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Executive functions are a class of cognitive processes critical for purposeful goal-directed

behavior. Cognitive training is the adequate stimulation of executive functions and

has been extensively studied and applied for more than 20 years. However, there is

still a lack of solid consensus in the scientific community about its potential to elicit

consistent improvements in untrained domains. Individual differences are considered

one of the most important factors of inconsistent reports on cognitive training benefits,

as differences in cognitive functioning are both genetic and context-dependent, and

might be affected by age and socioeconomic status. We here present a proof of

concept based on the hypothesis that baseline individual differences among subjects

would provide valuable information to predict the individual effectiveness of a cognitive

training intervention. With a dataset from an investigation in which 73 6-year-olds trained

their executive functions using an online software with a fixed protocol, freely available

at www.matemarote.org.ar, we trained a support vector classifier that successfully

predicted (average accuracy = 0.67, AUC = 0.707) whether a child would improve, or

not, after the cognitive stimulation, using baseline individual differences as features. We

also performed a permutation feature importance analysis that suggested that all features

contribute equally to the model’s performance. In the long term, this results might allow

us to design better training strategies for those players who are less likely to benefit from

the current training protocols in order to maximize the stimulation for each child.

Keywords: computerized games, educational games, individual differences, personalized training, machine

learning, educational neuroscience, children

INTRODUCTION

If you encounter an add claiming “Do you want to improve your memory? With these brain
exercises you will see changes in less than x time! Scientifically tested method!”, what would you
think? Unfortunately, to date, there is still not a well described and thoroughly tested method that
consistently improves cognitive processes (Dorbath et al., 2011; Au et al., 2014; Buttelmann and
Karbach, 2017). Even though over the last 25 years many cognitive or brain training protocols have
been put to the test and shown positive outcomes (Goldin et al., 2014; Hsu et al., 2014; Diamond
and Ling, 2016; Klingberg, 2016; Buttelmann and Karbach, 2017), many other show the opposite
results (Melby-lervåg et al., 2016; Simons et al., 2016; Sala et al., 2019). Hence, a consensus on a
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“brain training recipe” seems improbable, especially considering
the plethora of divergent results (Schwaighofer et al., 2015;
Aksayli et al., 2019; Vladisauskas and Goldin, 2021).

Many of the successful examples of how cognitive training
can benefit cognition show that stimulation can have a positive
impact on Executive Functions (EF) (Anguera et al., 2014; Goldin
et al., 2014; Karbach and Unger, 2014; Segretin et al., 2014;
Klingberg, 2016; Spencer-Smith and Klingberg, 2017; Wiemers
et al., 2019). EF are a group of cognitive processes critical for
purposeful, goal-directed behavior, such as the ability to set a
goal, to make a plan and stick to it, and to have the flexibility of
changing that plan, or even the original goal, if priorities change.

EF mature with the great variety of stimulus and experiences
that we undergo from birth and continue to develop throughout
life (Colé et al., 2014; Delalande et al., 2020; Johann and
Karbach, 2020). While this implies that some aspects of life might
act as negative modulators of EF development, such as early
vulnerability and prenatal malnutrition (McDermott et al., 2012;
McGaughy et al., 2014; Deater-Deckard et al., 2019; Howard
et al., 2020), it also signifies that proper life experiences can
have positive effects in EF and, consequently, improve academic
performance and other general life outcomes. In fact, several
studies show that EF development predicts not only school
performance, but also a broad array of life outcomes such as
mental and physical health (McDermott et al., 2012; Miyake
and Friedman, 2013; Diamond, 2020). One of the most frequent
cognitive training strategies is to specifically and progressively
challenge EF through games, and it has proven to be a powerful
positive modulator particularly relevant during childhood, when
behavioral and neural plasticity are intense (Sigman et al., 2014;
Steinbeis and McCrory, 2020).

Mate Marote is a free-open access cognitive-training software
aimed at children between 4 and 8 years old. It consists of a set
of computerized games specifically tailored to train and evaluate
EF. During the last 13 years several supervised interventions were
performed with this software inside the schools. The training
has shown to improve EF (e.g., Goldin et al., 2013; Nin et al.,
2019) and to elicit transfer to real-world measures of school
performance (Goldin et al., 2014).

The training process involves games developed to target
individual EF. In each intervention, conducted always in
educational settings, a particular set of cognitive skills is trained
for 10-to-15min, one-to-three times a week over several weeks.
Performance on these and similar domains is measured before
and after the training to test for cognitive changes and to evaluate
the effectiveness of the training process. This evaluation of
cognition is also assessed with games, which are adaptations of
standardized cognitive tests that have been used extensively in the
literature, such as a version of the Stroop test to assess inhibitory
control and cognitive flexibility (Davidson et al., 2006), or the
Child-ANT task to measure attentional networks (Rueda et al.,
2004).

Our aspiration is that every child can get the most out of their
cognitive training time, and, even though many training games
have proven to be effective, the question of who benefits the most
and why remains uncertain (Karbach et al., 2017; Albert et al.,
2020; Steinbeis and McCrory, 2020). Recent research suggests

that the conflicting reports on cognitive training could be caused
by individual differences among the subjects that take part in each
cognitive training intervention. For instance, the developmental
age or the state of cognition prior to the stimulation could be key
to understanding why cognitive training does not always work
for everyone (Guye et al., 2017). It is therefore an intuitive idea to
think about those potential modulators when building training
protocols (Green et al., 2019). In this line of research we wonder:
how can those differences be taken into account to elicit a better
stimulation for every brain? (Jaeggi et al., 2013; Karbach et al.,
2017; Shani et al., 2019; Rennie et al., 2020).

In this study, we propose an initial approach towards cognitive
training personalization usingmachine learning algorithms to try
to identify subjects that will (or will not) benefit from a certain
protocol of cognitive stimulation. In other words, can baseline
individual state of cognition predict how much a participant will
benefit from a certain intervention?

METHODS

We aimed to take a first step in personalizing interventions
by predicting the potential benefits of a cognitive training
protocol taking into account baseline individual qualities of the
participants (Shani et al., 2019, 2021; Rennie et al., 2020).

DATA

We trained and tested classifiers to predict whether a child
would benefit, or not, from a fixed cognitive stimulation strategy.
To build these algorithms we used a small dataset from a
past intervention performed with Mate Marote’s online platform
(Goldin et al., 2014). This dataset includes the performance of
73 typically developing 6-to-7 y.o. children (33 girls) in one
cognitive training intervention (the same for all children). The
intervention involved 3 sequential stages (Figure 1): (A) a Pretest
(or baseline) where children’s EF and attentional capabilities were
measured with a battery of standardized tests, (B) a Training
stage where children played several games designed to challenge
their EF (referred to as “the cognitive training protocol”); and,
finally, (C) a Posttest stage where children’s cognition was
evaluated again.

During the Training stage, participants played three adaptive
computer games aimed at training EF (specifically, working
memory, planning, and inhibitory control skills). Children
played at their own schools only one game in each 15-min
session, and a total of no more than three sessions per week.
The three games alternated for all children throughout the
intervention. More details of the intervention, together with
precise descriptions of the training and evaluation games, are
available in Goldin et al. (2014) and Nin et al. (2019).

A week before the beginning of the training and 1 week
after the last playing session all children took a battery of
standard tests (Pre- and Posttest, respectively). The included tests
evaluated: attentional networks (Child-ANT task; Rueda et al.,
2004), inhibitory control and cognitive flexibility (The heart-
flower task; Davidson et al., 2006), planning (Tower of London
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FIGURE 1 | Timeline of the whole experimental procedure. In each session of the intervention children played only one of Mate Marote’s games, and performed at

least three sessions per week. Standardized evaluations were assessed before (Pretest) and after (Posttest) the cognitive training intervention.

task; Phillips et al., 2001) and spatial working memory (Corsi
Block Tapping Task; Kessels et al., 2000; Fischer, 2001).

MODEL

Features
Performance in each task depends on the prior state of cognition.
As was mentioned earlier, baseline individual differences might
include information on how the following cognitive training
would work. Which turns each Pretest measure into a possible
successful feature. We obtained a total of 12 pretest measures
from every participant, and used those values as features
to train multiple classifiers (Supplementary Table S1 for a
detailed description of every individual feature, which includes
attentional resources, inhibition, cognitive flexibility, and
planning). The selected features represent different dimensions
of each participant’s baseline cognition (i.e., obtained during
the Pretest). More than one value was obtained from every
evaluation in order to perform the expected prediction.

Prior to training the classifier, every individual feature was re-
scaled using Sklearn’s Robust Scaler (Interquartile range, statistics
robust to outliers) and normalized into the range 0–1.

Pairwise comparisons between feature average values at
Pretest where made using Mann-Whitney U non-parametric test
(McKnight and Najab, 2009).

Classes
We constructed two classes: “Improved” and “Not improved,”
aiming to show whether participants improved, or not, after
cognitive training. To consider the existence of improvement
after cognitive training, for each feature we calculated a Reliable
Change Index (RCI) as was proposed by Jacobson and Truax
(1991). The threshold for reliable change is calculated as 1.96
times the standard error of the difference between scores of a
measure administered before and after de cognitive training (Pre-
and Posttest, respectively). Of the many versions available, we
used the method proposed in Estrada et al. (2019) specified as:

RCI =
Di

√

(

Spre
√
1− RPrePost

)2 +
(

Spost
√
1− RPrePost

)2
(1)

where Di is the individual pre-post difference; Spre and Spost,
the standard deviation at pretest and posttest, respectively; and
RPrePost is the internal consistency of the measure. The latter was

obtained by calculating Cronbach’s alpha following the procedure
described in Cronbach (1951).

As every participant completed the same standardized
cognitive test twice, at Pre- and Posttest, by comparing the
performance metrics between both stages we could evaluate if
there were changes after the cognitive training. Hence, for every
pair of Pre- and Posttest values we calculated RCI and concluded
whether there had been an improvement (if the result was higher
than 1.96), a deterioration (if the result was lower than −1.96)
or if there was no reliable change between the measures (a result
between−1.96 and 1.96).

To obtain the final class for every participant, we counted
the amount of improvements and compared it to the amount
of measures in which a deterioration was observed. If there
were more variables with improved performance, the subject was
labeled as “Improved.” If the amount of deteriorated variables
was equal or superior to the improvements, subject was labeled
“Not improved.”

The Supervised Algorithms
We performed an hyperparameter tuning with Sklearn’s
GridSearchCV tool to select the optimal hyperparameter values
for a set of 6 classifier algorithms. In alphabetical order, the
trained algorithms where: Gradient Boosting (Natekin and Knoll,
2013), K Nearest Neighbors (Laaksonen and Oja, 1996), Multi
Layer Perceptron (Suykens and Vandewalle, 1999), Perceptron
(Raudys, 1998), Random Forest (Breiman, 2001), and Support
Vector Classifier (Lau and Wu, 2003). Afterwards, we compared
the accuracy among models, which was calculated within the
GridSearch using the optimal hyperparameter values.

Validation
To obtain a robust accuracy in the test set, for all the 6
algorithms we repeated the training-testing process with the
optimal hyperparameter values using a Repeated Stratified K Fold
Cross Validation (Refaeilzadeh et al., 2016). Compared to a single
train-test split, a cross validation strategy allows to obtain more
robust results with a small dataset like ours (as the variance
of the data is more evident). Because cross validation tests the
model’s performance on different train-test splits, it does not have
a strong dependency on the instances that belong to each split.

In regular Stratified K Fold Cross Validation, the sample is
divided in k equal sized subsamples, each containing roughly
the same proportion of the two types of class labels. Of the
k subsamples (in this case k = 10), a single one is retained
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as the test set and the remaining are used to train the model
(called “training-testing process”). The training-testing process is
repeated k times, each time with different subsamples, with each
of them used only once as the test set.

The Repeated Stratified K Fold Cross Validation adds an
additional step to this process. After performing all the k folds
with one set of randomized subsamples, the process restarts with
a new set until the training-testing process is complete. The
process is repeated n times (in our case, n = 20). Hence, we
obtained a total of 200 scores (10 folds repeated 20 times) and
the results were averaged to produce a single accuracy estimation
(i.e., macro average score).

The performance of each model was evaluated using this
accuracy score (Trappenberg, 2020). We also obtained the values
of recall and precision to get a better idea about the model’s
learning. In our problem, recall is defined as the proportion of
positive cases (“Improved” label) that were detected from the
total of real positive cases. Precision refers to the proportion of
real positives (labels with a real value of “Improved” predicted
as such) from the amount of cases predicted positive. A good
algorithm for our problem should prove similarly good in both
metrics. We also constructed a receiver operating characteristic
curve (ROC) to visualize the model’s ability to predict the “Not
improved” label, and calculated the area under the curve (AUC;
Marzban, 2004) score to reflect the model’s ability to predict the
“Not improved” class.

As a final validation step, we performed a permutation test for
every algorithm. This test is designed to evaluate the significance
of a cross-validated score (Venkatraman, 2000). It permutes the
targets to generate randomized data (i.e., no relation between
features and targets) and calculates the p-value against the null
hypothesis that features and targets are independent. If p <

0.05, we can reject the null hypothesis and assume that they are
related, and that themodel captures that relationship. To evaluate
the significance of each model, we compared the cross-validated
score of the algorithm for the randomized data to the score with
the original data.

Finally, we selected the algorithm with the higher average
accuracy, and performed a permutation feature importance. This
analysis provides information on every feature’s contribution
to the model’s prediction. The final weight for every feature
is calculated averaging the model’s accuracy decrease after
randomly permuting the feature values within a testing set.When
an important feature is permuted, the score should decrease,
while the opposite would happen with a feature that is not very
important according to this model’s prediction. To obtain robust
results with our small dataset, the train-test split was performed
with a repeated stratified K fold cross validation as described
earlier on this section.

Data Analysis
All the previous steps were performed in Python 3 language
using Jupyter Lab interface. Sklearn library was used to build
the machine learning algorithm, and eli5 library to perform the
permutation feature importance analysis. Seaborn andMatplotlib
were used for data visualization and plotting. Scipy was used to
perform statistic analysis.

TABLE 1 | Hyperparameter values corresponding to the final SVC model.

Hyperparameter Value

C 2.8

class_weight balanced

kernel poly

FIGURE 2 | Receiver operating characteristic curve for the SVC model.

RESULTS

After assigning a class to every subject, we obtained a balanced
dataset with 73 instances (Nimproved = 29). We trained 6
classifiers and retrained them with the optimal parameters
(individual accuracy values, in Supplementary Table S2). The
algorithm that best fitted the data was a support vector classifier
(SVC; Lau and Wu, 2003).

The SVC model showed an average accuracy score
of 0.67 and AUC of 0.707, which are better than a
random baseline performance (final hyperparameter
values in Table 1 and permutation importance test result
in Supplementary Figure S1). ROC curve in Figure 2.
Precision and recall values were similar between classes, as
expected from a binary classification on a balanced dataset
(Supplementary Table S3). The permutation test result
suggests that the SVC final model captures a dependency
between the features and the classes (p = 0.01 against the
null hypothesis that features and targets are independent,
see Supplementary Figure S1). The permutation test also
suggested that the KNN model was good at the task (accuracy
0.65, p < 0.03), although not as good as the SVC model
(Supplementary Figure S2).

To get a better understanding of the model’s predictions, we
obtained the permutation feature importance values (Table 2).
This exploratory analysis describes which features are the most
relevant according to the model’s predictions. The standard
deviation is large for every feature, suggesting that there are no
differences between the feature’s contribution in the SVC.
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TABLE 2 | Permutation feature importance for the final SVC model listed in

alphabetical order based on the “Features” column.

Features Permutation importance

ANT RT–Alerting Network 0.0349 ± 0.2964

ANT Won %–Alerting Network 0.0274 ± 0.2613

ANT RT–Executive Network 0.0101 ± 0.2613

ANT Won %–Executive Network 0.0150 ± 0.2205

ANT RT–Orienting Network 0.0255 ± 0.2260

ANT Won %–Orienting Network 0.0420 ± 0.2763

Corsi Score 0.0438 ± 0.3038

Stroop RT–Flexibility 0.0370 ± 0.2685

Stroop Won %–Flexibility 0.0040 ± 0.1918

Stroop RT–Inhibition 0.0373 ± 0.2991

Stroop Won %–Inhibition 0.0134 ± 0.2582

TOL Score 0.0477 ± 0.3223

The cognitive training literature presents inconsistent findings
on who benefits the most from an intervention, and part
of the literature suggests that subjects with the worst Pretest
measures are the ones who, at the end, obtain higher cognitive
gains (Karbach et al., 2017; Wang et al., 2019). If features
differed between classes in the Pretest, they could give us
information to approach that open question. The permutation
feature importance analysis suggested that all features contribute
similarly to the model, but this could be caused by the small size
of our dataset. So, we tried to understand the direction of the
variance explained by each feature. In other words, we wanted
to know if, for each variable, the players who showed a better
performance at Pretest were finally classified as “Improved” or
as “Not improved.” In order to analyze that, we compared
the performance of each of the 12 baseline variables for the
“Improved” and the “Not-improved” classes. No difference was
significant (Supplementary Table S4).

DISCUSSION

Our study was meant as a proof of concept in the use of machine
learning tools to personalize cognitive training interventions. By
focusing specifically on the first two steps suggested by Shani
et al. (2019), the final purpose of our research line is to design
better, more personalized, training protocols and to contribute
to settle the debate on cognitive training efficacy once and for
all. Following previous studies which show that some people
benefit from a given training protocol more than others (Titz
and Karbach, 2014; Karbach et al., 2017), we wanted to know
if a training gain could be predicted based solely on previous
cognitive traits. Confirmation of this relationship could allow
us to prevent some participants from completing a cognitive
training protocol that will most likely not improve their EF .

With a small dataset (N = 73) from a past intervention
performed with a free cognitive training software designed by
our group (Goldin et al., 2013, 2014), we aimed to train a
set of binary classifiers to predict the outcome of a particular
stimulation protocol (i.e., to know whether a participant would
benefit or not from it). We were able to train 6 machine learning
algorithms, and two of them captured the dependency between

features and targets: a k nearest neighbors classifier and a support
vector classifier (SVC). This last algorithm showed the best
performance predicting the binary classes (“Improved” or “Not
improved”) based on the individual previous cognitive traits.
The results of the permutation test indicate that it is able to
capture at least a portion of the dependency between the features
(individual differences measured in the pretest stage) and the
targets (whether a cognitive training was effective). The found
accuracy value is moderate (0.67) and can still be improved, but is
a very promising result considering the high variability between
features (i.e., the individual differences observed in the Pretest).

The AUC value tells how much the model is capable of
distinguishing between classes. The AUC result found (0.707)
indicates that our model is able to differentiate players that did
not show improvements after cognitive training from those who
did (“Not improved” and “Improved” classes, respectively).

For this study we built a simple model to understand if
we could predict the efficacy of a cognitive training protocol.
Although we succeeded, the main limitation of our study is the
small dataset. In the future, with more data, we might be able
to dissect the “Not improved” class in two subgroups: those
who mostly deteriorated (very few participants) and those who
remained stable. Furthermore, it would also be interesting to
differentiate, within the stable subgroup, those participants who
really showed no differences between pre and posttest from those
who, on the contrary, improved and deteriorated equally.

To understand the algorithm’s prediction mechanism, we
obtained the permutation feature importance rank, which
showed that no features should be discarded from the SVC
model, because there is not enough evidence to say that some
of them contribute to the model’s accuracy more than the rest.
This might be due to the high variability found in the feature’s
importance, which in turn might be the cause of a small dataset
that changes in every iteration, causing the large observed error.
Although we cannot discard this explanation, results show that
all Pretest measures are valuable in order to predict the efficacy of
a cognitive training protocol and, until we can add more data, all
cognitive tests prove informative and should be assessed.

Despite, the fact that as already mentioned, we still need to
include more data to obtain a more general model for it to be
implemented in future interventions, we were able to build a
comprehensive baseline model and the results described here
have implications for designing personalized cognitive training
protocols in order to take into account whether they are going
to be effective. For example, the performance of the model
predicting the negative class (0.75, Supplementary Table S3)
is particularly relevant because it will allow us to identify
the subjects that most likely won’t improve with one specific
protocol. With this information, in the future we could
individually target all cognitive training protocols.

Our main priority for the near future is to evaluate if the
model does generalize to data from other cognitive training
interventions with similar pre/post tests. Thus, we would not only
gain insight on the relationship between previous cognitive traits
and the training gains, but we may prevent a participant from
completing a protocol that will not benefit him/her. Our ultimate
goal is to ensure that each child can benefit in the best possible
way from the playing time with Mate Marote.

Frontiers in Artificial Intelligence | www.frontiersin.org 5 March 2022 | Volume 5 | Article 788605

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Vladisauskas et al. ML to Personalize Cognitive Training

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

Children’s caregivers gave written consent to participate in
the study, which was authorized by an institutional Ethical
Committee (Centro de Educación Médica e Investigaciones
Clínicas, Consejo Nacional de Investigaciones Científicas y
Técnicas, protocol no. 486).

AUTHOR CONTRIBUTIONS

The planning of this analysis was done by MV together with AG.
The data analysis was done by MV, with LB’s careful supervision
and assistance. The manuscript was written by MV, revised
several times by AG and commented thoroughly by LB and
DF. All authors contributed to the article and approved the
submitted version.

FUNDING

This research was supported by Consejo Nacional de
Investigaciones Científicas y Técnicas (CONICET). The original
data was obtained thanks, also, to the University of Buenos
Aires, Human Frontiers, Ministry of Science of Argentina,

Centro de Educación Médica e Investigaciones Clínicas, and
Fundación Conectar.

ACKNOWLEDGMENTS

We thank Agustin Gravano for his highly valuable feedback on
the analysis and methodology implemented. This work would
not be possible without the great team that create and keep
Mate Marote working: Martín March Miguel, Daniela Macario
Cabral, Paula Abramovich, Verónica Nin, Alejandra Carboni,
Juan Valle Lisboa, Carina Aldecosea, Hernán Delgado-Vivas,
Jesús C. Guillén, María Julia Hermida, Diego Shalom, Natalia
Camilotto, Cinthya Apelbaum, Fernanda Peloso, Gabriel Paz and
Emilia Clément; and our current sponsors: Fundación Bunge y
Born, IT Resources S. A., DAEVA S. A., and Departamento de
Computación (FCEyN, UBA). These sources did not provide any
funding for this study. We are so grateful to former contributors
Mariano Sigman, Sebastián Lipina, Antonio Battro, Milena
Winograd, Nubis, Vari, Matías Lopez-Rosenfeld, Luciano Paz,
María Soledad Segretin, ANII, Fundación Ceibal and Fundación
Sadosky.We specially thank all the schools, teachers, families and
children that trust Mate Marote and help this project grow.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frai.2022.
788605/full#supplementary-material

REFERENCES

Aksayli, N., Sala, G., and Gobet, F. (2019). The cognitive and academic
benefits of cogmed: a meta-analysis. Educ. Res. Rev. 27, 229–243.
doi: 10.1016/j.edurev.2019.04.003

Albert, D. W., Hanson, J. L., Skinner, A. T., Dodge, K. A., Steinberg, L., Deater-
Deckard, K., et al. (2020). Individual differences in executive function partially
explain the socioeconomic gradient in middle- school academic achievement.
Dev. Sci. 23:e12937. doi: 10.1111/desc.12937

Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich,
J., et al. (2014). Video game training enhances cognitive control in older Adults
J.A. Nature 501, 97–101. doi: 10.1038/nature12486

Au, J., Sheehan, E., Tsai, N., Duncan, G. J., Buschkuehl, M., and Jaeggi, S. M.
(2014). Improving fluid intelligence with training on working memory: a meta-
analysis. Psychonomic Bull. Rev. 22, 366–377. doi: 10.1037/e524912015-029

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.
doi: 10.1023/A:1010933404324

Buttelmann, F., and Karbach, J. (2017). Development and plasticity of
cognitive flexibility in early and middle childhood. Front. Psychol. 8, 1040.
doi: 10.3389/fpsyg.2017.01040

Colé, P., Duncan, L. G., and Blaye, A. (2014). Cognitive flexibility predicts early
reading skills. Front. Psychol. 40, 56. doi: 10.3389/fpsyg.2014.00565

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests.
Psychometrika 16, 297–334. doi: 10.1007/BF02310555

Davidson, M. C., Amso, D., Anderson, L. C., and Diamond, A. (2006).
Development of cognitive control and executive functions from 4 to 13 years:
evidence from manipulations of memory, inhibition, and task switching.
Neuropsychologia 44, 2037–2078. doi: 10.1016/j.neuropsychologia.2006.02.006

Deater-Deckard, K., Mengjiao, L., Lee, D., King-Casas, B., and Kim-Spoon,
J. (2019). Poverty and puberty: a neurocognitive study of inhibitory
control in the transition to adolescence. Psychol. Sci. 30, 1573–1583.
doi: 10.1177/0956797619863780

Delalande, L., Moyon, M., Tissier, C., Dorriere, V., Guillois, B., Mevell, K., et al.
(2020). Complex and subtle structural changes in prefrontal cortex induced by
inhibitory control training from childhood to adolescence. Dev. Sci. 23, 1–12.
doi: 10.1111/desc.12898

Diamond, A. (2020). Executive functions. Handb. Clin. Neurol. 173, 225–240.
doi: 10.1016/B978-0-444-64150-2.00020-4

Diamond, A., and Ling, D. S. (2016). Conclusions about interventions, programs,
and approaches for improving executive functions that appear justified and
those that, despite much hype, do not. Dev. Cogn. Neurosci. 18, 34–48.
doi: 10.1016/j.dcn.2015.11.005

Dorbath, L., Hasselhorn, M., and Titz, C. (2011). Aging and executive
functioning: a training study on focus-switching. Front. Psychol. 2, 1–12.
doi: 10.3389/fpsyg.2011.00257

Estrada, E., Ferrer, E., and Pardo, A. (2019). Statistics for evaluating pre-
post change: relation between change in the distribution center and change
in the individual scores. Front. Psychol. 9, 2696. doi: 10.3389/fpsyg.2018.
02696

Fischer, M. H. (2001). Probing spatial working memory with the corsi blocks task.
Brain Cogn. 45, 143–154. doi: 10.1006/brcg.2000.1221

Goldin, A. P., Hermida, M. J., Shalom, D. E., Costa, M. E., Lopez Rosenfeld, M.,
Segretin, M. S., et al. (2014). Far transfer to language and math of a short
software-based gaming intervention. Proc. Natl. Acad. Sci. U.S.A. 54, 311–313.
doi: 10.1073/pnas.1320217111

Goldin, A. P., Segretin, M. S., Hermida, M. J., Paz, L., Lipina, S. J., and Sigman, M.
(2013). Training planning and working memory in third graders. Mind Brain

Educ. 7, 136–146. doi: 10.1111/mbe.12019
Green, S. C., Bavelier, D., Kramer, A. F., Vinogradov, S., Ansorge, U., Ball,

K. K., et al. (2019). Improving methodological standards in behavioral
interventions for cognitive enhancement. J. Cogn. Enhanc. 3, 2–29.
doi: 10.1007/s41465-018-0115-y

Guye, S., De Simoni, C., and von Bastian, C. C. (2017). Do individual
differences predict change in cognitive training performance? A

Frontiers in Artificial Intelligence | www.frontiersin.org 6 March 2022 | Volume 5 | Article 788605

https://www.frontiersin.org/articles/10.3389/frai.2022.788605/full#supplementary-material
https://doi.org/10.1016/j.edurev.2019.04.003
https://doi.org/10.1111/desc.12937
https://doi.org/10.1038/nature12486
https://doi.org/10.1037/e524912015-029
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3389/fpsyg.2017.01040
https://doi.org/10.3389/fpsyg.2014.00565
https://doi.org/10.1007/BF02310555
https://doi.org/10.1016/j.neuropsychologia.2006.02.006
https://doi.org/10.1177/0956797619863780
https://doi.org/10.1111/desc.12898
https://doi.org/10.1016/B978-0-444-64150-2.00020-4
https://doi.org/10.1016/j.dcn.2015.11.005
https://doi.org/10.3389/fpsyg.2011.00257
https://doi.org/10.3389/fpsyg.2018.02696
https://doi.org/10.1006/brcg.2000.1221
https://doi.org/10.1073/pnas.1320217111
https://doi.org/10.1111/mbe.12019
https://doi.org/10.1007/s41465-018-0115-y
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Vladisauskas et al. ML to Personalize Cognitive Training

latent growth curve modeling approach. J. Cogn. Enhanc. 1, 374–393.
doi: 10.1007/s41465-017-0049-9

Howard, S. J., Cook, C. J., Everts, L., Melhuish, E., Scerif, G., Norris, S., et al.
(2020). Challenging socioeconomic status: a cross-cultural comparison of early
executive function. Dev. Sci. 23, 1–9. doi: 10.1111/desc.12854

Hsu, N. S., Novick, J. M., and Jaeggi, S. M. (2014). The development and
malleability of executive control abilities. Front. Behav. Neurosci. 8, 221.
doi: 10.3389/fnbeh.2014.00221

Jacobson, N. S., and Truax, P. (1991). Clinical significance: a statistical approach to
definingmeaningful change in psychotherapy research. J. Consult. Clin. Psychol.
59, 12–19. doi: 10.1037/0022-006X.59.1.12

Jaeggi, S. M., Buschkuehl, M., Shah, P., and Jonides, J. (2013). The role of
individual differences in cognitive training and transfer. Mem. Cogn. 42,
464–480. doi: 10.3758/s13421-013-0364-z

Johann, V. E., and Karbach, J. (2020). Effects of game-based and standard executive
control training on cognitive and academic abilities in elementary school
children. Dev. Sci. 23, 1–18. doi: 10.1111/desc.12866

Karbach, J., Könen, T., and Spengler, M. (2017). Who benefits the most? Individual
differences in the transfer of executive control training across the lifespan. J.
Cogn. Enhanc. 1, 394–405. doi: 10.1007/s41465-017-0054-z

Karbach, J., and Unger, K. (2014). Executive control training from middle
childhood to adolescence. Front. Psychol. 5, 390. doi: 10.3389/fpsyg.2014.00390

Kessels, R. P. C., Zandvoort, M. J. E., Postma, A., Jaap Kappelle, L., and de Haan, E.
H. F. (2000). The corsi block-tapping task: standardization and normative data.
Appl. Neuropsychol. 7, 252–258. doi: 10.1207/S15324826AN0704_8

Klingberg, T. (2016). Neural basis of cognitive training and development. Curr.
Opin. Behav. Sci. 10, 97–101. doi: 10.1016/j.cobeha.2016.05.003

Laaksonen, J., and Oja, E. (1996). Classification with learning k-nearest
neighbors. IEEE Int. Conf. Neural Netw. Conf. Proc. 3, 1480–1483.
doi: 10.1109/ICNN.1996.549118

Lau, K. W., and Wu, Q. H. (2003). Online training of support vector classifier.
Pattern Recogn. 36, 1913–1920. doi: 10.1016/S0031-3203(03)00038-4

Marzban, C. (2004). The ROC curve and the area under it as performance
measures.Weather Forecast. 19, 1106–1114. doi: 10.1175/825.1

McDermott, J. M., Westerlund, A., Zeanah, C. H., Nelson, C. A., and Fox,
N. A. (2012). Early adversity and neural correlates of executive function:
implications for academic adjustment. Dev. Cogn. Neurosci. 2(Suppl. 1):S59–
S66. doi: 10.1016/j.dcn.2011.09.008

McGaughy, J. A., Amaral, A. C., Rushmore, R. J., Mokler, D. J., Morgane, P. J.,
Rosene, D. L., et al. (2014). Prenatal malnutrition leads to deficits in attentional
set shifting and decreases metabolic activity in prefrontal subregions that
control executive function.Dev. Neurosci. 36, 532–541. doi: 10.1159/000366057

McKnight, P. E., and Najab, J. (2009). The Mann-Whitney U test. Corsini Encyclop.
Psychol. 531–94. doi: 10.1201/9780429186196-17

Melby-lervåg, M., Redick, T. S., and Hulme, C. (2016). Working memory training
does not improve performance on measures of intelligence or other measures
of ‘ far transfer ’: evidence from a meta-analytic review. Perspect. Psychol. Sci.
11, 512–534. doi: 10.1177/1745691616635612

Miyake, A., and Friedman, N. P. (2013). The nature and organization of individual
differences in executive functions: four general conclusions. Curr. Dir. Psychol.
Sci. 21, 1–5. doi: 10.1177/0963721411429458

Natekin, A., and Knoll, A. (2013). Gradient boosting machines, a tutorial. Front.
Neurorob. 7, 21. doi: 10.3389/fnbot.2013.00021

Nin, V., Goldin, A. P., and Carboni, A. (2019). Mate marote: video games to
stimulate the development of cognitive processes. Rev. Iberoamericana de

Tecnol. Aprendizaje 14, 22–31. doi: 10.1109/RITA.2019.2909958
Phillips, L. H., Wynn, V. E., McPherson, S., and Gilhooly, K. J. (2001). Mental

planning and the tower of london task. Q. J. Exp. Psychol. 54, 579–597.
doi: 10.1080/713755977

Raudys, Š. (1998). Evolution and generalization of a single neurone: I. Single-
layer perceptron as seven statistical classifiers. Neural Netw. 11, 283–296.
doi: 10.1016/S0893-6080(97)00135-4

Refaeilzadeh, P., Tang, L., and Liu, H. (2016). “Cross-validation,” in Encyclopedia

of Database Systems, eds L. Liu and M. Özsu (New York, NY: Springer).
Rennie, J. P., Zhang, M., Hawkins, E., Bathelt, J., and Astle, D. E. (2020). Mapping

differential responses to cognitive training using machine learning.Dev. Sci. 23,
1–15. doi: 10.1111/desc.12868

Rueda, R. M., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Pappert
Lercari, L., et al. (2004). Development of attentional networks in childhood.

Neuropsychologia 42, 1029–1040. doi: 10.1016/j.neuropsychologia.2003.
12.012

Sala, G., Aksayli, N. D., Tatlidil, K. S., Tatsumi, T., Gondo, Y., and Gobet, F. (2019).
Near and far transfer in cognitive training: a second-order meta-analysis.
Collabra Psychol. 5, 1–22. doi: 10.1525/collabra.203

Schwaighofer, M., Fischer, F., and Bühner, M. (2015). Does working memory
training transfer? Ameta-analysis including training conditions as moderators.
Educ. Psychol. 50, 138–166. doi: 10.1080/00461520.2015.1036274

Segretin, M. S., Lipina, S. J., Hermida, M. J., Sheffield, T. D., Nelson, J. M., Espy,
K. A., et al. (2014). Predictors of cognitive enhancement after training in
preschoolers from diverse socioeconomic backgrounds. Front. Psychol. 5, 205.
doi: 10.3389/fpsyg.2014.00205

Shani, R., Shachaf, T., Derakshan, N., Cohen, N., Enock, P. M., McNally, R.
J., et al. (2021). Personalized cognitive training: protocol for individual-level
meta-analysis implementing machine learning methods. J. Psychiatr. Res. 138,
342–348. doi: 10.1016/j.jpsychires.2021.03.043

Shani, R., Tal, S., Zilcha-Mano, S., and Okon-Singer, H. (2019). Can machine
learning approaches lead toward personalized cognitive training? Front. Behav.
Neurosci. 13, 64. doi: 10.3389/fnbeh.2019.00064

Sigman, M., Peña, M., Goldin, A. P., and Ribeiro, S. (2014). Neuroscience
and education: prime time to build the bridge. Nat. Neurosci. 17, 497–502.
doi: 10.1038/nn.3672

Simons, D. J., Boot,W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick,
D. Z., et al. (2016). Do ‘brain-training’ programs work? Psychol. Sci. Public

Interest Suppl. 17, 103–186. doi: 10.1177/1529100616661983
Spencer-Smith, M., and Klingberg, T. (2017). Working memory training. Wiley

Handbook Cogn. Control 46, 1199–1201. doi: 10.1002/9781118920497.ch28
Steinbeis, N., and McCrory, E. (2020). Editorial to the special issue on ‘on

mechanisms of cognitive training and transfer in development.’ Dev. Sci. 23,
1–4. doi: 10.1111/desc.12932

Suykens, J. A. K., and Vandewalle, J. (1999). Training multilayer perceptron
classifiers based on a modified support vector method. IEEE Trans. Neural

Netw. 10, 907–911. doi: 10.1109/72.774254
Titz, C., and Karbach, J. (2014). Working memory and executive functions:

effects of training on academic achievement. Psychol. Res. 78, 852–868.
doi: 10.1007/s00426-013-0537-1

Trappenberg, T. (2020). Fundamentals of Machine Learning. Oxford: Oxford
University Press.

Venkatraman, E. S. (2000). A Permutation test to compare receiver
operating characteristic curves. Int. Biometr. Soc. 56, 1134–1138.
doi: 10.1111/j.0006-341X.2000.01134.x

Vladisauskas, M., and Goldin, A. P. (2021). The cognitive training quandary : 20
years summarized. COJ Rev. Res. 3, 1–3. doi: 10.1344/joned.v1i1.31628

Wang, C., Jaeggi, S. M., Yang, L., Zhang, T., He, X., Buschkhuehl, M.,
et al. (2019). Narrowing the achievement gap in low-achieving children
by targeted executive function training. J. Appl. Dev. Psychol. 63, 87–95.
doi: 10.1016/j.appdev.2019.06.002

Wiemers, E. A., Redick, T. S., and Morrison, A. B. (2019). The influence of
individual differences in cognitive ability on working memory training gains.
J. Cogn. Enhanc. 3, 174–185. doi: 10.1007/s41465-018-0111-2

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflictof interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Vladisauskas, Belloli, Fernández Slezak and Goldin. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 7 March 2022 | Volume 5 | Article 788605

https://doi.org/10.1007/s41465-017-0049-9
https://doi.org/10.1111/desc.12854
https://doi.org/10.3389/fnbeh.2014.00221
https://doi.org/10.1037/0022-006X.59.1.12
https://doi.org/10.3758/s13421-013-0364-z
https://doi.org/10.1111/desc.12866
https://doi.org/10.1007/s41465-017-0054-z
https://doi.org/10.3389/fpsyg.2014.00390
https://doi.org/10.1207/S15324826AN0704_8
https://doi.org/10.1016/j.cobeha.2016.05.003
https://doi.org/10.1109/ICNN.1996.549118
https://doi.org/10.1016/S0031-3203(03)00038-4
https://doi.org/10.1175/825.1
https://doi.org/10.1016/j.dcn.2011.09.008
https://doi.org/10.1159/000366057
https://doi.org/10.1201/9780429186196-17
https://doi.org/10.1177/1745691616635612
https://doi.org/10.1177/0963721411429458
https://doi.org/10.3389/fnbot.2013.00021
https://doi.org/10.1109/RITA.2019.2909958
https://doi.org/10.1080/713755977
https://doi.org/10.1016/S0893-6080(97)00135-4
https://doi.org/10.1111/desc.12868
https://doi.org/10.1016/j.neuropsychologia.2003.12.012
https://doi.org/10.1525/collabra.203
https://doi.org/10.1080/00461520.2015.1036274
https://doi.org/10.3389/fpsyg.2014.00205
https://doi.org/10.1016/j.jpsychires.2021.03.043
https://doi.org/10.3389/fnbeh.2019.00064
https://doi.org/10.1038/nn.3672
https://doi.org/10.1177/1529100616661983
https://doi.org/10.1002/9781118920497.ch28
https://doi.org/10.1111/desc.12932
https://doi.org/10.1109/72.774254
https://doi.org/10.1007/s00426-013-0537-1
https://doi.org/10.1111/j.0006-341X.2000.01134.x
https://doi.org/10.1344/joned.v1i1.31628
https://doi.org/10.1016/j.appdev.2019.06.002
https://doi.org/10.1007/s41465-018-0111-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions
	Introduction
	Methods
	Data
	Model
	Features
	Classes
	The Supervised Algorithms
	Validation
	Data Analysis

	Results
	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


