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Abstract

Introduction:Automated speechanalysis has emergedas a scalable, cost-effective tool

to identify persons with Alzheimer’s disease dementia (ADD). Yet, most research is

undermined by low interpretability and specificity.

Methods: Combining statistical and machine learning analyses of natural speech data,

we aimed to discriminate ADD patients from healthy controls (HCs) based on auto-

mated measures of domains typically affected in ADD: semantic granularity (coarse-

ness of concepts) and ongoing semantic variability (conceptual closeness of successive

words). To test for specificity, we replicated the analyses on Parkinson’s disease (PD)

patients.

Results: Relative to controls, ADD (but not PD) patients exhibited significant differ-

ences in both measures. Also, these features robustly discriminated between ADD
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patients and HC, while yielding near-chance classification between PD patients and

HCs.

Discussion: Automated discourse-level semantic analyses can reveal objective, inter-

pretable, and specific markers of ADD, bridging well-established neuropsychological

targets with digital assessment tools.

KEYWORDS

Alzheimer’s disease dementia, automated speech analysis, Parkinson’s disease, semantic granu-
larity, semantic variability

1 INTRODUCTION

Over 43 million individuals are affected by Alzheimer’s disease (AD),

a disorder characterized by progressive temporo-parieto-hippocampal

atrophy alongside semantic and episodic memory impairments.1–3

Given its high disability and mortality rate, its growing economic bur-

den, and its expert-dependent diagnosis,1,4 a call has been raised for

objective, scalable, low-cost approaches favoring disease identification

and characterization.5 Prominent among these is automated speech

analysis (ASA).6 Participants are simply required to speak, yielding

diverse features that can be automatically extracted and analyzed

to detect persons with and without AD dementia (ADD). Yet, most

research is undermined by low interpretability and specificity, often

targeting features unrelated to the disorder’s core neuropsychologi-

cal profile while lacking a disease control group.7 This may cast doubt

on the clinical utility of ensuing findings. Here, leveraging ASA tools

with ADD patients, healthy controls (HCs), and Parkinson’s disease

(PD) patients, we examinedwhether ADD-specificmarkers can be cap-

tured through measures of semantic granularity and ongoing semantic

variability, two domains that are systematically disrupted in standard

assessments.8–10

ASA has proven useful for discriminating between AD patients

and HCs,6 predicting dementia onset,6,11 and differentiating among

autopsy-proven disease subtypes.12 Yet, most studies have exam-

ined heterogeneous ad hoc domains, revealing patterns that are not

readily interpretable against core neuropsychological outcomes. For

instance, inconsistent accuracy rates are obtained upon targeting

mixed articulatory13 and syntactic14 dimensions that are typically

spared in early testing.15–17 Also, few studies have included a neu-

rodegenerative control group, prompting questions about the speci-

ficity of findings. Moreover, several reports have used unmatched and

imbalanced groups, restricted tasks eliciting little data, and suboptimal

machine learning approaches.7

The present study tackles these issues. We investigated disrup-

tions of semantic granularity and ongoing semantic variability, two

well-established manifestations of ADD (Figure 1A). AD patients are

typified by coarse (ie, general) conceptual choices, evincing a propen-

sity to use hypernyms (eg, “animal,” “fruit”) and few hyponyms (eg,

“cat,” “berry”).9,10 Also, they exhibit sudden changes in speech flow,

as their discourse becomes progressively digressive, with frequent

interruptions and inquiries (eg, “What was I saying?”) causing concep-

tual discontinuity.8,18 Our approach captures these phenomena auto-

matically. We employed the WordNet taxonomy19 to quantify word-

by-word semantic granularity (Figure 1B) and FastText embedding to

measure ongoing semantic variability across successive word pairs20

(Figure 1C). Furthermore, to test whether such domains are distinc-

tively affected in ADD, we included persons with PD, a neurodegen-

erative disease with early semantic alterations restricted to particu-

lar domains—mainly, action-related concepts.21,22 Finally, we circum-

vented key caveats in the literature.7 First, we formed strictly matched

groups with similar sample sizes. Second, we combined several speech

tasks in an integrative analysis, capturing various language behaviors

and avoiding inflated results based on unduly small datasets (a key req-

uisite for testing novel metrics). Third, we employed robust machine

learningmethods for patient identification.

Briefly, we performed the first automated assessment of semantic

granularity and variability on ADD patients, relative to HCs and PD

patients. We integrated statistical (analysis of variance [ANOVA]) and

machine learning (Gradient Boosting) analyses on a rich, diverse set of

language tasks. We hypothesized that automated measures of seman-

tic granularity and ongoing semantic variability would yield (1) signif-

icant differences, and (2) high classification accuracy between ADD

patients and HCs, but (3) not between PD patients and HCs. With this

approach, we seek to better test the sensitivity and clinical utility of

ASA for dementia assessments.

2 METHODS

2.1 Participants

We recruited 55 native Spanish speakers, with normal or corrected-to-

normal hearing, from the Memory and Neuropsychiatry Clinic, hosted

by Universidad de Chile and Hospital del Salvador, Chile. The sam-

ple comprised 21 ADD patients, 18 PD patients, and 16 HCs, reach-

ing adequate power (Appendix A). Patients were diagnosed by expert

neurologists following theNational Institute of Neurological and Com-

municative Diseases and Stroke-Alzheimer’s Disease and Related Dis-

orders Association clinical criteria for AD, and the United Kingdom

Parkinson’s Disease Society Brain Bank standards for PD.23 As in
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RESEARCH INCONTEXT

1. Systematic review: Through a thorough PubMed search,

we reviewed the strengths and limitations of automated

speech analysis (ASA) research on Alzheimer’s disease

dementia (ADD). Crucially, most studies targeted fea-

tures unrelated to the disorder’s core neuropsychological

profile and lacked disease control groups.

2. Interpretation: Our findings show that ASA can capture

interpretable condition-specific markers of ADD. Com-

pared with controls, ADD (but not Parkinson’s disease

[PD]) patients exhibited significant reductions of seman-

tic granularity and increased semantic variability across

speech tasks. Machine learning analyses yielded robust

classification of ADD patients (receiver operating char-

acteristic, area under the curve [AUC] = 0.8), but not PD

patients (AUC = 0.65), relative to controls. Thus, ASA

emerges as an affordable and scalable method to support

ADD diagnosis.

3. Future directions: These proposed markers should be

examined in larger cohorts (to test their systematicity), in

longitudinal designs (to assess their sensitivity to disease

progression), and in cross-linguistic studies (to favormore

global validations of ASA).

HIGHLIGHTS

∙ We examined markers of Alzheimer’s disease (AD) via

automated speech analysis.

∙ We targeted semantic granularity and variability, two clin-

ically sensitive domains.

∙ Relative to controls, AD patients were impaired in and

classified by bothmeasures.

∙ These results were not replicated in PD patients.

∙ Our approach can reveal scalable, interpretable,

condition-specific markers of AD.

previous works,22,24–26 diagnoses were supported by extensive neu-

rological, neuropsychological, and neuroimaging examinations. No

patient reported a history of other neurological disorders, psychiatric

conditions, primary language deficits, or substance abuse.

Mean scores on the Montreal Cognitive Assessment fell below the

cutoffs for dementia in the ADD group and for mild cognitive impair-

ment in the PD group.27 ADD patients presented executive dysfunc-

tion, as established through the INECO Frontal Screening battery.28

PD patients had no symptoms of Parkinson-plus and were assessed

in the “on” phase of medication. HCs were cognitively preserved,

functionally autonomous, and had no background of neuropsychi-

atric disease or drug abuse. All groups were matched for sex, age,

and education. For demographic and neuropsychological details, see

Table 1.

All participants provided written informed consent pursuant to the

Declaration of Helsinki. The study was approved by the institutional

ethics committee of the Memory and Neuropsychiatric Clinic, Neurol-

ogy Department, Hospital del Salvador (7500000), SSMO& Faculty of

Medicine, University of Chile.

2.2 Speech elicitation protocol

Participants performed seven naturalistic language tasks covering var-

ied communicative behaviors. Four were spontaneous speech tasks,

requiring participants to describe (1) their daily routine and (2) main

interests, and to narrate (3) a pleasant and (4) an unpleasant memory.

In these, discourse is driven by personal experience, allowing for var-

ied linguistic patterns.29 The remaining three were semi-spontaneous

speech tasks, involving descriptions of (5) the modified Picnic Scene of

the Western Aphasia Battery30 and (6) a picture of a family working

in an unsafe kitchen, as well as (7) immediate recall and narration of a

one-minute silent animated film. These tasks elicit diverse and partly

predictable linguistic patterns.29

Recordingswere obtained in a quiet roomon laptop computerswith

noise-cancelling microphones, and saved as .wav files (44100 Hz, 16

bits) via Cool Edit Pro 2.0. Normal pace and volume were encouraged.

Recordings were transcribed via an automatic speech-to-text service

and manually revised. The rare occurrences of unintelligible words

were discarded.

2.3 Speech data pre-processing

Transcriptionswerepre-processedonPython’s TreeTagger librarywith

the AnCora Spanish corpus (http://clic.ub.edu/corpus/es/ancora). We

converted all characters to lowercase and remove all punctuation

marks and symbols.31,32 Each text was split into individual words.

These were assigned part-of-speech tags and lemmatized (ie, con-

verted to their base form). To maximize statistical power and feature

diversity while capturing multiple linguistic scenarios, analyses were

performed collapsing all tasks. Mean lemmatized word counts did not

differ significantly (F[2,52] = 0.64, P = .53, 𝜂2p = 0.02) among ADD

patients (1,051; SD = 112), HCs (1,239; SD = 124), and PD patients

(1,193; SD= 140).

2.4 measures

2.4.1 Semantic granularity

Granularity scores were computed via Python’s NLTK library (https:

//www.nltk.org/) as interface to access WordNet’s lexical database

in English (https://wordnet.princeton.edu/). WordNet includes over

http://clic.ub.edu/corpus/es/ancora
https://www.nltk.org/
https://www.nltk.org/
https://wordnet.princeton.edu/
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F IGURE 1 Illustration of target measures. (A)Representative phrases of ADD patients, PD patients, and healthy controls, showing the
predicted gradient of semantic granularity (red scale) and ongoing semantic variability (blue scale). (B) Segment of theWordNet network showing
hierarchical relations from the least granular node ("entity") to progressively more granular nodes (down to "bulldog"). Granularity values are
marked by color and number. Nodes serving as starting points of dotted lines show network bifurcations that do not lead to the "bulldog" node.
Multiple relevant and intermediate nodes are omitted for brevity. (C) Schemes for the computation of ongoing semantic variability. The diagrams
show FastText embeddings, adjacent-word-pair similarity series, and distributions for texts presenting high variability (top row), middle variability
(middle row), and low variability (bottom row). Abbreviations: ADD, Alzheimer’s disease dementia; PD, Parkinson’s disease

155,000 words organized in synonym sets called "synsets." Roughly

80,000 correspond to nouns. These are grouped into a taxonomy that

can be visualized as a hierarchical (direct, acyclic, non-weighted) graph

spanning hypernyms from above (eg, "animal") and hyponyms from

below (eg, "dog").19 The highest hypernym is "entity," with progres-

sively less coarse terms appearing downstream (Figure 1B). A noun’s

granularity can be defined as the number of nodes separating it from

"entity." Accordingly, general terms like "food" or "animal" have lower

granularity scores than more precise terms such as "carrot" or "bull-

dog."

Nouns were automatically identified with TreeTagger (Section 2.3),

manually checked to avoid erroneous tagging, and automatically trans-

lated into English usingWordNet. Granularity scores were assigned to

each noun by considering its shortest path to "entity" (ie, the "synset"

with fewer nodes to "entity"). Nouns not included in WordNet’s cor-

pus (∼ 5.68% across texts) were discarded (rejected nouns did not

differ significantly among groups, P = .93). For subsequent analyses,

scores were stored in lists and converted to histograms using bins of

increasing granularity, from 2 to 12 (bins 2, 3, and 4 reflect the number

of nouns with granularity scores 2, 3, and 4, respectively, and so on).

Bin 1 was not considered, since the word "entity" was not present in

any text. Bin 12 included all words with granularity score 12 and the

very fewwords with higher granularity (∼0.18% across texts). To avoid

verbosity-related confounds, bins were normalized by the total num-

ber of nouns.

2.4.2 Ongoing semantic variability

Ongoing semantic variability was analyzed with a FastText model

(https://fasttext.cc/) pre-trained with over 2,000,000 unique Spanish

words from Common Crawl and Wikipedia corpora.33 The FastText

model assigns a vector to each unique word in the vocabulary and

is trained to map similar concepts to vectors that are close within

https://fasttext.cc/
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TABLE 1 Participants’ demographic and neuropsychological information

ADD

(n= 21)

PD

(n= 18)

Controls

(n= 16)

Statistics (all

groups)

Pairwise comparisons

Groups MSE P-value

Demographic data

Sex

(F:M)

13:8 10:8 13:3 χ2 = 4.86

P= .1a
—– —– —–

Age 77.24

(6.47)

76.50

(6.40)

75.94

(4.35)

F= 0.21

P= .81b
—– —– —–

Years of education 11.24

(3.78)

9.39

(5.11)

12.94

(4.28)

F= 2.62

P= .08b
—– —– —–

Neuropsychological data

MoCA 13.90

(4.34)

20.33

(4.68)

25.07

(3.43)

F= 29.01

P< .001b
ADD vs HCs

PD vs HCs

ADD vs PD

12.75

29.39

23.27

< .001c

.006c

< .001c

IFS battery 11.07

(4.48)

17.08

(4.86)

18.90

(4.26)

F= 14.30

P< .001b
ADD vs HCs

PD vs HCs

ADD vs PD

13.85

57.72

18.98

< .001c

.51c

< .001c

Abbreviations: ADD, Alzheimer’s disease dementia; PD, Parkinson’s disease;MoCA,Montreal Cognitive Assessment; IFS, INECO Frontal Screening battery.

Data presented asmean (SD), with the exception of sex.
aP-values calculated via chi-squared test (χ2).
bP-values calculated via independentmeasures ANOVA.
cP-values calculated via Tukey’s HSD post hoc tests.

the embedding. The distance between words can be quantified with

the cosine of the angle between their assigned vectors: d(u, v) = 1 −

cos cos(u, v) = 1 −
u⋅v

‖u‖‖v‖ , for two vectors u and v.

As in previous works,20,32 the vector embedding was used to com-

pute each text’s ongoing semantic variability (Figure 1C). First, each

pre-processed text was represented as a series of vectors, [v1, v2, …],

preserving thewords’ sequential order. Second, the distances between

adjacent vectors, di = d(vi,vi+1) were stored into a time series. Third,

ongoing semantic variability was computed as the variance of the joint

time series across speech tasks:
1

n−1

n−1∑
i
(di − 𝜇)2, with 𝜇 represent-

ing the mean of all di. Thus, when adjacent words referred to con-

cepts far apart in the embedding space, a text was typified by high

semantic variability, reflecting discontinuous discourse. To avoid biases

driven by disfluencies, hesitations, or word-finding strategies, consec-

utive repeatedwords were omitted before the second step (a text con-

sisting of a single repeated word would feature null variability). Ulti-

mately, eachparticipant’s semantic variability across taskswasused for

ANOVA and as a feature for machine learning analyses.

2.5 Statistical analysis

Between-group comparisons were performed via one-way ANOVAs,

with Tukey’s HSD tests for post hoc contrasts. Alpha levels were set

at P < .05. Effect sizes were computed via partial eta squared (𝜂2p ) for

ANOVAs and with Cohen’s d for pairwise comparisons. Given their dif-

ferent distributions and variances, each of the 12 measures (the 11

granularity bins, and the global measure of semantic variability) was

framed as a separate dependent variable. No participant was detected

as an outlier in any measure. Analyses were performed with Pingouin

Python library (https://pingouin-stats.org/).

2.6 Machine learning analysis

We implemented machine learning classifiers between ADD patients

and HCs (to reveal candidate ADDmarkers) and between PD patients

and HCs (to test whether predicted markers proved specific to ADD).

A single model was trained for each contrast using the corresponding

histograms of granularity and variability scores as input features. Anal-

yses were based on a Gradient Boosting classifier, which surpasses the

robustness of other algorithms.34,35 Scikit-learn (https://scikit-learn.

org/) was used to implement the classifiers with 5000 independent

estimators, a learning rate of 0.01, and a maximum of two features per

split.

For each iteration, data were randomly divided into three folds pre-

serving the proportion of labels (stratified cross-validation). Two folds

were used for training and the other for testing, so that all folds were

usedonce to test the classifier.Univariate feature selectionwasapplied

to the training set within each fold (the top five features were selected

according to their ANOVA F-value between groups). This process was

repeated 1000 times with and without shuffling the target labels, and

a P-value was constructed by counting the number of times the area

under the receiving operator characteristic curve (ROC AUC) value of

the classifier with shuffled labels exceeded that obtainedwithout shuf-

fling, normalized by the total number of iterations. A feature impor-

tance scorewas constructed by counting the number of times a feature

was selected based on its F-value (Appendix B), divided by the num-

ber of folds multiplied by the number of iterations.36 Importantly, the

https://pingouin-stats.org/
https://scikit-learn.org/
https://scikit-learn.org/
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F IGURE 2 Statistical differences in semantic granularity and ongoing semantic variability across diverse speech tasks. (A)Normalized values
of semantic granularity for each bin. Relative to controls, ADD patients exhibited higher values in a low granularity bin (5) and lower values in a
high granularity bin (11), suggesting greater reliance on hypernyms and reduced reliance on hyponyms. (B)Boxplot representation of ongoing
semantic variability. Successive semantic choices proved significantly more variable in ADD patients than in HCs. Significant pairwise differences
(P< .05) are indicatedwith a single asterisk (*) for the contrast between ADD patients andHCs, andwith a double asterisk (**) for the contrast
between PD patients and HCs. Abbreviations: ADD, Alzheimer’s disease dementia; HCs, healthy controls; PD, Parkinson’s disease

number of features per participant (n = 12) was more than four times

smaller than the number of participants (n= 55), and the feature selec-

tion procedure further reduced the number of features to five. This

feature-to-sample ratio, combined with the stratified cross-validation

procedure, contributed to alleviate potential overfitting issues. Classi-

fier performance is reported as the mean and SD (extent of the shaded

region) of the ROC curve across all 1000 iterations, both for shuffled

and unshuffled labels, and as confusion matrices showing the propor-

tion of correct/incorrect classifications in each class.

3 RESULTS

3.1 Statistical results

ADD patients exhibited lower semantic granularity scores than HCs

and PD patients in most of the largest bins (8-12), indicating scarcer

use of hyponyms (Figure 2A). Significant group differences were found

for bins 5 (F[2,52] = 5.43, P = .007, 𝜂2p = 0.17) and 11 (F[2,52] = 4.71,

P= .013, 𝜂2p = 0.15). Post hoc analyses, via Tukey’s HSD tests, revealed

that ADD patients scored significantly higher than HCs in bin 5, a

low granularity bin (P = .072, d = 0.73); and significantly lower than

HCs in bin 11, a high granularity bin (P = .008, d = 1). Bin 5 also

yielded significantly higher scores for PD patients than HCs (P = .003,

d = 1.11). The remaining pairwise comparisons yielded non-significant

differences (all P-values> .05).

Ongoing semantic variability results (Figure 2B) yielded a significant

group effect (F[2,52] = 4.24, P = .02, 𝜂2p = 0.14), with post hoc com-

parisons revealing significantly higher scores for ADD patients than

HCs (P = .011, d = 0.97), alongside non-significant differences for the

remaining pairwise comparisons (HCs vs PD patients: P= .21, d= 0.58;

ADD vs PD patients: P= .45, d= 0.39).

3.2 Machine learning results

Collapsing both measures, classification between ADD patients and

HCs (Figure 3A) reached an AUC of .80± .06 (accuracy: .71± .11; sen-

sitivity: .80± .15; precision: .73± .12). This AUCvaluewas significantly

higher (P= .022) than that obtained upon shuffling participants’ labels,

which yielded chance levels (0.49 ± .13) and lower scores across mea-

sures (accuracy: .52± .16; sensitivity: .64± .21; precision: .57± .18).

Conversely, classification between PD patients and HCs (Figure 3B)

yielded an AUC of .65 ± .08 (accuracy: .60 ± .12; sensitivity: .61 ± .20;

precision: .64± .15). This AUCvalue did not differ significantly (P= .16)

from that obtained upon shuffling participants’ labels, which yielded

chance values (.50 ± .13) and chance-level results in other measures

(accuracy: .50± .15; sensitivity: .56± .23; precision: .53± .20).

4 DISCUSSION

We examined potential markers of ADD via automated measures of

semantic granularity andvariability. BothmeasuresdiscriminatedADD

patients from HCs (based on ANOVAs) and allowed identifying them

robustly on a subject-level basis (based on machine learning). No such

differentiations were present for PD patients relative to HCs. Below

we discuss these findings.

Relative to HCs, ADD patients used more coarse and fewer precise

concepts. This indicates reduced semantic granularity, a phenomenon

observed in controlled tasks (eg, picture naming, category fluency)

through standard measures (eg, correct responses).9 Our study sug-

gests that increased reliance on hypernyms in ADD also typifies the

patients’ natural speech. In this sense, reduced granularity has been

proposed as a marker of diseases with primary semantic memory

impairments.37 Indeed, abnormally coarse-grained abstractions are
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F IGURE 3 Classifications between patients and controls combining semantic granularity and ongoing semantic variability features across
diverse speech tasks. The Gradient Boosting classifier successfully distinguished (A)ADDpatients fromHCs, but not (B) PD patients fromHCs.
The panels show normalized AUC histograms (left inset), average ROC curves (middle inset), and confusionmatrices normalized by row and
averaged across iterations (right inset). Real results are shown in blue, while results obtained upon shuffling participants’ labels are shown in red.
Abbreviations: ADD, Alzheimer’s disease dementia; AUC, area under the curve; HCs, healthy controls; PD, Parkinson’s disease; ROC, receiver
operating characteristic

also typical in semantic dementia patients,37 some of whose core atro-

phy regions (eg, hippocampus, temporal lobes) are also affected in

AD.38 Accordingly, although several granularity bins showed substan-

tial overlapbetweenADDpatients andHCs, our automatedgranularity

measuremight capture subtle but informative disruptions.

ADD patients also presented greater semantic variability than HCs,

indicating more discontinuous speech (eg, see Appendix C). Previous

studies have reported reduced cohesion and coherence in AD,18,39

for example, by counting digressive utterances (or words) or unre-

lated adjacent utterances.8,18 Similar patterns are observed in persons

with mild cognitive impairment, at increased risk for AD.40 Our study

shows that dissimilar semantic relations also emerge across word-to-

word relations. Specifically, the patients’ discourse abounded in inter-

ruptions and gap fillers via ready-made phrases (eg, "I don’t know,"

"I forget the name," "I don’t remember"), in line with evidence that

this population may overuse formulaic language.41 Here, the Fast-

Text word-vectorial representations revealed that such phrases devi-

ate from their adjacent semantic choices, revealing further neuropsy-

chological aspects of ADD.

The robustness of both measures was corroborated by machine

learning results. Joint analysis of semantic granularity and variability

features yielded an AUC of 80%, correctly identifying 80% of HCs and

74% of ADD patients. These results surpass those from previous ASA

studies targeting domains that are not markedly affected in AD, such

as articulation or syntax.15–17 Importantly, classification results were

near chance upon shuffling participants’ labels, indicating that these

features do capture distinguishing properties of ADD rather than for-

tuitous differences between random samples. Briefly, semantic gran-

ularity and variability measures may contribute to revealing clinically

relevant differences between ADD patients andHCs.

Importantly, the above results were partly specific to ADD. Except

for one granularity bin, the features affected in ADD were preserved

in PD. Likewise, classification between PD patients and HCs was near

chance and non-significantly different from that obtained via random
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groupings. This is a non-trivial finding, since other verbal domains

more systematically assessed in AD, such as semantic and phonemic

fluency,42 are also frequently compromised in PD,43 limiting their use

for disease differentiation. Yet, while we targeted PD patients on lev-

odopa, as in previous works,25 semantic alterations in this disease are

sensitive to medication status.44 New studies should explore whether

the deficits observed in ADD remain specific when considering PD

patients with varying levels of dopamine bioavailability. Still, our find-

ings suggest that theoretically informed semantic measuresmay prove

useful not only to identify specific brain diseases, but also to discrimi-

nate among them.

Previous ASA studies have often assessed unmotivated, heteroge-

neous domains in combination with feature importance techniques

that favor classification outcomes over interpretability.7 While often

successful in terms of classifier performance, this approach fails to

capture features that can be readily aligned with mainstream clinical

knowledge. In fact, diverse constellations of phonological and syntac-

tic features might contribute to patient identification13,14 while chal-

lenging straightforward neuropsychological interpretation. Moreover,

this evidence is hard to reconcile with abundant neuropsychological

literature attesting to the preservation of such domains in AD.15–17

In contrast, we first identified linguistic domains consistently affected

by the disease and then developed a pipeline to track them in natural

discourse. By bridging the gap between well-established deficits and

cutting-edge automated tools, our approach paves the way for more

clinically relevant uses of ASA.

Moreover, our design overcomes key limitations of previous ASA

research on AD and related diseases. Frequently, these studies are

undermined by unbalanced samples45,46 and by poor or null control

of sociodemographic confounds, such as sex, age, and education.45,47

Our strict group-matching protocol circumvented major alternative

explanations of our results (ie, higher education levels could entail

richer vocabulary, potentially increasing semantic granularity). More-

over, while most previous works used isolated tasks or narrow combi-

nations therefrom, we used a range of spontaneous (autobiographical)

and semi-spontaneous (stimulus-based) tasks,29 covering a rich reper-

toire of daily linguistic behaviors. Critically, this approach increases

data quantity and variability across groups, avoiding over-optimistic

results from brief discourse samples.While we obtained similar results

even upon considering a single task—the one of longest duration

(Appendix, section D)—the present approach avoids important caveats

while maximizing the representativeness of ASA.

This study attests to the usefulness of ASA as a complement for

mainstream AD assessments. Standard evaluations of neurodegener-

ative conditions may prove expensive, yield examiner-driven scores,48

and overlook spontaneous behavior.22 Conversely, ASA entails min-

imal costs, generating objective naturalistic data.5,49 Furthermore,

speech tasks can be administered remotely, maximizing accessibility

and equity for persons with reduced mobility or capacity to afford

transportation costs. These possibilities open exciting avenues to fur-

ther test our measures.

Yet, our work is not without limitations. First, although groups were

balanced and in keeping with the field’s typical Ns,8 their sizes were

small. While this is a common hurdle in studies pursuing standardized,

good-quality speech samples, it would be important to replicate our

work with more participants. Second, while the use of several speech

tasks allows capturing diverse linguistic behaviors, it also increases test

duration. This can be attenuated by having participants record them-

selves remotely, which could be especially promising for longitudinal

assessments. Third, our study focused exclusively on Spanish speakers.

Given that different languages may become differently affected by the

same disease,50 cross-linguistic studieswould be critical towardsmore

global approaches to ASA.

In sum, this study shows that ASA can be leveraged to yield dif-

ferential and interpretable markers of ADD across diverse linguistic

behaviors. ADD patients seem typified by reduced semantic granular-

ity and higher ongoing semantic variability, both patterns being absent

in PD patients. By further targeting well-established linguistic aspects

ofADD through customizedmethods, ASAmayboost the development

of digital markers of dementia.
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