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We analyze the thermodynamical consistency of entropic-force cosmological models. Our analysis is 
based on a generalized entropy scaling with an arbitrary power of the Hubble radius. The Bekenstein-
Hawking entropy, proportional to the area, and the nonadditive Sδ=3/2-entropy, proportional to the 
volume, are particular cases. One of the points to be solved by entropic-force cosmology for being taken 
as a serious alternative to mainstream cosmology is to provide a physical principle that points out what 
entropy and temperature have to be used. We determine the temperature of the universe horizon by 
requiring that the Legendre structure of thermodynamics is preserved. We compare the performance 
of thermodynamically consistent entropic-force models with regard to the available supernovae data by 
providing appropriate constraints for optimizing alternative entropies and temperatures of the Hubble 
screen. Our results point out that the temperature differs from the Hawking one. The novelty of this 
work is that our analysis is based on a generalized entropy scaling with an arbitrary power of the Hubble 
radius, instead of a specific entropy. This allows us to conclude on various models at once, compare 
them, and conserve the scaling exponent as a parameter to be fitted with observational data, thus 
providing information about the form of the actual cosmological entropy and temperature. In addition, 
we point out that some entropic-force cosmological models previously available in the literature are not 
thermodynamically consistent. We provide here a physical principle which links the horizon temperature 
and entropy in consistency with thermodynamics.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The lambda cold dark matter model (�CDM) assumes a cosmo-
logical constant � and the existence of dark energy. This model 
is the simplest one that can explain an accelerated expansion of 
the late universe. However, it implies several theoretical peculiari-
ties, such as the cosmic coincidence and the cosmological constant 
problem [1,2]. In order to handle these difficulties, several alterna-
tive models have been proposed [3–6].

An interesting model based on the concept of entropic-force is 
able to explain the accelerated expansion of the universe [7,8]. 
From this standpoint, the controversial dark energy component 
is not necessary. An entropic-force is an emergent phenomenon 
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resulting from the tendency of a thermodynamical system to ex-
tremize its entropy, rather than from a particular underlying fun-
damental force. There is no field associated with an entropic-force. 
The force equation is expressed in terms of spatial dependence of 
the entropy S . At a fixed temperature T , the entropic-force F , is 
given by

F = −T
dS

dr
, (1)

where r is the radius of a cavity, assumed nearly isotropic.
At this point, let us make an important clarification. The present 

entropic-force cosmological model is definitively different from the 
idea that gravity itself is an entropic-force, as suggested in [9].

The Hubble sphere is a region of the observable universe be-
yond which, due to the expansion of the universe, objects appear 
to recede from the observer at a rate larger than the speed of light. 
Its radius is known as the Hubble radius rH . Entropic-force models 
of cosmology are based on considering the surface of the Hub-
ble sphere (Hubble surface or horizon) as a screen whose entropy 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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and corresponding temperature are analogous to those of the hori-
zon of a black-hole [7]. That is, the Hubble surface would coincide 
with a cosmological event horizon (a boundary separating events 
that are visible at some time from those that are never visible). In 
the present paper, we use the Hubble surface as the screen since it 
coincides with the apparent horizon in a spatially flat universe [7]. 
Entropic-force models lead to an extra driving term with regard 
to the so-called Friedmann equations [7]. The entropic-force term 
has the potential of explaining the accelerated expansion without 
introducing new fields nor dark energy.

The first entropic-force model [7] assumes that the entropy 
and temperature associated to the horizon of the universe are the 
Bekenstein-Hawking entropy [10] and the Hawking temperature 
[11], respectively. After that, other entropies were considered, such 
as the nonadditive Sδ=3/2-entropy [12]. This entropy was proposed 
in [13] in the context of black-holes. Let us remind the reader that 
additive Bekenstein-Hawking entropy is proportional to the area, 
whereas the nonadditive Sδ=3/2-entropy is proportional to the vol-
ume (at least in the case of equal probabilities). The expression of 
the temperature of the Hubble horizon is currently not obtained 
from an neat physical principle [14]. However, it is usually as-
sumed to be the Hawking temperature expressed in terms of the 
universe parameters, namely

T B H = h̄c

2πkBrH
= h̄H

2πkB
, (2)

where c is the speed of light, h̄ is the reduced Planck constant, kB

the Boltzmann constant, and H = H(t) is the Hubble parameter. H
is defined as

H ≡ c

rH
= ȧ

a
, (3)

a = a(t) being the scale factor, a dimensionless quantity para-
metrizing the relative expansion of the universe.

In mainstream cosmology, matter and space-time emerged 
from a singularity and evolved through four distinct periods, 
namely, early inflation, radiation, dark matter, and late-time in-
flation (driven by dark energy according to the �CDM model). 
During the radiation and dark matter dominated stages, the uni-
verse is decelerating while the early and late-time inflation are 
accelerating stages. A possible connection between the accelerat-
ing periods remains unknown, and, even more intriguing, the most 
popular dark energy candidate powering the present accelerating 
stage (�-vacuum) relies on the cosmological constant and coinci-
dence puzzles.

The entropic-force term is to be added within the acceleration 
and continuity Friedmann equations [7,8]. This extra term depends 
on H2 and affects the background evolution of the universe. We 
do not focus here on the inflation of the early universe. It has been 
shown that entropic-force models which include H2 terms are not 
able to describe on a single footing both decelerating and accel-
erating stages [15,16]. Basilakos et al. [17] have shown that the 
first Easson-Frampton-Smoot (EFS) entropic-force model (which in-
cludes the H2 term) does not describe properly both acceleration 
and deceleration cosmological regimes unless a Ḣ term is included.

This motivated the use of alternative entropic measures. Ko-
matsu and Kimura (KK) proposed a modified entropic-force model 
[12] using the Sδ=3/2 entropy. In this class of models, the extra 
entropic-force terms depend on the class of entropy being used. 
For example, H2 terms are derived from an area-scaling entropy 
[7], whereas H terms are derived from a volume-scaling entropy 
[12]. A modified entropic-force model which includes H terms is 
capable of describing both decelerating and accelerating regimes. 
Moreover, it has been argued that bulk viscous models (which 
2

include H terms) are hard to reconcile with astronomical observa-
tions of structure formations [18]. This suggests that it is necessary 
to consider not only an H term but also a constant entropic-force 
term.

It turns out, however, that some of these entropic-force models 
violate the Legendre structure of thermodynamics, as will became 
clear below. Our present aim is to point out that the entropy and 
temperature of the Hubble horizon cannot be freely chosen. Our 
original contribution is to provide a physical principle which links 
the horizon temperature and entropy in consistency with thermo-
dynamics. In particular, these quantities are related by the Leg-
endre structure and the use of a modified entropy introduces a 
corresponding modification in the temperature.

Thermodynamical properties of the universe have always at-
tracted attention [19–21] and, in more recent years, entropic cos-
mology in particular [22–25]. The novelty of this work is that our 
analysis is based on a generalized entropy scaling with an arbi-
trary power of the Hubble radius, instead of a specific entropy. 
This allows us to conclude on various models at once, compare 
them, and retain the scaling exponent as a parameter to be fit-
ted with observational data, thus providing information about the 
form of the actual cosmological entropy and temperature. We will 
show that, whatever scaling entropy one uses, thermodynamically 
consistent entropic-force models yield an H2 extra term. Conse-
quently, all entropic-force models using a single entropy are unable 
to explain both accelerating and decelerating regimes.

2. Thermodynamical entropy

After the works of Bekenstein [10] and Hawking [11], it is com-
mon in the literature to accept that the black-hole entropy violates 
thermodynamical extensivity, meaning that the entropy of a d = 3
black-hole is proportional to the area of its boundary instead of be-
ing proportional to its volume. To recover thermodynamical exten-
sivity, Sδ was introduced [13]. This nonadditive entropy is defined 
as

Sδ = kB

W∑
i

pi

(
ln

1

pi

)δ

, (δ > 0), (4)

where δ = 1 recovers the Boltzmann-Gibbs entropy. For equal 
probabilities,

Sδ=d/(d−1)

kB
∝

(
S B H

kB

)d/(d−1)

, (5)

where d is the dimension, being thus connected with the well 
known Bekenstein-Hawking entropy S B H . For d = 3 we have 
Sδ=3/2/kB ∝ (S B H/kB)3/2. Currently, there is no first-principle de-
duction of the form of the cosmological entropy. Early models [7,8]
used, reasonably, the Bekenstein-Hawking entropy. Later on, other 
entropies were considered. The advantage of our analysis using an 
arbitrary power in the entropy is that the scaling exponent is con-
served as a parameter which can be fitted with observational data. 
Therefore, this kind of analysis can provide a realistic clue on the 
form of the cosmological entropy.

Let us focus now on the free energy G of a generic d-
dimensional system

G(V , T , p,μ, ...) = U (V , T , p,μ, ...) − T S(V , T , p,μ, ...)

+ pV − μN(V , T , p,μ, ...) − ...,
(6)

where T , p, μ are the temperature, pressure, and chemical poten-
tial, and U , S, V , N are the internal energy, entropy, volume, and 
the number of particles, respectively. One can distinguish in this 
Legendre transformation three different types of variables (see [13]
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and references therein), namely (i) those that are expected to al-
ways be extensive (S, V , N, . . .), i.e., scaling with V = Ld , where L
is a characteristic linear dimension of the d-dimensional system, 
(ii) those characterizing the external conditions under which the 
system is placed (T , p, μ, . . .), scaling with Lθ , and (iii) those rep-
resenting energies (G, U ), scaling with Lε . From Eq. (6), it trivially 
follows

ε = θ + d, (7)

where standard thermodynamics (short-range interactions) corre-
sponds to θ = 0. Let us now consider a Schwarzschild (3+1)-
dimensional black hole. In this case, the energy scales like the 
mass Mbh , which in turn scales with L [26–28]. Therefore, ε = 1, 
hence,

θ = 1 − d. (8)

If we physically identify the black hole with its event hori-
zon surface, then it has to be considered as a d = 2 system, then 
θ = −1, which recovers the usual Bekenstein-Hawking (BH) scal-
ing T ∝ 1/L ∝ 1/Mbh , Eq. (2). However, if the black hole is to be 
considered as a d = 3 system, which legitimates using the Sδ=3/2

entropy, hence θ = −2, i.e., T scales like 1/L2 ∝ 1/M2
bh .

This is a crucial point since, unless we would be willing – 
which is not our case – to violate Eq. (6), the Hawking temperature 
can not be the temperature to be used in a cosmological model if 
the chosen entropy does not scale with the area. The simultane-
ous use, for a black hole, of the Hawking temperature and of an 
entropy differing from the Bekenstein-Hawking one leads to a vio-
lation of the thermodynamical Legendre structure. When working 
with an entropic-force cosmological model based on entropies dif-
ferent from the Bekenstein-Hawking one, there are two options, 
(i) to preserve the Hawking temperature for the horizon, which 
contradicts thermodynamics, or (ii) to work with a model con-
sistent with thermodynamics by modifying the temperature. We 
consider thermodynamics one of the most fundamental physical 
theories, and therefore we only explore the second option here.

3. Cosmological models for Ld-scaling entropies

Our present goal is to study entropic-force cosmology consis-
tently with thermodynamics. In order to make a general discus-
sion, let us consider an entropy that scales with length with some 
arbitrary positive power d ∈ R+ . This includes the Bekenstein-
Hawking entropy (d=2) and the δ = 3/2 entropy (d=3) as particular 
cases.

Since the Planck length is L P = √
h̄G/c3, the Bekenstein-

Hawking entropy can be expressed as

S B H = kBπ

(
rH

L P

)2

, (9)

and the Hawking temperature as

T = T P

2π

L P

rH
, (10)

where T P =
√

h̄c5/Gk2
B is the Planck temperature. Let us suppose 

then, a generalized entropy of the form

S = kB Ad

(
rH

L P

)d

, (11)

where Ad is a dimensionless factor. According to Eq. (8), the ther-
modynamically correct temperature must scale like T ∝ r1−d

H . Con-
sequently, we propose
3

T = T P

Bd

(
rH

L P

)1−d

, (12)

where Bd is a dimensionless factor. Therefore, we can see that the 
EFS entropic-force model [7] is consistent with thermodynamics, 
whereas the KK model introduced in [12] is not. This is so because 
the Hawking temperature is the corresponding temperature for the 
Bekenstein-Hawking entropy, but not for the δ = 3/2 entropy. Nat-
urally, entropies differing from those can be used in entropic-force 
cosmological models. In what follows, we study a rather generic 
thermodynamically consistent entropic-force model. The entropic 
force is given by

F ≡ −T
dS

drH
= −kB

d Ad

Bd
.
T P

L P
≡ −Cd F P , (13)

where F P ≡ kB T P /L P = c4/G is the Planck force, and Cd ≡ d Ad/Bd . 
Therefore, the entropic pressure in the Hubble surface is

pF ≡ F

4πr2
H

= − Cd F P

4πr2
H

= − Cd c2

4πG
H2. (14)

This pressure is precisely Cd times the entropic pressure calcu-
lated in the EFS model [7], which we recover for Cd = 1. To obtain 
the Friedmann equations modified by pF , we replace the effective 
pressure p′ = p + pF in the acceleration equation

ä

a
= −4πG

3

(
ρ + 3p′

c2

)
, (15)

thus arriving to

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+ Cd H2. (16)

In Eq. (15) and (16), ρ is the total energy density of the uni-
verse. Replacing now p′ in the continuity equation

ρ̇ + 3
ȧ

a

(
ρ + p′

c2

)
= 0, (17)

we obtain

ρ̇ + 3
ȧ

a

(
ρ + p

c2

)
= 3Cd

4πG
H3. (18)

Now, we follow the procedure in [12] to derive a modified 
Friedmann equation from Eqs. (16) and (18), since only two of the 
three are independent. The generalized Friedmann and acceleration 
equations(

ȧ

a

)2

= 8πGρ

3
+ f (t), (19)

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+ g(t), (20)

imply

ρ̇ + 3
ȧ

a

(
ρ + p

c2

)
= 3

4πG
H

(
− f (t) − ḟ (t)

2H
+ g(t)

)
. (21)

As argued in [16], the assumption of a non-adiabatic-like ex-
pansion of the universe simplifies the model by considering a de-
pendence of the form f (t) = αH(t)2. By comparing Eq. (18) with 
(21), and Eq. (16) with (20), we get α = 0. Finally, the Friedmann 
equation can be written as follows:(

ȧ
)2

= 8πGρ
. (22)
a 3
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The three main equations of the generic entropic-force model 
are (16), (18), and (22), but only two of them are independent.

We obtain the solution of the model under the assumption of 
a homogeneous, isotropic, and spatially flat universe. This solution 
describes the evolution of the Hubble parameter H with the scale 
factor a. From Eq. (16), (18), and (22), we obtain

H

H0
=

(
a

a0

) 2 Cd−3(1+ω)

2

, (23)

where ω = p
ρ c2 , a0 and H0 being the contemporary values of a and 

H , respectively. A straightforward calculation (first-order ordinary 
differential equation) yields the following explicit time-dependent 
solution:

a

a0
=

[
3 + 3ω − 2Cd

2
H0(t − t0) + 1

] 2
3+3ω−2 Cd

. (24)

Let us focus now on the simple case of non-relativistic matter-
dominated universe, i.e. ω = 0. The deceleration parameter q ≡
−ä/(aH2) is then given by the following constant:

q = −1

2
(2Cd − 3) − 1. (25)

Values of q < 0 correspond to an accelerating universe and q >
0 to a decelerating one. The deceleration parameter does not de-
pend on time (neither on a nor on H) and, therefore, it is unable to 
explain periods of acceleration and deceleration. This clearly con-
tradicts the well established fact that a matter-dominated phase, 
with q = +0.5, is necessary for structures to form while the accel-
erated expansion emerges from the transition to negative q values 
at late times. As already noticed in [12,15–17], a viable cosmology 
can not be fully accommodated within this oversimplified scenario. 
In the particular case of the Bekenstein-Hawking entropy (thermo-
dynamically admissible if d = 2), this was solved by considering 
correction terms in the scaling of the entropy [8]. The inclusion of 
a first-order correction to the horizon entropy provides a natural 
source of inflation (accelerated expansion) of the early universe. 
Such correction is possible and necessary for d �= 2. This is out of 
our present scope and constitutes the goal of an effort in progress. 
The aim of the present paper is to point out that some entropic-
force models proposed in literature violate the thermodynamical 
Legendre structure. Providing a complete cosmological model that 
explains the different stages of accelerating and decelerating ex-
pansion constitutes the next step along this line.

4. Comparison with supernova data

Supernova data are the mean source of available measurements 
in order to compare cosmological models. They constitute nowa-
days one of the best experimental tools for comparing various 
entropic-force models. We present here a simplified analysis of 
data, in order to determine a fitted value of the parameter Cd . In 
Fig. 1, we have plotted the Hubble parameter H as a function of 
the redshift z using the data points taken from Table 1 in [29]. The 
equation describing H(z) is obtained by replacing the definition of 
the redshift, 1 + z ≡ a0/a, in Eq. (23).

We have plotted three different entropic-force models. In all 
cases, the value of H0 is set to be 67.4km/s/Mpc based on the 
Planck 2018 results [30]. The EFS model [7] (black dotted curve) 
uses the Bekenstein-Hawking entropy and Hawking temperature; 
and therefore, Cd is set to be 1 (Ad = 2π , Bd = π , and d = 2). 
In the figure, we present also a particular -thermodynamically 
consistent- case, using Cd = 0.75 (blue dashed curve). In the lat-
ter, Cd is set equal to 0.75 because, according to [16], this value 
was consistent with the supernova data observed at that time. This 
4

Fig. 1. Hubble parameter H versus redshift z. The open circle with bars are data 
points taken from Table 1 in [29]. The black dotted curve is the EFS entropic-force 
model [7] (Cd = 1). The dashed blue curve is the entropic-force model with modi-
fied Hawking temperature [12] (Cd = 0.75). The solid red curve is a generic model, 
the optimal fitting giving Cd = 0.57 ± 0.03.

corresponds to a model using the Bekenstein-Hawking entropy and 
a modified Hawking temperature like in the KK model [12], i.e., 
T = γ T B H . Finally, we show the generalized entropic-force model 
(solid red curve), where Cd is determined by optimally fitting the 
data points. Of course, the red curve agrees better with the data, 
since the corresponding value of Cd has been determined through 
fitting. This value constrains the relationship Cd = d.Ad/Bd , but it 
is not enough for determining an unique value for d.

The previous data points exhibit in a transparent manner the 
consequences of different values of Cd . This is welcome since the 
distance modulus μ is not very sensitive to differing values of Cd . 
This lack of sensitivity can be appreciated in Fig. 2. The luminosity 
distance is an important parameter for investigating the acceler-
ated expansion of the universe, and it is defined (see [12,7] for 
instance) by

dL(z) ≡ c(1 + z)

H0

1+z∫
1

dy

F (y)
, (26)

where y ≡ a0/a, and F (y) ≡ H(y)/H0. We remind that ω = 0. 
From Eq. (23), we obtain

H0

c
dL = 2(1 + z)

2Cd − 1

[
(1 + z)

2Cd−1
2 − 1

]
. (27)

Notice that the luminosity distance depends indirectly on the di-
mension through Cd . In Fig. 2, we plotted the distance modulus μ
versus redshift z data taken from the so-called “Pantheon Survey”, 
consisting of a total of 1048 SNe Ia [31], where

μ = 5 log10 dL − 5, (28)

with dL in parsec. Fig. 2 displays the Pantheon Survey as the stan-
dard Hubble diagram of SN1a (absolute magnitude M0 = −19.36).

Also, we remark that the optimal fitting value of Cd from Fig. 2
is Cd = 0.50 ± 0.02 with R2 = 0.99998. This is not shown in Fig. 2
because it is visually indistinguishable from the red solid curve.

5. Discussion and conclusions

In conclusion, we analyzed thermodynamically admissible mod-
els based on entropic-forces. This approach provides, in contrast 
with the dark energy description, a concrete physical understand-
ing of the acceleration. The accelerated expansion rate is the in-
evitable consequence of the entropy associated with the informa-
tion storage in the universe.
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Fig. 2. Dependence of the distance modulus μ with redshift z. The open circles 
with error bars are supernova data points taken from [31]. SN1a absolute magnitude 
M0 = −19.36. The black dotted curve is the EFS entropic-force model [7] (Cd = 1). 
The dashed blue curve is the entropic-force model with modified Hawking temper-
ature [12] (Cd = 0.75). The solid red curve is the model setting Cd = 0.57 ± 0.03. In 
all cases, H0 = 67.4(km/s)/Mpc.

In order to examine the entropic cosmology, we have intro-
duced extra terms from a generalized entropy in the cosmological 
equations, assuming that the horizon of the universe has associ-
ated entropy and temperature. The main contribution of this paper 
is to show that the independent choice of the entropy and temper-
ature of the horizon may violate the Legendre structure of thermo-
dynamics. This is the case, for example, of the KK model discussed 
in [12], whereas the first EFS entropic-force model [7] is consistent 
with thermodynamics. The way of avoiding the inconsistencies is 
to adapt the temperature to an extensive entropy. Consequently, 
the H2 entropic-force term is derived from a generalized entropy, 
similarly to the original entropic-force model [7]. It is on this ba-
sis that we have formulated the modified Friedmann, acceleration, 
and continuity equations. We show that the Friedmann equation 
itself does not include the entropic-force term, in variance with 
the continuity and acceleration equations.

We have obtained a solution of the model, assuming a homo-
geneous, isotropic, and spatially flat universe. We have confirmed 
that entropic-force models constitute a plausible alternative to ex-
plain an expanding universe. However, the simplest versions of 
these models cannot describe correctly the periods of acceleration 
and deceleration, since the entropic-force term is in all cases of 
the H2-type. Easson, Frampton, and Smoot have proposed a way 
of overcoming this difficulty by including a subextensive correction 
term in the scaling of the entropy [8], specifically a logarithmic 
term. The discussion of a cosmologically more satisfactory model 
which contains the EFS model as a particular case is in progress. 
Let us anticipate that the addition of thermodynamically subdom-
inant terms does not modify the basic Legendre transformation 
structure, which only depends on the dominant term.

Finally, we compared the performance of the entropic-force 
model with different values of the parameter Cd with regard to 
the recently available supernova data. This allows us to identify the 
best value of Cd . Fitting the distance modulus gives us the optimal 
value Cd = 0.50 ± 0.02, while the Hubble parameter H as a func-
tion of the redshift z gives us Cd = 0.57 ± 0.03. These values are 
clearly different from that of the first EFS model (Cd = 1) and from 
that obtained by Komatsu and Kimura in [16] (Cd = 0.75). This im-
poses a constraint to the relationship Cd = d.Ad/Bd , but it does not 
suffice for determining a value for the dimension d. Indeed, we 
remind that Ad and Bd are the factors appearing in the entropy 
and the temperature equations, respectively. These values suggest 
that the temperature of the Hubble horizon differs from the usu-
ally assumed Hawking temperature. We remind the reader that Cd
5

does not determine the cosmological temperature or entropy; it 
rather imposes, conveniently, a relationship between them. If the 
cosmological entropy is the Bekenstein-Hawking one and the tem-
perature of the horizon the Hawking temperature, then we should 
obtain Cd = 1 from the observational data. In contrast, from inde-
pendent fittings we obtained two values of Cd , both quite different 
from 1. This constraint and the specific form of the cosmologi-
cal entropy will determine the temperature. The physical causes 
and consequences of the fact that the temperature differs from the 
Hawking one surely is an interesting problem that deserves to be 
deeply studied; however, it falls outside the scope of the present 
work. The analysis of such causes would certainly enlighten the 
early stages of the universe, which would be very welcome.

As a serious alternative to mainstream cosmology, entropic-
force models need to satisfactory handle three important points: 
(i) validation through the full data analysis, including the covari-
ance matrix; (ii) correct explanation of the different periods of 
acceleration and deceleration; and (iii) a physical principle that 
mandates the entropy and temperature to be used for the Hubble 
horizon. In the present paper we have focused on the last point.
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