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ABSTRACT: The theory of response of a molecule in the presence of a static nonuniform magnetic
field with uniform gradient is reviewed and extended. Induced magnetic dipole, quadrupole, and
anapole moments are expressed via multipole magnetic susceptibilities. Dependence of response
properties on the origin of the coordinate system with respect to which they are defined is
investigated. Relationships describing the change of multipole and anapole susceptibilities in a
translation of the reference system are reported. For a single molecule, two quantities are invariant
and, in principle, experimentally measurable, that is, the induced magnetic dipole and the interaction
energy. The trace of a second-rank anapole susceptibility, related to a pseudoscalar obtained by
spatial averaging of the dipole−quadrupole susceptibility, of different sign for D and L enantiomeric
systems, is origin independent. Therefore, in an isotropic chiral medium a homogeneous magnetic
field induces an electronic anapole, having the same magnitude but opposite sign for two
enantiomorphs. Calculations have been carried out for a set of diatomic and linear triatomic systems
characterized by the presence of magnetic-field induced toroidal electron currents.

1. INTRODUCTION
The rationalization of molecular magnetic response of a
molecule in the presence of a nonhomogeneous magnetic
field, either static or time dependent, is by no means a simple
univocal task. Whereas the theory of second rank tensors, for
example, magnetic susceptibilities1 and nuclear magnetic
shieldings2−4 has been systematized according to a widely
accepted scheme if the applied vector field Bα is static and
spatially uniform, the definition of higher-rank response tensors
(coupled to spatial derivatives

= ∇ ∇λ βα λ β αB B...... (1)

in the Taylor series of the molecular interaction energy)
depends on the choice of corresponding definitions of total
induced magnetic multipoles5,6 and on the expression of the
vector potential Aα, in general a function of position and time.
Drawbacks affecting earlier approaches, arising for instance
from questionable definitions of magnetic quadrupole, have
been pointed out.5 An explicit choice of gauge for the
electromagnetic potentials is therefore needed as a fundamental
preliminary task.
Expressions of magnetizabilities and nuclear magnetic

shieldings of a molecule interacting with a spatially nonuniform
external magnetic field were reported in previous theoretical

studies,7−11 allowing for a magnetic multipole expansion based
on the Bloch gauge.12−14 The Bloch electromagnetic
potentials12 have been later rediscovered by others.15−18 A
simple compact expression,19−24 defining a gauge usually
referred to as Poincare’́s,19,24,25 yields a power series for the
vector potential equivalent to Bloch’s.26−29

The present paper is aimed at (i) defining a set of anapole
susceptibilities, (ii) determining their properties, (iii) evaluating
third- and fourth-rank tensors corresponding respectively to
magnetic dipole-magnetic quadrupole and magnetic quadru-
pole-magnetic quadrupole magnetizabilities in simple diatomics
and linear triatomics, allowing for definitions obtained within
the Bloch gauge,7−11 reported in Section 2. The molecular
systems taken into account have been studied in previous
papers, showing that the magnetically induced electronic
current density vector field is characterized by the presence
of toroidal flow, expected to give rise to orbital anapole
moments,10,11,30 which can be related to mixed magnetic
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multipole magnetizabilities. As reported previously,31 chiral
distortions may give rise to anapolar current density lines, that
is, lines spiraling around a topological torus that has been
predicted for big molecules with nuclei arranged on a torus
surface.32

Calculations have been carried out at the Hartree−Fock level
of accuracy, using basis set of increasing size and quality to
estimate limit values. As the mixed multipole magnetizabilities
vary with the origin of the coordinate system, see Section 3, two
different origins were considered in preliminary test calculations
on the OH− anion. The conditions for invariance of the
interaction energy and other molecular magnetic properties
induced by a nonuniform magnetic field with a uniform
gradient, under a translation of the coordinate system, are
discussed in the same section. Results are reported in Section 4.
Conclusions and outlook are presented in Section 5.

2. MOLECULAR MULTIPOLE AND ANAPOLE
MOMENTS

Standard tensor formalism is employed throughout this article,
for example, the Einstein convention of implicit summation
over two repeated Greek subscripts is in force and εαβγ is the
Levi-Civita tensor. The notation adopted in previous
references7,10,11 is used. The SI system of units has been
chosen.
Within the Born−Oppenheimer approximation, for a

molecule with n electrons and N clamped nuclei, charge,
mass, position, canonical, and angular momentum of the ith
electron are indicated in the configuration space by −e, me, ri,
p̂i, lî = ri × pî, i = 1,2...n. Analogous quantities for nucleus I are
ZIe, MI, RI, and so forth, for I = 1,2...N. Capital letters denote
total electronic operators, for example

∑ ∑ ∑̂ = ̂ = ̂ ̂ = ̂
= = =

R r P p L l, ,
i

n

i
i

n

i
i

n

i
1 1 1

etc.
The electric multipole moments of the electron distribution

are defined via the Taylor series7,10,12

∑μ ̂ = −
+ !αα α α α α

=

e
k

r r r
( 1)

( ... )
i

n

i...
1

k k1 1
(2)

then the expressions for the electric dipole and quadrupole
operators from eq 2 are

∑μ ̂ = −α α
=

e r( )
i

n

i
1 (3)

∑μ ̂ = −αβ α β
=

e
r r

2
( )

i

n

i
1 (4)

The electronic operators for magnetic multipole moments,
omitting contributions from electron spin, are cast in the
form7,10,12

∑̂ = − +
+ !

̂ + ̂
αα α α α α α α α

=

m
k
k

e
m

l r r r r l
1

( 2) 2
( ... ... )

i

n

i...
e 1

k k k1 1 1
(5)

For instance, the Hermitian magnetic multipole operators up
to the hexadecapole are

∑̂ = − ̂
α α

=

m
e
m

l
2 i

n

i
e 1 (6)

∑̂ = − ̂
αβ α β

=
+m

e
m

l r
6

{ , }
i

n

i i
e 1 (7)

∑̂ = − ̂
αβγ α β γ

=
+m

e
m

l r r
16

{ , }
i

n

i i i
e 1 (8)

∑̂ = − ̂
αβγδ α β γ δ

=
+m

e
m

l r r r
60

{ , }
i

n

i i i i
e 1 (9)

using {Â, B̂}+ = ÂB̂ + B̂Â to denote anticommutators. It is
immediately observed that if the initial tensor index is repeated
the sum over the Cartesian coordinates of the multipole
moment vanishes, giving a null operator, for instance

̂ = ̂ = ̂ =αα ααβ αβ αm m m 0... ... ... (10)

The electronic operators for the permanent (or unperturbed)
magnetic multipoles in eq 5 are used to rationalize the response
of an isolated molecule. In the presence of a vector potential
A(r, t), the canonical momentum is replaced by the mechanical
momentum, including the electromagnetic interactions via the
minimal coupling procedure of Gell-Mann33

∑ ∑ π πΠ̂ = ̂ → ̂ = ̂ ̂ = ̂ +
= =

P p p Ae,
i

n

i
i

n

i i i i
1 1 (11)

For the angular momentum the corresponding replacement
gives

∑ ∑Λ̂ = ̂ → ̂ = ̂ + ×
= =

L l L r Ae
i

n

i
i

n

i i
1 1 (12)

Allowing for eqs 5 and 12 within the multipolar Bloch gauge12

for the vector potential the operators for perturbed magnetic
multipole moments become7,10

χ χ

χ χ

̂ ′ = ̂ + ̂ + ̂

+ ̂ + ̂ +

α α αβ β αβ γ γβ

αβ γδ δγβ αβ γδε εδγβ

m m B t B t

B t B t

(0, ) (0, )

(0, ) (0, ) ...

d
;

d

;
d

;
d

(13)

χ χ

χ

̂ ′ = ̂ + ̂ + ̂

+ ̂ +

αβ αβ αγ β γ αγ βδ δγ

αγ βδε εδγ

m m B t B t

B t

(0, )
16
9

(0, )

5
2

(0, ) ...

;
d

;
d

;
d

(14)

χ χ̂ ′ = ̂ + ̂ + ̂ +αβγ αβγ αδ βγ δ αδ βγε εδm m B t B t(0, )
5
2

(0, ) ...;
d

;
d

(15)

and so forth, where the operators for diamagnetic contributions
to the multipole magnetizabilities are

∑χ δ̂ = − −αβ ν αβ α β
=

e
m

r r r
4

( )
i

n

i
d

2

e 1

2

(16)

∑χ δ̂ = − −αβ γ ν αβ α β γ
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e
m

r r r r
6

[( ) ]
i
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i;
d

2
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(17)

∑χ δ̂ = − −αβ γδ ν αβ α β γ δ
=

e
m

r r r r r
16

[( ) ]
i

n

i;
d

2

e 1

2

(18)

and so forth, denoting by rv
2 ≡ rvrv the squared modulus of the

electronic position vector. In these relationships a semicolon
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separates sets of symmetric indices, which can be freely
permuted within each set.
Tensor operators χ ̂αβ;αd and χα̂β;αγ

d vanish identically, therefore
an equation analogous to (10) holds also for the perturbed
magnetic multipole operators, that is,

̂ ′ = ̂ ′ = ̂ ′ =αα ααβ αβ αm m m 0... ... ... (19)

The expectation values of the multipole operators over the a
reference electronic state,34 |Ψa⟩ ≡ |a⟩ of the perturbed
molecule are indicated by, for example

μ μ= ⟨ | ̂ | ⟩ = ⟨ | ̂ | ⟩

= ⟨ | ̂ ′ | ⟩
αβ αβ αβ αβ

αβ αβ

a a m a m a

M a m a

, ,

...

... ... ... ...

... (20)

2.1. Multipole Magnetizabilities in a Static Magnetic
Field. Second-order Rayleigh−Schrödinger perturbation theory
is applied to obtain the paramagnetic contributions to the
multipole magnetic susceptibilities of a molecule in the
presence of a nonhomogeneous time-independent magnetic
field7,10,14

∑χ
ω

χ χ

=
ℏ

⟨ | ̂ | ⟩⟨ | ̂ | ⟩

= ≡

α β α β

β α αβ

≠

a m j j m a
1 2

( )
j a ja

,
p

,
p p

(21)

∑χ
ω

χ

=
ℏ

⟨ | ̂ | ⟩⟨ | ̂ | ⟩

=

α βγ α βγ

βγ α

≠

a m j j m a
1 2

( )
j a ja

,
p

,
p

(22)

∑χ
ω

χ

=
ℏ

⟨ | ̂ | ⟩⟨ | ̂ | ⟩

=

αβ γδ αβ γδ

γδ αβ

≠

a m j j m a
1 2

( )
j a ja

,
p

,
p

(23)

etc. Owing to eq 10

χ χ= =α ββ αβ γγ0,
p

,
p

(24)

and so on. In these relationships, a comma is used to separate
groups of indices that can be freely permuted, for example,
χαβ...,λμ...
p = χλμ...,αβ...

p , since each group refers specifically to a given
magnetic multipole of the series, see eq 5.
The diamagnetic contributions to the magnetic susceptibil-

ities in the reference state |a⟩ are arrived at allowing for eqs
16−18

χ χ= ⟨ | ̂ | ⟩αβ αβa ad d
(25)

χ χ= ⟨ | ̂ | ⟩αβ γ αβ γa a;
d

;
d

(26)

χ χ= ⟨ | ̂ | ⟩αβ γδ αβ γδa a;
d

;
d

(27)

and so forth.
Total static susceptibilities are obtained by summing

paramagnetic and diamagnetic contributions7,10,14

χ χ χ= +αβ αβ αβ
p d

(28)

χ χ χ= +α βγ α βγ αβ γ, ,
p

;
d

(29)

χ χ χ= +αβ γδ αβ γδ αγ βδ
16
9, ,

p
;

d

(30)

etc.
In disordered media, the tensor χαβ,γ has an isotropic part

χε̅αβγ, and the corresponding pseudoscalar

χ χ ε

χ χ χ χ χ χ

̅ =

= − + − + −

αβ γ αβγ
1
6
1
6

( )xy z xz y yz x yx z zx y zy x

,

, , , , , , (31)

is different from zero for a chiral molecule, see Table 1 and eq
46 hereafter.

2.2. Interaction Energy, Induced Magnetic Dipole,
Quadrupole, and Anapole for a Molecule in a Magnetic
Field with Uniform Gradient. We will now consider a
diamagnetic molecule in the presence of a nonuniform
magnetic field with flux density B, assuming for simplicity
that the gradient ∇B is uniform, and neglecting contributions
from higher derivatives. It is also supposed that the molecular
response is linear. Accordingly, the interaction energy of the
molecule in the field is written in the form

χ χ χ= − − −αβ α β α βγ α γβ αβ γδ βα δγW W B B B B B B
1
2

1
2

(0)
, ,

(32)

with W(0) as the energy of the isolated molecule. The magnetic
field is evaluated at the origin of the coordinate system. The
induced magnetic dipole moment is obtained by differentiating
W

χ χ− ∂
∂

= = +
α

α αβ β α βγ γβ
W
B

M B B,
(33)

The induced magnetic quadrupole moment is analogously
obtained from

χ χ− ∂
∂

= = +
βα

αβ αβ γ γ αβ γδ δγ
W
B

M B B, ,
(34)

Table 1. Type and Symmetry of Magnetic Properties under
Parity P and Time Reversal Ta

tensor type P T

Bα axial + −
Bαβ axial − −
Cα = εαβγBβγ polar − −
Bαβγ axial + −
Mα axial + −
Mαβ axial − −
Mαβγ axial + −

α polarb − −
χαβ polar + +
χαβ,γ polar − +
χαβ,γδ polar + +
aαβ axial − +
a ̅ = (1/3)aαα pseudoscalarc − +
bαβ polar + +
cα,βγ axial + +
c ̅ = (1/6)εαβγCα,βγ scalar + +

aSee, for istance, the Birss book54 and a previous paper.11 bReferred to
as axio-polar by Schmid.11,59 c χ ̅ = (1/6)εαβγχα,βγ = −a.̅
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Alternative expressions of the interaction energy, eq 32, can
be obtained by expressing the magnetic field gradient, that is,
the nonsymmetric second rank tensor Bβα, in terms of its
symmetric and antisymmetric components

ε

= +

= − =

βα βα αβ

βα βα αβ βαγ γ

B B B

B B B C

1
2

( ),

1
2

( )
1
2

(S)

(A)
(35)

introducing the curl C = (∇ × B). The derivative of the energy,
eq 32, with respect to the components of C defines the
components of the anapole polar vector10,11

ε χ χ ε

− ∂
∂

=

= − + +

λ
λ

λαβ αβ γ γ αβ γδ δγ μδγ μ
⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥
⎫⎬⎭

W
C

B B C
1
2

1
2

S
, ,

( )

(36)

induced in the electrons of the molecule by a nonuniform
magnetic field with uniform gradient.10,11

The electronic anapole of the molecule can alternatively be
defined10 from the magnetic quadrupole, eq 34, induced by the
applied nonhomogeneous magnetic field. The latter is not
symmetric in the indices α, β, but it can be rewritten as a sum
of symmetric and antisymmetric components

= +αβ αβ αβM M M(S) (A)
(37)

= +αβ αβ βαM M M
1
2

( )(S)
(38)

= −αβ αβ βαM M M
1
2

( )(A)
(39)

The molecular anapole moment is obtained from the
antisymmetric components

ε ε= − ≡ −γ αβγ αβ αβγ αβM M
1
2

1
2

(A)
(40)

This relationship can be inverted to obtain

ε= −αβ αβγ γM(A)
(41)

Allowing for the definition of mixed multipole magnetic
susceptibilities, eqs 28−30, the relationship

ε χ χ= − + +γ αβγ αβ δ δ αβ δε εδB B
1
2

( ...), , (42)

gives the general perturbation expansion for the electron-orbit
contribution to the anapole of a molecule induced by a
nonuniform magnetic field. Using eq 35, it can be verified that
the definitions for the magnetic-field induced molecular
anapole, eqs 36 and 42, are identical for terms up to the first
field gradient. It should be recalled that, in accord with eqs
13−15, the magnetic field and its derivatives are evaluated at
the origin of the coordinate system within expressions 36 and
42.
The induced magnetic dipole moment, eq 33, is an axial

vector, even under parity P and odd under time reversal T, the
magnetic quadrupole, eq 34, and the axio-polar11 anapole, eq
36, are P-odd and T-odd, see Table 1. However, there is no
parity-violation effect on the interaction energy, see below, eq
49

The tensors

ε χ= − ∂
∂ ∂

=
∂
∂

= −γδ
δ γ

γ

δ
αβγ αβ δa

W
B C B

1
2

2

,
(43)

ε ε χ= − ∂
∂ ∂

=
∂
∂

= =γδ
δ γ

γ

δ
αβγ λμδ αβ λμ δγb

W
C C C

b
1
4

2

,
(44)

ε χ= − ∂
∂ ∂

=
∂

∂
= −γ δε

εδ γ

γ

εδ
αβγ αβ δεc

W
B C B

1
2,

2

(S) (S) ,
(45)

define second- and third-rank anapole susceptibilities.32 The
averaged trace of the aγδ anapole susceptibility, eq 43

ε χ χ̅ = = − = − ̅γγ αβγ αβ γa a
1
3

1
6 , (46)

equals the pseudoscalar defined via eq 31 changed of sign. It is
odd under parity and even under time reversal, it vanishes in
achiral molecules, it has the same magnitude but opposite sign
for two enantiomers, and therefore can, in principle, be used for
chiral discrimination as the anapole vector, eqs 36 and 42.11 In
fact, in disordered phase, gas, or solution, the orbital electronic
anapole

χ= − ̅ B (47)

induced by an external magnetic field has opposite direction in
two enantiomeric molecules. Allowing for the definitions of
magnetic dipole, eq 33, magnetic quadrupole, eq 34, anapole,
eqs 36 and 42, for eqs 35, 37, and 38, and assuming linear
response, the interaction energy, eq 32, can be rewritten in the
alternative forms

= − −α α αβ βαW W M B M B
1
2

1
2

(0)
(48)

= − − −α α α α αβ βαW M B C M B
1
2

1
2

1
2

(0) (S) (S)
(49)

3. CHANGE OF MOLECULAR PROPERTIES IN A
TRANSLATION OF THE COORDINATE SYSTEM

In a translation of origin of the coordinate system

′ → ″ = ′ +r r r d (50)

where d is an arbitrary shift vector, the transformation law for
the third-rank magnetic susceptibility, eq 29, reads7,10

χ χ χ χ δ″ = ′ − +γ αβ γ αβ γα β γδ δ αβr r d d( ) ( )
1
3, , (51)

The corresponding equation for the quadrupole−quadrupole
susceptibility, eq 30, is10

χ χ χ χ

χ δ χ δ χ

χ δ χ δ χ δ δ

″ = ′ − ′ − ′

+ ′ + ′ +

− + +

αβ γδ αβ γδ α γδ β γ αβ δ

λ λ αβ γδ λ γδ αβ αγ β δ

ν νγ αβ δ να γδ β μ ν μν αβ γδ

r r r r

r r

d d

d d d

d d d d d

( ) ( ) ( ) ( )

1
3

[ ( ) ( ) ]

1
3

( )
1
9

, , , ,

, ,

(52)

The change in the anapole susceptibilities 43 and 45 is obtained
by

ε χ″ = ′ +γδ γδ αβγ δα βr ra a d( ) ( )
1
2 (53)

and
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ε χ ε χ

ε χ δ ε χ

ε χ δ

′ = ′ + ′ + ′

− ′ −

+

γ δε γ δε αβγ α δε β αβγ δ αβ ε

αβγ λ αβ δε λ αβγ δα β ε

αβγ να δε β ν

r r r r

r

c c d d

d d d

d d

( ) ( )
1
2

( )
1
2

( )

1
6

( )
1
2

1
6

, , , ,

,

(54)

According to eq 53, the diagonal components (and the trace)
of aγδ are origin independent in the principal axis system of the
symmetric χαβ tensor. The pseudoscalar average anapole
magnetizability, eq 46, owing to the same relationship, eq 53,
is origin independent, that is

″ ′̅ = ̅r ra a( ) ( ) (55)

in any coordinate system, since the Levi-Civita skew tensor is
antisymmetric, whereas the second-rank magnetizability is
symmetric. This result is similar to that found for the P-odd
and T-even optical rotatory power, rationalized by a tensor
having origin-independent trace but origin dependent diagonal
and off-diagonal components.13,14,35 According to eq 47, the
induced anapole, aligned with the applied uniform magnetic
field in gas and liquid media, is origin independent.
In an isotropic sample, introducing the scalar

ε̅ = γ δε γδεc c
1
6 , (56)

by spatial averaging, one finds

̅ = − ̅c b (57)

where

χ χ̅ = = −γγ αβ αβ αβ βαb b
1
3

1
12

( ), , (58)

is the average trace of the anapole susceptibility, eq 44. These
quantities are origin dependent

χ χ χ

χ χ

̅ ″ = ̅ ′ + − + ′

+ ′ − ′

αα β β αβ α β α βα β

β αβ α α αβ β

r r r

r r

b b d d d d d

d d

( ) ( )
1

12
[ ( )

( ) 2 ( ) ]

,

, , (59)

It should be borne in mind that the origin dependence of
mixed multipole magnetizabilities, eqs 51−54 and eq 59, is an
intrinsic feature, which cannot be circumvented using gauge-
including atomic orbitals (GIAO).36,37 In addition, the
Hellman-Feynman theorem is not, in principle, satisfied if
GIAOs are employed, therefore the anapole susceptibilities
calculated via finite perturbation theory as second derivatives of
the energy, and/or first derivatives of the anapole moment, see
eqs 43−45, are potentially different, according to a general
statement by Epstein, see p 90 of his book.38

The invariant electronic properties of a molecule in a
magnetic field with uniform gradient are total induced magnetic
dipole and interaction energy. In fact, from eq 51, the relation

″ = ′ +α α β βαr rB B d B( ) ( ) (60)

for the magnetic fields at two different origins, and the Maxwell
equation ∇ · B = 0, it is readily verified that

″ = ′α αr rM M( ) ( ) (61)

that is, the induced magnetic dipole moment in a nonuniform
magnetic field with a uniform magnetic field gradient does not
depend on the origin of the coordinate system. In the same

way, it can be proved that the interaction energy, eq 32, is
invariant to a translation of the origin, that is,

″ = ′r rW W( ) ( ) (62)

The transformation law for the magnetic quadrupole is10

δ″ = ′ − ′ + ′αβ αβ α β αβ γ γr r r rM M M d M d( ) ( ) ( )
1
3

( )
(63)

that is, the magnetic quadrupole is invariant to a translation of
the coordinate system only if the magnetic dipole vanishes. It
can be observed that, according to eqs 19 and 63, the trace of
the magnetic quadrupole tensor remains zero in a translation,
eq 50.
The variation of the induced anapole defined by eqs 36 and

42 in the shift of origin is10

ε″ = ′ + ′γ γ αβγ α βr r rM d( ) ( )
1
2

( )
(64)

then for a single molecule fixed in space and more generally in
an ordered medium the anapole is invariant (i) if the induced
magnetic dipole vanishes and (ii) if the coordinate system is
translated in the direction of either the magnetic dipole or the
anapole itself. In the ideal case of a poloidal current density
winding on the generatrix circumference of a geometrical
torus,10,11 Mα = 0, then Mαβ and γ are origin independent.
The important conclusion arrived at in this section is that the

observable properties of one molecule responding to a
nonuniform static magnetic field are the interaction energy,
eq 32, the induced magnetic dipole, eq 33, and the average
anapole magnetizability, eq 46, if it does not vanish for
symmetry reasons. In an isotropic sample of chiral molecules,
the induced anapole vector is parallel to the applied magnetic
field. It is origin independent and, in principle, measurable.
These findings may open alternative perspectives of chiral
discrimination in the presence of a uniform magnetic field.39−46

Both the magnetic quadrupole and the orbital electronic
anapole depend, in general, on the origin of the coordinate
system. This seems to be the case of diatomics characterized by
the presence of distorted tori in the current density vector
field.11 Whereas the static second-rank magnetizability, eq 28, is
origin independent, the third- and fourth-rank tensors, eqs 29
and 30, are not. They cannot therefore be considered separately
measurable properties.
However, the transformation laws, eqs 61−64, for induced

magnetic properties and interaction energy are not in general
satisfied in approximate calculations, because relations (51) and
(52) are only valid either for exact eigenfunctions to a model
Hamiltonian, or for optimal variational wave functions, for
which off-diagonal hypervirial conditions38 are satisfied.7,10,11

Thus the closeness of molecular magnetic properties, calculated
by truncated series in the powers of the inducing magnetic field
and its derivatives with respect to coordinate systems with
different origins, can serve to gauge the quality of the
approximations retained in a given calculation. In general, the
analysis of the constraints for magnetic properties is as
important and informative as the calculation of the properties
themselves.
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4. CALCULATIONS OF MAGNETIZABILITIES FOR A
MOLECULE IN A MAGNETIC FIELD WITH UNIFORM
GRADIENT

The multipole magnetizabilities, eqs 28−30, of a set of diatomic
and linear triatomic closed-shell molecules in the singlet ground
state, LiH, Li2, OH

−, CO2, and BeH2, have been computed at
the Hartree−Fock level of accuracy via a computer program
interfacing with the DALTON code.47 Extended gaugeless basis
sets from the Woon-Dunning compilation,48 cc-PCVQZ, cc-
pV5Z, aug-pc-4, aug-cc-pCV5Z, and the ANO-RCC were
adopted. MODENA is an uncontracted (13s10p5d2f/8s4p1d)
Gaussian basis set employed to predict near Hartree−Fock
magnetic properties.49−51 The calculations were carried out for
the equilibrium geometry of each system, optimized using the
GAUSSIAN code52 at the B3LYP/6-31G* level. The z axis
coincides with the bond direction.
The results are given in Tables 3−6 in SI atomic units

(au).8,9 The conversion factors from SI-au to SI units per
molecule are e2a0

2/me = 7.891 036 60 × 10−29 JT−2, e2a0
3/me =

4.175 756 62 × 10−39 JT−2m, e2a0
4/me = 2.209 715 23 × 10−49

JT−2m2, respectively for magnetizabilities eqs 28, 29, and 30,
from the CODATA compilation.53 The conversion factor for
the magnetic dipole moment is ℏ/me = 1.854 801 90 × 10−23

JT−1, that for the magnetic quadrupole and anapole moment is
eEha0

3/ℏ = 9.815 188 95 × 10−34JT−1m ≡ m3A. The magnitude
of these factors, decreasing approximately by 10 orders on each
successive differentiation of the electronic energy, eq 32,
implies that effects related to higher-order magnetizabilities are
possibly hard to detect.
Point group symmetry helps select unique nonvanishing

components, which can be obtained from the Birss
tabulation.54−56 By choosing a subgroup of C∞v, for instance
C6v ≡ 6mm, the Q3 set in Birss55 Tables 2a and 2e gives χx,xz =
χy,yz, χx,zx = χy,zy, χz,xx = χz,yy, χz,zz as unique components. The
χα,βγ tensor vanishes for molecules with D∞h symmetry. The
unique nonvanishing components of the χαβ,γδ tensor are
analogously obtained via Tables 2a and 2f of Birss,55 choosing

the C6v ≡ 6mm subgroup for molecules with C∞v symmetry,
and the D6h ≡ 6/mmm subgroup for molecules with D∞h
symmetry. For both 6mm and 6/mmm symmetries, the P4 set of
components is obtained from the same tables.55 The linear
relationship reported by Birss55

χ χ χ χ= + +xx xx xy yx yy xx yx yx, , , , (65)

can be checked in Tables 4 and 6.
Convergence of calculated third-rank dipole−quadrupole

magnetizabilities χα,βγ has preliminarly been investigated in the
OH− anion. For a given nonvanishing component, results
relative to two different origins of the coordinate system, center
of mass (CM) and hydrogen nucleus H, are displayed as two

successive rows in Table 3. Values in the third row, for the
origin on the H nucleus, have been computed from those of the
first one using eq 51. Two complementary pieces of
information are obtained from calculated values: (i) con-
vergence arrived at through basis set saturation, compare for
the results from cc-PCVQZ, cc-pV5Z, aug-pc-4, aug-cc-pCV5Z,
can be observed within each row; (ii) in the limit of a complete
basis set, all the required hypervirial theorems38 would be
obeyed, so that the second and third rows would be the same
for each component. For truncated basis sets like those
employed in the present calculations, the increasing agreement
between second and third rows gives an indication of basis set
quality and closeness to the limit of the theoretical predictions.
Therefore, discrepancies of approximately 3% for χx,xz between
results within second and third rows, calculated via basis sets
aug-pc-4 and aug-cc-pCV5Z, absolute values differing by
≈1.5%, would imply near Hartree−Fock quality, whereas the
smallness of χx,zx seems to preclude any reasonable assessment.
It can also be observed that the second and third rows, for χz,xx
and χz,zz, are identical as implied from eq 51, in which the
second addendum on the r.h.s. vanishes, since the second-rank
magnetizability is diagonal in the coordinate system adopted,
whereas the third addendum vanishes due to the off-diagonal
Kronecker δαβ. At any rate, these sets of data confirm that
converged results are obtained from aug-pc-4 and aug-cc-
pCV5Z basis sets.
Analogous conclusions are reached by inspection of Table 4,

displaying calculated quadrupole−quadrupole magnetizabilities
χαβ,γδ. We can reasonably assume that results calculated via basis
sets aug-pc-4 and aug-cc-pCV5Z are accurate to a significant
extent.
The magnetic symmetry group for LiH, assuming the bond

direction along the z axis and the perturbing magnetic field
B = Bxεx along the x direction, is determined via the Tavger-
Zaitsev algorithm.57,58 Denoting time reversal by T, it is m2 m
with elements {E TC2 Tσv σ′v}, isomorphous to 2mm ≡ C2v, see
Table 2. Nonvanishing basis vectors for this group (trans-
forming as the totally symmetric representation Γ1) are Mx, y

and Mxz, respectively for the induced magnetic dipole and
anapole.56 For a magnetic field Byεy, nonvanishing quantities
are My = Mx, x = − y and Myz = Mxz.
Theoretical third-rank magnetizabilities, obtained for LiH

and OH− via basis sets cc-PCVQZ, ANO-RCC, MODENA, cc-
pV5Z, aug-pc-4, and aug-cc-pCV5Z assuming the CM origin,
are reported in Table 5. They are quite close, possibly of near
Hartree−Fock quality, thus providing reliable information on
the magnitude of the χα,βγ tensor in diatomics. Fourth-rank
magnetizabilities in Table 6 are also expected of Hartree−Fock
accuracy. The magnitude of computed values for both tensors is
very small. Using χx,xz = 3.66 au from MODENA basis sets in
Table 5, the conversion factor reported above, and assuming a
magnetic field gradient Bzx = 10 T per meter, one finds a
contribution ≈1.53 × 10−37 JT−1 to the magnetic dipole Mx ten
orders of magnitude smaller than χxxBx = χyyBy ≈ −1.14 × 10−27

JT−1. Analogously, for the quadrupole Mxz, with Bx = 10 T and
Bzx = 10 T per meter, one finds χx,xzBx ≈ 1.53 × 10−37 JT−1m
and χxz,xzBzx ≈ −8.81 × 10−47 JT−1m.

5. CONCLUDING REMARKS AND OUTLOOK

The intrinsic molecular properties which account for
manifestation of electronic anapoles induced by a nonuniform
magnetic field with uniform gradient are dipole−quadrupole,

Table 2. Character Table of the 2mm Magnetic Group, with
Elements {E TC2 Tσv σv′} Group for a Few Basis Vectors Va

E TC2 Tσv σv′ V

Γ1 1 1 1 1 z, y, Mx, Mxz

Γ2 1 1 −1 −1 Rz

Γ3 1 −1 1 −1 x, Ry

Γ4 1 −1 −1 1 y, Rx

aIsomorphic to 2mm  C2v. The applied magnetic field is parallel to
the x axis.
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Table 3. χα,βγ for the OH− Anion from a Series of Basis Sets in SI Atomic Units.a

χα,βγ cc-PCVQZ ANO-RCC MODENA cc-pV5Z aug-pc-4 aug-cc-pCV5Z

χx,xz (CM) 0.99 0.95 1.26 0.91 0.98 0.97
χx,xz (Hl) −6.47 −6.05 −5.56 −6.70 −5.74 −5.82
χx,xz (eq 51) −4.93 −5.68 −5.41 −5.33 −5.67 −5.66
χx,zx (CM) −0.06 0.03 −0.15 −0.04 −0.02 −0.03
χx,zx (Hl) 0.63 0.26 0.12 0.60 0.01 0.16
χx,zx (eq 51) −0.06 −0.03 −0.15 −0.04 −0.02 −0.03
χz,xx (CM) −0.07 −0.08 −0.20 −0.06 −0.09 −0.08
χz,xx (Hl) 1.85 2.12 1.99 1.97 2.11 2.11
χz,xx (eq 51) 1.85 2.12 1.99 1.97 2.11 2.11
χz,zz (CM) 0.13 0.16 0.40 0.11 0.18 0.17
χz,zz (H1) −3.71 −4.23 −3.98 −3.95 −4.23 −4.22
χz,zz (eq 51) −3.71 −4.23 −3.98 −3.95 −4.23 −4.22

aThe conversion factor to SI units is e2a0
3/me = 4.175 756 62 × 10−39 JT−2 m per molecule. The symmetry-unique components can be obtained from

the Birss tables,54,55 by choosing a subgroup of C∞v, for instance C6v, then selecting Q3. For each set of components, the entries between parentheses,
in the first two rows, specify the origin of the coordinate system.

Table 4. χαβ,γδ for the OH− Anion from a Series of Basis Sets in SI Atomic Unitsa

χαβ,γδ cc-PCVQZ ANO-RCC MODENA cc-pV5Z aug-pc-4 aug-cc-pCV5Z

χxx,xx (CM) −2.24 −4.00 −4.23 −2.71 −4.25 −4.10
χxx,xx (H1) −4.86 −7.24 −6.97 −5.61 −7.76 −7.46
χxx,xx (eq 52) −3.29 −5.19 −5.28 −3.83 −5.44 −5.28
χxx,yy (CM) 0.97 1.84 1.87 1.21 1.94 1.87
χxx,yy (H1) 1.50 2.70 2.52 1.87 3.08 2.86
χxx,yy (eq 52) −0.07 0.64 0.83 0.09 0.76 0.68
χxx,zz (CM) 1.27 2.16 2.36 1.49 2.31 2.23
χxx,zz (H1) 3.36 4.54 4.45 3.74 4.68 4.60
χxx,zz (eq 52) 3.36 4.54 4.45 3.74 4.68 4.60
χxy,xy (CM) −6.10 −10.41 −10.66 −7.22 −11.14 −10.74
χxy,xy (H1) −9.40 −14.69 −14.43 −10.93 −15.81 −15.17
χxy,xy (eq 52) −6.10 −10.41 −10.66 −7.22 −11.14 −10.74
χxy,yx (CM) 2.88 4.58 4.55 3.29 4.94 4.77
χxy,yx (H1) 3.03 4.75 4.94 3.44 4.97 4.86
χxy,yx (eq 52) 2.88 4.58 4.55 3.29 4.94 4.77
χxz,xz (CM) −8.75 −13.03 −13.85 −9.91 −13.87 −13.33
χxz,xz (H1) −48.14 −55.69 −55.11 −50.46 −57.12 −56.35
χxz,xz (eq 52) −15.68 −21.33 −21.13 −17.66 −22.10 −21.56
χxz,zx (CM) 2.51 4.91 5.17 3.13 5.61 5.12
χxz,zx (H1) 6.05 9.44 9.41 6.97 10.33 9.72
χxz,zx (eq 52) 2.40 4.86 4.91 3.06 5.57 5.07
χzx,zx (CM) −5.27 −10.88 −11.24 −6.71 −12.35 −11.31
χzx,zx (H1) −5.27 −10.88 −11.24 −6.71 −12.35 −11.31
χzx,zx (eq 52) −5.27 −10.88 −11.24 −6.71 −12.35 −11.31
χzz,zz (CM) −2.53 −4.32 −4.72 −2.99 −4.62 −4.46
χzz,zz (H1) −6.72 −9.09 −8.90 −7.47 −9.35 −9.20
χzz,zz (eq 52) −6.72 −9.09 −8.90 −7.47 −9.35 −9.20

aThe conversion factor from SI au to SI units per molecule is e2a0
4/me = 2.209 715 23 × 10−49 JT−2 m2.

Table 5. χα,βγ for Diatomic Systems LiH and OH− in SI Atomic Unitsa

molecule α,βγ cc-PCVQZ ANO-RCC MODENA cc-pV5Z aug-pc-4 aug-cc-pCV5Z

LiH x,xz = y,yz 3.66 3.49 3.66 3.57 3.48 3.49
x,zx = y,zy 0.27 0.29 0.27 0.28 0.30 0.30
z,xx = z,yy −1.27 −1.27 −1.27 −1.27 −1.27 −1.27
z,zz 2.53 2.54 2.53 2.53 2.53 2.54

OH− x,xz = y,yz 0.99 0.95 1.26 0.91 0.98 0.97
x,zx = y,zy −0.06 −0.03 −0.15 −0.04 −0.02 −0.03
z,xx = z,yy −0.07 −0.08 −0.20 −0.06 −0.09 −0.08
z,zz 0.13 0.16 0.40 0.11 0.18 0.17

aOrigin in the center of mass. The conversion factor from SI au to SI units per molecule is e2a0
3/me = 4.175 756 62 × 10−39 JT−2 m.
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quadrupole−quadrupole, and anapole magnetic susceptibilities.
Whereas tensor components depend on the coordinate system
which they are referred to, the pseudoscalar χ ̅ = (1/6)χαβ,γεαβγ,
obtained by spatial averaging of the third-rank mixed dipole−
quadrupole magnetizability χαβ,γ, is origin independent. It is
different from zero for freely tumbling chiral molecules, that is,
for an isotropic (gas or liquid) chiral sample. Its magnitude is
the same but its sign is opposite for two enantiomers.
Analogous properties are predicted for the origin-independent
anapole moment = −χB̅, which a spatially uniform magnetic
field induces in enantiomorphic species in disordered phase.
Such a quantity can couple with the curl C = ∇ × B,

determining an interaction energy W = − ·C, which in
principle may be experimentally measured, although its
magnitude is expected to be very small. One can also conceive
an experiment in which response is observed via a “kick” given
to the anapole by the torque K = × C . These results might
pave the way to novel experimental procedures for chiral
discrimination.
Calculations aimed at determining magnetic dipole−quadru-

pole and quadrupole−quadrupole magnetizabilities of very
simple systems, that is, diatomic an linear triatomic molecules,
have been carried out. The results obtained are of near
Hartree−Fock quality, but they should be considered as

Table 6. χαβ,γδ for a Series of Small Molecules in SI Atomic Unitsa

molecule αβ, γδ cc-PCVQZ ANO-RCC MODENA cc-pV5Z aug-pc-4 aug-cc-pCV5Z

LiH xx,xx = yy,yy −4.91 −5.03 −5.02 −4.97 −5.04 −5.05
xx,yy = yy,xx 1.97 2.07 2.06 2.03 2.09 2.09
xx,zz = yy,zz = zz,xx = zz,yy 2.94 2.96 2.96 2.95 2.95 2.95
xy,xy = yx,yx −11.72 −11.91 −11.91 −11.80 −11.93 −11.93
xy,yx = yx,xy 4.84 4.81 4.82 4.80 4.79 4.79
xz,xz = yz,yz −38.69 −39.76 −39.87 −39.22 −39.88 −39.85
xz,zx = yz,zy = zx,xz = zy,yz 8.60 8.78 8.79 8.68 8.79 8.79
zx,zx = zy,zy −8.41 −8.39 −8.38 −8.38 −8.38 −8.39
zz,zz −5.88 −5.91 −5.91 −5.89 −5.91 −5.91

CO2 xx,xx = yy,yy −10.19 −10.98 −10.52 −10.59 −11.06 −11.06
xx,yy = yy,xx 1.79 2.50 2.04 2.13 2.58 2.58
xx,zz = yy,zz = zz,xx = zz,yy 8.40 8.48 8.47 8.46 8.48 8.48
xy,xy = yx,yx −17.21 −18.32 −17.84 −17.81 −18.40 −18.40
xy,yx = yx,xy 5.23 4.84 5.28 5.09 4.77 4.76
xz,xz = yz,yz −134.43 −136.38 −136.78 −134.70 −136.67 −136.88
xz,zx = yz,zy = zx,xz = zy,yz 11.52 12.50 12.50 11.95 12.52 12.51
zx,zx = zy,zy −7.50 −8.15 −8.14 −7.80 −8.17 −8.16
zz,zz −16.80 −16.97 −16.94 −16.93 −16.96 −16.96

BeH2 xx,xx = yy,yy −4.61 −4.88 −4.98 −4.61 −4.96 −4.75
xx,yy = yy,xx 1.70 1.96 2.04 1.70 2.04 1.83
xx,zz = yy,zz = zz,xx = zz,yy 2.91 2.92 2.94 2.91 2.92 2.92
xy,xy = yx,yx −10.32 −10.63 −10.75 −10.32 −10.71 −10.48
xy,yx = yx,xy 4.01 3.79 3.73 4.01 3.71 3.90
xz,xz = yz,yz −41.09 −43.19 −43.40 −41.09 −43.23 −42.03
xz,zx = yz,zy = zx,xz = zy,yz 7.42 7.99 8.02 7.42 7.99 7.67
zx,zx = zy,zy −6.12 −6.41 −6.44 −6.12 −6.40 −6.24
zz,zz −5.82 −5.84 −5.89 −5.82 −5.84 −5.83

Li2 xx,xx = yy,yy −20.42 −20.57 −21.00 −20.42 −21.00 −20.58
xx,yy = yy,xx 9.06 9.15 9.33 9.06 9.33 9.19
xx,zz = yy,zz = zz,xx = zz,yy 11.37 11.42 11.67 11.37 11.67 11.39
xy,xy = yx,yx −75.85 −76.20 −77.67 −75.85 −77.67 −76.16
xy,yx = yx,xy 46.37 46.48 47.34 46.37 47.34 46.39
xz,xz = yz,yz −121.55 −121.85 −127.25 −121.55 −127.25 −121.78
xz,zx = yz,zy = zx,xz = zy,yz 40.75 40.87 41.60 40.75 41.60 40.83
zx,zx = zy,zy −64.20 −64.65 −65.22 −64.20 −65.22 −64.51
zz,zz −22.73 −22.83 −23.35 −22.73 −23.35 −22.78

OH− xx,xx = yy,yy −2.24 −4.00 −4.23 −2.71 −4.25 −4.10
xx,yy = yy,xx 0.97 1.84 1.87 1.21 1.94 1.87
xx,zz = yy,zz = zz,xx = zz,yy 1.27 2.16 2.36 1.49 2.31 2.23
xy,xy = yx,yx −6.10 −10.41 −10.66 −7.22 −11.14 −10.74
xy,yx = yx,xy 2.88 4.58 4.55 3.29 4.94 4.77
xz,xz = yz,yz −8.75 −13.03 −13.85 −9.91 −13.87 −13.33
xz,zx = yz,zy = zx,xz = zy,yz 2.51 4.91 5.17 3.13 5.61 5.12
zx,zx = zy,zy −5.27 −10.88 −11.24 −6.71 −12.35 −11.31
zz,zz −2.53 −4.32 −4.72 −2.99 −4.62 −4.46

aOrigin in the center of mass. The symmetry-unique components can be obtained from the Birss tables.54,55 The conversion factor from SI au to SI
units per molecule is e2a0

4/me = 2.209 715 23 × 10−49 JT−2 m2.
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preliminary attempts at designing and testing a computer code,
as well as estimating orders of magnitude and verifying
symmetry properties. Future papers will take into account the
general problem of chiral discrimination via the χ ̅ pseudoscalar.
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