Alg`, we write

evi WBŒt�! B; evi .f / D f .i/; i D 0; 1

for the evaluation map. Let �0; �1WA ! B be two algebra homomorphisms; an
elementary homotopy from �0 to �1 is an algebra homomorphism H WA ! BŒt�

such that ev0H D �0 and ev1H D �1. We say that two algebra homomorphisms
�; WA ! B are homotopic, and write � �  , if for some n � 1 there is a finite
sequence

� D �0; : : : ; �n D  

such that for each 0 � i � n � 1 there is an elementary homotopy from �i to �iC1.
We write

ŒA; B� D homAlg`.A;B/=�

for the set of homotopy classes of homomorphisms A! B .
Lemma 2.1. Let A be a ring. Then the maps

�2; �
0
2WA!M2A; �2.a/ D �1;1 ˝ a; �

0
2.a/ D �2;2 ˝ a

are homotopic.

Proof. Let R D zA be the unitalization. Consider the element

U.t/ D

�
.1 � t2/ .t3 � 2t/

t .1 � t2/

�
2 GL2RŒt�:

Let ad.U.t//WRŒt�! RŒt� be the conjugation map. Then

H D ad.U.t//�2WA!M2AŒt�;

satisfies ev0H D �2, ev1H D �02.

LetA andR be algebras,�; 2homAlg`.A;R/ and �2WR!M2R, as in Lemma2.1.
We say that � and  areM2-homotopic, and write � �M2  , if �2� � �2 . Put

ŒA;R�M2 D homAlg`.A;R/=�M2 :



120 G. Cortiñas and D. Montero

Let C be an algebra, A;B � C subalgebras and incAWA ! C , incB WB ! C the
inclusion maps. Let x; y 2 C such that yAx � B and axya0 D aa0 for all a; a0 2 A.
Then

ad.y; x/WA! B; ad.y; x/.a/ D yax (2.2)
is a homomorphism of algebras, and we have the following.
Lemma 2.3. Let A;B;C and x; y be as above. Then incB ad.y; x/ �M2 incA. If
moreover A D B and yA;Ax � A, then ad.y; x/ �M2 idA.

Proof. Consider the diagonal matrices xy D diag.y; 1/, xx D diag.x; 1/ 2M2
zC . One

checks that axx xya0 D aa0 for all a; a0 2M2A. Hence

� WD ad.xy; xx/WM2A!M2C

is a homomorphism. Moreover we have ��2 D �2 incB ad.y; x/ and ��02 D �02 incA.
Thus applying Lemma 2.1 twice, we get

�2 incB ad.y; x/ � �02 incA � �2 incA :

This proves the first assertion. Under the hypothesis of the second assertion, � maps
M2A!M2A, and we have ��2 D �2 ad.y; x/ and ��02 D �02. The proof is immediate
from this using Lemma 2.1.

A C2-algebra is a unital algebra R together with a unital algebra homomorphism
from the Cohn algebra C2 to R. Equivalently, R is a unital algebra together with
elements x1; x2; y1; y2 2 R satisfying yixj D ıi;j .

If R is a C2-algebra the map

�WR˚R! R; a� b D x1ay1 C x2ay2 (2.4)

is an algebra homomorphism. An infinite C2-algebra is a C2-algebra together with
an endomorphism �WR! R such that for all a 2 R we have

a� �.a/ D �.a/:

In the following lemma and elsewhere, ifM is an abelian monoid, we writeMC
for the group completion.
Lemma 2.5. LetA be an algebra,R D .R; x1; x2; y1; y2/ aC2-algebra, andB C R
an ideal. Then (2.4) induces an operation in ŒA; B�M2 which makes it into an abelian
monoid whose neutral element is the zero homomorphism. If furthermore R is an
infinite C2-algebra, then ŒA;R�CM2 D 0.

Proof. By Lemma 2.3, the homomorphisms B ! B , b 7! xibyi (i D 0; 1) are
M2-homotopic to the identity. Hence to prove the first assertion, it suffices to show
that (2.4) associative and commutative up toM2-homotopy. This is straightforward
from Lemma 2.3, since all diagrams involved commute up to a map of the form (2.2).
The second assertion is clear.
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Example 2.6. Any purely infinite simple unital algebra is a C2-algebra, by [4,
Proposition 1.5].

Example 2.7. If R is a unital algebra, its cone �.R/ is an infinite C2-algebra ([15])
and †.R/ is a C2-algebra. For every algebra R, �.R/ C �. zR/ and †.R/ C †. zR/.
By definition, we have an exact sequence

0!M1R! �.R/! †.R/! 0: (2.8)

Lemma 2.9. Let R be a unital algebra and let E be an algebra containingM1R as
an ideal. Then there exists a unique algebra homomorphism

 D  E WE ! �.R/

which restricts to the identity onM1R.

Proof. If a 2 E then for each i; j 2 N there is a unique element ai;j 2 R such that

.�i;i ˝ 1/a.�j;j ˝ 1/ D �i;j ˝ ai;j :

One checks that  WE ! �.R/,  .a/ D .ai;j / satisfies the requirements of the
lemma.

It follows from Lemma 2.9 that ifR is unital then every exact sequence of algebras

0!M1R! E ! A! 0 (2.10)

induces a homomorphism WA! †.R/ and that (2.10) is isomorphic to the pullback
along  of (2.8). Hence we may regard ŒA;†.R/�M2 as the abelian monoid of
homotopy classes of all sequences (2.10). Put

Ext.A;R/ D ŒA;†.R/�CM2 ; Ext.A/ D Ext.A; `/: (2.11)

Observe that, by Lemma 2.5, any sequence (2.10) which is split by an algebra
homomorphism A! E maps to zero in Ext.A;R/.

3. Algebraic bivariant K-theory

Let T be a triangulated category and � the inverse suspension functor of T . A
homology theory with values in T is a functor X WAlg` ! T . An extension of
algebras is a short exact sequence of algebra homomorphisms

.E/W 0! A! B ! C ! 0 (3.1)
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which is `-linearly split. We write E for the class of all extensions. An excisive
homology theory for `-algebras with values in T consists of a functorX WAlg` ! T ,
together with a collection f@E W E 2 Eg of maps

@XE D @E 2 homT .�X.C/;X.A//

satisfying the compatibility conditions of [7, Section 6.6]. Observe that ifX WAlg`!T

is excisive and A;B 2 Alg`, then the canonical map

X.A/˚X.B/! X.A˚ B/

is an isomorphism. Let I be a set. We say that a homology theory X WAlg` ! T is
I -additive if first of all direct sums of cardinality � #I exist in T and second of all
the map M

j2J

X.Aj /! X
�M
j2J

Aj

�
is an isomorphism for any family of algebras fAj W j 2 J g � Alg` with #J � #I .

We say that the functorX WAlg` ! T is homotopy invariant if for everyA 2 Alg`,
X maps the inclusion A � AŒt� to an isomorphism.

Let S be a set, s 2 S and let

�sWA!MSA; �s.a/ D �s;s ˝ a .A 2 Alg`/: (3.2)

Call X MS -stable if for every A 2 Alg`, it maps �sWA ! MSA to an iso-
morphism. This definition is independent of the element s 2 S , by the argument
of [5, Lemma 2.2.4]. One can further show, using [5, Proposition 2.2.6] and [11,
Example 5.2.6] that if S is infinite and X is MS -stable, and T is a set such that
#T � #S , then X isMT -stable.
Definition 3.3. Let A;B 2 Alg`. A quasi-homomorphism from A to B is a pair of
homomorphisms �; WA! D 2 Alg`, whereD contains B as an ideal, such that

�.a/ �  .a/ 2 B .a 2 A/:

We use the notation
.�;  /WA! D B B:

Two algebra homomorphisms �; WA! B are said to be orthogonal, in symbols
� ?  , if

�.x/ .y/ D 0 D  .x/�.y/ .x; y 2 A/:

If � ?  then � C  is an algebra homomorphism.
Proposition 3.4 ([9, Proposition 3.3]). Let X WAlg` ! � be an excisive homology
theory and let .�;  /WA ! D B B be a quasi-homomorphism. Then, there is an
induced map

X.�; /WX.A/! X.B/;

which satisfies the following naturality conditions:
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(1) X.�; 0/ D X.�/.
(2) X.�; / D �X. ; �/.
(3) If .�1;  1/ and .�2;  2/ are quasi-homomorphisms A! D B B with �1 ? �2

and  1 ?  2, then .�1 C �2;  1 C  2/ is a quasi-homomorphism and

X.�1 C �2;  1 C  2/ D X.�1;  1/CX.�2;  2/:

(4) X.�; �/ D 0.
(5) If ˛WC ! A is an `-algebra homomorphism, then

X.�˛; ˛/ D X.�; /X.˛/:

(6) If �WD!D0 is an `-algebra homomorphismwhichmapsB into an idealB 0CD0,
then

X.��; � / D X.�jB/X.�;  /:

(7) Let H D .HC;H�/WA ! DŒt� B BŒt� with ev0 ı H D .�C; ��/ and
ev1 ıH D . 

C;  �/. If, in addition, X is homotopy invariant then

X.�C; ��/ D X. C;  �/:

(8) Let . ; %/ be another quasi-homomorphism A ! D B B . Then .�; %/ is a
quasi-homomorphism and

X.�; %/ D X.�; /CX. ; %/:

The excisive homology theories form a category, where a homomorphismbetween
the theoriesX WAlg`!T and Y WAlg`!U is a triangulated functorGW T !U such
that GX D Y and such that for every extension (3.1) in E , the natural isomorphism
�WG.�X.C//! �Y.C/ makes the following into a commutative diagram

G.�X.C//
G.@X

E
/
//

�

��

Y.A/

�Y.C /:

@Y
E

99rrrrrrrrrr

In [7] a functor j WAlg` ! kk was defined which is an initial object in the
full subcategory of those excisive homology theories which are homotopy invariant
and M1-stable. It was shown in [11] that, for any fixed infinite set S , by a
slight variation of the construction of [7] one obtains an initial object in the full
subcategory of those excisive and homotopy invariant homology theories which are
MS -stable. Starting in the next section we shall fix S and use j and kk for the
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universal excisive, homotopy invariant andMS -stable homology theory and its target
triangulated category. Moreover, we shall often omit j from our notation, and say, for
example, that an algebra homomorphism is an isomorphism in kk or that a diagram
in Alg` commutes in kk or that a sequence of algebra maps

A! B ! C

is a triangle in kk to mean that j applied to the corresponding morphism, diagram or
sequence is an isomorphism, a commutative diagram or a distinguished triangle.
Also, since as explained above, in kk the corner inclusion �sWA ! MSA is
independent of s, we shall simply write � for j.�s/.

The loop functor � in kk and its inverse have a concrete description as follows.
Let �1 D t .t � 1/`Œt �, ��1 D .t � 1/`Œt; t�1�. For A 2 Alg` we have

�˙1j.A/ D j.�˙1 ˝ A/: (3.5)

Example 3.6. Let S be an infinite set and j WAlg` ! kk the universal homotopy
invariant, excisive andMS -stable homology theory. If R 2 Alg`, then the functor

j..�/˝R/WAlg` ! kk

is again a homotopy invariant,MS -stable, excisive homology theory. Hence it gives
rise to a triangulated functor kk ! kk. In particular, triangles in kk are preserved
by tensor products. Moreover, the tensor product induces a “cup product”

[W kk.A;B/˝ kk.R; S/! kk.A˝R;B ˝ S/; � [ � D .B ˝ �/ ı .� ˝R/:

For A;B 2 Alg` and n 2 Z, set

kkn.A;B/ D homkk.j.A/;�nj.B//; kk.A;B/ D kk0.A;B/: (3.7)

The groups kk�.A;B/ are the bivariant K-theory groups of the pair .A;B/.
Setting A D ` in (3.7) we recover the homotopy algebraic K-groups of Weibel [16];
there is a natural isomorphism ([7, Theorem 8.2.1], [11, Theorem 5.2.20])

kk�.`; B/
�
�! KH�.B/ .B 2 Alg`/: (3.8)

Remark 3.9. Even though KH is I -additive for every set I , the universal functor
j WAlg` ! kk is not known to be infinitely additive.
Lemma 3.10. Let fAi W i 2 I g � Alg` be a family of algebras, A D

L
i2I Ai ,

T a set, jW I ! T a function and v 2 T . Then the homomorphism

�jWA!MTA; �j

�X
i

ai

�
D

X
i2I

�j.i/;j.i/ ˝ ai

is homotopic to �v .
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Proof. Since
.MTA/Œx� D

M
i2I

�
MTAi Œx�

�
;

we may assume that I has a single element, in which case the lemma follows using
a rotational homotopy, as in the proof of Lemma 2.1.

Lemma 3.11. Let fSi W i 2 I g be a family of sets, �i WSi ! Si an injective map,

.�i /�WMSi !MSi ; .�i /�.�s;t / D ��i .s/;�i .t/

the induced homomorphism,

DD
M
i2I

MSi ; and �� D
M
i2I

.�i /�WD ! D:

If X WAlg` ! T isM2-invariant, then X.��/ is the identity map.

Proof. The map �i induces an `-module homomorphism `.Si /! `.Si / whose ma-
trix Œ�i � is an element of the ring �Si of Notation 1.15. Let Œ�i �� be the transpose
matrix; we have

Œ�i �
�Œ�i � D 1;

and
.�i /�.a/ D Œ�i �aŒ�

�
i � .a 2MSi /:

Hence for Œ�� D
L
i2I Œ�i � 2 R D

L
i2I �Si , we have

��.a/ D Œ��aŒ��
�:

SinceD C R, X.��/ is the identity by [5, Proposition 2.2.6].

Proposition 3.12. Let fSi W i 2 I g be a family of sets, vi 2 Si and S D
`
i2I Si .

Let
f D

M
i2I

�vi W `
.I /
!˚i2IMSi :

Let T be an infinite set with #T � #S . Let j WAlg` ! kk be the universal excisive,
homotopy invariant andMT -stable homology theory. Then j.f / is an isomorphism.

Proof. PutDD
L
i2I MSi . Let incWD!MS`

.I / be the inclusion. By Lemma 3.10,
the composite incf equals the canonical inclusion � in kk. Next let

g D .MSf / incWD !MSD:

We have
g.�˛;ˇ / D �˛;ˇ ˝ �vi ;vi .˛; ˇ 2 Si /:
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For each i 2 I extend the coordinate permutation map Si � fvig ! fvig � Si , to
a bijection �i WS � Si ! S � Si , and let .�i /� be the induced automorphism of
MSMSi ŠMS�Si . Consider the automorphism

�� D
M
i2I

.�i /�WMSD !MSDI

by Lemmas 3.10 and 3.11, � D j.��g/ D j.g/. From what we have just seen and
Example 3.6, in kk the following diagram commutes and its horizontal arrows are
isomorphisms.

`.I /

f

��

� //MS`
.I /

MSf

��

MS �//MSMS`
.I /

MSMSf

��
D

� //

inc
;;vvvvvvvvvv
MSD

MS �
//

MS inc
88qqqqqqqqqqq

MSMSD

It follows thatMSf and f are isomorphisms in kk.

4. Cohn algebras and kk

A directed graph is a quadruple E D .E0; E1; r; s/ where E0 and E1 are the sets of
vertices and edges, and r and s are the range and source functions E1 ! E0. We
call E finite if both E0 and E1 are finite. A vertex v 2 E0 is a sink if s�1.v/ D ;
and is an infinite emitter if s�1.v/ is infinite. A vertex v is singular if it is either a
sink or an infinite emitter; we call v regular if it is not singular. A vertex v 2 E0 is
a source if r�1.v/ D ;. We write sink.E/, inf.E/ and sour.E/ for the sets of sinks,
infinite emitters, and sources, and sing.E/ and reg.E/ for those of singular and of
regular vertices.

A finite path � in a graph E is a sequence of edges � D e1 : : : en such that

r.ei / D s.eiC1/ for i D 1; : : : ; n � 1:

In this case j�j WD n is the length of �. We view the vertices of E as paths of
length 0. Write P .E/ for the set of all finite paths in E. The range and source
functions r; s extend to P .E/! E0 in the obvious way. An edge f is an exit for a
path � D e1 : : : en if there exist i such that

s.f / D s.ei / and f ¤ ei :

A path � D e1 : : : en with n � 1 is a closed path at v if

s.e1/ D r.en/ D v:
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A closed path � D e1 : : : en at v is a cycle at v if

s.ej / ¤ s.ei / for i ¤ j :

The Cohn path algebra C.E/ of a graph E is the quotient of the free associative
`-algebra generated by the set

E0 [E1 [ fe� j e 2 E1g;

subject to the relations:
(V) v � w D ıv;wv.
(E1) s.e/ � e D e D e � r.e/.
(E2) r.e/ � e� D e� D e� � s.e/.

(CK1) e� � f D ıe;f r.e/.
The algebra C.E/ is in fact a �-algebra; it is equipped with an involution �WC.E/!
C.E/op which fixes vertices and maps e 7! e� .e 2 Q1). Condition V says that the
vertices of E are orthogonal idempotents in C.E/. Hence the subspace generated
by E0 is a subalgebra of C.E/, isomorphic to the algebra `.E0/ finitely supported
functions E0 ! `. For v 2 E0, let �v 2 `.E

0/ be the characteristic function of fvg.
We have a monomorphism

'W `.E
0/
! C.E/; '.�v/ D v: (4.1)

Observe that ifE0 is finite, then `.E0/ D `E0 is the algebra of all functionsE0 ! `.
We shall say that a homology theory isE-stable if it is stable with respect to a set

of cardinality #.E0 tE1 tN/.
The main result of this section is the following theorem.

Theorem 4.2. Let ' be the algebra homomorphism (4.1) and let j WAlg` ! kk be
the universal excisive, homotopy invariant andE-stable homology theory. Then j.'/
is an isomorphism.
Corollary 4.3. Let E and F be graphs and j WAlg` ! kk the universal excisive,
homotopy invariant and E tF -stable homology theory. Assume thatKH0.`/ Š Z.
Then C.E/ and C.F / are isomorphic in kk if and only if #E0 D #F 0.

Proof. By Theorem 4.2, C.E/ and C.F / are isomorphic in kk if and only if `.E0/

and `.F 0/ are. If
#E0 D #F 0

then `.E0/ and `.F 0/ are isomorphic in Alg`, and therefore also in kk. Assume
conversely that `.E0/ and `.F 0/ are isomorphic in kk. Then in view of (3.8) and of
the hypothesis that

KH0.`/ Š Z;

we have #E0 D #F 0.
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The proof of Theorem 4.2 is organized in four parts, with three lemmas inter-
spersed. First we need some preliminaries.

Associate an element mv 2 C.E/ to each v 2 E0 n inf.E/ as follows

mv D

(P
e2s�1.v/ ee

� if v 2 reg.E/;
0 if v 2 sour.E/:

Observe that mv satisfies the following identities:

mv D m
�
v ; m

2
v D mv; mvw D ıw;vmv; mve D ıv;s.e/e .w 2 E0; e 2 E1/:

(4.4)
Let Cm.E/ be the �-algebra obtained from C.E/ by formally adjoining an
element mv for each v 2 inf.E/ subject to the identities (4.4). We have a canonical
�-homomorphism

canWC.E/! Cm.E/: (4.5)

Let P D P .E/. For v 2 E0, set

Pv D f� 2 P .E/ j r.�/ D vg; P v
D f� 2 P j s.�/ D vg: (4.6)

Let �P be the ring introduced in Notation 1.15. Using the notation (4.6) in the
summation indexes, define a �-homomorphism

�WCm.E/! �P ; (4.7)

�.v/ D
X
˛2Pv

�˛;˛; �.e/ D
X

˛2P r.e/

�e˛;˛; .v 2 E0; e 2 E1/

�.mw/ D
X

˛2Pw ;j˛j�1

�˛;˛ .w 2 inf.E//:

Lemma 4.8. The maps (4.5) and (4.7) are monomorphisms.

Proof. It is well known that the set

B1 D f˛ˇ
�
j ˛; ˇ 2 P ; r.˛/ D r.ˇ/g

is a basis of C.E/ ([1, Proposition 1.5.6]). Set

B2 D f˛mvˇ
�
j ˛; ˇ 2 Pv; v 2 inf.E/g:

It follows from (4.4) that B D B1[B2 generates Cm.E/ as an `-module. It is clear
that � is injective on B; hence it suffices to show that the set �.B/ � �P is `-linearly
independent. Let F � B be a finite set and cWF ! ` n f0g a function such thatX

x2F

cxx D 0:
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Let
Q D f.˛; ˇ/ 2 P 2

j r.˛/ D r.ˇ/gI

giveQ a partial order by setting .˛; ˇ/ � .˛0; ˇ0/ if and only if there exists � 2 Pr.˛/
such that ˛0 D ˛� , ˇ0 D ˇ� . Let

f WB ! Q; f .˛ˇ�/ D .˛; ˇ/; f .˛mvˇ
�/ D .˛; ˇ/:

Assume thatF¤;. Thenf .F /has amaximal element .˛; ˇ/. If˛ˇ�2F , then�.˛ˇ�/
is the only matrix in �.F / whose .˛; ˇ/ entry is nonzero. Thus

c˛ˇ� D 0;

a contradiction. Hence v D r.˛/ 2 inf.E/, ˛ˇ� … F and ˛mvˇ� 2 F . Then
f .F n f˛mvˇ

�g/ contains only finitely many elements of the form .˛e; ˇe/ with
e 2 s�1.v/. However

�.˛mvˇ
�/˛e;ˇe D 1

for every e 2 s�1.v/. Thus
c˛mvˇ� D 0;

which again is a contradiction. HenceF must be empty; this concludes the proof.

Remark 4.9. By Lemma 4.8 we may identify Cm.E/ with its image in �P . Under
this identification, the formula

mv D
X

e2s�1.v/

ee�

holds for every v 2 E0.

Proof of Theorem 4.2, part I. Set

Cm.E/ 3 qv D v �mv .v 2 E0/: (4.10)

Consider the following ideals of Cm.E/

K.E/ D hqv j v 2 reg.E/i � yK.E/ D hqv j v 2 E
0
i: (4.11)

One checks, using [1, Proposition 1.5.11] that the maps

MPv !
yK.E/; �˛;ˇ 7! ˛qvˇ

� .v 2 E0/

assemble to an isomorphism M
v2E0

MPv

�
�! yK.E/: (4.12)
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Observe that (4.12) restricts to an isomorphismM
v2reg.E/

MPv

�
�!K.E/: (4.13)

Let y�W `.E0/ ! yK.E/ be the homomorphism that sends the canonical basis
element �v to qv and let �WC.E/ ! Cm.E/ be the �-homomorphism determined
by

�.v/ D mv; �.e/ D emr.e/:

One checks that .can; �/ is a quasi-homomorphism C.E/ ! Cm.E/ B yK.E/.
From the equality can' D �' Cy� and items (1), (3), (4) and (5) of Proposition 3.4,
it follows that

j.can; �/j.'/ D j.can'; �'/ D j.�' Cy�; �'/ D j.�'; �'/C j.y�; 0/ D j.y�/:

By Proposition 3.12, y� is an isomorphism in kk. Hence

j.y�/�1j.can; �/j.'/ D 1
j.`.E

0//
:

It remains to show that

j.'/j.y�/�1j.can; �/ D 1j.C.E//: (4.14)

Let P D P .E/; consider the algebra MP of finite matrices indexed by P . Let
y'W yK.E/ ! MPC.E/ be the homomorphism that sends ˛qvˇ� to �˛;ˇ ˝ v,
where �˛;ˇ is the matrix unit. We shall need a twisted version y�� of y�; this is
the �-homomorphism

y�� WC.E/!MPC.E/; y�� .v/ D �v;v˝v; y�� .e/ D �s.e/;r.e/˝e .v 2 E
0; e 2 E1/:

(4.15)
We have a commutative diagram

`.E
0/

'

��

y� // yK.E/

y'

��
C.E/

y��

//MPC.E/

(4.16)

Lemma 4.17. Let ˛ 2 P and let �˛WC.E/!MPC.E/ as in (3.2). Then �˛ and the
map y�� of (4.15) induce the same isomorphism in kk.

Proof. Because j is E-stable, it is MP -stable, whence �˛ is an isomorphism and
does not depend on ˛. Hence we may and do assume that ˛ D w 2 E0. Because j
is homotopy invariant, it is enough to find a polynomial homotopy between �wandy�� .



Algebraic bivariant K-theory and Leavitt path algebras 131

For each v 2 E0nfwg set

Av D Œ.1 � t
2/�w;w C .t

3
� 2t/�w;v C t�v;w C .1 � t

2/�v;v�˝ v;

Bv D Œ.1 � t
2/�w;w C .2t � t

3/�w;v � t�v;w C .1 � t
2/�v;v�˝ v;

Aw D �w;w ˝ w D Bw :

The desired homotopy is the homomorphismH WC.E/!MPC.E/Œt � defined by

H.v/ D Av.�v;v ˝ v/Bv;

H.e/ D As.e/.�s.e/;r.e/ ˝ e/Br.e/; H.e�/ D Ar.e/.�r.e/;s.e/ ˝ e
�/Bs.e/:

Proof of Theorem 4.2, part II. Let

MPC.E/ � A D spanf�;ı ˝ ˛ˇ� j s.˛/ D r./; s.ˇ/ D r.ı/; r.˛/ D r.ˇ/g:

One checks that A is a subalgebra containing the images of both y�� and y'. From
the commutative diagram (4.16) we obtain, by corestriction, another commutative
diagram

`.E
0/

'

��

y� // yK.E/

y'

��
C.E/ // A

(4.18)

By Lemma 4.17, the bottom arrow of (4.18) is a monomorphism in kk. We shall
abuse notation and write y�� for the latter map.

Let zCm.E/ be the unitalization; putR D �P
zCm.E/. Consider the homomorph-

ism
�0 D �˝ 1WC.E/! R:

One checks that the subalgebra A � R is closed under both left and right
multiplication by elements in the image of �0. We can thus form the semi-direct
product

Cm.E/ Ë A D Cm.E/ Ë�0 A:

As an `-module, Cm.E/ Ë A is just Cm.E/˚ A. Multiplication is defined by the
rule

.r; x/ � .s; y/ D .rs; �0.r/x C y�0.s/C xy/:

Let J be the ideal in Cm.E/ËA generated by the elements .˛qvˇ�;��˛;ˇ ˝v/with
v D r.˛/ D r.ˇ/. One checks that

J D spanf.˛qvˇ�;��˛;ˇ ˝ v/ W v D r.˛/ D r.ˇ/g:

Set
D D .Cm.E/ Ë A/=J:



132 G. Cortiñas and D. Montero

Lemma 4.19. The composite of the inclusion and projection maps

A D 0 Ì A � Cm.E/ Ë A! D

is injective.

Proof. It follows from (4.12) that there is an injective homomorphism

jW yK.E/! A; j.˛qvˇ
�/ D �˛;ˇ ˝ v .r.˛/ D r.ˇ/ D v/:

Let incW yK.E/! Cm.E/ be the inclusion. Observe that J is the image of the map

incÌ.�j/W yK.E/! Cm.E/ Ì A:

In particular, the projection � WCm.E/ Ë A ! Cm.E/ is injective on J . It follows
that J \ .0 Ì A/ D 0; this finishes the proof.

Proof of Theorem 4.2, part III. By Lemma 4.19, we may regard A as an ideal of D.
Let ‡ WCm.E/ ! D be the composite of the inclusion Cm.E/ � Cm.E/ Ì A and
the projection Cm.E/ÌA! D. We may embed diagram (4.18) into a commutative
diagram

`.E
0/

'

��

y� // yK.E/

y'

��

// Cm.E/

‡

��
C.E/

y�� // A // D

(4.20)

Let  0 D ‡ can,  1 D ‡� . Note that  1 ?y�� , so  1=2 D  1 Cy�� is an algebra
homomorphism. We have quasi-homomorphisms

. 0;  1/; . 0;  1=2/; . 1=2;  1/WC.E/! D B A:

Lemma 4.21. The quasi-homomorphism . 0;  1=2/ induces the zero map in kk.

Proof. LetHCWC.E/! DŒt� be the algebra homomorphism determined by setting

HC.v/ D .v; 0/;

HC.e/ D .emr.e/; 0/C .1 � t
2/.0; �s.e/;r.e/ ˝ e/C t .0; �e;r.e/ ˝ r.e//;

HC.e�/ D .mr.e/e
�; 0/C .1 � t2/.0; �r.e/;s.e/ ˝ e

�/C .2t � t3/.0; �r.e/;e ˝ r.e//

for v 2 E0 and e 2 E1. It is a matter of calculation to show that HC a homotopy
between  0 and  1=2, and that

.HC;  1=2/WC.E/! DŒt� B AŒt �
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is a homotopy between . 0;  1=2/ and . 1=2;  1=2/. Hence by item (7) of Proposi-
tion 3.4, we obtain

j. 0;  1=2/ D j. 1=2;  1=2/ D 0

as required.

Proof of Theorem 4.2, conclusion. Using the commutativity of diagram (4.20) and
items (6), (8) and (1) of Proposition 3.4 and Lemma 4.21 we have

j.y'/j.can; �/ D j. 0;  1/ D j. 0;  1=2/C j. 1=2;  1/ D j.y�� /:

On the other hand

j.y'/j.can; �/ D j.y�� /j.'/j.y�/�1j.can; �/:

Hence
j.y�� / D j.y�� /j.'/j.y�/

�1j.can; �/

Since j.y�� / is a monomorphism, this implies that

1j.C.E// D j.'/j.y�/
�1j.can; �/:

This finishes the proof.

5. The Leavitt path algebra and a fundamental triangle

Let E be a graph; for v 2 E0 let qv 2 C.E/ be the element (4.10). The Leavitt path
algebra L.E/ is the quotient of C.E/ modulo the relation

.CK2/ qv D 0 .v 2 reg.E//:

In other words, for the idealK.E/ C C.E/ of (4.11), we have a short exact sequence

0!K.E/! C.E/! L.E/! 0: (5.1)

It follows from [1, Proposition 1.5.11] that the sequence (5.1) is `-linearly split, and
is thus an algebra extension in the sense of Section 3.

The adjacency matrix A0E 2 Z..E
0ninf.E//�E0/ is the matrix whose entries are

given by
.A0E /v;w D #fe 2 E1 W s.e/ D v and r.e/ D wg:

The reduced adjacency matrix is the matrix AE 2 Z.reg.E//�E
0/ which results

from AE upon removing the rows corresponding to sinks. We also consider the
matrix

I 2 Z.E
0�reg.E//; Iv;w D ıv;w :
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Proposition 5.2. Let j WAlg` ! kk be as in Theorem 4.2.
(i) There is a distinguished triangle in kk

j
�
`.reg.E//

� f // j
�
`.E

0/
�

// j.L.E//: (5.3)

(ii) Let�vW `! `.reg.E// be the inclusion in the v-summand and let cv 2 Z.E
0/�fvg be

the v-column of the matrix I �AtE .v 2 reg.E//. Under the isomorphism (3.8),
the composite fj.�v/ corresponds to the map

1˝ cvWKH0.`/! KH0.`/˝ Z.E
0/

Proof. Consider the map

qW `.reg.E// !K.E/; q.�v/ D qv:

In view of (4.13), j.q/ is an isomorphism by Proposition 3.12. By Theorem 4.2, the
map j.�/ is an isomorphism. Hence the kk-triangle induced by (5.1) is isomorphic
to the triangle (5.3) where for the inclusion incWK.E/ � C.E/, we have

f D j.�/�1j.inc/j.q/:

This proves (i).
To prove (ii), fix v 2 reg.E/ and consider the elements qv; mv and ee� 2 C.E/

(e 2 E1, s.e/ D v). As the latter elements are idempotent, we regard them as
homomorphisms ` ! C.E/. In particular, qv D inc q�v . Because qv ? mv and
v D qv Cmv , j.qv/ D j.v/ � j.mv/. On the other hand, by (CK1),

j.mv/ D
X
s.e/Dv

j.r.e//:

Summing up,
qv D j.v/ �

X
s.e/Dv

j.r.e//I

this proves (ii).

Theorem 5.4. Let X WAlg` ! T be an excisive, homotopy invariant, E-stable and
E0-additive homology theory and let R 2 Alg`. Then (5.3) induces a triangle in T

X.R/.reg.E//
I�At

E // X.R/.E
0/ // X.L.E/˝R/:

Proof. Tensoring the triangle (5.3) by R yields another triangle in kk, by
Example 3.6. By the universal property of j , applying X to the latter triangle gives
a distinguished triangle in T . Now apply Proposition 5.2 (ii) and the E0-additivity
hypothesis on X to finish the proof.
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Example 5.5. Theorem 5.4 applies to X D KH and arbitrary E, generalizing [3,
Theorem 8.4] from the row-finite to the general case. Recall a ring A is Kn-regular
if for every m � 1, the inclusion A! AŒt1; : : : ; tm� induces an isomorphism

Kn.R/! Kn
�
RŒt1; : : : ; tm�

�
:

We call A K-regular if it is Kn-regular for all n. By [16, Proposition 1.5], the
canonical map K.A/ ! KH.A/ is a weak equivalence when A is K-regular. For
example, if R is an `-algebra which is a regular supercoherent ring, then L.E/˝ R
is K-regular (by the argument of [3, p. 23]), so we may replace KH by K to obtain
the following triangle in the homotopy category of spectra which generalizes [3,
Theorem 7.6]

K.R/.reg.E//
I�At

E // K.R/.E
0/ // K.L.E/˝R/:

In particular this applies when R D ` is a field. When E0 is finite and ` is
arbitrary, Theorem 5.4 also applies to the universal homology theory j WAlg` ! kk

of Theorem 4.2. In particular, if #E0 <1 we have a triangle in kk

j
�
`reg.E/

� I�At
E // j

�
`E

0� // j.L.E//: (5.6)

In particularL.E/ belongs to the bootstrap category of [7, Section 8.3] wheneverE0
is finite, or equivalently, when L.E/ is unital [1, Lemma 1.2.12].

Remark 5.7. When E is finite, we can also fit L.E/ into a kk-triangle associated to
a matrix with entries in f0; 1g. Let B 0E 2 f0; 1g

.E1tsink.E//�.E1tsink.E//,

.B 0E /x;y D

�
ır.x/;s.y/ x; y 2 E1;

ır.x/;y x 2 E1; y 2 sink.E/;
0 x 2 sink.E/:

The matrix B 0E D A0E 0 is the incidence matrix of the maximal out-split graph E 0
of [1, Definition 6.3.23]. Since by [1, Proposition 6.3.25], L.E/ Š L.E 0/ in Alg`,
(5.6) gives a triangle

j
�
`E

1� I�BtE // j �`E1tsink.E/� // j.L.E//:

Here I; B tE 2 .E
1 t sink.E// � E1 are obtained from the identity matrix and from

.B 0E /
t by removing the columns corresponding to sinks.

Remark 5.8. In [7], a functor j 0WAlg` ! kk0 was constructed that is universal for
those homotopy invariant andM1-stable homology theories which are excisive with
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respect to all, not just the linearly split short exact sequences of algebras (3.1). The
suspension functor in kk0 is induced by Wagoner’s suspension (1.16); we have

��1j D j†:

The universal property of j implies that there is a triangulated functor F W kk ! kk0

such that j 0 D Fj , and it follows from [7, Theorem 8.2.1] that

F WKHn.R/ D kkn.`; R/! kk0n.`; R/

is an isomorphism for all n 2 Z and R 2 Alg`. Note that when E0 is finite and E1
is countable, Theorem 5.4 applies to X D j 0. It follows that

FnW kk.L.E/;R/! kk0n.L.E/;R/

is an isomorphism for all n 2 Z and R 2 Alg`. In particular, if R is unital, E1 is
countable and E0 is finite, then for the Ext-group we have a natural map

Ext.L.E/;R/! kk�1.L.E/;R/:

Convention 5.9. From now on, every statement about the image under j of the
Cohn or Leavitt path algebras of finitely many graphs E1; : : : ; En will refer to the
tniD1Ei -stable, homotopy invariant, excisive homology theory j WAlg` ! kk.

Proposition 5.10. Let E and F be graphs and � 2 kk.L.E/;L.F //. Assume that
E0 and F 0 are finite and that KHi .�/ is an isomorphism for i D 0; 1. Then � is an
isomorphism. In particular KHn.�/ is an isomorphism for all n 2 Z.

Proof. The map � induces a natural transformation

�AW kk.A;L.E//! kk.A;L.F // .A 2 Alg`/:

Our hypothesis that KHi .�/ is an isomorphism for i D 0; 1 says that ���ij.`/ is an
isomorphism. Since F 0 is finite by assumption, this implies that also �

��ij.`F
0
/
and

���ij.`reg.F // are isomorphisms. Hence applying � W kk.�; L.E// ! kk.�; L.F //

to the triangle

j
�
`reg.F /

� I�At
F // j

�
`F

0� // j.L.F //

and using the five lemma, we obtain that �L.F / is an isomorphism. In particular there
is an element � 2 kk.L.F /; L.E// such that �� D 1L.F /. Our hypothesis implies
that KHi .�/ must be an isomorphism for i D 0; 1. Hence reversing the role of E
and F in the previous argument shows that � has a left inverse. It follows that � is
an isomorphism.
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Remark 5.11. The conclusion of Proposition 5.10 does not follow if we only assume
that there are group isomorphisms

�i WKHi .L.E//
�
�! KHi .L.F // .i D 0; 1/:

For example, over ` D Q,

K0.L0/ D K0.L1/ D Z and K1.L0/ D Q� Š Z=2Z˚ Z.N/ Š K1.L1/:

However L0 and L1 are not isomorphic in kk, since they have different periodic
cyclic homology: HP1.L0/ D 0 andHP1.L1/ D Q.

6. A structure theorem for Leavitt path algebras in kk

Standing assumptions 6.1. From here on, we shall assume that the commutative
base ring ` satisfies the following conditions.

(i) KH�1.`/ D 0.

(ii) The natural map Z D K0.Z/ D KH0.Z/! KH0.`/ is an isomorphism.

Moreover, all graphs considered henceforth are assumed to have finitely many
vertices. In particular, all Leavitt path algebras will be unital.

Remark 6.2. Any regular supercoherent ground ring ` satisfies standing assump-
tion (i), and moreover any Leavitt path algebra over ` is K-regular. Hence all
statements of this section are valid for regular supercoherent ` satisfying standing
assumption (ii), withK0 substituted forKH0. In particular, this applies when ` D Z
or any field.

Definition 6.3. Let L.E/ the Leavitt path algebra associated to the graph E. Put

KH 1.L.E// D kk�1.L.E/; `/:

It follows from (5.6) and the standing assumptions that, abusing notation, and
writing I for I t ,

KH 1.L.E// Š Coker
�
I � AE WZ

E0
! Zreg.E/�: (6.4)

Proposition 6.5 (Compare [8, Theorem 5.3]). Let E be a graph with finitely many
vertices, such that E1 is countable and sour.E/ D ;. Then the natural map of
Remark 5.8 is a surjection

Ext.L.E//� KH 1.L.E//: (6.6)
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Proof. Our hypothesis onE imply that, with the notation of(4.6), we have #Pv D #N
for all v 2 E0. Hence by (4.13),

K.E/ ŠM1`
reg.E/;

and (5.1) is an extension of L.E/ byM1`reg.E/. Let  WL.E/! †.`/reg.E/ be its
classifying map and for v 2 reg.E/ let �vW†.`/reg.E/ ! †.`/ be the projection,
and put  v D �v . With the notation of Remark 5.8 we have a triangle in kk0

j
�
`E

0�
! j.L.E//

 
�! j

�
†.`/reg.E/

�
! j

�
†.`/E

0�
:

Applying kk0.�; †.`// to it and using Remark 5.8 we see that KH 1.L.E// is
generated by the kk-classes of the  v; since these are in the image of (6.6), it follows
that the latter map is surjective.

Lemma 6.7. (i) The groups KH 1.L.E// and KH0.L.E// have isomorphic
torsion subgroups.

(ii) # sing.E/ D rk.KH0.L.E// � rk.KH 1.L.E//.

Proof. Let

D D diag.d1; : : : ; dn; 0; : : : ; 0/ 2 ZE
0�reg.E/; di � 2; dindiC1

be the Smith normal form of I �AtE . ThenD
t is the Smith normal form of I �AE ,

whence

torsKH0.L.E// D
nM
iD1

Z=di D torsKH 1.L.E//: (6.8)

Similarly,

rkKH0.L.E// � rkKH 1.L.E//

D .#E0 � rk.I � AE // � .# reg.E/ � rk.I � AE ///
D # sing.E/:

We shall write
�.E/ D torsKH0.L.E//:

For 0 � n � 1, let Rn be the graph with exactly one vertex and n loops and let
Ln D L.Rn/. Thus

L0 D `; L1 D `Œt; t
�1�

is the algebra of Laurent polynomials and for 2 � n <1,

Ln D L.1; n/

is the Leavitt algebra of [10]. By (5.6), j.L1/ Š j.L0/ and we have a distinguished
triangle in kk

j.`/
n�1
�! j.`/ �! j.Ln/ .n � 1/: (6.9)
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Theorem 6.10. Let E be a graph with finitely many vertices. Assume that ` satisfies
the standing assumptions 6.1. Let d1; : : : ; dn , dindiC1 be the invariant factors
of the finite abelian group �.E/, s D # sing.E/ and r D rk.KH 1.L.E//. Let
j WAlg` ! kk be the universal excisive, homotopy invariant, E-stable homology
theory. Then

j.L.E// Š j
�
Ls0 ˚ L

r
1 ˚

nM
iD1

LdiC1

�
:

Proof. Let
D D diag.d1; : : : ; dn; 0; : : : ; 0/ 2 ZE

0�reg.E/:

Then there are P 2 GL#E0 Z,Q 2 GL# reg.E/ Z such that

P.I � AtE /Q D D;

where D WD diag.d1; : : : ; dr ; 0; : : : ; 0/. Hence we have the following commutative
square in kk with vertical isomorphisms

j.`reg.E//

Q�1

��

I�At
E // j.`E

0
/

P
��

j.`reg.E//
D
// j.`E

0
/

Hence both rows have isomorphic cones. By (5.6), the cone of the top row is L.E/;
by (6.9) and Lemma 6.7 that of the bottom row is Ls0 ˚ Lr1 ˚

Ln
iD1LdiC1.

Corollary 6.11. The following are equivalent for graphs E and F with finitely many
vertices.

(i) j.L.E// Š j.L.F //.

(ii) KH0.L.E// Š KH0.L.F // and KH 1.L.E// Š KH 1.L.F //.

(iii) KH0.L.E// Š KH0.L.F // and # sing.E/ D # sing.F /.

Proof. Immediate from Lemma 6.7 and Theorem 6.10.

Remark 6.12. Let E and F be as in Corollary 6.11. Assume in addition that `
is a field, that L.E/ and L.F / are simple and that inf.E/ ¤ ; ¤ inf.F /.
In [14, Theorem 7.4], E. Ruiz and M. Tomforde show that under these assumptions
condition (iii) of Corollary 6.11 is equivalent to the existence of a Morita equivalence
between L.E/ and L.F /. It follows that for such E and F , the algebras L.E/
and L.F / are isomorphic in kk if and only if they are Morita equivalent. Ruiz and
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Tomforde show also that under the additional assumption that the group of invertible
elements U.`/ has no free quotients, the condition that

# sing.E/ D # sing.F /

in (iii) can be replaced by the condition that

K1.L.E// Š K1.L.F //:

The additional assumption guarantees that

rk.K1.L.E/// D rk.Ker.1 � AtE // D rk.KH 1.L.E//

whenever #E0 <1, so that # sing.E/ D rk.K0.L.E// � rk.K1.L.E///.

7. A canonical filtration in kk.L.E/; R/

Let ` be a ground ring satisfying the Standing assumptions 6.1, letE be a graph with
finitely many vertices, L.E/ its Leavitt path algebra over `, and n 2 Z. It follows
from (5.3) that we have an exact sequence

0! KHn.`/˝KH0.L.E// �! KHn.L.E//! Ker..I�AtE /˝KHn�1.`//! 0:

(7.1)
Lemma 7.2. The mapKHn.`/˝KH0.L.E// �! KHn.L.E// of (7.1) is the cup
product map of Example 3.6.

Proof. Because by assumption 6.1 (ii), KH0.`/ D Z, for any finite set X , the cup
product of Example 3.6 gives an isomorphism

[WKHn.`/˝KH0.`
X /

�
�! KHn.`

X /: (7.3)

Hence by (5.3) we have a commutative diagram with exact rows

KHn.`
reg.E//

I�At
E // KHn.`

E0/ // KHn.L.E//

KHn.`/˝KH0.`
reg.E//

[

OO

I�At
E

// KHn.`/˝KH0.`
E0/

[

OO

// KHn.`/˝KH0.L.E//:

[

OO

Let R be an algebra and n 2 Z. Consider the map

KHnW kk.L.E/;R/! HomZ.KHn.L.E//;KHn.R//: (7.4)



Algebraic bivariant K-theory and Leavitt path algebras 141

Define a descending filtration fkk.L.E/;R/i j 0 � i � 2g on kk.L.E/;R/ as
follows. Let

kk.L.E/;R/0 D kk.L.E/;R/; kk.L.E/;R/1 D KerKH0; (7.5)
kk.L.E/;R/2 D .KerKH1/ \ kk.L.E/;R/1: (7.6)

It follows from the definition of kk.L.E/;R/0 and kk.L.E/;R/1 thatKH0 induces
a canonical homomorphism

kk.L.E/;R/0=kk.L.E/;R/1 ! hom.KH0.L.E//;KH0.R//: (7.7)

Let �2kk.L.E/;R/1; byLemma7.2,KH1.�/ vanishes on the image ofKH1.`/.E
0/,

whence it induces a map Ker.I � AtE /! KH1.R/. Thus we have a map

kk.L.E/;R/1=kk.L.E/;R/2 ! hom.Ker.I � AtE /;KH1.R//: (7.8)

Let � 2 kk.L.E/;R/2; embed � into a distinguished triangle

C� ! L.E/
�
�! R: (7.9)

We have an extension of abelian groups

.E.�// 0! KH1.R/! K0.C�/! KH0.L.E//! 0: (7.10)

Let

kk.L.E/;R/2 ! Ext1Z.KH0.L.E//;KH1.R//; � 7! ŒE.�/�: (7.11)

Theorem 7.12. Let E be a graph with finitely many vertices, ` a ring satisfying the
Standing assumptions 6.1, L.E/ the Leavitt path algebra over ` and R an `-algebra.
Then the maps (7.7), (7.8) and (7.11) are isomorphisms.

Proof. Observe that if B is an algebra and X a finite set, then the isomorphism (3.8)
induces an isomorphism

kkn.`
X ; B/

�
�! hom.ZX ; KHn.B//:

Using this and applying kk.�; R/ to the triangle (5.6) we obtain an exact sequence

Hom.ZE0 ; KH1.R//! Hom.Zreg.E/; KH1.R///! kk.L.E/;R/

! Hom.ZE0 ; KH0.R//! Hom.Zreg.E/; KH0.R//: (7.13)

Since

0! Ker.I � AtE /! Zreg.E/
! ZE

0

! KH0.L.E//! 0 (7.14)
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is a free Z-module resolution, the kernel of the last map in (7.13) is

Hom.KH0.L.E//;KH0.R//;

and it is straightforward to check that the induced surjection

kk.L.E/;R/� Hom.KH0.L.E//;KH0.R//

is precisely the map KH0 of (7.4). Hence the cokernel of the first map in (7.13)
is kk.L.E/;R/1, and again because (7.14) is a free resolution, we have a short exact
sequence

0! Ext1Z.KH0.L.E/;KH1.R//! kk.L.E/;R/1

! Hom.Ker.I � AtE /;KH1.R//! 0: (7.15)

It is again straightforward to check that the surjective map from kk.L.E/;R/1

in (7.15) is (7.8). Hence by (7.15) we have an isomorphism

kk.L.E/;R/2
�
�! Ext1Z.KH0.L.E/;KH1.R// (7.16)

It remains to show that the above isomorphism agrees with (7.11).
Let � 2 kk.L.E/;R/2 and let @W j.L.E// ! ��1j.`/reg.E/ be the boundary

map in (5.6). Because KH0.�/ D 0, there is an element y� 2 kk1.`reg.E/; R/ such
that � D y�@. Hence because kk is triangulated, there exists � 2 kk.`E0 ; C�/ such
that we have a map of distinguished triangles

j.`/reg.E/

�j y�

��

// j.`/E
0

�

��

// j.L.E//
@ // ��1j.`/reg.E/

y�

��
�j.R/ // C� // j.L.E//

�
// j.R/

Applying the functor kk.`;�/ and using that KH1.�/ D 0, we obtain a map of
extensions

Ker.I � AtE /

��

// Zreg.E/

y�

��

// ZE
0

�

��

// K0.L.E// // 0

0 // K1.R/ // K0.C�/ // K0.L.E// // 0

(7.17)

By definition, (7.16) maps � to the class Œy�� of y� modulo the image of

Hom.ZE0 ; KH1.R//:

It is clear from (7.17) that Œy�� D ŒC� �.
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Corollary 7.18. Let � 2 kk.L.E/;R/ and let C� be as in (7.9). Then � D 0 if and
only if KH0.�/ D KH1.�/ D 0 and the extension (7.10) is split.

In the next corollary we shall use the fact that, since Ker.I �AtE / is a free abelian
group, the canonical surjection KH1.L.E//! Ker.I � AtE / admits a section

 WKer.I � AtE /! KH1.L.E//: (7.19)

The map  induces a natural transformation

�WHom.KH1.L.E//;�/! Hom.Ker.I � AtE /;�//:

Corollary 7.20 (UCT). For every n 2 Z we have an exact sequence

0! Ext1Z.KH0.L.E//;KHnC1.R//! kkn.L.E/;R/
ŒKH0;

�KH1�
�!

Hom.KH0.L.E//;KHn.R//˚ Hom.Ker.I � AtE /;KHnC1.R//! 0:

Proof. In view of (3.5) we may assume that n D 0. By Theorem 7.12 the map

KH0W kk.L.E/;R/! hom.KH0.L.E//;KH0.R//

is a surjection; by definition, its kernel is kk.L.E/;R/1, and �KH1 induces the
map (7.8), which is surjective by Theorem 7.12. Hence ŒKH0; �KH1� is surjective,
and its kernel is by definition kk.L.E/;R/2, which, again by Theorem 7.12, is
Ext1Z.KH0.L.E//;KH1.R//.

Lemma 7.21. Let E be a graph and R an algebra. Assume that #E0 < 1. Then
the composition map induces an isomorphism

KH 1.L.E//˝KH1.R/
�
�! kk.L.E/;R/1:

Proof. By our Standing assumptions, KH�1` D 0; it follows from this that

KH 1.L.E// D kk�1.L.E/; `/
1

and that the composition map lands in kk.L.E/;R/1. In particular, writing _ for the
dual group, we have

KH 1.L.E//=kk�1.L.E/; `/
2
D Ker.I � AtE /

_
I

since the latter is free, tensoring with KH1.R/ we obtain the top exact sequence of
the commutative diagram below; the bottom row is exact by Theorem 7.12.

Ext1Z.�.E/;Z/˝KH1.R/

��

// KH 1.LE/˝KH1.R/

��

// // Ker.I � AtE /
_ ˝KH1.R/

��
Ext1Z.�.E/;KH1.R// // kk.L.E/;R/1 // // HomZ.Ker.I � AtE /;KH1.R//:
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One checks, using the fact that for a free, finitely generated group L,

L_ ˝ .�/ Š HomZ.L;�/;

that the vertical arrows on the right and left are isomorphisms; it follows that the
vertical arrow at the middle is an isomorphism as well.

Lemma 7.22. Let E and R be as in Lemma 7.21. There is an exact sequence

Ker.I � AE /˝KH0.R/ ,! Hom.KH0.L.E//;KH0.R//
� Tor1Z.KH

1.L.E//;KH0.R//:

Proof. It follows from (5.6) that we have a free Z-module resolution

0! Ker.I � AE /! .ZE
0

/_ ! .Zreg.E//_ ! KH 1.L.E//! 0:

Now tensor by KH0.R/ and observe that

Ker..I � AE /˝ idKH0.R// D hom.KH0.L.E//;KH0.R//:

Proposition 7.23 (Künneth theorem). Let L.E/ and R be as in Theorem 7.12 and
n 2 Z. Then there is an exact sequence

0! KH 1.L.E//˝KHnC1.R/˚ Ker.I � AE /˝KHn.R/
! kk.L.E/;R/! Tor1Z.KH

1.L.E//;KHn.R//! 0:

Proof. It suffices to prove the proposition for n D 0. By Theorem 7.12 we have a
canonical surjection

� W kk.L.E/;R/! Hom.KH0.L.E//;KH0.R//:

By Lemma 7.22 we have an inclusion

incWKer.I � AE /˝KH0.R/ � Hom.KH0.L.E//;KH0.R//: (7.24)

Let Q D ��1.Ker.I � AE /˝KH0.R//; by Lemmas 7.21 and 7.22 we have exact
sequences

0! Q! kk.L.E/;R/! Tor1Z.KH
1.L.E//;KH0.R//! 0;

0! KH 1.L.E//˝KH1.R/! Q! Ker.I � AE /˝KH0.R/! 0: (7.25)

We have to show that the second sequence above splits. Let

� WKer.I � AE /! KH 0.L.E//
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be a section of the canonical projection. One checks that for inc as in (7.24), the
composite

� 0WKer.I � AE /˝KH0.R/
�˝ id
�! KH 0.L.E//˝KH0.R/

ı
�! kk.L.E/;R/

satisfies �� 0D inc. It follows that the sequence (7.25) splits, completing the proof.

Remark 7.26. The key property of the algebra B D L.E/ that we have used in this
section is that for some m; n 2 N andM 2 Zm�n we have a distinguished triangle
in kk

j.`/n
M
�! j.`/m ! j.B/:

All the results and proofs in this section apply to any algebra B with the above
property, substituting M for I � AtE , and assuming of course that ` satisfies the
Standing assumptions 6.1. However one can show, using the Smith normal form
ofM , that any such B is kk-isomorphic to the direct sum of Leavitt path algebra and
a number of copies of the suspension ��1.
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