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In the early 1950s, Austin and Chang independently described the changes that are

required for the sperm to fertilize oocytes in vivo. These changes were originally grouped

under name of “capacitation” and were the first step in the development of in vitro

fertilization (IVF) in humans. Following these initial and fundamental findings, a remarkable

number of observations led to characterization of the molecular steps behind this

process. The discovery of certain sperm-specific molecules and the possibility to record

ion currents through patch-clamp approaches helped to integrate the initial biochemical

observation with the activity of ion channels. This is of particular importance in the

male gamete due to the fact that sperm are transcriptionally inactive. Therefore, sperm

must control all these changes that occur during their transit through the male and

female reproductive tracts by complex signaling cascades that include post-translational

modifications. This review is focused on the principal molecular mechanisms that govern

human sperm capacitation with particular emphasis on comparing all the reported pieces

of evidence with the mouse model.
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INTRODUCTION

In the early 1950s, two researchers, Austin and Chang, using rabbit as a model, independently
described the changes that are required for sperm to fertilize oocytes in vivo (Austin, 1951; Chang,
1951). These changes were originally grouped under the name of “capacitation” (Austin, 1952)
and were later modified to specify that sperm need to reside in the female reproductive tract to
acquire this capacity (Austin and Bishop, 1958). These early important observations led to the
development of in vitro fertilization (IVF). Initially, IVF experiments were performed either with
sperm deposited in the oviduct (Austin, 1951; Chang, 1951) or collected from the uterus (Chang,
1959) due to the lack of appropriate conditions to fully support capacitation in vitro. A few years
later, Yanagimachi and Chang used a medium with a defined chemical composition to capacitate
hamster sperm and achieved the first successful IVF (Yanagimachi and Chang, 1963). In 1971, IVF
was performed in mice using epididymal sperm and a chemically defined medium (Toyoda et al.,
1971).

The remarkable initial discoveries of the fertilization process in mammals were achieved in non-
human species such as rabbit, rat, and hamster. The possibility to capacitate mammalian sperm
in vitro and fertilize the eggs led to the first attempts to capacitate human sperm (Norman et al.,
1960; Edwards et al., 1966, 1969). Although little was known about the molecular aspects of human
sperm capacitation, these were important steps for achieving the birth of Louise Brown by human
IVF (Steptoe and Edwards, 1978).
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During capacitation, sperm undergo a change in the
motility pattern called hyperactivation (Yanagimachi, 1970)
and become competent to undergo a physiological secretory
event known as acrosome reaction (aka acrosomal exocytosis;
AE). Experiments in mice demonstrated that hyperactivation is
critical to fertilization because it facilitates the sperm release
from the oviductal reservoir and the penetration through the
cumulus oophorus and the extracellular matrix surrounding
the egg, i.e., the zona pellucida (ZP) (Demott and Suarez,
1992). In addition, mammalian sperm must undergo AE
in an orderly manner to penetrate the ZP (Yanagimachi,
1994; Buffone et al., 2009b). It is also proposed that only
capacitated human sperm are able to do chemotactic swimming
using progesterone gradients in close proximity to the egg
(Guidobaldi et al., 2008; Teves et al., 2009; Gatica et al.,
2013).

From a molecular point of view, sperm capacitation has been
well studied in vitro in several species such as bovine, humans,
rats, and hamsters, but without any doubt the best characterized
model is the mouse. Most of the remarkable discoveries have
been generally achieved in mice and later explored in other
species. As a scientific tool, mice have helped to speed up the
progress of research in all fields, and in sperm physiology, this is
true due to several reasons: (i) the possibility to use transgenic
tools to create knockout (KO) or transgenic sperm containing
fluorescent proteins ormolecular sensors; (ii) it is easy to perform
assisted reproductive techniques such as intracytoplasmic sperm
injection (ICSI), IVF, or embryo transfer; (iii) they are closely
related to humans (∼99% of mouse genes have an equivalent in
humans); (iv) their genome has been fully sequenced (published
in 2002); (v) mice are small, have a short generation time, and
have an accelerated lifespan; (vi) mice are cost effective because
they are inexpensive and easy to look after; (vii) spermatogenesis
in mice is comparable with humans (O’Bryan et al., 2006).

Despite the fact that differences might exist between species,
mice serve as a de facto surrogate model for characterizing
the capacitation of human sperm (De Jonge, 2017). However,
there are certain aspects that are important to highlight before
going deeper into molecular events associated with human sperm
capacitation. These considerations not only include differences
between both species, i.e., humans and mice, but also important
aspects to consider when evaluating in vitro experiments. The
most significant aspects, according to our opinion, are listed
below:
a. Human sperm are highly pleomorphic in the sense that a

large number of cells in the ejaculate display a great variety
of morphological forms. In contrast, the proportion of mouse
sperm with morphological variations is rather small.

b. Humans deposit the ejaculate in the vagina, in contrast tomice
that ejaculate in the uterus (Kawano et al., 2014).

c. Human sperm are selected in the cervix, where only
morphologically normal or slightly abnormal sperm can
migrate through this channel. A cohort of sperm immediately
pass into the cervical mucus, whereas the remaining sperm
population becomes a part of the coagulum. Then, a second
round of selection occurs in the uterotubal junction (UTJ).
In contrast, mouse sperm are only selected in the UTJ by

mechanisms that are not fully clarified but include ADAM3
and other proteins (Yamaguchi et al., 2009; Holtzmann et al.,
2011; Okabe, 2013).

d. In general, the study of human sperm starts from a semen
sample, whereas in mice, it starts from sperm recovered
from the epididymis. In this condition, mouse sperm has
not yet been exposed to high concentrations of HCO−

3 ,
cholesterol, Zn2+, and seminal plasma proteins, among other
components.

e. In humans, the semen is frequently manipulated to isolate the
highly motile population of sperm. In contrast, virtually all
studies use mouse sperm obtained from the cauda epididymis
that have not been exposed to any selection procedure.

f. In vitro incubation under capacitating conditions for human
sperm ranges from 3 to 24 h. As a result, a great variability of
results is reported in the literature. In contrast, most studies in
mouse sperm are performed using 1–1.5 h of incubation under
capacitating conditions.

g. Based on non-human data, the oviductal epithelium is
considered a sperm reservoir that regulates binding and
release of sperm toward the site of fertilization. The role
of oviductal epithelium and fluids on human sperm was
generated in vitro by cell culture experiments. Hence, our
knowledge about human sperm interaction with the oviduct
is scarce in comparison with rodents.

h. The role of the uterus, the oviduct, and their secretions on
human sperm capacitation is largely unknown due to practical
and ethical limitations (De Jonge, 2017). A great number
of molecules that are present in the female tract that have
also been shown to modify sperm function are usually not
included in the in vitro capacitation experiments (Luconi
et al., 1995; Meizel et al., 1997; Edwards et al., 2007; Garbarino
Azúa et al., 2017). In addition, uterine contractions facilitate
the sperm transport mechanism that is essential for migration
within the female reproductive tract.

For all these reasons (and many others that will be explained in
the following sections), caution while transferring molecular and
cellular concepts between species was proposed recently (Kaupp
and Strünker, 2016). Alternatively, sperm from a given species
should be studied using a vertical research strategy (Kaupp and
Strünker, 2016).

We would also like to stress that, unless otherwise indicated,
all data regarding human sperm function and regulation
by electrophysiological processes are derived from in vitro
experimentation and may not be reflective of what occurs during
transit through the male and female reproductive tracts. The aim
of this paper is to revisit the most important molecular events of
human sperm capacitation.

SPERM PLASMA MEMBRANE AND
SEMINAL PLASMA CHOLESTEROL

The sperm plasmamembrane not only serves as the cell boundary
but also presents a dynamic structure that has an impact on
sperm capacitation and AE (Flesch and Gadella, 2000). During
capacitation, several changes in the sperm membrane have been
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described: increase in membrane fluidity, lateral movement of
cholesterol to the apical region of the sperm head, and cholesterol
efflux from the sperm plasma membrane to the extracellular
environment (Martínez and Morros, 1996; Gadella, 2008). The
approximate lipid content of mammalian sperm is composed
of 70% phospholipids, 25% neutral lipids (cholesterol), and
5% glycoproteins (Mann and Lutwak-Mann, 1981), cholesterol
being the main sterol in the cellular plasma membrane (∼90%)
(Lalumière et al., 1976; Langlais et al., 1981; Zalata et al., 2010;
Boerke et al., 2013). In addition, desmosterol, a cholesterol
precursor, and sulfate derivatives were reported (∼10%) (Nimmo
and Cross, 2003).

The cholesterol/phospholipid (C/PL) ratio in sperm varies
between species (Davis, 1981), i.e., 0.20 in boar sperm, 0.36 in
stallion sperm, about 0.40 in bovine sperm, 0.43 in ram sperm,
and 0.83 in human sperm (Parks and Hammerstedt, 1985; Parks
et al., 1987, 1992). Davis reported a correlation between the C/PL
ratio in sperm and the time required to complete capacitation
when comparing different mammalian species: the higher the
C/PL ratio, the longer the incubation period for capacitation
to be achieved (Davis, 1981; Ostermeier et al., 2018). Sperm of
patients with unexplained infertility showed a higher C/PL ratio
due to lower phospholipid content (Sugkraroek et al., 1991), and
normospermic patients who failed in IVF had either an atypical
high content of cholesterol or a slow efflux of cholesterol during
in vitro incubation (Benoff et al., 1993).

Sperm cholesterol content is finely regulated within the male
reproductive tract as the concentration of lipids in blood serum
does not correlate with the seminal plasma levels (Grizard et al.,
1995). Cholesterol is found in high abundance in seminal plasma
(Grizard et al., 1995; Cross, 1996). Experiments in rabbit and
bull sperm showed an inhibitory effect of seminal plasma on
capacitation that could be reversed after re-incubation of the
sperm in the oviduct (Chang, 1957). Incubation of human sperm
in seminal plasma inhibited progesterone-induced AE, being the
main inhibitor free cholesterol (Cross, 1996). Altogether, these
early observations demonstrate the important regulatory role
of seminal plasma sterols on the initiation and promotion of
capacitation.

Cholesterol Efflux During Capacitation
It has been well demonstrated in vitro that capacitation
is associated with removal of cholesterol from the plasma
membrane (Visconti et al., 1999). Albumin is the most used
cholesterol acceptor in in vitro experiments (Langlais et al., 1988;
Suzuki and Yanagimachi, 1989; Leahy and Gadella, 2015), and
it has been described to be in high abundance in the oviduct
(Ehrenwald et al., 1990). The lipid transfer protein-I (LTP-I), a
key protein in the human plasma metabolism of the high-density
lipoprotein (HDL) (Albers et al., 1984; Tall, 1993), is present in
the reproductive fluids and it also serves as a cholesterol acceptor
(Ravnik et al., 1992).

Sterol-rich microdomains, known as lipid rafts, are
organization centers involved in membrane protein distribution,
activating receptors and signaling cascades. Markers for these
rafts, such as the proteins caveolin-1, caveolin-2, flotilin-1
and flotilin-2, and the sphingolipids GM1 and GM3, have

been described (Travis et al., 2001; Suzuki et al., 2017). A
capacitation-associated movement, due to cholesterol efflux,
of GM1 has been observed during capacitation (Selvaraj et al.,
2007; Bruckbauer et al., 2010). GM1 binds decapacitating factors
released during capacitation (Kawano et al., 2008) and can be
used as a biomarker for lipid rafts, as it can be easily traced using
cholera toxin (Selvaraj et al., 2006).

Lipocalin 2 is present in mouse oviduct and uterus and
induces capacitation via raft aggregation in a PKA-dependent
manner (Watanabe et al., 2014). Glycosylphosphatidylinositol-
anchor proteins (GPI-APs) are also components of lipid rafts
(Varma and Mayor, 1998), and their release is very important
for male fertility (Kondoh et al., 2005; Ueda et al., 2007;
Fujihara et al., 2013). Recent studies in mouse sperm described
the importance of lipid raft movement in order for sperm to
gain fertilization ability, using cholera toxin to track GM1 and
(GPI)-anchored enhanced green fluorescent protein (EGFP-GPI)
(Kondoh et al., 1999; Watanabe et al., 2017). Cholesterol efflux
using methyl-β-cyclodextrin (M-β-CD) showed not only GM1
movement but also release of GPI-APs (Watanabe et al., 2017).

Phospholipid scrambling, one of the earliest capacitation
events, is initiated by an increase in intracellular HCO−

3
followed by the activation of the cAMP/PKA pathway and may
be essential to facilitate albumin-mediated cholesterol efflux
(Gadella and Harrison, 2000; Harrison and Miller, 2000; Flesch
et al., 2001).

Ravnik and coworkers proposed LTP-I as a capacitation
inducer in human sperm, as it stimulates acrosomal loss and
increases the penetration of hamster eggs by human sperm
(Ravnik et al., 1995).

ACTIVATION OF cAMP-PKA PATHWAY

Human sperm capacitation can be mimicked in vitro in a
chemically defined medium containing electrolytes (Na+, K+,
Cl−, HCO−

3 , Mg2+, Ca2+, and PO3−
4 ), energy substrates (glucose,

pyruvate, and lactate), and a cholesterol acceptor (usually serum
albumin as previously described).

The activation of intracellular signaling pathways is dependent
on the presence of the chemicals present in the capacitation
medium. For instance, once human sperm are exposed to seminal
plasma or the female reproductive tract, they encounter higher
concentration of HCO−

3 (Okamura and Sugita, 1983; Okamura
et al., 1985), which in turn stimulates the soluble adenylyl cyclase
ADCY10 (Buck et al., 1999; Jaiswal and Conti, 2003). Activation
of ADCY10 primarily by HCO−

3 , but also by Ca2+ leads to an
increase in cyclic adenosinemonophosphate (cAMP) synthesis in
several mammalian species (Chen et al., 2000). The initial HCO−

3
entrance in mouse and human sperm occurs through NBC
cotransporters (Demarco et al., 2003; Puga Molina et al., 2018).
In addition, it was reported that inhibition of the cystic fibrosis
transmembrane conductance regulator channel (CFTR) affects
HCO−

3 -entrance-dependent events (Puga Molina et al., 2017),
such as phosphorylation in substrates of protein kinase A (PKA)
and tyrosine phosphorylation (pY). In contrast, CFTR inhibition
does not affect this pathway in mouse sperm (Wertheimer et al.,
2008; Puga Molina et al., 2017).
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In sperm as well as in other cells, intracellular cAMP
levels are highly dynamic. Its concentration relies on the
simultaneous action of both synthesis by ADCY10 and
degradation by phosphodiesterases (PDE). In mammals, 11
PDE families have been described, with different substrate
specificities and pharmacological sensitivities. In human sperm,
inhibition of PDE4 enhanced sperm motility, whereas PDE1
inhibitors selectively stimulated the AE (Fisch et al., 1998).
These observations suggest that molecules related to cAMP
signaling such as cAMP targets, adenylyl cyclases, and PDE are
compartmentalized and, as a consequence, participate in different
sperm functions, some in the flagellum and others in the head
(Buffone et al., 2014b).

The role of cAMP in sperm function is well described
elsewhere (Buffone et al., 2014b), and some of its targets will
be discussed in the following sections. One of the main targets
of cAMP is PKA, which is essential in sperm biology (Burton
and McKnight, 2007). PKA is an heterotetramer composed of
two catalytic subunits (C) and two regulatory subunits (R). The
active C subunit is dissociated as an active kinase when cAMP
binds to R subunits. Using antibodies against PKA substrate
consensus phosphorylation sites, it was shown in human sperm
as well as in other species that PKA activity reaches maximum
activity within 1min of exposure to HCO−

3 (Battistone et al.,
2013). Because PKA has multiple targets, phosphorylation of a
given substrate may occur without affecting others by the action
of A-kinase-anchoring proteins (AKAPs) (Carnegie et al., 2009).
AKAPs anchor the R subunit of PKA, restricting its activity to
discrete locations within the sperm (Carnegie et al., 2009; Scott
and Pawson, 2009). Several reports have shown the presence
and possible function of AKAPs such as AKAP3 and AKAP4
in human sperm (Carrera et al., 1996; Mandal et al., 1999;
Harrison et al., 2000; Ficarro et al., 2003). In addition to PKA,
cAMP can bind and regulate other targets such as the exchange
protein directly activated by cAMP (EPAC). EPAC1 and EPAC2
are expressed in sperm from different species including human
(Branham et al., 2006) and are localized to the sperm head. These
enzymes play a major role in human sperm AE (Branham et al.,
2006, 2009; Buffone et al., 2014a).

One of the best characterized events in sperm capacitation
is the time-dependent increase in pY. The increase in sperm
pY is downstream of a cAMP/PKA-dependent pathway in
many species including humans (Visconti et al., 1995b; Osheroff
et al., 1999; Battistone et al., 2013, 2014). Several reports have
shown clear deficiencies in this process in infertile patients
(Buffone et al., 2004, 2005, 2006, 2009a,c). Because PKA is a
serine/threonine (Ser/Thr) protein kinase, a tyrosine kinase
mediates the role of PKA in pY. The mechanism by which
PKA activates pY in humans was reported to be mediated by
proline-rich tyrosine kinase 2 (PYK2) (Battistone et al., 2014).
On the contrary, sperm from Pyk2−/− mice have normal pY
during capacitation, but in sperm from mice in which the
tyrosine kinase FER was disrupted, pY was not increased (Alvau
et al., 2016). FER has also been detected in human sperm
(Matamoros-Volante et al., 2017), although its role during
capacitation has not yet been established.

In summary, the cAMP/PKA signaling pathway is essential
for human sperm capacitation and is activated by HCO−

3 and

Ca2+ influx during the sperm transit from the epididymis to the
oviduct. During this journey, sperm are exposed to large changes
in HCO−

3 , Ca
2+, as well as H+, Na+, K+ that ultimately impact

on the membrane potential (Em) and the intracellular pH.
These changes are regulated by the activation of the cAMP-PKA
pathway and they will be explained in detail in the following
sections.

EXTRACELLULAR AND INTRACELLULAR
pH IN HUMAN SPERM

Regulation of intracellular pH (pHi) is fundamental for every
cellular process. It is suggested that homeostasis of the pHi
in mammals is mainly controlled by: (1) H+ and (2) HCO−

3
transport. Particularly, sperm encounter a variety of dramatic
changes in H+ extracellular concentration during their transit
from the epididymis to the site of fertilization in the female
tract. Although extracellular pH (pHe) from epididymis is acidic
(approx. 6.8) (Carr and Acott, 1989; Caflisch and DuBose, 1990;
Rodriguez-Martinez et al., 1990), in humans, the pH of semen is
approximately 7.2–8.4 (Owen and Katz, 2005), and in the human
female, the reproductive tract is graduated, with lowest pH in the
vagina (approx. pH 4.4), increasing toward the endocervix and
uterus (approx. pH 7) (Macdonald and Lumley, 1970; Eggert-
Kruse et al., 1993; Ng et al., 2017).

In addition to different H+ concentrations, sperm encounter
a variety of different ionic compositions such as HCO−

3 . In
the porcine epididymis, the [HCO−

3 ]e is approximately 2–4mM
(Okamura et al., 1985), whereas in rabbit, human, and porcine,
seminal plasma is approximately 25mM (Vishwakarma, 1962),
and in the human and rabbit female tract, it is reported in the
range of approximately 20–60mM (Vishwakarma, 1962; Hamner
et al., 1964; David et al., 1973).

In addition, it is postulated that pHe varies in the female
tract according to the moment of ovulation. In the lumen of
the Macaca mulatta (rhesus monkey) oviduct, pHe increases
from approximately 7.2 to 7.6, whereas the [HCO−

3 ]e increases
from approximately 35 to 90mM from the follicular phase to
ovulation (Maas et al., 1977). These variations in [H+]e and
[HCO−

3 ]e during the journey of the sperm and during ovulation
in the female tract might be of great importance for the pHi
regulation in sperm.

Alkalinization During Capacitation
During their transit through the female reproductive tract,
sperm encounter an alkaline pH, higher HCO−

3 concentration,
and albumin. All these factors contribute to the cytoplasmic
alkalinization that occurs during mouse sperm capacitation
(Zeng et al., 1996; Nishigaki et al., 2014). This event is widely
associated with hyperactivatedmotility because the alkalinization
of the cytoplasm is necessary for the activation of CatSper, and the
activity of this channel is fundamental for the hyperactivation of
the human sperm (see below).

In mouse sperm, it was shown that sperm alkalinization
depends mainly on the Na+/H+ exchanger (NHE) activity
(Wang et al., 2003b; Chávez et al., 2014) and also on the CFTR
activity (Xu et al., 2007; Chávez et al., 2012). However, in humans,
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the mechanism of the pH increase is thought to be different
(Miller et al., 2016) as it is postulated that the main proton efflux
depends mostly on Hv1 (Lishko et al., 2010).

The pHi of mammalian sperm, including humans, has been
evaluated using different fluorescent indicators (Florman et al.,
1989; Vredenburgh-Wilberg and Parrish, 1995; Brook et al.,
1996; Hamamah et al., 1996; Cross and Razy-Faulkner, 1997),
[31P]-NMR (Smith et al., 1985; Robitaille et al., 1987), and also
by the distribution of a radioactive amine (Gatti et al., 1993;
Hamamah et al., 1996), resulting in pHi approximately 6.7–7.2.
However, there are few reports showing an increase in pHi during
capacitation in human sperm. By using the BCECF pH-sensitive
fluorescent probe, Cross and Razy-Faulkner showed that 24-h
capacitated sperm have higher pHi (7.08) compared with freshly
ejaculated sperm (6.94). They also showed that when cholesterol
loss is prevented, pHi is similar to that observed in ejaculated
sperm (pHi approx. 6.7) (Cross and Razy-Faulkner, 1997). López-
González et al. demonstrated by flow cytometry the existence of a
subpopulation of capacitated sperm with more alkaline pH than
those incubated in a noncapacitating medium (López-González
et al., 2014). Because of the lack of in vivo experimentation,
overall, the alkalization as a regulatory process during human
sperm capacitation is still highly speculative.

Regulation of pHi
Although alkalinization has been demonstrated in human sperm
in vitro, the molecular mechanisms related to this process
have not yet been fully understood, and still remains much to
be explored regarding the participation of different channels
and transporters during capacitation. As mentioned before, ion
transporters that regulate pHi can be divided into two groups: (1)
H+ transporters and (2) HCO−

3 transporters.

Voltage-Gated H+ Channels (Hv1)
Hv1 is encoded by theHVCN1 gene andmediates highly selective
H+ outward currents (Musset and Decoursey, 2012). Hv1 is the
dominant proton conductance in human sperm; however, until
now, the effect on Hv1 mutations in human fertility has not been
reported. In contrast, mouse sperm do not have functional Hv1
(Lishko and Kirichok, 2010), and for this reason, Hv1−/− mice
are fertile (Ramsey et al., 2009).

The Hv1 channel is present in the principal piece of the
flagellum of human sperm as confirmed by immunoblotting and
immunostaining (Lishko et al., 2010), and recently, a shorter
variant (Hv1Sper) generated by proteolytic cleavage during
spermatogenesis was reported (Berger et al., 2017).

Electrophysiological data have shown that Hv1 is an
H+-selective channel whose activity is potentiated by
capacitation, anandamide, membrane depolarization, and
alkaline extracellular pH (Lishko et al., 2010). Interestingly, this
channel is inhibited by Zn2+ (IC50= 222± 36 nM) (Lishko et al.,
2010; Qiu et al., 2016), which is present in high concentration
in seminal plasma [in humans approx. 1.2–10.6mM in seminal
fluid vs. approx. 15.3µM in serum (Owen and Katz, 2005)].
Hv1Sper is also inhibited by Zn2+, but the loss of a fragment
in Hv1 N-terminus tunes its sensitivity to pH. Hv1Sper variant
can form heterodimers with Hv1. Hv1Sper-Hv1 tandem dimers

display distinct pH and voltage dependence; however, the
Hv1Sper/Hv1 ratio is independent of capacitation (Berger et al.,
2017).

Although it has been proposed that Hv1 would be mainly
responsible for pH control in human sperm, the participation of
this channel on the rise of pHi during capacitation has not been
reported yet.

Na+/H+ Exchangers (NHE)
The SLC9 gene family encodes 13 evolutionarily conserved NHE.
The expression of three NHEs has been identified in rat, mouse
and human sperm, such as NHE1, NHE5, and NHE10 (Woo
et al., 2002; Wang et al., 2003a; Zhang et al., 2017). Furthermore,
in mouse sperm, a new member of the NHE family (sperm-
specific NHE; sNHE, Slc9c1 gene) is expressed, whose localization
is restricted to the principal piece (Wang et al., 2003a). sNHE-null
males are infertile and have impaired sperm motility. As sNHE
not only interacts but is also required for the sAC expression, it is
postulated that this complex modulates pHi and HCO−

3 (Wang
et al., 2007). Regarding the participation of pHi and HCO−

3 in
spermmotility, it is worth knowing that the addition of NH+

4 and
cAMP analogs partially rescues the motility and fertility defects,
suggesting that other important players may also be affected in
this transgenic model (Wang et al., 2003a).

In human sperm, sNHE is mainly localized in the principal
piece and its expression is downregulated in sperm from
asthenozoospermic patients (Zhang et al., 2017). In addition,
it has been reported that regulation of pHi in human sperm
depends on the [Na+]e, and that ethyl-isopropyl amiloride
(EIPA) affects this regulation within concentrations that inhibit
NHE activity (Garcia and Meizel, 1999). Amiloride, another
inhibitor of NHE, at 0.5mM affectsmotility in human sperm, and
the addition of nigericin, an ionophore that restores intracellular
pH, partially rescues sperm motility (Peralta-Arias et al., 2015).
As in mouse sperm, the ion transport-like region of the putative
human sNHE is related to the membrane segments of voltage-
gated ion channels (Wang et al., 2003a). For this reason, it is
suggested that sNHE should play a central role in signaling
(Kaupp and Strünker, 2016). Unfortunately, because sNHE is
electroneutral, it is difficult to use traditional electrophysiological
techniques to study its role in human sperm (Miller et al.,
2015), and its role during capacitation still remains to
be elucidated.

HCO−

3 Transporters

As HCO−
3 is a weak base, changes in [HCO−

3 ]i can cause
intracellular alkalinization. HCO−

3 transporters include the
SLC26 and SLC4 families (Liu et al., 2012) and the CFTR
(Anderson et al., 1991).

• SLC4: SLC4A1–5 and SLC4A7–11 family members include
two groups: an Na+-independent group and an Na+-
dependent group (Liu et al., 2012; Bernardino et al., 2013).
Na+-independent members include three anion exchangers,
namely SLC4A1 (AE1), SLC4A2 (AE2), and SLC4A3 (AE3),
which mediate electroneutral Cl−/HCO−

3 exchange (Holappa
et al., 1999; Medina et al., 2003). Although in human sperm,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 July 2018 | Volume 6 | Article 72

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Puga Molina et al. Human Sperm Capacitation

the presence of SLC4A1 and SLC4A2 in the equatorial
segment has been demonstrated (Parkkila et al., 1993), the
participation of this family in the regulation of pHi is
unknown. The Na+-dependent members of the SLC4 family
include five Na+-coupled HCO−

3 transporters, also termed
NBC. The NBC transporters are composed of two electrogenic
Na+/HCO−

3 cotransporters, NBC1 (SLC4A4, 2 HCO−
3 :1 Na

+)
and NBC2 (SLC4A5, 2 HCO−

3 :1 Na+), two electroneutral
Na+/HCO−

3 cotransporters, NBCn1 (SLC4A7; 2 HCO−
3 :1

Na+) and NBCn2 (SLC4A10), and an electroneutral Na+-
driven Cl−/HCO−

3 exchanger, NDCBE (SLC4A8 2 HCO−
3 :1

Na+). The Na+ dependence of “AE4” (SLC4A9) remains
controversial (Liu et al., 2015); however, the latest evidence
suggests that it is an electroneutral Cl−/nonselective cation–
HCO−

3 exchanger (Peña-Münzenmayer et al., 2016).
Na+-coupled HCO−

3 transporters have been shown to play
a role in the regulation of pHi during capacitation. Demarco
et al. (2003) suggested that an electrogenic NBC is active
in mouse sperm and is responsible for the initial HCO−

3
entrance during capacitation. In addition, in mouse sperm,
Zeng et al. (1996) demonstrated that pHi is dependent on
extracellular Na+, HCO−

3 , and Cl
−. Jensen et al. (1999) showed

the expression of the NBC1 in rat sperm. In humans, NBC2,
NDCBE, and NBCn2 were detected in testis (Ishibashi et al.,
1998; Damkier et al., 2007). It has recently been shown that
NBC is involved in the initial HCO−

3 uptake in humans (Puga
Molina et al., 2018).

• SLC26: In mouse and human sperm, elevation of pHi was
shown to depend on CFTR activity (Xu et al., 2007; Puga
Molina et al., 2017). It has also been shown that there
is a physical interaction between CFTR and the SLC26A3,
SLC26A6, and SLC26A8 exchangers in mouse, human, and
guinea pig sperm (Chen et al., 2009; Chávez et al., 2012; Rode
et al., 2012). This functional association between CFTR and
the SLC26A3 and SLC26A6 modulates pHi in mouse sperm
(Chávez et al., 2012).

CFTR is a selective ion channel to Cl− (Anderson
et al., 1991; Bear et al., 1992; Tabcharani et al., 1993) and
also transports other anions with different permeabilities
(pBr−≥pCl− >pI− >pHCO−

3 ) (Anderson et al., 1991).
This ATP-gated channel is regulated by PKA, because its
phosphorylation is mandatory for both the channel opening
mechanism and the ATP association (Anderson et al., 1991;
Tabcharani et al., 1991; Bergerz et al., 1993). The multiple
potential sites of phosphorylation by PKA in the regulatory
domain of CFTR (R) make the channel dependent on the
cAMP concentration (Tabcharani et al., 1991; Bergerz et al.,
1993; Sheppard and Welsh, 1999; Gadsby et al., 2006; Sorum
et al., 2015). In addition, the interaction between CFTR and
SLC26 is mediated by the R domain of the channel and the
Sulfate Transporter and Anti-Sigma (STAS) domain of SLC26,
which must be phosphorylated by PKA to favor interaction
(Gray, 2004; Ko et al., 2004). In accordance to these results,
it was reported by our group that PKA activity is essential for
pHi regulation in human sperm (Puga Molina et al., 2017).

CFTR protein is present in mature human and mouse
sperm and is restricted to the mid-piece (Hernández-González

et al., 2007; Xu et al., 2007) and the equatorial segment of the
head (Xu et al., 2007).

In humans, mutations in the CFTR gene that impair CFTR
activity cause a severe disease called cystic fibrosis. It has been
reported that patients with cystic fibrosis have deterioration
in fertility in both women and men. The higher incidence
of CFTR mutations in a male infertile subpopulation may
indicate its participation in other fertilization-related events,
such as sperm capacitation (Jakubiczka et al., 1999; Schulz
et al., 2006). Supporting this hypothesis, human sperm treated
with a specific inhibitor of CFTR decreases the percentage
of sperm undergoing AE, hyperactivation, and penetration of
ZP-free hamster eggs (Li et al., 2010). Regarding the SLC26
transporters that can interact in human sperm with CFTR,
SLC26A6 is expressed in human efferent and epididymal ducts
and colocalizes with CFTR (Kujala et al., 2007). SLC26A8
(TAT1) is expressed specifically in the male germ line, and
it was shown to physically interact with CFTR in vitro and
in vivo in mature sperm, activates CFTR, and, interestingly,
is essential for the activation of the cAMP-PKA pathway in
mouse sperm (Rode et al., 2012). Its role in human sperm has
not been demonstrated but nonsense mutations in SLC26A8
have been associated with asthenozoospermia (Dirami et al.,
2013). In addition, in humans,mutations that impair SLC26A3
activity also cause subfertility and oligoasthenozoospermia
(Hihnala et al., 2006; Höglund et al., 2006).

Carbonic Anhydrases (CAs)
Carbonic anhydrases (CAs) are metalloenzymes that catalyze the
reversible hydration of carbon dioxide to HCO−

3 (OH− + CO2

↔HCO−
3 +H+). CAs are encoded by five gene families: α, β, È, δ,

and ζ, but only 15 isoforms of the α family are found in primates
(i.e., CAI-CAXIV, except CAXV) (Truppo et al., 2012). CAs are
important in the regulation of pHi in bacteria, archaea, and
eukarya. However, the role of these enzymes in sperm physiology
is still not clear (Nishigaki et al., 2014). The expression of some
CAs has been reported in human sperm, including CAI (Ali
Akbar et al., 1998) and CAII (Ali Akbar et al., 1998), that were
reported in the post-acrosomal region (Parkkila et al., 1991) and
in the flagellum (José et al., 2015), and CAXIII (Lehtonen et al.,
2004) localized in the flagellum of human sperm (José et al.,
2015). The function of CAs is not yet fully understood, but the
use of general blockers against these enzymes affects motility and
increases the AE in capacitated human sperm (Wandernoth et al.,
2010; José et al., 2015).

Albumin
Cross (1998) demonstrated that the cytoplasmic alkalinization
in human sperm depends on the cholesterol removal during
capacitation. Cross and Razy-Faulkner (1997) showed that sperm
cells incubated with albumin saturated with cholesterol sulfate
have a more acidic pHi than the capacitated control condition.
Although the effects of cholesterol in pHi have been observed in
platelets and fibroblasts (Poli de Figueiredo et al., 1991) and that
cholesterol alters the activity of NHE and Cl−/HCO−

3 exchangers
in erythrocytes (Grunze et al., 1980), how this regulation occurs
in human sperm remains largely unknown.
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The proton-selective voltage-gated channel Hv1 can be
activated by removing extracellular Zn2+ (Lishko and Kirichok,
2010; Lishko et al., 2010). It has been proposed that high
concentrations of Zn2+ in the seminal plasma inhibit Hv1, and
that in the female tract a decrease in Zn2+ due to dilution,
absorption by the uterine epithelium, and chelation may render
sperm free from Zn2+ in the fallopian tube (Gunn and Gould,
1958; Ehrenwald et al., 1990; Lu et al., 2008). Albumin is not only
a cholesterol acceptor but it also chelates Zn2+ (Lu et al., 2008).
Therefore, it is unclear whether the effect on pHi is due to the
cholesterol efflux and/or the chelation of Zn2+.

MEMBRANE POTENTIAL IN HUMAN
SPERM

In any given cell, the metabolic state and specific ion channels
and transporters determine the internal and the external ion
concentration and the plasma membrane permeability that
defines the Em. Sperm encounter different concentrations of
extracellular K+, Na+, Cl−, and HCO−

3 throughout their journey
from the testis to the site of fertilization in the female tract. In
the ductus deferens, the levels of K+ (approx. 110mM), Na+

(approx. 30mM), Cl− (approx. 100mM) (Hinton et al., 1981)
(for humans), and HCO−

3 (approx. 2–4mM) (Okamura et al.,
1985) (for porcine) are different than in seminal plasma [K+

(approx. 12–63mM), Na+ (approx. 102–143mM), Cl− (approx.
37–45mM), and HCO−

3 (approx. 25mM)] (Okamura et al., 1986;
Owen and Katz, 2005), and than in human uterine tubal fluid [K+

(approx. 4.5–21mM), Na+ (approx. 130–149mM), Cl− (approx.
118–132mM), and HCO−

3 (approx. 20 a 60mM)] (Lippes et al.,
1972; David et al., 1973; Lopata et al., 1976; Borland et al.,
1977; Aguilar and Reyley, 2005). Although Na+ and HCO−

3 are
higher in seminal plasma and in the female tract than in the
ductus deferens, K+ is lower and Cl− varies reaching maximal
concentration in the uterine tubal fluid. These ionic changes
transduce variations not only in the Em but also in pH, as
mentioned earlier.

In human sperm, it was demonstrated that the regulation
of Em is related to male fertility due to the modulation of ion
channels and transporters such as CatSper (sperm-specific Ca2+

channel) andHv1 (Darszon et al., 1999; Lishko et al., 2012). It was
reported that idiopathic and asthenozoospermic infertile men
have more depolarized Em than fertile men (Calzada and Tellez,
1997), and that depolarization of Em is associated with low IVF
success rate in subfertile men (Brown et al., 2016).

Hyperpolarization During Capacitation
Hyperpolarization of the Em occurs when there is an increase
in the concentration of net negative charges in the intracellular
compartment. Membrane hyperpolarization during capacitation
has been demonstrated in murine, bovine, equine, and human
sperm (Zeng et al., 1995; Hernández-González et al., 2007;
Escoffier et al., 2012; López-González et al., 2014). Experiments
in mouse sperm demonstrate that hyperpolarization is necessary
and sufficient to prepare them for AE (De La Vega-Beltran et al.,
2012).

Compared with mouse sperm, it was reported that changes
in Em in human sperm are not as evident, probably due
to the variability between donors and the small difference
in Em values between capacitated and noncapacitated sperm.
This could be because changes in the Em occur in a small
fraction of human sperm population (López-González et al.,
2014). Therefore, methods such as flow cytometry to distinguish
membrane hyperpolarization are useful for studying this event.
The reported values of resting Em in noncapacitated human
sperm are approximately −40mV (Linares-Hernández et al.,
1998) and approximately −17.7mV (Brown et al., 2016). In
capacitated human sperm, these values shift to approximately
−58mV (Patrat et al., 2002) and approximately −22.7mV
(Brown et al., 2016). The differences between these values may
be methodological: although Brown et al. inferred resting Em
from reversal potential obtained by whole cell patch clamping,
Linares-Hernández and Patrat used fluorimetry. Inmouse sperm,
the resting Em of noncapacitated sperm is approximately
−35 to −45mV, and after capacitation, this value changes to
approximately −65mV (Espinosa and Darszon, 1995; Zeng
et al., 1995; Muñoz-Garay et al., 2001; Demarco et al., 2003;
Hernández-González et al., 2006; Santi et al., 2010; De La Vega-
Beltran et al., 2012).

Regulation of Em
It was reported that hyperpolarization of the plasma membrane
occurs downstream of cAMP elevation in mouse and human
sperm (Martínez-López et al., 2009; Escoffier et al., 2015; Puga
Molina et al., 2017). In mouse sperm, it was suggested that
cSrc is activated downstream of PKA and modulates the sperm-
specific K+ channel Slo3 (Stival et al., 2015). This possibility
remains to be studied in human spermwhere the PKA-dependent
activation of CFTR also contributes to the regulation of Em (Puga
Molina et al., 2017). In human sperm, then, it is postulated that
hyperpolarization may occur as a result of either the increase of
K+ permeability and/or the reduction of Na+ permeability (Santi
et al., 2010).

K+ Channels SLO1 and SLO3
In mammalian sperm, it has been shown that hyperpolarization
associated with capacitation is inhibited using blockers such as
Ba2+, which inhibits the inward rectifying K+ currents, and
the sulfonylureas (tolbutamide and glibenclamide) that inhibit
K+ channels regulated by ATP (Muñoz-Garay et al., 2001;
Acevedo et al., 2006). In addition, it has been reported that
the physiological hyperpolarization induced during capacitation
in mouse sperm does not depend on the reduction of Na+

permeability, but on the increase in K+ permeability (Chávez
et al., 2013). Two members of the Slo family of K+ channels
were proposed to have a role in this phenomenon: Slo1, which is
highly conserved and ubiquitously expressed, and sperm-specific
Slo3, which is present only in mammals and has low sequence
conservation (Santi et al., 2010; Miller et al., 2015). As K+

currents in mouse sperm depends on the increase in pHi and
Slo3 is activated by alkalinization of the cytoplasm, this channel
was proposed to be a key player of Em changes in these species
(Schreiber et al., 1998; Santi et al., 2010; Zeng et al., 2011). Taking
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into account that male KOmice for SLO3 are infertile (Santi et al.,
2010; Zeng et al., 2011), it is suggested that SLO3 would be the
main channel that mediates hyperpolarization in this species.

In human sperm, the participation of K+ channels is not as
well established as it is in mouse sperm (Kaupp and Strünker,
2016). Human sperm K+ current (KSper) is less sensitive to pH
and more sensitive to [Ca2+]i (Mannowetz et al., 2013), and is
inhibited by progesterone (Mannowetz et al., 2013; Brenker et al.,
2014). In human sperm, SLO1 was detected by Western blotting
(Mannowetz et al., 2013), whereas SLO3 was detected byWestern
blotting and mass spectrometry (Brenker et al., 2014; López-
González et al., 2014). From the biophysical and pharmacological
properties that were described with respect to KSper, the currents
seem to resemble SLO1 as it is a K+ channel activated by Ca2+

(Mannowetz et al., 2013). However, recently, it was suggested that
capacitated human sperm possess a different type of SLO channel
(Mansell et al., 2014) or even a version of SLO3 that is sensitive
to Ca2+ and weakly dependent on pH (Brenker et al., 2014). It
was also proposed that SLO3 is rapidly evolving in humans, and
the variant allele C382R, which is present at a high frequency
in the human population, has enhanced apparent Ca2+ and pH
sensitivities (Geng et al., 2017).

Regarding the participation of SLO3 and SLO1 in male
fertility, Brown and coworkers found in a recent study,
where 81 subfertile patients undergoing IVF were investigated,
that outward K+ conductance from these patients was not
significantly different from donor sperm. In approximately 10%
of the patients, either a negligible outward conductance or an
enhanced inward current causing depolarization of Em was
observed. Interestingly, in this study, sperm from one patient
with low fertilization rate at IVF had very low outward K+

conductance and presented depolarized Em. However, no genetic
abnormalities in SLO1, SLO3, or LRCC52 genes were found in
this patient (Brown et al., 2016).

Regarding the role of SLO1 and SLO3 during capacitation,
López-González and coworkers have shown that human sperm
capacitated in the presence of inhibitors of both SLO1 and SLO3
have a similar Em to that of sperm incubated in a noncapacitating
medium (López-González et al., 2014). Therefore, further
investigation is needed to establish the participation of SLO1 and
SLO3 in the regulation of Em in human sperm.

Na+ Transport
Previous evidence indicates that Na+ participates in establishing
the resting Em in mouse sperm (Demarco et al., 2003;
Hernández-González et al., 2006). It was also observed in mouse
sperm that in an Na+-free medium, the addition of this cation
induces a rapid depolarization of the Em, which is blocked
by EIPA, an analog of amiloride (Escoffier et al., 2012). Both
amiloride and EIPA are pharmacological inhibitors of the Na+

epithelial channels (ENaC).
ENaC is an heteromultimeric channel composed of the

combination of α, β, γ, or δ subunits (de la Rosa et al., 2000;
Kellenberger and Schild, 2002). The activity of ENaC channels is
closely associated with CFTR, as this channel negatively regulates
ENaC (Kunzelmann, 2003; Guggino and Stanton, 2006; Berdiev
et al., 2009). In humans, ENaC dysfunction can cause cystic

fibrosis among other diseases (Fambrough and Benos, 1999;
Snyder, 2002).

In mouse sperm, ENaC-α and ENaC-δ subunits were detected
by Western blotting (Hernández-González et al., 2006). In
addition, patch-clamp records in testicular sperm detected an
amiloride-sensitive component that is in agreement with the
presence of ENaC (Martínez-López et al., 2009). In humans,
it was demonstrated the presence of the ENaC-δ subunit in
the testis (Waldmann et al., 1995) of ENaC-α in the mid-piece
of the sperm flagellum by immunocytochemistry and Western
blotting (Kong et al., 2009) and the expression of ENaC-β by
Western blotting in human sperm (Puga Molina et al., 2018).
Interestingly, Kong and coworkers showed that the treatment
of human sperm with EIPA improves sperm motility in both
healthy donors and asthenozoospermic patients. Puga Molina
and coworkers also showed that HCO−

3 produced a rapid
membrane hyperpolarization mediated by CFTR-dependent
closure of ENaC channels, which contribute to the regulation of
Em during capacitation. In addition, the same authors showed
that 1µM amiloride produces hyperpolarization of the human
sperm plasma membrane and decreases [Na+]i (Puga Molina
et al., 2018).

As mentioned above, previous evidence indicates that
mouse and human sperm display a HCO−

3 uptake through
electrogenic Na+/HCO−

3 cotransporters (NBC), resulting in a
rapid hyperpolarization (Demarco et al., 2003; PugaMolina et al.,
2018).

Na+/K+ ATPase
The Na+/K+ pump is an electrogenic transmembrane ATPase
that catalyzes Na+ and K+ transport by using the energy derived
from ATP hydrolysis (Skou, 1957). The proper function of
Na+/K+ ATPase is of vital importance in every cell because it
generates the electrochemical gradient for Na+ and K+ across
the plasma membrane (Morth et al., 2007). Na+/K+ ATPase is
an oligomer formed by two subunits: a catalytic α-subunit that
contains the sites for binding of Na+, K+, ATP, and ouabain (an
inhibitor of the pump) (Jorgensen et al., 2003), and a β-subunit
that is required for guiding the α-subunit to the membrane
and for occlusion of the K+ ions (Lutsenko and Kaplan, 1993;
Geering, 2001). There are several Na+/K+ ATPase isoenzymes
due to the fact that there are 4 different α-subunits (α1, α2, α3,
and α4) and 3 different β-subunits (β1, β2, and β3) (Blanco and
Mercer, 1998). Each combination is cell- and tissue-specific and
displays a particular pattern of expression (Jewell et al., 1992).

The α4-subunit is the most divergent (Woo et al., 2000;
Clausen et al., 2016) and is specifically expressed in germ cells of
rat, mouse, and human mature sperm (Woo et al., 2000; Sanchez
et al., 2006; McDermott et al., 2012; Mcdermott et al., 2015).
This isoform is more sensitive to ouabain (Blanco and Mercer,
1998; Sanchez et al., 2006) and is twofold more active than the
Na+/K+ ATPase α1-subunit; which is also expressed in mature
rat and human sperm (Shamraj and Lingrel, 1994; Wagoner
et al., 2005; Sanchez et al., 2006). Jimenez and coworkers also
reported that KO mice that lack α4 are completely sterile. This
deletion hindered sperm motility and hyperactivation (Jimenez
et al., 2012). Sperm from α4 null-mice showed a depolarized Em

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 July 2018 | Volume 6 | Article 72

https://www.frontiersin.org/journals/cell-and-Developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-Developmental-biology#articles


Puga Molina et al. Human Sperm Capacitation

due to high [Na+]i. The fact that the α1 was unable to compensate
the absence of α4 demonstrates the absolute requirement of
the α4 Na+/K+ ATPase subunit in mouse sperm fertility
(Jimenez et al., 2012). Jimenez and coworkers suggested that the
ion gradients maintained by α4 are important for controlling
sperm cytoplasmic ion homeostasis because depolarization of
the sperm plasma membrane and [Na+]i levels are required for
sperm motility during sperm capacitation (Jimenez et al., 2012).

It has been reported in rats that during capacitation, α4
Na+/K+ ATPase increases its activity, resulting in a rise in
[K+]i, a decrease in [Na+]i, and consumption of ATP (Jimenez
et al., 2012). In the same study, the authors showed a higher
abundance of α4 in the plasma membrane after the occurrence
of capacitation.

Human sperm treated with ouabain showed an [Na+]i
increase at concentrations that inhibit Na+/K+ ATPase α1 and
α4 (Puga Molina et al., 2018) and a decrease in sperm motility
at concentrations that selectively inhibited Na+/K+ ATPase α4
(Sanchez et al., 2006). McDermott and coworkers studied the
function of human Na+/K+ ATPase α4 in transgenic mice and
found higher levels of hyperactive motility compared to wild-
type mice, without any alteration in Em or AE (Mcdermott et al.,
2015). Therefore, α4 Na+/K+ ATPase is a very interesting target
for male contraception due to its specific localization in sperm
and its effects on motility, and its ability to regulate intracellular
Na+ and K+.

CALCIUM REQUIREMENTS DURING
CAPACITATION

Sperm functional changes that take place during capacitation
depend on a combination of sequential and concomitant
signaling processes (Visconti et al., 2011), which includes
complex signaling cascades where intracellular Ca2+ plays
a central role. There are some reports where Ca2+ levels
were measured and showed an increase in intracellular Ca2+

concentration ([Ca2+]i) during mammalian sperm capacitation
(Jai et al., 1978; Coronel and Lardy, 1987; White and Aitken,
1989; Ruknudin and Silver, 1990; Zhou et al., 1990; Baldi et al.,
1991; Cohen et al., 2014; Luque et al., 2018). Moreover, the
importance of this ion in the regulation of sperm motility,
hyperactivation, and AE has been demonstrated through several
pharmacological and genetic loss-of-function approaches (Suarez
and Dai, 1995; Ho and Suarez, 2001; Darszon et al., 2011).

It has been described that Ca2+ can directly bind to
membrane phospholipids and to numerous enzymes, modifying
the membrane properties and enzymatic activity. This ion may
also bind to calmodulin (CaM), and CaM antagonists have
been shown to inhibit certain aspects of sperm function, as
hyperactivatedmotility (Si and Olds-Clarke, 2000). Ca2+ binding
to CaM causes conformational changes, and this complex
modulates the activity of adenylyl cyclases (Gross et al., 1987),
phosphatases (Tash et al., 1988; Rusnak and Mertz, 2000),
phosphodiesterases (Wasco and Orr, 1984), and protein kinases
(Hook and Means, 2001; Marín-Briggiler, 2005). Interestingly,
testis specific ADCY10 is Ca2+-dependent but CaM-independent

(Jaiswal and Conti, 2003; Litvin et al., 2003), suggesting that
Ca2+ regulates capacitation through multiple pathways. In
particular, it has been shown in sperm of marine invertebrates
that rises in [Ca2+]i modulate the sperm swimming behavior
by changing the flagellar beat pattern through Ca2+-sensing
proteins, calaxins (Mizuno et al., 2009, 2012). Dynein activity is
inhibited within the axoneme by Ca2+-bound calaxins, resulting
in the high-amplitude asymmetric flagellar bending—typical of
hyperactivated motility (Shiba et al., 2008).

As detailed above, one of the first events that triggers sperm
capacitation is the activation of a cAMP pathway (Buffone et al.,
2014b). At ejaculation, human sperm interact with higher HCO−

3
and Ca2+ concentrations present in the seminal fluid (Homonnai
et al., 1978; Okamura et al., 1985). This causes an increase in
cAMP levels by the opposing activities of the ADCY10 and PDE
that stimulates PKA-dependent phosphorylation of proteins in
Ser/Thr residues (Osheroff et al., 1999; Visconti et al., 2011;
Battistone et al., 2013). Evidence in mouse and human sperm has
shown that PKA-dependent phosphorylation is also regulated by
the Src family kinase (SFK) inactivation of Ser/Thr phosphatases
(Krapf et al., 2010; Battistone et al., 2013). Phosphorylation of
PKA substrates leads to pY in sperm of all mammalian species
studied (Visconti et al., 1995b; Leclerc et al., 1996; Galantino-
Homer et al., 1997; Osheroff et al., 1999). Genetic loss-of-
function experiments in mice demonstrated the essential role of
proteins involved in the cAMP pathway in sperm capacitation
and fertilization (Hess et al., 2005). On the other hand, mouse
sperm exposed to the Ca2+ ionophore A23187 are able to develop
hyperactivation, undergo AE, and acquire fertilizing ability even
when the cAMP pathway is completely abolished (Tateno et al.,
2013).

Ca2+ requirements during mammalian sperm capacitation
have been widely studied in the murine and human models.
Incubation of mouse sperm in the absence of added extracellular
Ca2+ prevented the capacitation-associated increase in pY
(Visconti et al., 1995a). However, the addition of EGTA to
further lower the extracellular Ca2+ (medium without added
Ca2+ still contains micromolar concentrations of this cation)
promotes a strong increase in pY. A similar effect was also
observed when adding CaM antagonists or calcineurin inhibitors
(Navarrete et al., 2015). These results led the authors to propose
that Ca2+ modulates mouse sperm cAMP and pY pathways in
a biphasic manner, having both positive and negative roles, and
that some of its effects are mediated by CaM (Navarrete et al.,
2015). Recent studies have shown that in mouse sperm, the
tyrosine kinase FER is involved in the capacitation-associated
increase in pY (Alvau et al., 2016). Interestingly, human sperm
display a different type of Ca2+ regulation during capacitation.
Several reports have shown that extracellular Ca2+ negatively
modulates phosphorylation on tyrosine residues, as human
sperm incubated in a medium without added Ca2+ displayed
increased pY compared to those incubated in complete medium
(Carrera et al., 1996; Leclerc and Goupil, 2002; Marín-Briggiler
et al., 2003; Baker et al., 2004; Battistone et al., 2014). The
lack of added Ca2+ in the medium would lead to an increased
tyrosine kinase activity through higher levels of ATP (Baker
et al., 2004). In human sperm, lowering extracellular [Ca2+]
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was accompanied by a decrease in both ADCY10 activity and
cAMP levels (Jaiswal and Conti, 2003; Torres-Flores et al., 2011),
without affecting PDE1 activity (Lefièvre et al., 2002) and PKA-
mediated phosphorylation (Battistone et al., 2014). Inhibition
of CaM also increased pY with no changes in PKA-mediated
phosphorylation, supporting the role of CaM in the increase in
pY observed without adding Ca2+ to the medium (Battistone
et al., 2014). As previously mentioned, PYK2 has been identified
as the Ca2+-dependent kinase involved in human sperm pY
downstream PKA activation (Battistone et al., 2014).

Regarding Ca2+ requirements to maintain human sperm
function in vitro, it has been reported that 0.22mM Ca2+ is
sufficient for the development of pY and hyperactivated motility,
whereas more than 0.58mM of this cation is necessary to
maintain follicular fluid-induced AE and sperm–ZP interaction
(Marín-Briggiler et al., 2003). Therefore, transit through the
female tract affords sperm to be modified by changes in the ionic
environment that are not available in in vitro models. Moreover,
there is evidence indicating that Ca2+ ions can be replaced by
Sr2+ in maintaining human sperm capacitation-related events
(Marín-Briggiler et al., 1999). These results would indicate that
at least in vitro, different sperm events have specific Ca2+

requirements. Such information can be used for the development
of culture conditions that would allow the dissociation of these
events of the fertilization process.

Calcium Transport Systems in Sperm
Some aspects of sperm physiology depend on the maintenance
and regulation of [Ca2+]i, which involves a range of pumps
and channels at the plasma membrane or intracellular stores
that import, export, and/or sequester Ca2+ ions [reviewed by
(Jimenez-Gonzalez et al., 2006; Clapham, 2007; Darszon et al.,
2007, 2011; Correia et al., 2015)].

Two Ca2+ transport systems have been identified in
mammalian sperm. The first one involves Ca2+ efflux through
the plasmamembrane Ca2+ ATPase (PMCA) and the Na+/Ca2+-
exchanger (NCX), which pump Ca2+ out of the cell or into
intracellular Ca2+ stores (Michelangeli et al., 2005). PMCA,
localized in the principal piece of the flagellum of mouse sperm,
is relevant for sperm function as its ablation alters spermmotility.
Sperm from PMCA4b KO mice failed to develop hyperactivated
motility and therefore are sterile (Okunade et al., 2004; Schuh
et al., 2004). Mitochondrial abnormalities found in PMCA4-
deficient sperm (Okunade et al., 2004) suggest Ca2+ overload
due to defective Ca2+ extrusion. NCX is present in the plasma
membrane of mammalian sperm (Babcock and Pfeiffer, 1987)
and is thought to be of great importance for the regulation of
Ca2+ homeostasis (Reddy et al., 2001; Su and Vacquier, 2002).
Pharmacological inhibition of NCX provokes an increase in
[Ca2+]i and a significant reduction of human sperm motility
(Krasznai et al., 2006).

The second Ca2+ transport system is related to Ca2+ influx
and involves mainly the sperm-specific Ca2+ channel CatSper
(see below). Other Ca2+ plasma membrane channels have also
been identified in spermatogenic and sperm cells. Several voltage-
gated Ca2+ (Cav) channel subunits have been detected in the
head and flagellum of mammalian sperm, and their activity has

been assessed in both germ cells and sperm (Arnoult et al.,
1996, 1999; Serrano et al., 1999; Westenbroek and Babcock,
1999; Wennemuth et al., 2000; Sakata et al., 2002; Cohen
et al., 2014). In particular, animals devoid of the α1E subunit
of the Cav2.3 channel show aberrant sperm motility (Sakata
et al., 2002) and reduced litter sizes and IVF success, mainly
due to impaired ability to undergo AE (Cohen et al., 2014).
It has been suggested that the interaction of sperm Cav2.3
channel subunits with membrane GM1 regulates Ca2+ currents
and the occurrence of AE (Cohen et al., 2014). In addition,
T-type Cav3 channel subunits have been found in the head
and flagellum of mouse and human sperm; however, drugs
that inhibit these channels do not affect human sperm motility
(Treviño et al., 2004). Cyclic nucleotide-gated channels (CNG),
permeable to Ca2+, have also been described in bovine testis
and sperm and suggested to be involved in sperm motility
(Wiesner et al., 1998). The A subunit was observed along
the flagellum, whereas the short B subunit is restricted to
the principal piece. Furthermore, there is evidence showing
that CNG channels act as a Ca2+ entry pathway being more
responsive to cGMP rather than to cAMP (Wiesner et al., 1998).
The A3 and B1 subunits are present in the flagellum of mouse
sperm, but the A3 null mice are fertile (Kaupp and Seifert,
2002), questioning the relevance of these channels in sperm
physiology. Moreover, some members of the transient receptor
potential channel (TRPC) family have been found in the flagella
of mouse (transient receptor potential canonical; TRPC1 and
C3) (Treviño et al., 2001) and human sperm (TRPC1, C3, C4,
and C6), and their inhibition abolished human sperm motility
(Castellano et al., 2003). More recently, store-operated channel
proteins (ORAI) and their activators, i.e., STIM, have been shown
to interact with TRPC and regulate sperm function (Darszon
et al., 2012).

Sperm intracellular Ca2+ can be exchanged to or from internal
stores localized in the acrosome, as well as in the neck (redundant
nuclear envelope, RNE) by inositol triphosphate and ryanodine
receptors (IP3R and RyR, respectively) (Darszon et al., 2011;
Visconti et al., 2011). In human sperm, the presence of the RyR
was determined by several techniques and it was located mainly
in the neck region and very rarely in the acrosome (Harper et al.,
2004; Lefièvre et al., 2007), whereas the IP3 receptors were found
in the neck region and in the acrosome (Dragileva et al., 1999;
Kuroda et al., 1999; Rossato et al., 2001). In the acrosome, it was
demonstrated that Ca2+ is mobilized through the IP-3-sensitive
channel (De Blas et al., 2002; Branham et al., 2009; Lopez et al.,
2012), and it is proposed that the Ca2+ influx by these channels
is dependent on HCO−

3 and involves EPAC activity. It has been
shown that Ca2+ release from the reservoirs is a necessary
event for the AE (De Blas et al., 2005), and that hyperactivated
motility depends on the mobilization of intracellular Ca2+

by IP3R activation (Alasmari et al., 2013), and chemotaxis
in response to progesterone needs Ca2+ mobilization from
intracellular stores followed by the activation of TRPC (Teves
et al., 2009). In addition, two Ca2+ pumps were identified and
located in human sperm: sarcoplasmic-endoplasmic reticulum
Ca2+ ATPase (SERCA) (Lawson et al., 2007) and secretory
pathway Ca2+ ATPases (SPCA) (Harper et al., 2005). Both are
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sensitive to thapsigargin at different concentrations (Thastrup
et al., 1990; Rossato et al., 2001; Harper et al., 2005). SERCA
2 has been localized in the acrosome and mid-piece regions of
mammalian species, including human, and it has been suggested
to participate in Ca2+ sequestration in internal stores during
sperm capacitation (Lawson et al., 2007).

CatSper Channel: Structure and Regulation
Despite a large body of evidence indicating the presence of
multiple Ca2+ channels in human sperm, their activity has not
been totally elucidated. The advent of sperm electrophysiology
(Kirichok et al., 2006; Lishko et al., 2010) allowed the
characterization of Ca2+ currents through CatSper channels.
This channel complex is localized in the sperm flagellum
and comprises four homologous α subunits (CatSper 1–4)
(Navarro et al., 2008; Kirichok et al., 2011) and auxiliary
subunits: CatSper β, CatSper È, and CatSper δ (Liu et al.,
2007; Wang et al., 2009; Chung et al., 2011). Deficiency of
any subunit affects the expression of all the other subunits
and is detrimental to male fertility (Qi et al., 2007). Recently
two new auxiliary subunits have been described: CatSper ξ

and CatSper ζ (Chung et al., 2017). Evidence from KO mice
has shown that CatSper is essential for hyperactivation and
fertilization (Ren et al., 2001; Quill et al., 2003). CatSper-KO
sperm are unable to migrate efficiently in vivo (Ho et al.,
2009; Chung et al., 2014) and penetrate the egg cumulus
(Chung et al., 2017) and the ZP (Ren et al., 2001). However, a
transient exposure to Ca2+ ionophore A23187 enables in vitro
fertilization of these as well as other KO sterile mice models
(Navarrete et al., 2016). In contrast to what occurs in wild-
type sperm, CatSper1 KO undergoes PKA activation and a
remarkable increase in pY even in nominal zero Ca2+ media,
suggesting that CatSper transports the Ca2+ involved in the
regulation of the cAMP-PKA-dependent pathway required for
sperm capacitation (Navarrete et al., 2015). Moreover, evidence
in the human has shown that point mutations within the
CatSper1 gene as well as deletion of the CatSper2 gene are
related to male infertility (Avidan et al., 2003; Zhang et al.,
2007; Hildebrand et al., 2010). In a CatSper2-deficient infertile
patient, no appreciable CatSper current was observed, which is
caused by the complete lack of other CatSper complex members
(Smith et al., 2013).

Recent groundbreaking work from Chung and coworkers
using super-resolution microscopy (STORM) in the mouse
model showed that CatSper distributes longitudinally following
four backbone lines, which are localized in the plasma membrane
of the principal piece, close to the fibrous sheath (Chung et al.,
2014, 2017). Similarly, it has been reported that human CatSper
ξ is arranged in four domains along the flagellum (Chung et al.,
2017). Together with CatSper, other signaling molecules display
a similar spatial distribution along the principal piece, which
reveals a complex organization of signaling pathways in the
sperm flagellum that focuses pY in time and space (Chung
et al., 2014). In addition, a variation in subflagellar localization
of CatSper domains in capacitated sperm has been described
by 3D STORM (Chung et al., 2014). It has been reported
that approximately 30% of sperm presented a quadrilateral

CatSper1 domain organization and they were able to display
hyperactivated motility and pY (Chung et al., 2014). This
is consistent with the observations made by different groups
that only a subpopulation of sperm achieved hyperactivation
upon capacitation (Kulanand and Shivaji, 2001; Buffone et al.,
2009a; Goodson et al., 2011). However, evidence in human
sperm suggests that the development of hyperactivation does
not directly depend on CatSper activation, but on the release
of stored Ca2+ at the sperm neck (Alasmari et al., 2013). It has
been proposed that CatSper channels would rather be involved in
intracellular Ca2+ stores mobilization during sperm capacitation,
affecting hyperactivated motility indirectly (Alasmari et al.,
2013).

CatSper activity was directly recorded in 2006 using the patch-
clamp method (Kirichok et al., 2006). Murine CatSper current
(ICatSper) is weakly voltage dependent (Kirichok et al., 2006),
which can be attributed to heterogeneity in the arginine and
lysine compositions of the putative voltage sensor domains from
each CatSper α subunits. Mice devoid of any CatSper α subunits
or the CatSper δ do not display the ICatSper and, as previously
mentioned, are all infertile (Carlson et al., 2003, 2005; Kirichok
et al., 2006; Liu et al., 2007; Qi et al., 2007; Wang et al., 2009;
Chung et al., 2011). Human ICatSper was recorded in 2010 (Lishko
and Kirichok, 2010; Lishko et al., 2010), and the comparison
with mouse CatSper currents revealed important differences
in this channel regulation and function. The human CatSper
channel is slightly more voltage dependent in comparison to
the mice one. Although intracellular alkalinization allows the
opening of mice CatSper channels, this is not sufficient for
human sperm (Kirichok et al., 2006; Lishko et al., 2010, 2011).
The highly enriched histidine composition of the N-termini of
both CatSper1 proteins is thought to be involved in the pH
sensitivity of the channel, which made this difference totally
unexpected.

In addition to voltage and pHi, mammalian CatSper is also
controlled by numerous ligands present in the oviductal fluid
as well as different synthetic chemicals (Kirichok et al., 2006;
Lishko et al., 2010, 2011; Strünker et al., 2011; Brenker et al.,
2012; Tavares et al., 2013). In humans but not mice, progesterone
(Lishko et al., 2011; Strünker et al., 2011) activates CatSper via
binding to the serine hydrolase ABHD2 (α/β hydrolase domain–
containing protein 2) (Miller et al., 2016; Mannowetz et al.,
2017). It has been shown that at rest the human CatSper channel
is inhibited by the endocannabinoid 2-arachidonoylglycerol
(2-AG); after progesterone binding, ABHD2 degrades 2-AG,
relieving CatSper inhibition (Miller et al., 2016). The Ca2+

influx mediated by progesterone has been involved in sperm
capacitation, chemotaxis, hyperactivation, and AE (Harper et al.,
2003; Oren-Benaroya et al., 2008; Publicover et al., 2008), but the
participation of CatSper has been unequivocally demonstrated in
hyperactivation. Prostaglandins also activate the human CatSper
channel, but independent of the ABHD2 mechanism (Miller
et al., 2016). The prostaglandins-induced Ca2+ influx evokes
AE and increases motility (Aitken and Kelly, 1985; Schaefer
et al., 1998). Both progesterone and prostaglandin modulation is
suggested to be restricted to human and primate sperm (Lishko
et al., 2011) and do not involve classical nuclear receptors or G
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protein-coupled receptors (GPCRs) (Lishko et al., 2011; Strünker
et al., 2011).

More recently, patch-clamp recordings from human sperm
revealed that the neurosteroid pregnenolone sulfate exerted
similar effects as progesterone on CatSper currents (Mannowetz
et al., 2017; Brenker et al., 2018). CatSper-deficient patients
were described as infertile (Avidan et al., 2003; Zhang et al.,
2007). Further studies showed that these sperm did not produce
any progesterone (Smith et al., 2013) nor pregnenolone sulfate-
activated currents (Brenker et al., 2018).

Nowadays, there are some controversies about the effects of
testosterone, estrogen, and hydrocortisone on CatSper currents.
Results from Mannowetz and coworkers revealed that they
abolish CatSper activation by progesterone but these steroids
do not activate CatSper themselves (Mannowetz et al., 2017).
On the other hand, more recent evidence from Brenker et al.
determined that testosterone, hydrocortisone, and estradiol are
agonists that activate CatSper (Brenker et al., 2018). These
differencesmight be due to different conditions and experimental
approaches. Further studies are needed to understand this
complex regulation.

The mechanism underlying the activation of the CatSper
channel by various ligands remains largely unknown. There are

reports that suggest the involvement of human ß-defensin 1,
a small secretory peptide with antimicrobial activities, which
interacts with the sperm chemokine receptor type 6 (CCR6),
triggering Ca2+ mobilization (Com et al., 2003; Caballero-
Campo et al., 2014; Diao et al., 2014). CCR6 colocalizes and
interacts with CatSper in human sperm, and both CCR6 and
CatSper are required for the Ca2+ entry/current induced by
physiological ligands DEFB1, chemokine (C-C motif) ligand 20
(CCL20), and progesterone in human sperm (Diao et al., 2017).
Environmental toxins, including some endocrine disruptors,
have also been shown to induce the [Ca2+]i increase through
CatSper activation (Tavares et al., 2013; Schiffer et al., 2014).
In addition, previous reports have shown that bovine serum
albumin (BSA) induces [Ca2+]i influx through CatSper channel
activation (Xia and Ren, 2009), because this response is absent
in CatSper1 KO sperm. Lishko and coworkers suggested that the
modification in the lipid content of the sperm plasma membrane
may induce CatSper gating (Lishko et al., 2012), as albumin was
reported to induce a Ca2+ influx through CatSper in mouse
sperm (Xia and Ren, 2009). This possibility remains to be
elucidated.

The characterization of CatSper function and regulation
encounters several difficulties due to: (i) the promiscuous nature

FIGURE 1 | Simplified model of signaling pathways an ion fluxes involved in human sperm capacitation. Na+/K+ ATPase, Na+/K+ pump ATPase; SLO1 and 3,

sperm-specific K+ channel 1 and 3; ENaC, epithelial Na+ channels; CFTR, cystic fibrosis transmembrane conductance channel; SLC26, solute carrier 26, there is still

no evidence of A3 and A6 is present in mature human sperm; Hv1, voltage-gated H+ channels; BSA, bovine serum albumin; CHO, cholesterol; CA, carbonic

anhydrase; PYK2/FER, proline-rich tyrosine kinase 2; ADCY10, atypical soluble adenylyl cyclase 10; EPAC, exchange protein activated by cAMP; CaM, calmodulin;

CatSper, sperm-specific Ca2+ channel; NCX, Na+/Ca2+-exchanger; PMCA Plasma Membrane Ca2+ ATPase; PG, progesterone; ABDH2, α/β hydrolase

domain–containing protein 2; 2-AG, 2-Arachidonoylglycerol; AA, arachidonic acid; G, glycerol.
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of CatSper activation, (ii) the lack of specific antagonists,
and (iii) so far, CatSper expression in heterologous systems
has not been possible. Regarding the regulation of CatSper
during capacitation, evidence in the mouse sperm suggests
that SLO3 K+ channels control Ca2+ entry through CatSper
(Chávez et al., 2014). High concentrations of HCO−

3 trigger
an initial change in the pHi, which activates SLO3 channels
(Santi et al., 2010); the resulting membrane hyperpolarization
raises pHi even more, probably through an NHE mechanism
(Chávez et al., 2014). This intracellular alkalization activates
the CatSper channel, which results in a very rapid [Ca2+]i
increase. On the other hand, Ca2+ rather than pHi controls
KSper in human sperm (Mannowetz et al., 2013). Therefore, it
was suggested that CatSper might be placed upstream SLO1/3
(Kaupp and Strünker, 2016). In this regard, a recent report
indicated that certain patients show impaired K+ conductance
and abnormal resting Em, but normal resting [Ca2+]i and
progesterone-induced [Ca2+]i responses similar to those of
donor sperm, which suggest unaltered CatSper function (Brown
et al., 2016). However, further studies are needed to determine
the relationship among sperm ion channels and to establish
the similarities and differences between mouse and human
sperm.

FINAL REMARKS

This review is focused on the principal molecular mechanisms
that govern human sperm capacitation with particular emphasis
in comparing all the reported evidence with the mouse
model.

The data presented in this review are summarized in
Figure 1. Sperm are exposed to higher HCO−

3 concentration
at the time of ejaculation and during their transit through
the female reproductive tract. In addition, removal of sperm
cholesterol from the plasma membrane to acceptors present
in the uterus and fallopian tubes, such as albumin, results in
biophysical modification of the plasma membrane. The best
characterized change is the increase in membrane fluidity. The
initial HCO−

3 transport through NBC cotransporters activates
ADCY10 and that in turn produce an increase in cAMP
concentration, leading to the activation of PKA. Phosphorylation
by PKA is essential for CFTR activity, and together with other
Cl−/HCO−

3 cotransporters (SLC A3/6/8), it produces a sustained
increase in HCO−

3 . Other possible sources of HCO−
3 may be

related to the action of carbonic anhydrases. Activation of
PKA led to protein tyrosine phosphorylation by mechanisms
that are not completely elucidated, which involved the kinases
PYK2/FERT. At the same time, upon contact with HCO−

3 ,
there is an increase in sperm intracellular pH. Human sperm
alkalinization is also favored by the efflux of proton through
Hv1 channels. Alkalinization and certain steroids present in
the female reproductive tract such as progesterone activate
CatSper channels and produce a sustained increase in [Ca2+]i.
The levels of [Ca2+]i are also regulated by the action of
exchangers and pumps such as NCX and PMCA. Activation
of cAMP/PKA pathways also leads to hyperpolarization of the

plasma membrane. The contribution of both the opening of K+

channels (SLO1 and/or SLO3) and the closure of Na+ channels,
such as ENaC, was reported. In the last case, ENaC is inhibited by
CFTR.

These complex molecular mechanisms built over the time
using results from different groups do not take into account the
following two important considerations:
i) In the mouse, the estrous (receptive period) lasts less

than a day, and mating is timed to favor the encounter
between sperm and eggs. However, in humans, the timing
of when sperm encounter the egg is spread over a long
period of time (2–3 days), and concomitantly, human
sperm require long incubation time (more than 3 h) to
undergo capacitation-related events. In this regard, it was
recently demonstrated that the timing of human sperm
capacitation (as evaluated with the novel Cap-scoreTM) is
reproducible within each individual but varies among men
(Ostermeier et al., 2018). The Cap-ScoreTM was defined as
the percentage of sperm having GM1 localization patterns
consistent with capacitation and was shown to be a good
indicator of male fertility (Cardona et al., 2017). The
reasons for such variability are unknown but they may be
related with the fact that human semen samples are not
homogeneous. They are composed of different subpopulations
of sperm with different functional features (Buffone et al.,
2004).

ii) All the in vitro experiments conducted so far to study
capacitation were performed in the absence of the
periovulatory female reproductive tract. For example,
the occurrence of AE was long enough to occur upon
sperm binding to the ZP. However, recent evidence from
different laboratories demonstrated in vivo that mouse
sperm undergo AE prior to encountering the cumulus-
oocyte complexes in the upper segments of the oviduct
(Hino et al., 2016; La Spina et al., 2016; Muro et al.,
2016). However, this is not the case for human sperm
because in vivo experimentation using human sperm is
virtually impossible nowadays for ethical consideration.
Therefore, immediate translation of previous capacitation
investigations from mouse to human is questionable
and must be analyzed with caution. In addition, the
high success rates of ICSI also had a negative impact
on basic reproductive studies in both humans and mice.
However, this is not the case for artificial insemination
where pregnancy rates are really low. The understanding
of molecular mechanisms underlying human sperm
capacitation would help in the treatment of patients subjected
to low-complexity assisted fertilization procedures, but also,
it is essential to the development of alternative contraceptive
strategies.
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