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Abstract. This paper is concerned with the study of M -structures in spaces of polynomials. More

precisely, we discuss for E and F Banach spaces, whether the class of weakly continuous on bounded

sets n-homogeneous polynomials, Pw(nE,F ), is an M -ideal in the space of continuous n-homogeneous

polynomials P(nE,F ). We show that there is some hope for this to happen only for a �nite range of

values of n. We establish su�cient conditions under which the problem has positive and negative answers

and use the obtained results to study the particular cases when E = `p and F = `q or F is a Lorentz

sequence space d(w, q). We extend to our setting the notion of property (M) introduced by Kalton

which allows us to lift M -structures from the linear to the vector-valued polynomial context. Also, when

Pw(nE,F ) is an M -ideal in P(nE,F ) we prove a Bishop-Phelps type result for vector-valued polynomials

and relate norm-attaining polynomials with farthest points and remotal sets.

Introduction

M -ideals emerged in the geometric theory of Banach spaces as a generalization, to the Banach space

setting, of the closed two-sided ideals in a C∗-algebra. This notion, introduced by Alfsen and E�ros in

their seminal article [3] of 1972, leads us to a better understanding of the isometric structure of a Banach

space in terms of geometric and analytic properties of the closed unit ball of the dual space. To be more

precise, a closed subspace J of a Banach space X is an M-ideal in X, if its annihilator, J⊥, is the kernel

of a projection P on the dual space X∗ such that ‖x∗‖ = ‖P (x∗)‖+ ‖x∗−P (x∗)‖, for all x∗ ∈ X∗. When

J is an M -ideal in X, the canonical complement of J⊥ in X∗ is (isometrically) identi�ed with J∗. Then,

we may write X∗ = J⊥ ⊕1 J
∗, which in some sense tells us that there is a maximum norm structure

underlying the geometry of the unit ball of X and this structure is closely related to J . If it is possible

to decompose X as J ⊕∞ J̃ , for some closed subspace J̃ of X, we say that J is an M-summand of X.

Clearly, M -summands are M -ideals, but there exist subtle di�erences. For instance, c0 is an M -ideal

in `∞ and it is not an M -summand. Since M -ideals appeared, they have been intensively studied. A

comprehensive exposition of the main developments in this subject can be found in the outstanding book

by Hardmand, Werner and Werner [24].

The Gelfand-Naimark theorem states that any arbitrary C∗-algebra is isometrically ∗-isomorphic to

a C∗-algebra of bounded operators on a Hilbert space. Here the only norm closed two-sided ∗-ideal
is the subspace of compact operators. Then, it is natural to investigate under which conditions the

closed subspace J of compact operators between Banach spaces E and F , J = K(E,F ), results an M -

ideal in X = L(E,F ), the space of linear and bounded operators, endowed with the supremum norm.

During the last thirty years a number of papers have been devoted to this question (see, for example

[24, 25, 26, 27, 28, 30, 31]), where the case E = F is of special interest.
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In this paper we focus our study in determining the presence of an M -structure in the space of contin-

uous n-homogeneous polynomials between Banach spaces E and F , denoted by P(nE,F ). Here the lack

of linearity and, more speci�cally, the degree of homogeneity will play a crucial role. In the polynomial

setting, the space of compact operators is usually replaced by the space of homogeneous polynomials which

are weakly continuous on bounded sets, denoted by Pw(nE,F ). Recall that a polynomial P ∈ P(nE,F )

is compact if maps the unit ball of E into a relatively compact set in F and that P is in Pw(nE,F ) if

maps bounded weak convergent nets into convergent nets. For linear operators both properties, to be

compact and to be weakly continuous on bounded sets, produce the same subspace. For n-homogeneous

polynomials with n > 1, that coincidence is no longer true. Although any polynomial in Pw(nE,F ) is

compact (as it can be derived from results in [9] and [8]), the reverse inclusion fails. This is due to the

fact that continuous polynomials are not, in general, weak-to-weak continuous. Then, every scalar-valued

continuous polynomial is compact but it is not necessarily weakly continuous on bounded sets, as the

standard example P (x) =
∑

k x
2
k, for all x = (xk)k ∈ `2, shows. With this in mind, our main purpose is

to discuss whether Pw(nE,F ) is an M -ideal in P(nE,F ). In [16], the �rst author studied the analogous

question when F is the scalar �eld. We will see that the vector-valued case is not a mere generalization

of the scalar-valued case.

The problem of stating if Pw(nE,F ) is a proper subspace of P(nE,F ) is nontrivial at all. However,

when this is not the situation our question is trivially answered. We refer the reader to [4, 13, 22, 23],

where the equality Pw(nE,F ) = P(nE,F ) is studied.

As it happens for n-homogeneous polynomials in the scalar-valued case, the value of n for which

Pw(nE,F ) has the chance to be a nontrivial M -ideal in P(nE,F ) cannot be chosen arbitrarily. Thus,

our �rsts e�orts are focused to discuss this matter. In order to do so, following [24] and [16], we de�ne

the essential norm of a vector-valued polynomial P as the distance from P to the space Pw(nE,F ).

Also we describe the extreme points of the ball of the dual space of Pw(nE,F ). Then, combining this

with properties of the essential norm we obtain the range within we may expect to �nd an M -structure.

When Pw(nE,F ) is an M -ideal in P(nE,F ), the essential norm allows us to obtain a Bishop-Phelps

type theorem. We use this result to study the existence of farthest points and densely remotal sets.

These concepts are related to geometric properties such us the existence of exposed points, the Mazur

intersection property and norm attaining functions, see [11, 20]. These results appear in Section 1.

Section 2 is dedicated to give su�cient conditions on E and F so that Pw(nE,F ) is an M -ideal in

P(nE,F ). The main requirement stays around the concept of shrinking approximations of the identity.

When F is an M∞-space, without any further assumption on the space E, we prove that Pw(nE,F )

is a nontrivial M -ideal in P(nE,F ) for all but one possible value of n in the range of interest. For the

remaining value of n, we obtain the result when E satis�es some additional conditions, see Propositions 2.8

and 2.10.

In Section 3, we focus our attention on classical sequence spaces E and F , for E = `p (1 ≤ p <∞) and

F = `q or F = d(w, q) a Lorentz sequence space, (1 ≤ q < ∞). The questions of whether K(`p, `q) is an

M -ideal in L(`p, `q) and K(`p, d(w, q)) is an M -ideal in L(`p, d(w, q)) were previously addressed in [24]

and [30]. In [16], it was studied when Pw(n`p) is an M -ideal in P(n`p). We analyze here when Pw(n`p, `q)

is an M -ideal in P(n`p, `q) and when Pw(n`p, d(w, q)) is an M -ideal in P(n`p, d(w, q)). Giving conditions

on n, p, q and w we solve the problem for all the possible situations.
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In the last section we study the property (M), introduced by Kalton in [26] for Banach spaces, developed

later for operators by Kalton and Werner in [27] and �nally generalized to the scalar-valued polynomial

setting in [16]. Here, we present a natural extension to the vector-valued polynomial setting of the notions

mentioned before and establish the connection this property has with our main problem. We apply the

results obtained to give examples of M -ideals in vector-valued polynomial spaces de�ned on Bergman

spaces.

Before proceeding, we �x some notation and give basic de�nitions. Every time we write X,E or F we

will be considering Banach spaces over the real or complex �eld, K. The closed unit ball of X will be

noted by BX and the unit sphere by SX . Also, if x ∈ X and r > 0, B(x, r) will stand for the closed ball

in X with center at x and radius r. As usual, X∗ and X∗∗ will be the notations for the dual and bidual

of X, respectively. The space of linear bounded operators from E to E will be noted by L(E) and its

subspace of compact mappings will be noted by K(E).

A function P : E → F is said to be an n-homogeneous polynomial if there exists a (unique) symmetric

n-linear form
∨
P : E × · · · × E︸ ︷︷ ︸

n

→ F such that

P (x) =
∨
P (x, . . . , x),

for all x ∈ E. For scalar-valued mappings we will write P(nE) instead of P(nE,F ) to denote the space of

all continuous n-homogeneous polynomials from E to K. The space P(nE,F ) endowed with the supremum

norm

‖P‖ = sup{‖P (x)‖F : x ∈ BE},

is a Banach space. We may write ‖P (x)‖ instead of ‖P (x)‖F unless we prefer to emphasize the space

where the norm is taken.

Every polynomial P ∈ P(nE,F ) has two natural mappings associated: the linear adjoint or transpose

P ∗ ∈ L(F ∗,P(nE)) which is given by

(P ∗(y∗))(x) = y∗(P (x)), for every x ∈ E and y∗ ∈ F ∗,

and the polynomial P ∈ P(nE∗∗, F ∗∗), the canonical extension of P from E to E∗∗ obtained by weak-star

density, known as the Aron-Berner extension of P [5]. For each z ∈ E∗∗, ez will refer to the application

given by ez(P ) = P (z); for x ∈ E, ex denotes the evaluation map.

Besides the subspace of weakly continuous on bounded sets n-homogeneous polynomials which was

already introduced, we will consider the following classes. The �rst one is the space of n-homogeneous

polynomials that are weakly continuous on bounded sets at 0, which consists on those polynomials mapping

bounded weakly null nets into null nets. This space will be denoted by Pw0(nE,F ). We also have the

subspace formed by polynomials of �nite type, which are of the form
∑N

j=1(x
∗
j )
n ·yj , with x∗j ∈ E∗, yj ∈ F

for all j = 1, . . . , N and N ∈ N. The space of �nite type n-homogeneous polynomials will be denoted by

Pf (nE,F ). Its closure (in the supremum norm) is the space of approximable n-homogeneous polynomials

which will be noted by PA(nE,F ). When F is K we omit F and write Pw0(nE),Pf (nE) or PA(nE) for

instance.

Recall that if E does not contain a subspace isomorphic to `1, then, for any Banach space F , Pw(nE,F )

coincides with the space of weakly sequentially continuous polynomials Pwsc(nE,F ) [8, Proposition 2.12].

The space of n-homogeneous polynomials that are weakly sequentially continuous at 0 will be denoted
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Pwsc0(nE,F ). As usual, P(nE,F ) (Pw(E,F )) stands for the space of all continuous (weakly continuous on

bounded sets) polynomials from E to F . We refer to [18, 29] for the necessary background on polynomials

on Banach spaces.

Related to the study of M -structures there are two relevant geometric properties that we will use

repeatedly. The �rst one is a well-known characterization, called the 3-ball property, given by Alfsen and

E�ros in [3, Theorem A] to which the main part of their article is dedicated, see also [24, Theorem I.2.2

(iv)]:

Theorem A. Suppose that J is a closed subspace of X. The following are equivalent:

(i) J is an M -ideal.

(ii) J satis�es the 3-ball property: for every x1, x2, x3 ∈ X and positive numbers r1, r2, r3 such that

3⋂
j=1

B(xj , rj) 6= ∅ and B(xj , rj) ∩ J 6= ∅, j = 1, 2, 3,

it holds that
3⋂
j=1

B(xj , rj + ε) ∩ J 6= ∅ for all ε > 0.

(iii) J satis�es the (restricted) 3-ball property: for every y1, y2, y3 ∈ BJ , x ∈ BX and ε > 0, there

exists y ∈ J satisfying

‖x+ yj − y‖ ≤ 1 + ε, j = 1, 2, 3.

Note that one of the bene�ts of having the 3-ball property is that we have a criterium to decide if a

closed subspace of a Banach space X is an M -ideal in terms of an intersection of balls in X. Thus, there

is no need to appeal to the dual space to determine the existence of an M -structure. The 2-ball property

is not su�cient to this end, see [24]. When a closed subspace of X satis�es the 2-ball property we say

that we are in presence of a semi M-ideal structure.

The second property we referred, provides us with a nice description of the extreme points of the unit

ball of X∗ in terms of the sets of the extreme points of the unit balls of J⊥ and J∗, if J is an M -ideal in

X, see [24, Lemma 1.5]. As usual Ext(BX) denotes the set of extreme points of the unit ball of a Banach

space X.

Theorem B. Suppose that J is an M -ideal in X. Then, the extreme points of the unit ball of X∗ satisfy

Ext(BX∗) = Ext(BJ⊥) ∪ Ext(BJ∗).

Many authors investigated M -structures on Banach spaces. Hardmand, Werner and Werner summa-

rized the main results on this topic in their monograph [24]. The reader will �nd out that it is a very

clear and well-organized survey on M -ideals. Along this paper, we will recourse to the ideas and results

in it.
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1. General results

It is natural to begin our research with vector-valued polynomial versions of basic results stated for linear

operators in [24, Propositions VI.4.2 and VI.4.3] and for scalar-valued polynomials in [16, Propositions

1.1 and 1.2]. We omit the proofs since they are straightforward.

Proposition 1.1. (a) If Pw(nE,F ) is an M -summand in P(nE,F ), then Pw(nE,F ) = P(nE,F ).

(b) If Pw(nE,F ) is an M -ideal in P(nE,F ) and E1 ⊂ E, F1 ⊂ F are 1-complemented subspaces,

then Pw(nE1, F1) is an M -ideal in P(nE1, F1).

(c) The class of Banach spaces E and F for which Pw(nE,F ) is an M -ideal in P(nE,F ) is closed

with respect to the Banach-Mazur distance.

The knowledge of the extreme points of the unit ball of a Banach space provides a crucial tool in the

geometric study of the space. We borrow some ideas of [24] and [16] to examine the extreme points of

the unit ball of the dual spaces: P(nE,F )∗ and Pw(nE,F )∗.

Note that if J is a subspace of P(nE,F ) that contains Pf (nE,F ), then ex ⊗ y∗ ∈ J∗ is a norm one

element, for all x ∈ SE and y∗ ∈ SF ∗ . Indeed, the application ex⊗y∗ belongs to BJ∗ and since J contains

all �nite type n-homogeneous polynomials, it contains the elements of the form (x∗)n ·y, for every x∗ ∈ E∗

and y ∈ F , thus ‖ex ⊗ y∗‖ = 1.

Proposition 1.2. (a) If J is a subspace of P(nE,F ) that contains all �nite type n-homogeneous

polynomials, then

ExtBJ∗ ⊂
{
ex ⊗ y∗ : x ∈ SE , y∗ ∈ SF ∗

}w∗
,

where w∗ designates the topology σ(J∗, J).

(b) For the particular case J = Pw(nE,F ) we can be more precise:

ExtBPw(nE,F )∗ ⊂ {ez ⊗ y∗ : z ∈ SE∗∗ , y∗ ∈ SF ∗
}
.

Proof. (a) Through Hahn-Banach theorem and the comment made above, it easily follows that

BJ∗ = Γ
{
ex ⊗ y∗ : x ∈ SE , y∗ ∈ SF ∗

}w∗
.

Now, by Milman's theorem [21, Theorem 3.41] we derive the desired inclusion:

ExtBJ∗ ⊂
{
ex ⊗ y∗ : x ∈ SE , y∗ ∈ SF ∗

}w∗
.

(b) Suppose that J = Pw(nE,F ). Let us see that {ex ⊗ y∗ : x ∈ SE , y∗ ∈ SF ∗}
w∗ ⊂ {ez ⊗ y∗ : z ∈

BE∗∗ , y
∗ ∈ BF ∗

}
. If Φ ∈ {ex ⊗ y∗ : x ∈ SE , y∗ ∈ SF ∗}

w∗
, then there exist nets {xα}α in SE and {y∗α}α

in SF ∗ such that exα ⊗ y∗α
w∗→ Φ. Without loss of generality, we may assume that {xα}α is σ(E∗∗, E∗)-

convergent to an element z in BE∗∗ and {y∗α}α is σ(F ∗, F )-convergent to an element y∗ in BF ∗ .

Note that for any P ∈ Pw(nE,F ), its Aron-Berner extension P belongs to P(nE∗∗, F ) (see for instance

[14, Proposition 2.5]) and the compacity of P implies that P is w∗-continuous on bounded sets. Then, we

have that y∗α
(
P (xα)

)
→ y∗

(
P (z)

)
, for every P ∈ Pw(nE,F ). Thus, exα ⊗ y∗α

w∗→ ez ⊗ y∗ and therefore,

Φ = ez ⊗ y∗. When Φ is a norm one element we have that both z and y are elements in the respective

unit spheres SE∗∗ and SF ∗ . Now, the result follows. �
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In [16], the notion of the essential norm was extended from operators to scalar-valued polynomials and

was used to determine that Pw(nE) may be a nontrivial M -ideal of P(nE) for at most only one value of

n. For vector-valued polynomials, also through the essential norm, we obtain a �nite range of possible

values of n for which Pw(nE,F ) has the chance to be a nontrivial M -ideal of P(nE,F ). Recall that the

essential norm of a linear operator T is the distance from T to the subspace of compact operators. When

K(E,F ) is an M -ideal in L(E,F ), there is an explicit alternative formula to compute this essential norm

[24, Proposition VI.4.7]. Now we proceed to discuss de degrees of homogeneity for which our problem

might have a nontrivial solution.

De�nition 1.3. Let P be an n-homogeneous polynomial P ∈ P(nE,F ). The essential norm of P is

de�ned by

‖P‖es = d(P,Pw(nE,F )) = inf{‖P −Q‖ : Q ∈ Pw(nE,F )}.

In order to obtain a good description of the essential norm, we will make use of the transpose of a

polynomial. Note that if P ∈ P(nE,F ) and we denote by LP :
⊗n,s

πs
E → F the linearization of P , where

πs is the projective symmetric tensor norm; then P ∗ is the usual adjoint of LP .

Lemma 1.4. If P ∈ Pw(nE,F ) then P ∗ belongs to L(F ∗,Pw(nE)) and it is w∗-continuous on bounded

sets.

Proof. If P ∈ Pw(nE,F ) then P is compact and P ∗ ∈ L(F ∗,Pw(nE)). By [10, Proposition 3.2], P ∗ is a

compact operator. Since P ∗ = L∗P it follows that LP is compact and its adjoint P ∗ is w∗-continuous. �

Now we can obtain an alternative formula for the essential norm in the case that there is anM -structure.

Proposition 1.5. Suppose Pw(nE,F ) is an M -ideal in P(nE,F ). Then, for any P ∈ P(nE,F ),

‖P‖es = max{w(P ), w∗(P )},

where

w(P ) = sup
{

lim sup ‖P (xα)‖ : ‖xα‖ = 1, xα
w→ 0
}

and

w∗(P ) = sup
{

lim sup ‖P ∗(y∗α)‖ : ‖y∗α‖ = 1, y∗α
w∗→ 0

}
.

Proof. Let P ∈ P(nE,F ). For any Q ∈ Pw(nE,F ) and for any normalized weak-star null net {y∗α}α, it
holds

‖P −Q‖ = ‖P ∗ −Q∗‖ ≥
∥∥(P ∗ −Q∗)(y∗α)

∥∥ ≥ ∥∥P ∗(y∗α)
∥∥− ∥∥Q∗(y∗α)

∥∥.
Since, by Lemma 1.4,

∥∥Q∗(y∗α)
∥∥→ 0 it follows that ‖P −Q‖ ≥ lim sup ‖P ∗(y∗α)‖ and thus ‖P‖es ≥ w∗(P ).

The other inequality follows analogously. Thus,

‖P‖es ≥ max{w(P ), w∗(P )}.

Now suppose that Pw(nE,F ) is an M -ideal in P(nE,F ). Then we have

ExtBP(nE,F )∗ = ExtBPw(nE,F )⊥ ∪ ExtBPw(nE,F )∗ .

The essential norm of P , ‖P‖es, is the norm of the class of P in the quotient space P(nE,F )/Pw(nE,F )

and the dual of this quotient can be isometrically identi�ed with Pw(nE,F )⊥. Then, there exists Φ ∈
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ExtBPw(nE,F )⊥ such that Φ(P ) = ‖P‖es. So, Φ ∈ ExtBP(nE,F )∗ and, by Proposition 1.2 (a), Φ ∈{
ex ⊗ y∗ : x ∈ SE , y∗ ∈ SF ∗

}w∗
.

Chose nets {xα}α in SE and {y∗α}α in SF ∗ such that exα ⊗ y∗α
w∗→ Φ, where w∗ means the topology

σ(P(nE,F )∗,P(nE,F )). In passing to appropriate subnets, we can suppose that {xα}α is σ(E∗∗, E∗)-

convergent to an element z in BE∗∗ and {y∗α}α is σ(F ∗, F )-convergent to an element y in BF ∗ .

For any x∗ ∈ E∗ and y ∈ F , the polynomial (x∗)n · y belongs to Pw(nE,F ). This gives

0 = Φ((x∗)n · y) = lim
α
x∗(xα)ny∗α(y) = z(x∗)ny∗(y).

So it should be z = 0 or y∗ = 0. In the �rst case, {xα}α is weakly null and

‖P‖es = Φ(P ) = lim
α
y∗α (P (xα)) ≤ lim sup ‖P (xα)‖ ≤ w(P ).

In the second case, {y∗α}α is weak-star null and it follows similarly that ‖P‖es ≤ w∗(P ). �

As in the scalar-valued polynomial case this result enable us to narrow the possible values of n for

which Pw(nE,F ) could be anM -ideal in P(nE,F ). To see this, we extend the de�nition of critical degree

of a Banach space cd(E) given in [16] to the case of vector-valued polynomials.

If Pw(E,F ) 6= P(E,F ) we de�ne the critical degree of (E,F ) as:

cd(E,F ) = min{k ∈ N; Pw(kE,F ) 6= P(kE,F )}.

Note that if F = K then cd(E) = cd(E,K).

Remark 1.6. Since the same arguments from [13] and [6] used to state Remark 1.8 in [16] also work

for vector-valued polynomials we obtain that for Banach spaces E and F if Pw(E,F ) 6= P(E,F ) and

n = cd(E,F ),

• Pw(kE,F ) = Pw0(kE,F ) = P(kE,F ), for all k < n.

• Pw(nE,F ) = Pw0(nE,F ) $ P(nE,F ).

• Pw(kE,F ) $ Pw0(kE,F ) ⊂ P(kE,F ), for all k > n.

Observe that if a scalar-valued polynomial P ∈ P(nE) is not weakly continuous on bounded sets then,

for any y ∈ F , y 6= 0, the polynomial x 7→ P (x)y belongs to P(nE,F ) and it is not weakly continuous on

bounded sets. This says that, for any Banach space F ,

cd(E,F ) ≤ cd(E).

Note also that cd(E,F ) could be much smaller than cd(E). For instance, cd(`p, c0) = 1 while cd(`p) is

the integer number satisfying p ≤ cd(`p) < p+ 1.

Example 1.7. Let E = `p and F = `q, 1 < p, q <∞ or, more generally, E =
⊕

`p
Xm and F =

⊕
`q
Ym,

where Xm and Ym are �nite dimensional spaces. From [23] we can derive that the critical degree is the

integer number cd(E,F ) satisfying p
q ≤ cd(E,F ) < p

q + 1.

Lemma 1.8. Let P ∈ P(nE,F ) be a compact polynomial.

(a) If n < cd(E) then P is weakly continuous on bounded sets.

(b) w∗(P ) = 0.
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Proof. (a) If n < cd(E), then every scalar-valued n-homogeneous polynomial on E is weakly continuous

on bounded sets. Then, P is weak-to-weak continuous on bounded sets. So, for any bounded net {xα}α
in E such that xα

w→ x, we have P (xα)
w→ P (x). Being P compact, the bounded net {P (xα)}α should

have a convergent subnet. By a canonical argument we derive that P (xα)→P (x) and thus P is weakly

continuous on bounded sets.

(b) This is a consequence of the proof of Lemma 1.4. �

Proposition 1.9. Every polynomial in P(nE,F ) which is weakly continuous on bounded sets at 0 and

compact is weakly continuous on bounded sets if and only if n ≤ cd(E).

Proof. If n > cd(E), there exists a polynomial p ∈ Pw0(nE) \ Pw(nE). Then, for a �xed y ∈ F the

polynomial P (x) = p(x)y is weakly continuous on bounded sets at 0 and compact but it is not weakly

continuous on bounded sets.

Reciprocally, let n ≤ cd(E) and let P ∈ P(nE,F ) be a polynomial weakly continuous on bounded sets

at 0 and compact. We know from [10, Proposition 3.4] that, for 0 < k < n, any derivative dkP (x) is

compact. Thus, by Lemma 1.8 (a), we obtain that dkP (x) is weakly continuous on bounded sets, for all

0 < k < n. This fact together with the hypothesis of P being weakly continuous on bounded sets at 0

implies that P is weakly continuous on bounded sets. �

The previous results allow us to obtain an upper bound for the numbers n such that Pw(nE,F ) could

be an M -ideal in P(nE,F ).

Corollary 1.10. If Pw(nE,F ) is an M -ideal in P(nE,F ), then n ≤ cd(E).

Proof. By Lemma 1.8 (b), if P ∈ P(nE,F ) is weakly continuous on bounded sets at 0 and compact

then w(P ) = w∗(P ) = 0. If, in addition, Pw(nE,F ) is an M -ideal in P(nE,F ), Proposition 1.5 states

that ‖P‖es = 0 and so P is weakly continuous on bounded sets. Thus, by Proposition 1.9, it should be

n ≤ cd(E). �

Remark 1.11. Clearly, if n < cd(E,F ), Pw(nE,F ) is a trivial M -ideal in P(nE,F ). On the other hand,

by Corollary 1.10 if Pw(nE,F ) is an M -ideal in P(nE,F ) then n ≤ cd(E). Therefore, the problem of

whether Pw(nE,F ) is anM -ideal is worth being studied only for polynomials of degree n, with cd(E,F ) ≤
n ≤ cd(E).

The fact that Pw(nE,F ) is anM -ideal in P(nE,F ) has some incidence in the set of polynomials whose

Aron-Berner extension attains the norm. As we have for scalar-valued polynomials [16, Proposition

1.10], the following version of [24, Proposition VI.4.8] is a Bishop-Phelps type result for vector-valued

polynomials. The proof is omitted since it can be obtained as a slight modi�cation of the proof given in

[16].

Proposition 1.12. Let E and F be Banach spaces and suppose that Pw(nE,F ) is anM -ideal in P(nE,F ).

(a) If P ∈ P(nE,F ) is such that its Aron-Berner extension P does not attain its norm at BE∗∗, then

‖P‖ = ‖P‖es.
(b) The set of polynomials in P(nE,F ) whose Aron-Berner extension does not attain the norm is

nowhere dense in P(nE,F ).
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We �nish this section relating norm attaining polynomials with farthest points and remotal sets. The

study of the existence of farthest points in a set of a Banach space can be traced to the articles of

Asplund [11] and Edelstein [20]. This concept is related to several geometric properties of the space, like

the existence of exposed points and the Mazur intersection property.

Perhaps some de�nitions are in order. Let J be a subspace of a Banach space X. Fix x ∈ X, the

farthest distance from x to the unit ball of J is given by

ρ(x,BJ) = sup{‖x− y‖ : y ∈ BJ}.

A point x ∈ X has a farthest point in BJ if there exists y ∈ BJ such that ‖x− y‖ = ρ(x,BJ). The set

of points in X having farthest points in BJ is denoted by R(BJ). Then we have:

R(BJ) = {x ∈ X : ∃ y ∈ BJ such that ‖x− y‖ = ρ(x,BJ)} .

It is said that BJ is densely remotal in X if R(BJ) is dense in X and it is almost remotal in X if

R(BJ) contains a dense Gδ set.

In [12], Bandyopadhyay, Lin and Rao studied dense remotality of the ball of K(E,F ) in the space

L(E,F ). Adapting some of their ideas and applying the previous proposition, in Corollary 1.17, we

obtain a result about almost remotality of BPw(nE,F ) in P(nE,F ).

Lemma 1.13. For any P ∈ P(nE,F ) we have that

ρ
(
P,BPw(nE,F )

)
= ‖P‖+ 1.

Proof. It is clear that ρ
(
P,BPw(nE,F )

)
≤ ‖P‖+ 1, for every P ∈ P(nE,F ) and the equality is obvious for

the polynomial P ≡ 0. For the reverse inequality, given P ∈ P(nE,F ), P 6≡ 0, and ε > 0, �x x ∈ SE and

y∗ ∈ SF ∗ such that y∗(P (x)) > (1− ε)‖P‖. Now, take y ∈ SF and x∗ ∈ SE∗ satisfying y∗(y) > 1− ε and
x∗(x) = 1 and consider the polynomial Q = −(x∗)n · y ∈ BPw(nE,F ).

Then, we have

‖P −Q‖ = ‖P + (x∗)n · y‖ ≥ |y∗(P (x)) + x∗(x)ny∗(y)|

= y∗(P (x)) + y∗(y) > (1− ε) (‖P‖+ 1) ,

for all ε > 0, which proves the lemma. �

The relation between norm attaining linear functions and the sets of operators which admit farthest

points in the unit ball of the space of compact operators was studied in [12]. To simplify our statements

let us introduce the following notations:

NA (P(nE,F )) = {P ∈ P(nE,F ) : P attains its norm at BE},

AB −NA (P(nE,F )) = {P ∈ P(nE,F ) : P attains its norm at BE∗∗}.

Proposition 1.14. NA (P(nE,F )) ⊂ R
(
BPw(nE,F )

)
.

Proof. By the previous lemma, it is plain that the polynomial P ≡ 0 belongs to R
(
BPw(nE,F )

)
. Now,

if P ∈ NA (P(nE,F )), P 6≡ 0, there exists x ∈ SE such that ‖P (x)‖ = ‖P‖. Let x∗ ∈ SE∗ satisfying

x∗(x) = 1.
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Consider the polynomial Q = −(x∗)n · P (x)
‖P‖ ∈ BPw(nE,F ). So Q is a farthest point for P because

‖P −Q‖ =

∥∥∥∥P + (x∗)n · P (x)

‖P‖

∥∥∥∥ ≥ ∥∥∥∥P (x) +
P (x)

‖P‖

∥∥∥∥ = ‖P‖+ 1.

�

In [15], Choi and Kim proved that if E has the Radon-Nykodým property, then the set of norm attaining

polynomials of P(nE,F ) is dense in P(nE,F ). As a consequence of this result we obtain:

Corollary 1.15. If E has the Radon-Nykodým property, then BPw(nE,F ) is densely remotal in P(nE,F ).

When Pw(nE,F ) is an M -ideal in P(nE,F ), the set R
(
BPw(nE,F )

)
does not only contain the set of

norm attaining polynomials but it is also contained in the set of all the polynomials whose Aron-Berner

extension is norm attaining.

Proposition 1.16. If Pw(nE,F ) is anM -ideal in P(nE,F ), then R
(
BPw(nE,F )

)
⊂ AB−NA (P(nE,F )).

Proof. Let P ∈ R
(
BPw(nE,F )

)
. So, there exists Q ∈ BPw(nE,F ) such that ‖P − Q‖ = ‖P‖ + 1. Take

Φ ∈ ExtBP(nE,F )∗ satisfying

Φ(P −Q) = ‖P −Q‖ = ‖P‖+ 1.

Being Pw(nE,F ) an M -ideal in P(nE,F ), we should have that

Φ ∈ ExtBPw(nE,F )∗ or Φ ∈ ExtBPw(nE,F )⊥ .

If Φ ∈ ExtBPw(nE,F )⊥ , we obtain that Φ(P −Q) = Φ(P ) and so Φ(P ) = ‖P‖+ 1, which is not possible.

Hence, it should be Φ ∈ ExtBPw(nE,F )∗ and, by Proposition 1.2 (b), Φ = ez ⊗ y∗, for certain z ∈ SE∗∗
and y∗ ∈ SF ∗ . Therefore,

‖P‖+ 1 = Φ(P −Q) = y∗(P (z))− y∗(Q(z)) ≤ ‖P‖+ ‖Q‖ = ‖P‖+ 1.

It follows that y∗(P (z)) = ‖P‖ and so ‖P (z)‖ = ‖P‖, meaning that P ∈ AB −NA (P(nE,F )). �

As a consequence of Propositions 1.12, 1.14 and 1.16, we obtain:

Corollary 1.17. If E is re�exive and Pw(nE,F ) is an M -ideal in P(nE,F ), then

R
(
BPw(nE,F )

)
= NA (P(nE,F )) ,

and thus, P(nE,F ) \ R
(
BPw(nE,F )

)
is nowhere dense. This implies that BPw(nE,F ) is almost remotal in

P(nE,F ).

2. Sufficient conditions

In this section we present several kind of su�cient conditions which enable us to ensure that Pw(nE,F )

is an M -ideal in P(nE,F ). All of them involve bounded nets of compact operators on E. The following

lemma and proposition are the vector-valued versions of [16, Lemma 2.1 and Proposition 2.2], the proofs

of which are analogous to those in [16].

Lemma 2.1. Let E and F be Banach spaces and suppose that there exists a bounded net {Sα}α of linear

operators from E to E satisfying S∗α(x∗) → x∗, for all x∗ ∈ E∗. Then, for all P ∈ Pw(nE,F ), we have

that ‖P − P ◦ Sα‖ → 0.



M-STRUCTURES IN VECTOR-VALUED POLYNOMIAL SPACES 11

Proposition 2.2. Let E and F be Banach spaces and let n = cd(E,F ). Suppose that there exists a

bounded net {Kα}α of compact operators from E to E satisfying the following two conditions:

• K∗α(x∗)→ x∗, for all x∗ ∈ E∗.
• For all ε > 0 and all α0 there exists α > α0 such that for every x ∈ E,

‖Kα(x)‖n + ‖x−Kα(x)‖n ≤ (1 + ε)‖x‖n.

Then, Pw(nE,F ) is an M -ideal in P(nE,F ).

Remark 2.3. A Banach space E is an (Mp)-space (1 ≤ p ≤ ∞) if K(E⊕pE) is anM -ideal in L(E⊕pE).

This concept was introduced by Oja and Werner in [31]. By [24, Theorem VI.5.3], if E is an (Mp)-space

with p ≤ n, then there exists a bounded net {Kα}α of compact operators from E to E satisfying both

conditions of Proposition 2.2.

Recall that a Banach space E has a �nite dimensional decomposition {Ej}j if each Ej is a �nite

dimensional subspace of E and every x ∈ E has a unique representation of the form

x =
∞∑
j=1

xj , with xj ∈ Ej , for every j.

Associated to the decomposition there is a bounded sequence of projections {πm}m, given by πm
(∑∞

j=1 xj

)
=∑m

j=1 xj . The decomposition is called shrinking if π∗m(x∗)→ x∗, for all x∗ ∈ E∗.

It is clear that in this case {πm}m is a bounded sequence of compact operators that satis�es the �rst

item of the previous proposition. Thus, for spaces with shrinking �nite dimensional decompositions we

state the following simpler version of Proposition 2.2.

Corollary 2.4. Let E and F be Banach spaces and let n = cd(E,F ). Suppose that E has a shrinking

�nite dimensional decomposition with associate projections {πm}m such that:

• For all ε > 0 and all m0 ∈ N there exists m > m0 such that for every x ∈ E,

‖πm(x)‖n + ‖x− πm(x)‖n ≤ (1 + ε)‖x‖n.

Then, Pw(nE,F ) is an M -ideal in P(nE,F ).

Note that the hypothesis of Corollary 2.4 are ful�lled for the classical spaces E = `p and F = `q,

1 < p, q <∞, in the case of n = cd(E,F ) ≥ p. In this situation Pw(n`p, `q) is an M -ideal in P(n`p, `q).

The conditions in the following theorem were inspired by those of [24, Lemma VI.6.7]. They concern

bounded nets of compact operators both in E and in F .

Theorem 2.5. Let E and F be Banach spaces and suppose that there exist bounded nets of compact

operators {Kα}α ⊂ K(E) and {Lβ}β ⊂ K(F ) and numbers 1 < p, q <∞ such that:

• K∗α(x∗)→ x∗, for all x∗ ∈ E∗ and Lβ(y)→ y, for all y ∈ F .
• For all ε > 0 and all α0 there exists α > α0 such that for every x ∈ E,

‖Kα(x)‖p + ‖x−Kα(x)‖p ≤ (1 + ε)p‖x‖p.

• For all ε > 0 and all β0 there exists β > β0 such that for every y1, y2 ∈ F ,

‖Lβ(y1) + (Id− Lβ)(y2)‖q ≤ (1 + ε)q
(
‖y1‖q + ‖y2‖q

)
.
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Suppose also that n = cd(E,F ) satis�es that p ≤ nq and n < cd(E). Then, Pw(nE,F ) is an M -ideal in

P(nE,F ).

Proof. We prove that the 3-ball property holds. Let P1, P2, P3 ∈ BPw(nE,F ), Q ∈ BP(nE,F ) and ε > 0.

De�ne P = Q − (Id − Lβ)Q(Id −Kα). We want to show that P is weakly continuous on bounded sets

and ‖Q+ Pj − P‖ ≤ 1 + ε, for j = 1, 2, 3, for some convenient choice of α and β.

To see that P is weakly continuous on bounded sets, we write P = Q−Q(Id−Kα) + LβQ(Id−Kα).

The proof of [16, Proposition 2.2] shows that Q−Q(Id−Kα) is weakly continuous on bounded sets at 0

and since n = cd(E,F ), we have that Q−Q(Id−Kα) belongs to Pw(nE,F ). Also, as LβQ(Id−Kα) is

a compact polynomial and n < cd(E), Lemma 1.8 (a) says that it is in Pw(nE,F ).

Now, to show the (1 + ε)-bound, consider the inequality

‖Q+ Pj − P‖ ≤ ‖Q+ LβPjKα − P‖+ ‖Pj − LβPjKα‖.

On the one hand, we have:

‖Pj − LβPjKα‖ ≤ ‖Pj − PjKα‖+ ‖PjKα − LβPjKα‖

≤ ‖Pj − PjKα‖+ ‖Pj − LβPj‖‖Kα‖n.

By Lemma 2.1, ‖Pj − PjKα‖ → 0 with α. Also, since Lβ approximates the identity on compact sets and

the Pj 's are compact polynomials, we have that ‖Pj − LβPj‖‖Kα‖n → 0 with β, for all α.

Furthermore, we can �nd α and β such that:

‖Q+ LβPjKα − P‖ = sup
x∈BE

‖(Id− Lβ)Q(Id−Kα)(x) + LβPjKα(x)‖

≤ sup
x∈BE

(1 + ε) (‖Q(Id−Kα)(x)‖q + ‖PjKα(x)‖q)
1
q

≤ (1 + ε) sup
x∈BE

(‖(Id−Kα)(x)‖nq + ‖Kα(x)‖nq)
1
q

≤ (1 + ε) sup
x∈BE

(‖(Id−Kα)(x)‖p + ‖Kα(x)‖p)
n
p

≤ (1 + ε)(1 + ε)n = (1 + ε)n+1,

and the result follows. �

Remark 2.6. If E is an (Mp)-space and F is an (Mq)-space the conditions about the nets of compact

operators of the previous theorem are ful�lled.

Proposition 2.7. Let E =
⊕

`p
Xm and F =

⊕
`q
Ym, with Xm and Ym �nite dimensional spaces and

1 < p, q <∞. Then, for n = cd(E,F ), Pw(nE,F ) is an M -ideal in P(nE,F ).

Proof. As we note in Example 1.7, cd(E,F ) is the integer such that p
q ≤ cd(E,F ) < p

q + 1. Also we know

that cd(E) is the integer satisfying p ≤ cd(E) < p + 1. Thus, the result follows from Corollary 2.4 if

cd(E,F ) ≥ p and from Theorem 2.5 in the case of cd(E,F ) < p. �

In all the previous results (Proposition 2.2, Corollary 2.4 and Theorem 2.5) theM -structure is obtained

only in the case n = cd(E,F ). Let us show now some positive results for values of n greater than cd(E,F ).
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Proposition 2.8. Let E be a Banach space and F be an (M∞)-space. If n < cd(E), then Pw(nE,F ) is

an M -ideal in P(nE,F ).

Proof. Being F an (M∞)-space, by [24, Theorem VI.5.3], there exists a net {Lβ}β contained in the unit

ball of K(F ) satisfying Lβ(y)→ y for all y ∈ F such that for any ε > 0, there exists β0 with

(1) ‖Lβ(y1) + (Id− Lβ)(y2)‖ ≤
(

1 +
ε

2

)
max{‖y1‖, ‖y2‖},

for all β ≥ β0 and for any y1, y2 ∈ F . Let P1, P2, P3 ∈ BPw(nE,F ) and Q ∈ BP(nE,F ), we show that with

P = LβQ, choosing β properly, the 3-ball property is satis�ed.

First, note that by Lemma 1.8 (a), P is weakly continuous on bounded sets. Also, ‖Q + Pj − P‖ ≤
‖Q+LβPj −P‖+ ‖Pj −LβPj‖. Reasoning as in Theorem 2.5, we have that ‖Pj −LβPj‖ < ε

2 for β large

enough. Now, from (1) we obtain

‖Q+ LβPj − P‖ = ‖(Id− Lβ)Q+ LβPj‖ ≤
(

1 +
ε

2

)
max{‖Q‖, ‖Pj‖} =

(
1 +

ε

2

)
,

and the result follows. �

Remark 2.9. Let E be a Banach space such that cd(E) > 2 and let F be an in�nite dimensional (M∞)-

space. Then, for any degree n, with 1 ≤ n < cd(E), Pw(nE,F ) is a nontrivial M -ideal in P(nE,F ). This

is a simple consequence of the above proposition and the fact that cd(E,F ) = 1.

The next proposition somehow complements Proposition 2.8. It states that if F is an (M∞)-space, with

an additional hypothesis on E, then Pw(nE,F ) is an M -ideal in P(nE,F ) also in the case n = cd(E).

Proposition 2.10. Let F be an (M∞)-space and let E be a Banach space. If n = cd(E) and there exists

a bounded net of compact operators {Kα}α ⊂ K(E) satisfying both conditions:

• K∗α(x∗)→ x∗, for all x∗ ∈ E∗.
• For all ε > 0 and all α0 there exists α > α0 such that for every x ∈ E,

‖Kα(x)‖n + ‖x−Kα(x)‖n ≤ (1 + ε)‖x‖n,

then Pw(nE,F ) is an M -ideal in P(nE,F ).

Proof. Let P1, P2, P3 ∈ BPw(nE,F ), Q ∈ BP(nE,F ) and ε > 0. We will �nd P ∈ Pw(nE,F ) such that the

3-ball property is satis�ed. Reasoning as in Theorem 2.5, we �nd α and β so that ‖Pj − LβPjKα‖ < ε
2 .

Moreover, α and β may be chosen to satisfy at the same time ‖Kα(x)‖n + ‖x −Kα(x)‖n ≤ (1 + ε̃)‖x‖n

and ‖Lβ(y1) + (Id−Lβ)(y2)‖ ≤ (1 + ε̃) max{‖y1‖, ‖y2‖} for all y1, y2 ∈ F ; where {Lβ}β is a net in K(F ),

associated to the (M∞)-space F , and ε̃ is such that (1 + ε̃)2 ≤ 1 + ε
2 .

Let P be the polynomial P = Lβ(Q−Q(Id−Kα)). As in the proof of [16, Proposition 2.2], we can see

that P is weakly continuous on bounded sets at 0. Since n = cd(E) and P is compact, we may appeal to

Proposition 1.9 to derive that P is weakly continuous on bounded sets.

Also we have,

‖Q+ Pj − P‖ ≤ ‖Q+ LβPjKα − P‖+ ‖Pj − LβPjKα‖

≤ ‖(Id− Lβ)Q+ Lβ(PjKα +Q(Id−Kα))‖+
ε

2

≤ (1 + ε̃) sup
x∈BE

max{‖Q(x)‖, ‖PjKα(x) +Q(x−Kα(x))‖}+
ε

2
.
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Now, the hypothesis on E gives us

‖PjKα(x) +Q(x−Kα(x))‖ ≤ ‖Kα(x)‖n + ‖x−Kα(x)‖n ≤ (1 + ε̃),

for all x ∈ BE , and the result follows. �

Example 2.11. Let E = `p, with 1 < p < ∞, and let F be an (M∞)-space. As a consequence of the

previous propositions, since p ≤ cd(`p), Pw(n`p, F ) is an M -ideal in P(n`p, F ) for all 1 ≤ n ≤ cd(`p).

3. Polynomials between classical sequence spaces

This section is devoted to study whether Pw(nE,F ) is an M -ideal in P(nE,F ), for all the values of n

between cd(E,F ) and cd(E), in the cases E = `p and F = `q or F the Lorentz sequence space F = d(w, q),

1 < p, q <∞. Recall that given a non increasing sequence w = (wj)j of positive real numbers satisfying

w ∈ c0 \ `1, the Lorentz sequence space d(w, q) is the space of all sequences x = (xj)j ⊂ K, such that

sup
σ

∞∑
j=1

wj |xσ(j)|q <∞,

(where σ varies on the set of permutations of N) endowed with the norm ‖x‖d(w,q) = sup
σ

( ∞∑
j=1

wj |xσ(j)|q
) 1
q
.

We will consider weights w = (wj)j so that w1 = 1, which implies that the canonical vectors of d(w, q)

form a basis of norm 1 elements.

We begin our study with a result about polynomials from a general Banach space E to a Banach space

F having a �nite dimensional decomposition (FDD) {Fn}n. As usual, {πm}m denotes the sequence of

projections associated to the decomposition; that is πm(y) =
∑m

j=1 yj for all y =
∑∞

j=1 yj , with yj ∈ Fj .
Also, we denote by πm = Id − πm. When the FDD is unconditional with unconditional constant 1, we

have that ‖πm‖ ≤ 1 and ‖πm + πk‖ ≤ 1, for all k ≥ m. In the sequel, we will use, without further

mentioning, that for any Banach space E and any Q ∈ Pw(nE,F ), ‖πmQ − Q‖ → 0, or equivalently,

‖πmQ‖ → 0, both claims can be derived from the fact that Q is compact.

The following proposition gives conditions under which, if F is a Banach space with 1-unconditional

FDD, Pw(nE,F ) is not a semiM -ideal in P(nE,F ). This is a polynomial generalization of [30, Proposition

2] and our proof is modeled on the proof given in that article. From this, it is obviously inferred that

Pw(nE,F ) is not an M -ideal in P(nE,F ).

Proposition 3.1. Let E and F be Banach spaces such that F has an unconditional FDD with un-

conditional constant equal to 1 and associated projections {πm}m. Suppose that there exist polynomials

P ∈ P(nE,F ) and Q ∈ Pw(nE,F ) and numbers δ > 0 and m0 ∈ N such that:

• 0 < ‖Q‖ ≤ ‖P‖ < δ,

• ‖πmP +Q‖ ≥ δ, for all m ≥ m0.

Then, Pw(nE,F ) is not a semi M -ideal in P(nE,F ).

Proof. Fix ε > 0 so that ε < δ−‖P‖
2 . Since ‖πmQ‖ → 0, we may assume that ‖πmQ‖ < ε

3 , for all m ≥ m0.

Now, �x m ≥ m0 and consider the following two closed balls of radius ‖P‖: B1 = B(πmP +Q, ‖P‖) and
B2 = B(πmP −Q, ‖P‖). Note that πmP ∈ B1 ∩B2, Q ∈ B1 ∩ Pw(nE,F ) and −Q ∈ B2 ∩ Pw(nE,F ).
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If Pw(kE,F ) is a semi M -ideal, then for any r > ‖P‖, the intersection B(πmP + Q, r) ∩ B(πmP −
Q, r) ∩ Pw(nE,F ) is non void. Take r = ‖P‖+δ

2 − ε and suppose that there exists R ∈ B(πmP + Q, r) ∩
B(πmP −Q, r) ∩ Pw(nE,F ). Since ‖πkR‖ → 0, we may choose k ≥ m such that ‖πkR‖ < ε/3. To get a

contradiction we estimate ‖πkP +Q‖. Note that

(2) 2‖πkP +Q‖ ≤ ‖πkP + πmQ− πmR‖+ ‖πkP + πmQ+ πmR‖+ 2‖πmQ‖.

From the equality (πm + πk)(πmP +Q−R) = πkP + πmQ− πmR+ πkQ− πkR, we obtain:

‖πkP + πmQ− πmR‖ ≤ ‖πm + πk‖‖πmP +Q−R‖+ ‖πkQ‖+ ‖πkR‖ < r +
2ε

3
.

Also, we have that ‖πkP + πmQ + πmR‖ = ‖πkP − πmQ − πmR‖, since F has 1-unconditional �nite

dimensional decomposition. Proceeding as before, we obtain:

‖πkP − πmQ− πmR‖ ≤ ‖πm + πk‖‖πmP −Q−R‖+
2ε

3
< r +

2ε

3
.

Finally, using (2), we have that

2δ ≤ 2‖πkP +Q‖ < 2r + 2ε = ‖P‖+ δ < 2δ.

Thus, we conclude that Pw(nE,F ) is not a semi M -ideal in P(nE,F ). �

Now we can complete the case E = `p and F = `q.

Theorem 3.2. Let n = cd(`p, `q).

(a) Pw(n`p, `q) is an M -ideal in P(n`p, `q).

(b) Pw(k`p, `q) is not a semi M -ideal in P(k`p, `q), for all k > n.

Proof. Statement (a) follows from Proposition 2.7. To prove statement (b) take k > n. We will construct

polynomials P ∈ P(k`p, `q) and Q ∈ Pw(k`p, `q) satisfying: ‖P‖ = ‖Q‖ and ‖πmP + Q‖ ≥ δ > ‖P‖,
for some δ > 0, where {πm}m is the sequence of projections associated to the canonical basis of `q and

πm = Id− πm, for all m ∈ N.

We have that k − 1 ≥ cd(`p, `q) ≥ p
q , as shown in Example 1.7, so we may de�ne the continuous

k-homogeneous polynomial P (x) = e∗1(x)(xk−1j )j≥2. To compute the norm of P , we look, for each x ∈ `p,
at the inequality

‖P (x)‖`q = |x1|
( ∞∑
j=2

|xj |(k−1)q
) 1
q ≤ |x1|

( ∞∑
j=2

|xj |p
) k−1

p
.

Then, ‖P‖ ≤ max{abk−1 : ap + bp = 1, a, b ≥ 0} =
[
1
k (1− 1

k )k−1
] 1
p . Now, considering

x̃ =
(
1
k

) 1
p e1 +

(
1− 1

k

) 1
p e2,

we obtain a norm one element where P attains the bound
[
1
k (1− 1

k )k−1
] 1
p .
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Let Q ∈ Pw(k`p, `q) be the polynomial Q(x) = ‖P‖e∗1(x)ke1. It is clear that ‖P‖ = ‖Q‖. Take m ≥ 1,

and x̃ = ( 1k )
1
p e1 + (1− 1

k )
1
p em+2, then ‖x̃‖`p = 1 and

‖πmP +Q‖ ≥ ‖(πmP +Q)(x̃)‖`q =
∥∥∥( 1k )

1
p (1− 1

k )
k−1
p em+1 + ‖P‖( 1k )

k
p e1

∥∥∥
`q

= ‖P‖
(

1 + ( 1k )
kq
p

) 1
q
.

Then, with δ =
(

1 + ( 1k )
kq
p

) 1
q
> 1, which is independent of m, we obtain the inequality we were looking

for. And the theorem is proved. �

Now we focus our attention on spaces of polynomials from `p to d(w, q), 1 < p, q < ∞. We study

whether Pw(k`p, d(w, q)) is an M -ideal in P(k`p, d(w, q)) for k ≥ cd(`p, d(w, q)). To this end we extend to

the vector-valued case a couple of results of [17] about polynomials from spaces with �nite dimensional

decompositions.

Lemma 3.3. Let E be a Banach space which has an unconditional FDD with associated projections

{πm}m. For any �xed subsequence {mj}j of N, let σj = πmj − πmj−1, for all j. Given P ∈ P(nE,F ), the

application

P̃ (x) =
∞∑
j=1

P (σj(x)), for all x ∈ E,

de�nes a continuous n-homogeneous polynomial from E to F .

Proof. We �rst show that the series
∑∞

j=1 P (σj(x)) is convergent for every x ∈ E. Indeed, by [17,

Proposition 1.3], there exists C > 0 such that

∥∥∥ M∑
j=N

P (σj(x))
∥∥∥ ≤ sup

y∗∈BF∗

M∑
j=N

|y∗ ◦ P (σj(x))|

= sup
y∗∈BF∗

M∑
j=N

|y∗ ◦ P (σj(πmM (x)− πmN−1(x)))|

≤ C‖P‖‖πmM (x)− πmN−1(x)‖n,

which converges to 0 with M and N . Then, P̃ (x) is well de�ned and ‖P̃‖ ≤ C‖P‖. �

Recall that whenever a Banach space E has a shrinking FDD, by [8], Pw(nE,F ) = Pwsc(nE,F ). This

allows us to work with sequences instead of nets.

Proposition 3.4. Let E be a Banach space with an unconditional FDD and let F be a Banach space.

For any n ∈ N, the following are equivalent:

(i) P(nE,F ) = Pwsc(nE,F ).

(ii) P(nE,F ) = Pwsc0(nE,F ).

Proof. By means of the previous lemma, the scalar valued result given in [17, Corollary 1.7] (see also [13])

can be easily modi�ed to obtain this vector valued version. �
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In [30], Eve Oja studies when K(`p, d(w, q)) is an M -ideal in L(`p, d(w, q)). In Proposition 1 of that ar-

ticle, she establishes a criterium to ensure that every continuous linear operator is compact. A polynomial

version of this result can be stated as follows.

Proposition 3.5. Let {ej}j and {fj}j be sequences in Banach spaces E and F , respectively, satisfying:

• For any semi-normalized weakly null sequence {xm}m ⊂ E, there exists a subsequence {xmj}j and
an operator T ∈ L(E) such that T (ej) = xmj , for all j.

• For any semi-normalized weakly null sequence {ym}m ⊂ F , there exists a subsequence {ymj}j and
an operator S ∈ L(F ) such that S(ymj ) = fj, for all j.

• For any subsequence {ejl}l of {ej}j, there exists an operator R ∈ L(E) such that R(el) = ejl , for

all l.

Take n < cd(E) and suppose that it does not exist a polynomial P ∈ P(nE,F ) such that P (ej) = fj, for

every j. Then, P(nE,F ) = Pwsc0(nE,F ).

Proof. Suppose there exists P ∈ P(nE,F ) which is not in Pwsc0(nE,F ). Then, there exists a weakly null

sequence (xm)m such that ‖P (xm)‖ > ε, for some ε > 0 and all m. As n < cd(E), (P (xm))m is weakly

null. Now, we may �nd a subsequence (xmj )j and operators R, T ∈ L(E) and S ∈ L(F ) satisfying:

ej
T◦R−→ xmj

P−→ P (xmj )
S−→ fj ,

which is a contradiction since S ◦ P ◦ T ◦R belongs to P(nE,F ). �

Remark 3.6. If the Banach space E has an unconditional basis {ej}j with coordinate functionals {e∗j}j
and {fj}j is a sequence in the Banach space F, we derive from Lemma 3.3 that the existence of a

polynomial P ∈ P(nE,F ) such that P (ej) = fj , for all j, is equivalent to the existence of the polynomial

P̃ ∈ P(nE,F ) given by

P̃ (x) =
∞∑
j=1

(
e∗j (x)

)n
fj , for all x ∈ E.

When E and F are Banach sequence spaces with canonical bases {ej}j and {fj}j respectively, we write

the polynomial above as P̃ (x) = (xnj )j .

Let 1 < p, q < ∞. To study whether Pw(n`p, d(w, q)) is an M -ideal in P(n`p, d(w, q)) for n ≥
cd(`p, d(w, q)), we need �rst to establish the value of the critical degree, cd(`p, d(w, q)). To this end

and in view of the previous remark and proposition, the point is to determine the values of n, p and q

such that the polynomial x 7→ (xnj )j , from `p to d(w, q), is well de�ned. For 1 ≤ r < ∞ we use the

standard notation s = r∗ to denote de conjugate number of r: 1
r + 1

s = 1.

Proposition 3.7. The polynomial P (x) = (xnj )j belongs to P(n`p, d(w, q)) if and only if one of the

following two conditions holds:

(a) n ≥ p
q . In this case, ‖P‖ = 1.

(b) n < p
q and w ∈ `s, for s = ( p

nq )∗. In this case, ‖P‖ = ‖w‖
1
q

`s
.
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Proof. Let (ej)j and (fj)j be the canonical bases of `p and d(w, q), respectively. Suppose that n ≥ p
q , as

‖w‖∞ = 1, we have

‖P (x)‖d(w,q) = sup
σ

( ∞∑
j=1

wj |xσ(j)|nq
) 1
q ≤ ‖x‖n`p .

Then, P is a well de�ned polynomial with norm less than or equal to 1. Also, P (ej) = fj implies ‖P‖ = 1.

Now, suppose that n < p
q and w ∈ `s, with s = ( p

nq )∗. Put W = ‖w‖`s , by Hölder inequality, we have

‖P (x)‖d(w,q) = sup
σ

( ∞∑
j=1

wj |xσ(j)|nq
) 1
q ≤W

1
q ‖x‖n`p .

Thus, ‖P‖ ≤W
1
q and considering x̃ = W

− s
p (w

s
p

j )j ∈ S`p , we obtain that ‖P‖ = W
1
q = ‖w‖

1
q

`s
.

Finally, suppose that n < p
q and w 6∈ `s. Then, there exists (bj)j ∈ ` p

nq
with b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0

such that the series
∑∞

j=1wjbj does not converge. Taking x̃ ∈ `p, x̃ = (b
1
nq

j )j we have that P (x̃) = (b
1
q

j )j 6∈
d(w, q). Now, the proof is complete. �

Proposition 3.8. Pw(n`p, d(w, q)) = P(n`p, d(w, q)) if and only if n < p
q and w 6∈ `s, with s = ( p

nq )∗.

Proof. By the previous proposition, whenever n ≥ p
q or n < p

q and w ∈ `s, s = ( p
nq )∗, the polynomial

P (x) = (xnj )j belongs to P(n`p, d(w, q)) and fails to be weakly continuous on bounded sets.

For the converse, by Remark 3.6 and Proposition 3.7, we have that it does not exist P ∈ P(n`p, d(w, q))

such that P (ej) = fj , for every j. Finally, as n < p
q ≤ p ≤ cd(`p), all the hypothesis of Proposition 3.5

are ful�lled. Therefore, P(n`p, d(w, q)) = Pwsc0(n`p, d(w, q)). Now, by Proposition 3.4, P(n`p, d(w, q)) =

Pwsc(n`p, d(w, q)) and the result follows from [8], since weakly sequentially continuous polynomials and

weakly continuous polynomials on bounded sets coincide on `p. �

Let n = cd(`p, d(w, q)). Taking into account that for every k < n, any polynomial in P(k`p, d(w, q)) is

weakly continuous on bounded sets, from the last proposition we derive that there are two possible values

for n:

(I) p
q ≤ n <

p
q + 1 and w 6∈ `( p

(n−1)q

)∗ , or
(II) n < p

q and w ∈ `( p
nq

)∗ \ `( p
(n−1)q

)∗ .
Theorem 3.9. Let n = cd(`p, d(w, q)).

(a) If n and w satisfy condition (I) above, then

• Pw(n`p, d(w, q)) is an M -ideal in P(n`p, d(w, q)), and

• Pw(k`p, d(w, q)) is not a semi M -ideal in P(k`p, d(w, q)), for all k > n.

(b) If n and w satisfy condition (II) above, then Pw(k`p, d(w, q)) is not a semiM -ideal in P(k`p, d(w, q)),

for all k ≥ n.

Proof. Suppose n and w satisfy condition (I) above. Then, n = cd(`p, d(w, q)) ≥ p
q and cd(`p) is the

integer number satisfying p ≤ cd(`p) < p + 1. If n < cd(`p), the hypothesis of Theorem 2.5 are ful�lled.

If n = cd(`p) we may apply Proposition 2.2. In both cases the conclusion follows.
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Now, take k > cd(`p, d(w, q)). According to Proposition 3.1, the result is proven if we �nd polynomials

P ∈ P(k`p, d(w, q)) and Q ∈ Pw(k`p, d(w, q)) such that there exists δ > 0 with ‖P‖ = ‖Q‖ and ‖πmP +

Q‖ ≥ δ > ‖P‖, for all m.

By Proposition 3.7, as k−1 ≥ p
q , the mapping R(x) = (xk−1j )j≥2 is a well de�ned norm one polynomial.

Then, P (x) = e∗1(x)R(x) belongs to P(k`p, d(w, q)). In order to compute its norm, take x so that

‖x‖`p = 1,

‖P (x)‖d(w,q) = |x1|‖R(x)‖d(w,q) ≤ |x1|‖(xj)j≥2‖k−1`p
≤
(
1
k

) 1
p
(

1− 1
k

) k−1
p
,

where the last inequality was shown in the proof of Theorem 3.2. Now, with x̃ = ( 1k )
1
p e1+(1− 1

k )
1
p e2 ∈ S`p

we have that P (x̃) = ( 1k )
1
p (1− 1

k )
k−1
p e1, whence ‖P‖ = ( 1k )

1
p (1− 1

k )
k−1
p .

Let Q be the weakly continuous on bounded sets polynomial given by Q = ‖P‖(e∗1)k · e1. Then,

‖Q‖ = ‖P‖ and x̃ = ( 1k )
1
p e1 + (1− 1

k )
1
p em+2, for m ≥ 1, is a norm one vector so that

‖(πmP +Q)(x̃)‖d(w,q) = ‖P‖
∥∥∥em+1 + ( 1k )

k
p e1

∥∥∥
d(w,q)

= ‖P‖
(

1 + w2(
1
k )

kq
p

) 1
q
> ‖P‖,

which completes the proof of (i).

To prove (ii), take n and w satisfying condition (II) and take k ≥ n. Let us denote s = ( p
nq )∗ = p

p−nq
and W = ‖w‖`s . By Proposition 3.7 (b), the n-homogeneous polynomial R(x) = (xnj )j satis�es

‖R(x̃)‖d(w,q) = ‖R‖ = W
1
q , where x̃ = W

− s
p (w

s
p

j )j .

Observe that x∗ = (w
s
p∗
j )j belongs to `p∗ and, as a continuous functional, it also attains its norm at x̃:

x∗(x̃) = ‖x∗‖ = W
s
p∗ .

Now we are ready to construct two polynomials P and Q ful�lling the statement of Proposition 3.1. Let

P ∈ P(k`p, d(w, q)) and Q ∈ Pw(k`p, d(w, q)) be given by

P (x) = x∗(x)k−nR(x) and Q(x) = W
1
q
− sn
p∗ x∗(x)ke1.

It is easy to see that

‖P (x̃)‖d(w,q) = ‖P‖ = W r = ‖Q(x̃)‖d(w,q) = ‖Q‖, where r =
s(k − n)

p∗
+

1

q
.

Finally,

‖πmP +Q‖ ≥ ‖(πmP +Q)(x̃)‖d(w,q) =

∥∥∥∥∥∥W re1 +W
s(k−n)
p∗

∞∑
j=m+1

x̃nj ej

∥∥∥∥∥∥
d(w,q)

= W r

1 +W−1
∞∑
j=2

wj |x̃m−1+j |nq
 1
q

> W r = ‖P‖.

This completes the proof of the theorem. �
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4. Polynomial property (M)

Property (M) was introduced by Kalton in [26]. It is a geometric property relating the norm of the

traslation by a weakly null net of any two elements of the space. Namely, a Banach space X has property

(M) if for any x, x̃ ∈ X such that ‖x‖ ≤ ‖x̃‖, and any bounded weakly null net (xα)α in X, it holds

that lim sup ‖x + xα‖ ≤ lim sup ‖x̃ + xα‖. An operator version of this property was given in [27]. Later

on, in [16], it is extended to the scalar-valued polynomial context. In all these cases, these properties

have incidence in the correspondent M -ideal problems. To study M -structures in spaces of vector-valued

polynomials, we consider a suitable property (M), which is the result of a natural combination of the

de�nitions given for operators and scalar-valued polynomials. Before going on, let us state the vector-

valued versions of [16, Lemma 3.1 and Theorem 3.2].

Lemma 4.1. If Pw(nE,F ) is an M -ideal in P(nE,F ) then, for each P ∈ P(nE,F ) there exists a bounded

net {Pα}α ⊂ Pw(nE,F ) such that Pα(x)→ P (x), for all x ∈ E.

Proof. Fix P ∈ P(nE,F ). By [24, Remark I.1.13], we may consider {Qα}α a bounded net in Pw(nE,F )

such that Qα → P in the topology σ
(
P(nE,F ),Pw(nE,F )∗

)
.

Since ex ⊗ y∗ belongs to Pw(nE,F )∗, y∗(Qα(x)) = 〈ex ⊗ y∗, Qα〉 → 〈ex ⊗ y∗, P 〉 = y∗(P (x)), for all

x ∈ E and all y∗ ∈ F ∗. This says that Qα(x)
w→ P (x), for all x ∈ E, which can be described, in analogy

to the operator setting, as Qα → P in the WPT, the �weak polynomial topology�.

We can also consider on P(nE,F ) the �strong polynomial topology�, SPT, naturally meaning pointwise

convergence of nets. Both topologies, the WPT and the SPT, are locally convex and have the same

continuous functionals (the proof of [19, Theorem VI.1.4] works also for polynomials). Thus, as in the

linear case, we derive that the closure of any convex set in the strong polynomial topology coincides with

its closure in the weak polynomial topology.

Then, we may �nd Pα, a convex combination of Qα, converging pointwise to P . �

As a consequence of [32, Proposition 2.3] and the previous lemma, we have the following result which

can be proved analogously to [32, Theorem 3.1]:

Theorem 4.2. Let E and F be Banach spaces. The following are equivalent:

(i) Pw(nE,F ) is an M -ideal in P(nE,F ).

(ii) For all P ∈ P(nE,F ) there exists a net {Pα}α ⊂ Pw(nE,F ) such that Pα(x) → P (x), for all

x ∈ E and

lim sup ‖Q+ P − Pα‖ ≤ max{‖Q‖, ‖Q‖es + ‖P‖}, for all Q ∈ P(nE,F ).

(iii) For all P ∈ P(nE,F ) there exists a net {Pα}α ⊂ Pw(nE,F ) such that Pα(x) → P (x), for all

x ∈ E and

lim sup ‖Q+ P − Pα‖ ≤ max{‖Q‖, ‖P‖}, for all Q ∈ Pw(nE,F ).

Now we state the property (M) for a vector-valued polynomial.
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De�nition 4.3. Let P ∈ P(nE,F ) with ‖P‖ ≤ 1. We say that P has property (M) if for all u ∈ E,
v ∈ F with ‖v‖ ≤ ‖u‖n and for every bounded weakly null net {xα}α ⊂ E, it holds that

lim sup
α
‖v + P (xα)‖ ≤ lim sup

α
‖u+ xα‖n.

Note that every P ∈ Pw(nE,F ) with ‖P‖ ≤ 1 has property (M). Analogously to [27, Lemma 6.2], we

can prove:

Lemma 4.4. Let P ∈ P(nE,F ) with ‖P‖ ≤ 1. If P has property (M) then for all nets {uα}α and {vα}α
contained in compact sets of E and F respectively, with ‖vα‖ ≤ ‖uα‖n and for every bounded weakly null

net {xα}α ⊂ E, it holds that

lim sup
α
‖vα + P (xα)‖ ≤ lim sup

α
‖uα + xα‖n.

De�nition 4.5. We say that a pair of Banach spaces (E,F ) has the n-polynomial property (M) if

every P ∈ P(nE,F ) with ‖P‖ ≤ 1 has property (M).

The next two results can be proved mimicking the proofs of Proposition 3.7 and Theorem 3.9 of [16].

Proposition 4.6. If Pw(nE,F ) is an M -ideal in P(nE,F ) and n = cd(E,F ) then (E,F ) has the n-

polynomial property (M).

Theorem 4.7. Let E and F be Banach spaces and suppose that there exists a net of compact operators

{Kα}α ∈ K(E) satisfying the following two conditions:

• Kα(x)→ x, for all x ∈ E and K∗α(x∗)→ x∗, for all x∗ ∈ E∗.
• ‖Id− 2Kα‖ −→

α
1.

Suppose also that n = cd(E,F ). Then, Pw(nE,F ) is an M -ideal in P(nE,F ) if and only if (E,F ) has

the n-polynomial property (M).

Sometimes it is possible to infer M -structures in the space of linear continuous operators from the

existence of geometric structures on the underlying space. For instance, it is proved in [24, Theorem

VI.4.17] that K(E) is an M -ideal in L(E) if and only if E has property (M) and satis�es both conditions

of the theorem above. A similar result [16, Theorem 3.9] is obtained in the scalar-valued polynomial

setting for n = cd(E) using the polynomial property (M). The following proposition (which is the vector-

valued polynomial version of [24, Lemma VI.4.14] and [16, Proposition 3.10]) paves the way to connect

the linear M -structure with M -ideals in vector valued polynomial spaces.

Proposition 4.8. Let E and F be Banach spaces and n = cd(E,F ) < cd(E). If E and F have the

property (M), then (E,F ) has the n-polynomial property (M).

Proof. Let P ∈ P(nE,F ) with ‖P‖ = 1. Fix u ∈ E, v ∈ F with ‖v‖ ≤ ‖u‖n and a bounded weakly null

net {xα}α ⊂ E. We want to prove that

lim sup
α
‖v + P (xα)‖ ≤ lim sup

α
‖u+ xα‖n.

Given ε > 0, take x ∈ SE such that ‖P (x)‖ > 1 − ε and x̃ = ‖v‖
1
nx. Then, (1 − ε)‖v‖ < ‖P (x̃)‖ ≤

‖x̃‖ ≤ ‖u‖. As n < cd(E), every scalar valued polynomial in P(nE) is weakly continuous on bounded

sets. Then, P is weak-to-weak continuous and P (xα)
w→ 0. Therefore, since F has property (M),
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lim sup
α
‖(1− ε)v + P (xα)‖ ≤ lim sup

α
‖P (x̃) + P (xα)‖

= lim sup
α
‖P (x̃+ xα)‖

≤ lim sup
α
‖x̃+ xα‖n

≤ lim sup
α
‖u+ xα‖n,

where the last inequality holds since E has property (M). Now, letting ε → 0 we obtain the desired

inequality.

If ‖P‖ < 1, the result follows from the previous case through the following convex combination

v + P (xα) =
1 + ‖P‖

2

(
v +

P

‖P‖
(xα)

)
+

1− ‖P‖
2

(
v − P

‖P‖
(xα)

)
.

�

Now we can lift M -structures from the linear to the vector-valued polynomial context. This is done for

the particular case of n-homogeneous polynomials when n is the critical degree of the pair (E,F ) and it

is strictly less than the critical degree of the domain space E. We do not know if the result remains true

even for the case n = cd(E,F ) = cd(E).

Corollary 4.9. Let E and F be Banach spaces and n = cd(E,F ) < cd(E). If K(E) is an M -ideal in

L(E) and F has property (M), then Pw(nE,F ) is an M -ideal in P(nE,F ).

Proof. If K(E) is an M -ideal in L(E), appealing to [24, Theorem VI.4.17], E has property (M) and we

may �nd {Kα}α ⊂ K(E) a net of compact operators satisfying both conditions of Theorem 4.7. By

Proposition 4.8, (E,F ) has the n-polynomial property (M). Now, we may apply Theorem 4.7 to derive

the result. �

We �nish this section applying the previous result to give some examples of M -ideals of polynomials

between Bergman and `p spaces.

Example 4.10. The Bergman space Bp is the space of all holomorphic functions in Lp(D, dxdy), where D
is the complex disc. If 1 < p <∞, Bp is isomorphic to `p [33, Theorem III.A.11] and so, for 1 < p, q <∞,

cd(`p, `q) = cd(`p, Bq) = cd(Bp, `q) = cd(Bp, Bq).

Since, by [27, Corollary 4.8], K(Bp) is an M -ideal in L(Bp), we obtain from Corollary 4.9, that, if

n = cd(`p, `q) < cd(`p), then:

• Pw(n`p, Bq) is an M -ideal in P(n`p, Bq).

• Pw(nBp, `q) is an M -ideal in P(nBp, `q).

• Pw(nBp, Bq) is an M -ideal in P(nBp, Bq).
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