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Abstract 
Plant growth–promoting rhizobacteria (PGPR) are a group of microorganisms of utmost interest in agricultural biotechnol-
ogy for their stimulatory and protective effects on plants. Among the various PGPR species, some Pseudomonas putida 
strains combine outstanding traits such as phytohormone synthesis, nutrient solubilization, adaptation to different stress 
conditions, and excellent root colonization ability. In this review, we summarize the state of the art and the most relevant 
findings related to P. putida and its close relatives as PGPR, and we have compiled a detailed list of P. putida sensu stricto, 
sensu lato, and close relative strains that have been studied for their plant growth–promoting characteristics. However, the 
mere in vitro analysis of these characteristics does not guarantee correct plant performance under in vivo or field condi-
tions. Therefore, the importance of studying adhesion and survival in the rhizosphere, as well as responses to environmental 
factors, is emphasized. Although numerous strains of this species have shown good performance in field trials, their use in 
commercial products is still very limited. Thus, we also analyze the opportunities and challenges related to the formulation 
and application of bioproducts based on these bacteria.
Key points  
• The mini-review updates the knowledge on Pseudomonas putida as a PGPR.
• Some rhizosphere strains are able to improve plant growth under stress conditions.
• The metabolic versatility of this species encourages the development of a bioproduct.

Keywords Pseudomonas putida · Plant growth–promoting rhizobacteria (PGPR) · Abiotic stress · Biocontrol · Sustainable 
agriculture

Introduction

The uncontrolled use of chemical fertilizers and pesticides 
to increase crop yields is of concern in terms of environmen-
tal deterioration, wildlife conservation, and human health. 

Simultaneously, due to inadequate land management and dif-
ferent environmental factors, soil degradation has intensified 
through drought, flooding, high temperatures, and soil salin-
ity. An environmentally friendly alternative that can address 
these issues is the use of biofertilizers as plant growth–pro-
moting rhizobacteria (PGPR) (Basu et al. 2021). PGPRs 
are free-living bacteria that can enhance plant growth and/
or provide protection against biotic or abiotic stresses by 
colonizing roots (Kloepper and Schroth 1978). These micro-
organisms have long been considered a promising tool, but 
their mechanisms of action and performance under real field 
conditions are still a matter of research.

Bacteria shown to enhance plant growth belong to dif-
ferent genera, such as Azospirillum (Coniglio et al. 2019), 
Azotobacter (El-Nahrawy and Yassin 2020), Bacillus 
(Kashyap et al. 2019), Rhizobium (Al-Karhi et al. 2019), 
Serratia (Singh and Jha 2016), and Klebsiella (Bhardwaj 
et al. 2017). Nevertheless, Pseudomonas is considered 
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one of the most promising groups as potential biofertiliz-
ers, due to their numerous plant growth–promoting (PGP) 
traits (Nadeem et al. 2016). Pseudomonas is a genus of 
aerobic, Gram-negative, rod-shaped, polar flagellated bac-
teria containing over 200 species and countless strains. 
Fluorescent Pseudomonads are capable of synthesizing 
water-soluble yellow-green fluorescent siderophores, 
which is a very valuable characteristic from the taxonomic 
point of view. It is a ubiquitous genus, with an astonish-
ing metabolic diversity that allows it to colonize a wide 
range of ecological niches and adapt to marginal environ-
ments. Some bacteria belonging to this genus have been 
isolated from polluted environments and are also common 
inhabitants of aquatic environments and the rhizosphere. 
Pseudomonas species are frequently found as free-living 
epiphytic rhizobacteria, although some can also colonize 
the root interior as endophytes (Andreolli et al. 2021). Due 
to their ubiquity and physiological and genetic diversity, 
this group of bacteria is of great ecological importance.

The taxonomic classification of Pseudomonas species 
has long been contentious, due to the lack of conserved 
phenotypic differences. Recently, P. putida KT2440 
(accession number AE015451), the best characterized 
member of this group, has been proposed for reclassifica-
tion as P. alloputida KT2440 (cluster Pp5) (Keshavarz-
Tohid et al. 2019). Other well-known P. putida strains 
were also re-classified into P. alloputida including BIRD-
1, F1, and DOT-T1E. This re-classification as members 
of a novel species is based on the fact that the mentioned 
strains are distant from the type strain P. putida NBRC 
14164 T 55, but has still not been fully accepted in the 
scientific community, and in fact, these strains remain as P. 
putida in all standard databases (such as NCBI and Pseu-
domonas Genome Database).

The best studied Pseudomonas PGPR strains include 
the P. fluorescens complex (including P. protegens, P. 
chlororaphis, P. brassicacearum, and P. koreensis) (Ashraf 
et al. 2019; Kang et al. 2021; Wang et al. 2020a, b; Zhang 
et al. 2020), P. stutzeri (Lami et al. 2020), and P. putida 
(Costa-Gutierrez et al. 2020a; 2020b). Despite the large 
number of reviews about Pseudomonas strains (e.g., 
Bhimeshwari et al. 2018; Nadeem et al. 2016; Shaikh et al. 
2020), the role of P. putida as a plant growth promoter 
has been neglected in the literature. The present review 
contributes to vindicate this species as a source for new 
bioproducts and to fill the knowledge gap on this topic.

This review provides, in a concise and holistic man-
ner, the most relevant insights about the direct and indi-
rect mechanisms by which P. putida strains enhance plant 
growth under stressed and non-stressed conditions. In 
addition, it focuses on how P. putida can colonize and per-
sist in the rhizosphere. Finally, a brief update is provided 

on the prospects and limitations of the use of P. putida as 
biofertilizer and formulations for their commercialization.

Plant growth promotion activities and traits

The field of bacterial PGP activities is so vast, and many 
excellent review articles cover the topic thoroughly (e.g., 
Goswami et al. 2016; Vejan et al. 2016; Mehmood et al. 
2018); therefore, it will not be reviewed here. Instead, this 
review focuses on the role of P. putida strains as plant 
growth promoters. Sometimes, incomplete taxonomic 
analysis or species assignment based on phenotypic char-
acteristics leads to rather limited and sometimes confusing 
information about this species regarding its PGPR charac-
teristics. Therefore, a detailed list of P. putida sensu stricto 
(species assignment based on genome sequence), sensu 
lato (species assignment based on 16S rDNA sequence), 
and close relatives of P. putida (strains identified as P. 
putida by biochemical tests, Biolog, or FAME profile) that 
have shown PGP characteristics can be found in Table 1.

Availability of nutrients for plant uptake

Nitrogen is an essential element for all forms of life. It is 
required for the synthesis of nucleic acids, enzymes, pro-
teins, and chlorophyll II. Although atmospheric nitrogen 
constitutes 78% of the air, this gaseous form of the ele-
ment cannot be taken by plants. However, some bacteria 
are able to metabolize nitrogen and reduce it to a plant-
assimilable form, such as ammonia  (NH3), by means of 
the complex enzymatic system nitrogenase. Iron is essen-
tial for nitrogen-fixing microorganisms as a component 
of Fe- and MoFe-proteins of nitrogenase. Two types of 
biological nitrogen fixation (BNF) can be distinguished: 
symbiotic and non-symbiotic. In the former, there is a 
mutualistic relationship between plant and bacteria that 
allows the formation of nodules in which BNF occurs. In 
the latter, nitrogen fixation is carried out by non-symbiotic 
bacteria, such as Pseudomonas spp., without plant associa-
tion (Noreen et al. 2019). Since P. putida strains seem to 
be unable to fix nitrogen naturally, an approach involving 
engineering bacteria with recombinant DNA was used to 
render this species a nitrogen fixer. That was the case of 
P. putida KT2440 carrying the nif gene from the donor 
strain P. stutzeri A1501 (Setten et al. 2013). However, its 
use as a PGPR is currently not possible, as the release of 
genetically modified bacteria into the environment is not 
accepted.

Phosphorus, together with nitrogen, is a highly required 
element for plant nutrition. Phosphorus is involved in met-
abolic processes such as photosynthesis, energy transfer, 
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signal transduction, macromolecule biosynthesis, and res-
piration. This element is abundantly available in the soil, 
both as organic and inorganic compounds. Nonetheless, 
phosphorus is not directly assimilable by plants from these 
compounds since these are insoluble, immobilized, or pre-
cipitated forms of phosphorus. Plant-assimilable soluble 
forms are mono- and di-basic phosphate  (H2PO4

− and 
 HPO4

2−, respectively). Some bacteria can solubilize phos-
phorus to plant-assimilable forms by different strategies, 
such as the production of organic or inorganic acids and 
mineralization by phosphatases. Table 1 displays several 
examples of P. putida strains capable of solubilizing phos-
phorus. Many Pseudomonas strains solubilize inorganic 
phosphate by producing extracellular organic acids such 
as gluconic and 2-ketogluconic acids (Miller et al. 2010; 
Oteino et al. 2015). The regulation of gluconic acid-pro-
duction mechanisms was deciphered in P. putida KT2440 
(An and Moe 2016).

Analysis of the P. putida BIRD-1 genome revealed that 
it encodes at least five phosphatases related to phosphorus 
solubilization, one of them being a phytase. Phytases facili-
tate the mineralization of the main form of organic phospho-
rus in soil (phytate) (Roca et al. 2013). Recently, two novel 
phytase-encoding genes (ppp1 and ppp2) have been iden-
tified and characterized in P. putida strain P13 (Sarikhani 
et al. 2019). In the genome of P. putida KT2440, the phytase 
gene (appA) is not annotated in the sequence; however, engi-
neered strains showed phytase activity and increased plant 
growth in mung bean and Arabidopsis thaliana (Patel et al. 
2010; Shulse et al. 2019). Engineered P. putida strains over-
expressing appA could be a promising tool for rendering 
phytate-phosphorus (P) available to plants and promoting 
their growth.

Phytohormone production and modulation

Phytohormones are endogenous bioactive organic sub-
stances synthesized by plants, which are involved in various 
plant growth processes. Five main phytohormones can be 
distinguished: auxins, gibberellins, cytokinins, abscisic acid, 
and ethylene. As detailed below, certain PGPRs have been 
shown to produce some of these molecules or to modulate 
their synthesis by the plant, thus altering its physiology.

Indole acetic acid (IAA) is the most common phytohor-
mone belonging to the auxin group and plays a major role 
in the development of the plant root system. However, IAA 
levels above some threshold value (specific for each plant) 
inhibit root growth (Duca et al. 2018). Several IAA biosyn-
thetic pathways have been described according to their inter-
mediates being tryptophan the most studied IAA precursor. 
Spaepen et al. (2007) provide a comprehensive overview of 
bacterial IAA biosynthesis pathways. In general, phytopath-
ogenic bacteria, such as Agrobacterium tumefaciencs and P. 

syringae pathovars, synthesize IAA via tryptophan through 
the intermediate indoleacetamide. In contrast, beneficial 
bacteria, such P. putida strains, produce IAA mainly by via 
indole-3-pyruvic acid, an alternative tryptophan-dependent 
pathway. In the genome of the plant growth–promoting 
rhizobacterium, P. putida BIRD-1, many PGP traits were 
found, including an overproduction of IAA through conver-
gent pathways (Matilla et al. 2011a; Roca et al. 2013). Some 
examples of P. putida strains with reported IAA synthesis 
are displayed in Table 1.

Both gibberellins and cytokinins play an important role 
in plant physiological processes, as protein synthesis regula-
tion, chlorophyll accumulation, seed germination, stems and 
shoot elongations, and cell division. Abscisic acid produc-
tion is stimulated during abiotic stresses, such as drought, 
salinity, or extreme temperatures. Reports on the production 
of gibberellins, cytokinins, and abscisic acid by P. putida 
strains are scarce. The synthesis of gibberellin by P. putida 
strains has been associated with abiotic stress tolerance in 
plants. For example, P. putida H-2–3 synthesizes gibberel-
lin and modulates stress and hormonal physiology in soy-
bean, improving plant growth under salinity and drought 
conditions (Kang et al. 2014), and P. putida Rs-198, which 
exhibits high levels of IAA and gibberellin production, 
increased cotton biomass under salinity conditions (He et al. 
2016). The role of gibberellins under saline conditions is 
also associated with mitigating the deleterious effects of salt 
stress by increasing water availability to plants (Colebrook 
et al. 2014). Recently, it was reported that inoculation of 
rice plants with P. putida KT2440 stimulates an alternative 
plant defense mechanism based on abscisic acid accumula-
tion (Wang et al. 2020a, b).

Ethylene is a gaseous phytohormone related to fruit rip-
ening and induces physiological changes in plants. It is also 
known as a stress hormone. Under stress conditions, such 
as drought, salinity, and pathogenicity, ethylene production 
increases affecting plant growth. The enzyme 1-aminocy-
clopropane-1-carboxylate (ACC) synthase is involved in 
ethylene synthesis. ACC deaminase activity can reduce the 
amount of ACC (immediate precursor of ethylene) and thus 
reduce ethylene levels, improving plant development and 
protecting against environmental stress. The presence of the 
ACC-deaminase enzyme has been reported in a number of P. 
putida strains (see Table 1) and makes this species a promis-
ing bioinoculant for promoting plant growth under different 
types of environmental stresses. For example, Pseudomonas 
sp. UW4 (a close relative of P. putida) increased tomato 
tolerance to flooding stress (Grichko and Glick 2001); pro-
moted canola plant growth at low temperature under salt 
stress (Cheng et al. 2007; 2012); stimulated cucumber plant 
growth under salt stress (Gamalero et al. 2010); protected 
tomato plants against salt stress and increased shoot length, 
shoot fresh, and dry mass and chlorophyll concentration 
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through synergy between ACC deaminase activity and tre-
halose (Del Carmen Orozco-Mosqueda et al. 2019; Yan et al. 
2014); ACC deaminase activity has also been involved in 
the biocontrol of pine trees against the nematode Bursap-
helenchus xylophilus (Nascimento et al. 2013). Inoculation 
of ACC deaminase-producing P putida could address the 
problem of salinity in agricultural soils.

Biocontrol

Pathogenic organisms, such as fungi, bacteria, viruses, 
and insects, are responsible for significantly reducing crop 
yields, causing global economic losses annually. The bio-
control activities of P. putida strains are diverse and are 
well documented (Weller 2007). Some mechanisms are as 
follows: competition for space; fluorescent Pseudomonas 
have high growth rates that added to their abilities to adapt 
to diverse environmental conditions and allow them to 
compete with pathogens; competition for nutrients, such 
as iron through the synthesis of siderophores (Daura-Pich 
et al. 2020; Saritha et al. 2015); antibiosis (Sun et al. 2017); 
mechanisms of secretion of toxic compounds such as bacte-
rial type VI secretion systems (T6SSs) (Bernal et al. 2017); 
chitinolytic activity; production of ammonia, hydrogen cya-
nide, protease, and urease (Saritha et al. 2015); and induced 
systemic resistance (ISR) (Matilla et al. 2009; Meziane et al. 
2005).

ISR can be defined as the physiological state of plants 
in which their defense capacity is enhanced in response 
to a specific environmental stimulus, and as a result, the 
innate defense of the plant is increased against a wide vari-
ety of pathogens. In general, ISR is mediated by salicylic 
acid, jasmonic acid, and ethylene pathways (Kamle et al. 
2020). These pathways are involved in P. putida PCI2 dur-
ing the defense of tomato plants against Fusarium oxyspo-
rum MR193 (Pastor et al. 2016). The role of siderophores 
in ISR has also been reported in P. putida WCS358 (cur-
rently classified as Pseudomonas sp. WCS358) during the 
defense of Eucalyptus urophylla against Ralstonia solan-
acearum (Ran et al. 2005). This strain can activate ISR in 
A. thaliana, tomato, and bean against P. syringae pv. tomato 
and F. oxysporum f. sp. raphani (Meziane et al. 2005; Van 
Wees et al. 1997). Interestingly, ISR in Pseudomonas sp. 
WCS358 involves flagella, pseudobactin, and lipopolysac-
charide as complementary rather than additive compounds, 
since mutants in any of the aforementioned compounds were 
able to trigger the ISR response similarly to the wild-type 
strain (Meziane et al. 2005). It seems that not all plant spe-
cies are susceptible to the biocontrol mechanisms of Pseu-
domonas sp. WCS358, since the ISR response could not be 
triggered in carnation and radish (Duijff et al. 1993; Leeman 
et al. 1995; Meziane et al. 2005). P. putida KT2440 also trig-
gered ISR response against Colletotrichum graminicola in 

corn (Planchamp et al. 2015). In this strain, haem peroxidase 
seems to be essential for ISR activation in A. thaliana (Mat-
illa et al. 2009), and benzoxazinoids synthesis may induce 
the bacterial production of ISR-eliciting compounds (Neal 
and Ton 2013).

An effective strategy to control the wide range of soil 
pathogens on agronomically important species is to take 
advantage of symbiotic associations between arbuscular 
mycorrhizal (AM) fungi and P. putida strains (Panneersel-
vam et al. 2012; 2013). P. putida strains jointly with AM 
fungi showed antagonistic potential against soil borne path-
ogens, such as F. oxysporum, Ceratocystis fimbriata, and 
Sclerotium rolfsii (Saritha et al. 2015) and the nematode 
Meloidogyne incognita in chickpea (Akhtar and Siddiqui 
2007). On the other hand, the application of a co-culture 
of two Pseudomonas sp. strains (WCS358 and RE8) with 
different disease-suppressive mechanisms enhanced biocon-
trol activity in radish against F. oxysporum, compared to 
single-strain treatments (De Boer et al. 2003). This increase 
in biocontrol activity could be due to the combined use of 
bacteria with different biocontrol mechanisms, e.g., Pseu-
domonas sp. WCS358 can compete for iron by siderophore 
synthesis, while Pseudomonas sp. RE8 can trigger ISR (De 
Boer et al. 2003).

Siderophores

Under iron-limiting conditions, such as in bulk soil or rhizo-
sphere, microbes produce siderophores to scavenge the 
essential metal and thus favor niche colonization. Sidero-
phore production and uptake has long been recognized as 
a relevant trait in PGPRs. Several siderophore-producing 
strains of P. putida are shown in Table 1. P. putida, as many 
other Pseudomonads, produces the siderophore pyoverdine 
which has three distinctive elements: a quinoline-1-car-
boxylic acid moiety responsible for the green fluorescence 
observed in all pyoverdine variants, a dicarboxylic acid or 
its monoamide bound to the 5-amino group of the chromo-
phore, and a peptide chain having 6 to 14 amino acids bound 
to the carboxylic group of the quinoline (Barrientos-Moreno 
et al. 2019; Schalk et al. 2020). Pyoverdine variants, most 
resulting from differences in peptide chains, have been iden-
tified at the species level by isoelectric focusing. The method 
was termed siderotyping and serves as a taxonomic tool (Ye 
et al. 2013). However, this method may have limitations in 
identifying some strains within this species. For example, an 
isoelectric focusing analysis revealed that the pyoverdine of 
the strain P. putida KT2440 and G4R is identical (Matthijs 
et al. 2009). Compared to other Pseudomonads, the more 
diverse structure of pyoverdines within P. putida species 
allowed strain-level characterization based on the correlation 
of siderotypes and phylogeny of genes required for pyover-
dine production (Meyer et al. 2008; Ye et al. 2013). This 
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diversity of siderotypes is further accompanied by specific 
outer membrane receptors (FpvA) for each pyoverdine vari-
ant (Ye et al. 2013). Thus, it has been proposed that recep-
tors and modular NRPS enzymes involved in siderophore 
synthesis co-evolved (Bodilis et al. 2009; Smith et al. 2005).

Pyoverdine, produced by Pseudomonads capable of colo-
nizing plant roots, has been shown to facilitate iron uptake 
by plants in different model systems (e.g., A. thaliana, 
tomato, pea, clover, and grasses) (Lurthy et al. 2020; Nagata 
et al. 2013; Trapet et al. 2016). As mentioned previously, 
siderophore production is involved in biological control 
against pathogens, e.g., biological control of the pathoghen 
Xanthomonas fragariae by P. putida KT2440 was reported 
to require pyoverdin (Henry et al. 2016). In P. putida B2017, 
pyoverdin synthesis is also involved in biocontrol activity 
against F. oxysporum f.sp. radicis-lycopersici in tomato, 
Rhizoctonia solani and Pectobacterium atrosepticum in 
potato, and Sclerotinia sclerotiorum in lettuce (Daura-Pich 
et al. 2020; Oliver et al. 2019).

Colonization and persistence 
in the rhizosphere

Soon after the first descriptions of plant growth–promot-
ing or biocontrol Pseudomonas strains, it became apparent 
that detection of PGP activities in vitro was not sufficient to 
ensure a positive influence on plant growth, even under con-
trolled conditions. The ability of the bacteria to efficiently 
establish and persist in the rhizosphere environment proved 
to be key in showing their beneficial effect (Amaya-Gómez 
et al. 2020). This led to a significant amount of research on 
the genetic and environmental factors that determine colo-
nization efficiency. While most of the early work focused 
on long-term studies, much less attention was given to the 
early stages of interaction between bacteria and plant roots, 
which may be essential for successful root colonization and 
persistence.

Adhesion to plant surfaces and biofilm formation

Pioneering work was done using random transposon 
mutagenesis to identify P. putida functions required for 
adhesion to seeds, as an initial step for further establish-
ment on plant roots (Espinosa-Urgel et al. 2000). In fact, the 
initial phase of colonization by P. putida seems to be very 
active, with the bacterial population relative to root biomass 
reaching its maximum 24–48 h after seedling inoculation 
(Espinosa-Urgel et al. 2002). Beyond this period, the growth 
of the root-associated bacterial population is coupled to the 
development of the plant; thus, the number of bacteria recov-
ered per root weight remains basically stable afterward.

Different studies have shown that some genetic elements 
involved in attachment to seeds and roots of plants are also 
involved in attachment to abiotic surfaces and biofilm forma-
tion (Espinosa-Urgel et al. 2000; Nielsen et al. 2011; Nils-
son et al. 2011; Yousef-Coronado et al. 2008). However, 
both processes do not completely overlap, and some func-
tions required for efficient establishment on plant surfaces 
do not seem to be relevant on abiotic surfaces, while others 
are essential in both cases. Perhaps the best characterized 
elements are the adhesins LapA and LapF, the two largest 
proteins of P. putida, with over 8000 and 6000 amino acids, 
respectively. These proteins show a repetitive structure and 
translocate to the bacterial surface through dedicated Type 
I secretion systems (Hinsa et al. 2003; Martínez-Gil et al. 
2010). They have a sequential role in biofilm development, 
with LapA being involved in cell-to-surface attachment and 
LapF in cell-to-cell interactions, respectively (Martínez-
Gil et al. 2010), although both are likely to be part of the 
extracellular matrix of mature biofilms. Mutations in either 
protein, or in the elements required for their secretion, 
decrease biofilm formation, reduce seed attachment, and 
hamper competitive root colonization in corn plants (Hinsa 
et al. 2003; Martínez-Gil et al. 2010; Yousef-Coronado et al. 
2008). Their importance, however, may vary depending on 
plant species and environmental conditions. The same is true 
for the different exopolysaccharides (EPS) produced by P. 
putida: cellulose (Bcs), alginate, and two species-specific 
EPS, Pea and Peb. Although mutants in any of the operons 
encoding these elements show reduced fitness in the rhizos-
phere, in some reports, Bcs appears as the main contributor 
to survival, while in others, alginate and Pea are described 
as the most relevant (Martínez-Gil et al. 2013; Nilsson et al. 
2011). Alginate plays a specific role for survival and bio-
film formation under water stress conditions (Chang et al. 
2007), but overproduction of other EPS takes place in alg-
inate-deficient mutants (Nielsen et al. 2011). Similarly, the 
lack of LapA and/or LapF causes increased expression of 
the pea operon, leading to EPS overproduction, whereas 
EPS mutants generally show reduced expression of the two 
adhesins (Martínez-Gil et al. 2013).

All these data suggest that the structural elements 
involved in root colonization by P. putida establish com-
plex modulatory connections. It seems likely that environ-
mental cues determine the balance between these elements, 
so that the biofilm matrix composition and/or attachment 
mechanism adjust to the existing conditions. However, the 
regulatory network that modulates such balance remains to 
be fully understood.

Environmental factors affecting root colonization

Different environmental factors and chemical signals influ-
ence biofilm formation. Among them, the availability of 
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carbon and energy sources in the medium determines the 
multicellular behavior of many species. However, a detailed 
exploration of the influence of metabolic signals or how spe-
cific nitrogen, carbon, and energy sources impact biofilm 
formation and root colonization by P. putida has yet to be 
performed. This information could be relevant for the opti-
mization of its use as PGPR.

Numerous evidences have demonstrated that iron is 
another key element in bacterial multicellular behaviors, 
and iron limitation has recently been reported to be a rel-
evant factor in antagonistic interactions between rhizosphere 
microorganisms (Eng et al. 2020). Competition for iron is 
an important factor in the rhizosphere, and the ability of 
P. putida and other Pseudomonas to efficiently transport 
iron complexed to siderophores produced by other micro-
organisms is one of the key strategies for successful dis-
placing competitors (Fernández-Piñar et al. 2011; Mirleau 
et al. 2000). Iron present in corn seeds is important for their 
colonization by P. putida KT2440 (Molina et al. 2005), and 
mutations affecting iron acquisition lead to reduced fitness 
in the rhizosphere (Molina et al. 2005; 2006). Furthermore, 
pyoverdine-mediated iron acquisition is required for swarm-
ing motility (Matilla et al. 2007). Although as mentioned 
above, siderophore production has long been known as a 
relevant trait in PGPRs, the wide number of additional iron 
capture systems that P. putida can employ makes it diffi-
cult to ascertain their specific role in each environmental 
situation.

Calcium is also known to regulate adhesion processes 
in a wide range of bacteria. In P. putida, calcium seems to 
alter the normal kinetics of biofilm formation, promoting 
early attachment and early detachment, whereas the cal-
cium chelator EGTA causes a decrease in biofilm forma-
tion at concentrations that do not affect planktonic growth 
(Martínez-Gil et al. 2012). The effect of calcium may be, 
at least in part, through LapF, since the C-terminal domain 
of this protein (containing putative  Ca+2 binding sites) was 
shown to form large aggregates in the presence of calcium 
that dispersed when EGTA was added (Martínez-Gil et al. 
2012). However, the influence of calcium in the specific con-
text of establishing root-associated populations has not been 
explored, even though tri-calcium phosphate or calcium 
phytate are commonly used to test phosphate solubilization 
activity of PGPRs.

Motile versus biofilm populations in the rhizosphere

In the analysis of genetic determinants involved in seed 
attachment and root colonization by P. putida, mutants 
defective in flagellar motility were identified, but their fit-
ness in the root system was not as affected as in the case of, 
for example, lapA mutants, suggesting that biofilm forma-
tion would be more relevant than motility (Yousef-Coronado 

et al. 2008). However, in other fluorescent Pseudomonas fla-
gellar, motility had been reported as a key function for root 
colonization (Martínez-Granero et al. 2006). This apparent 
contradiction seems to derive mostly from the methodol-
ogy used to analyze root-associated populations, in some 
cases taking into account the whole root system while in 
others considering only the root tip. In essence, this seems 
to reflect the fact that different subpopulations exist in the 
rhizosphere depending on the local environment. This idea 
is supported by the differential localization of wild-type and 
flagella-deficient strains of P. putida on corn roots (Yousef-
Coronado et al. 2008), and the preferential colonization of 
older parts of the root by hyperadherent derivatives (Mat-
illa et al. 2011b). Swarming motility, rather than swimming 
motility, has been proposed to drive root tip colonization by 
P. putida during plant growth (Matilla et al. 2011b). This 
movement along the root surface is likely linked to a chemo-
tactic response to specific molecules released in areas where 
exudation is higher.

Chemotaxis

Motile microorganisms are able to sense clear and consist-
ent chemical gradients in the environment and to actively 
move toward or away from specific chemical sources. This 
phenomenon, known as chemotaxis, has been thoroughly 
studied in Escherichia coli; however, several studies have 
been performed in P. putida. Chemical signals can act as 
chemoattractants or chemorepellents. Although the list of 
chemoattractants is extensive, few chemorepellent mole-
cules have been identified so far. P. putida strains have been 
shown to be attracted to a wide range of growth substrates, 
such as aromatic compounds, amino acids, and tricarbox-
ylic acid cycle intermediates (Parales et al. 2004). This spe-
cies is an excellent model for bioremediation, as they are 
attracted to aromatic hydrocarbons such as naphthalene and 
toluene (Lacal et al. 2011). In fact, two chemotactic phe-
notypes toward toluene were observed in P. putida strains, 
while strains KT2440 and F1 exhibited a moderate taxis in 
which bacteria approach at a distance of 1–2 mm, strain 
DOT-T1E showed a closer approach (strong chemotaxis or 
hyperchemotaxis) (Lacal et al. 2011). To our knowledge, 
no chemorepellent has been studied in P. putida. For more 
details on the chemosensory system and signaling pathway 
of Pseudomonas, we refer the reader to Sampedro et al. 
(2015) and references therein.

In the case of root-colonizing species, such as P. putida, 
active chemotaxis toward root exudates is a decisive process 
to ensure successful colonization in plant roots. The chemi-
cal composition of root exudates is dynamic and comprises 
a myriad of compounds such as sugars, organic acids, amino 
acids, fatty acids, and flavonoids. Given the broad metabolic 
repertoire of P. putida strains, the ability to chemotactically 
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respond to several molecules present in root exudates is an 
expected trait. In fact, to date, 27 different chemorecep-
tors have been identified in P. putida KT2440. Chemotaxis 
of P. putida toward roots was mainly studied using corn 
plants as a model, confirming positive chemotaxis of P. 
putida KT2440 toward benzoxazinoids like DIMBOA and 
DIBOA (López-Farfán et al. 2019; Neal et al. 2012). Stud-
ies revealed that the transcription of chemoreceptor genes is 
highly dependent on the concentration of corn root exudates, 
increasing at low concentrations and generally decreasing 
at high concentrations of root exudates. This indicates that 
chemotaxis is likely greater at a distance, but decreases in 
the root vicinity, where other bacterial mechanisms may 
ensure root colonization (López-Farfán et al. 2019).

Bioformulations

As it has been pointed out in this review, P. putida strains 
exhibit numerous characteristics that make them promising 
PGPRs, and some of them have their genome completely 
sequenced and available (see Table 1). Nonetheless, formu-
lations based on this remarkable species are still scarce in 
the market. To date, the only commercial product that the 
authors could find is Fosfogel® (Bio-Iliberis R&D), based 
on P. putida BIRD-1. The use of this bioinoculant promotes 
rooting and plant growth, mainly due to IAA synthesis and 
phosphatase activity related to phosphorous solubilization.

Some improvements are being made regarding the opti-
mization of low-cost culture media, industrial formulations, 
and large-scale cultivation of P. putida strains. For example, 
the culture medium for strain Rs-198 was optimized pro-
viding a basis for industrialized fermentation of the IAA-
producing strain (Peng et al. 2014); also, the bacteria were 
successfully immobilized in Ca-alginate-bentonite-starch 
microcapsules which increased their survival and coloniza-
tion rates in cotton roots and also increased the production 
of IAA and gibberellins compared to free cells under both 
saline and non-saline conditions (He et al. 2016); strain P. 
putida A (ATCC 12,633) was also immobilized in Ca-alg-
inate-perlite enhancing rhizosphere colonization and plant 
growth promotion of A. thaliana compared to free-living 
suspensions (Liffourrena and Lucchesi 2018), and strain 
B2017, which does not produce antibiotics or toxic com-
pounds, was grown on a large scale (125 L bioreactors), 
making it a promising biocontrol product formulated with 
P. putida (Daura-Pich et al. 2020; Oliver et al. 2019). The 
aforementioned works represent a good approach for the 
development of a P. putida-based product for its application 
in agriculture.

Future perspectives and concluding remarks

Crop production is facing unprecedented challenges; the 
transition from current agricultural practices to a more 
sustainable but efficient production model is one of the 
greatest challenges of twenty-first century. This goal can 
be achieved through biotechnological techniques. The 
application of plant growth promoting microorganisms 
has proven to be a greener approach suitable to improve 
cultivation of several plant species even under stressful 
environmental conditions such as drought, salinity, and 
high temperatures. The genus Pseudomonas has been 
extensively studied as PGPR microorganisms. In the pre-
sent review, emphasis was placed on P. putida species due 
to its apparent innocuousness in terms of pathogenicity 
unlike other members of this genus such as P. aeruginosa 
and P. syringae. This environmentally friendly species is 
an excellent candidate for the development of inoculants 
to replace the use of chemical fertilizers, ensuring sus-
tainable agriculture in the future. However, suggesting 
the complete elimination of chemical fertilizers may be 
a rather ambitious goal. Alternatively, the combination 
of a P. putida-based inoculant combined with a reduced 
amount of the recommended doses of chemical fertilizer 
may be suggested. In this way, the bioinoculant acts as a 
biostimulator rather than a biofertilizer. Recently, inocu-
lation of Pseudomonas sp. strain P3-57 (accession num-
ber MK503664) jointly with 70% of chemical fertilizer 
improved cucumber quality and sensory traits. Interest-
ingly, the authors declared that inoculation of the bacteria 
alone did not improve cucumber yields (Kafi et al. 2021). 
Therefore, it might be worthwhile to test P. putida strains 
with well-known PGP traits in combination with different 
doses of chemical fertilizers.

In the present review, the numerous PGP traits of P. 
putida strains have been thoroughly described. Most of the 
plant growth promotion trials were conducted under in vitro 
or controlled conditions, and there are very little examples 
of good performance of P. putida strains under real field 
condition. This phenomenon could be explained mainly by 
flaws during inoculation, low inoculum concentration, or 
weak adhesion or colonization of the roots or rhizosphere. 
Besides, for successful root/rhizosphere colonization and 
plant growth promotion, bacteria should be able to toler-
ate the environmental conditions. Therefore, it is recom-
mended that plant growth promotion trials be conducted 
using the soil types and crops in which the bacteria will 
be used (Costa-Gutierrez et al. 2021). Another interesting 
approach is the combination of P. putida strains with other 
microorganisms in a consortium, which could exhibit better 
performance compared to the use of single microorganisms, 
due to the combination of complementary activities. This 
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strategy would require further research to rationally design 
mixtures of microorganisms with no negative interaction and 
that enhance synergetic effects among consortium members. 
The use of P. putida jointly with other microorganisms for 
plant protection and growth promotion is an intriguing topic, 
although it has not been extensively developed in this review.

P. putida is a promising candidate for industrial produc-
tion, as it can withstand stressful conditions on an industrial 
scale. There are numerous studies about the optimization 
of culture media using low-cost carbon source (including 
palm oil sludge and biodiesel-derived crude glycerol) and 
large-scale production of these bacteria, issues that are not 
addressed in this review but are of great importance when 
developing a bioinoculant. On the other hand, there are few 
reports on P. putida-based bioproduct formulation in the 
literature. As mentioned above, some reports highlighted 
the microencapsulation in calcium as an effective technol-
ogy to immobilize P. putida cells for formulations. A profit-
able technique could be to microencapsulate other strains 
of this species, with known PGP abilities, and test their per-
formance under field conditions. Based on that, a gigantic 
effort is needed to make large-scale bioinoculants a reality to 
support and uplift agricultural sustainability globally.
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