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1. Introduction

The study of heat transfer problems with phase change such as melting and freezing has attracted
growing attention in the last decades due to their wide range of engineering and industrial applications.
Stefan problems can be modelled as basic phase-change processes where the location of the interface is a
priori unknown. They arise in a broad variety of fields like melting, freezing, drying, friction, lubrication,
combustion, finance, molecular diffusion, metallurgy and crystal growth. Due to their importance, they
have been largely studied since the last century [2,5–8,10,15,19]. For an account of the theory, we refer
the reader to [20].

In the classical formulation of Stefan problems, there are many assumptions on the physical factors
involved that are taken into account in order to simplify the description of the process. The latent heat,
which is the energy required to accomplish the phase change, is usually considered constant. However
in many practical problems a constant latent heat may be not appropriate, being necessary to assume a
variable one. The physical bases of this particular assumption can be found in the movement of a shoreline
[22], in the ocean delta deformation [9] or in the cooling body of a magma [12].

In [13], sufficient conditions for the existence and uniqueness of solution of a one-phase Stefan problem
taking a latent heat as a general function of the position were found. In [22], as well as in [16] an exact
solution was found for a one-phase and two-phase Stefan problem, respectively, considering the latent
heat as a linear function of the position. [24] generalized [22] by considering the one-phase Stefan problem
with the latent heat as a power function of the position with an integer exponent. Recently, in [25] the
latter problem was studied assuming a real non-negative exponent. The explicit solution for two different
problems defined according to the boundary conditions considered was presented: temperature and flux.

Boundary conditions imposed at a surface of a body in order to have a well-posed mathematical
problem can be specified in terms of temperature or energy flow. One of the most realistic boundary
conditions is the convective one, in which the heat flux depends not only on the ambient conditions but
also on the temperature of the surface itself. In [18], the relationship between a classical two-phase Stefan
problem considering temperature and convective boundary condition at the fixed face x = 0 was studied.
In [4], a nonlinear one-phase Stefan problem with a convective boundary condition in Storm’s materials
was studied.

Motivated by [18] and [25], in [3] we studied the one-phase Stefan problem considering a variable
latent heat and a convective boundary condition at the fixed face x = 0. In the present paper, we are
going to analyse the existence and uniqueness of solution of a two-phase Stefan problem, considering
an homogeneous semi-infinite material, with a latent heat as a power function of the position and a
convective boundary condition at the fixed face x = 0. This problem can be formulated in the following
way: find the temperatures Ψl(x, t), Ψs(x, t) and the moving melt interface s(t) such that:

Ψlt(x, t) = dlΨlxx(x, t), 0 < x < s(t), t > 0, (1.1)
Ψst(x, t) = dsΨsxx(x, t), x > s(t), t > 0, (1.2)
s(0) = 0, (1.3)
Ψl(s(t), t) = Ψs(s(t), t) = 0, t > 0, (1.4)
ksΨsx(s(t), t) − klΨlx(s(t), t) = γs(t)αṡ(t), t > 0, (1.5)

klΨlx(0, t) = h0t
−1/2

[
Ψl(0, t) − T∞tα/2

]
t > 0, (1.6)

Ψs(x, 0) = −Tix
α, x > 0. (1.7)

where the liquid (solid) phase is represented by the subscript l (s), Ψ is the temperature, d is the diffusion
coefficient, γxα is the variable latent heat per unity of volume, −Tix

α is the depth-varying initial temper-
atures and the phase-transition temperature is zero. Condition (1.6) represents the convective boundary
condition at the fixed face x = 0. T∞ is the bulk temperature at a large distance from the fixed face x = 0,
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and h0 is the coefficient that characterizes the heat transfer at the fixed face. Moreover, ṡ(t) represents
the velocity of the phase-change interface. We will work under the assumption that γ, Ti, T∞, h0 > 0
which corresponds to the melting case.

In Sect. 2, we will quickly review fundamental results that allow us to apply the similarity transfor-
mation technique to our problem. We will analyse the fusion of a semi-infinite material which is initially
at the solid phase, where a convective condition is imposed at the fixed boundary x = 0 and where the
latent heat is considered as a power function of the position with power α. In Sect. 3, we will provide an
explicit solution of a similarity type of problems (1.1)–(1.7) under certain conditions on the data, proving
in addition its uniqueness in case that α is a positive non-integer exponent. We will study the particular
case when α is a non-negative integer, recovering for α = 0 the results obtained by [18]. Finally Sect. 4
will show that the solution to our problem converges to the solution of a different free boundary problem
with a prescribed temperature at x = 0 when the coefficient h0 → +∞ which has been recently studied
in [23].

The main contribution of this paper is to generalize the work that has been done in [18,25] and [3], by
obtaining the explicit solution of a one-dimensional two-phase Stefan problem for a semi-infinite material
where a variable latent heat and a convective boundary condition at the fixed face are considered, as
well as to obtain the results given in [23] when the coefficient that characterizes the convective boundary
condition goes to infinity.

2. Explicit solution with latent heat depending on the position and a convective boundary
condition at x = 0

In this section, the explicit solution of the problem governed by (1.1)–(1.7) will be found. The proof will
be split into two subsections. The first one results from the work of Zhou and Xia in [25] and corresponds
to the case when α is positive and non-integer. The second one is correlated with the case when α is a
non-negative integer, based on [24].

2.1. Case when α is a positive non-integer exponent

The following lemma has already been developed by Zhou-Xia in [25] and constitutes the base on which
we will find solutions for the differential heat Eqs. (1.1)–(1.2).

Lemma 2.1. 1. Let
Ψ(x, t) = tα/2f(η), with η =

x

2
√

dt
(2.1)

then Ψ = Ψ(x, t) is a solution of the heat equation Ψt(x, t) = dΨxx(x, t), with d > 0 if and only if
f = f(η) satisfies the following ordinary differential equation:

d2f

dη2
(η) + 2η

df

dη
(η) − 2αf(η) = 0. (2.2)

2. An equivalent formulation for Eq. (2.2), introducing the new variable z = −η2 is:

z
d2f

dz2
(z) +

(
1
2

− z

)
df

dz
(z) +

α

2
f(z) = 0. (2.3)

3. The general solution of the ordinary differential Eq. (2.3), called Kummer’s equation, is given by:

f(z) = ĉ11M

(
−α

2
,
1
2
, z

)
+ ĉ21U

(
−α

2
,
1
2
, z

)
. (2.4)
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where ĉ11 and ĉ21 are arbitrary constants and M(a, b, z) and U(a, b, z) are the Kummer functions
defined by:

M(a, b, z) =
∞∑

s=0

(a)s

(b)ss!
zs, where b cannot be a non-positive integer, (2.5)

U(a, b, z) = Γ(1−b)
Γ(a−b+1)M(a, b, z) + Γ(b−1)

Γ(a) z1−bM(a − b + 1, 2 − b, z). (2.6)

where (a)s is the Pochhammer symbol:

(a)s = a(a + 1)(a + 2) . . . (a + s − 1), (a)0 = 1 (2.7)

Proof. See [25]. �

Remark 2.2. All the properties of Kummer’s functions to be used in the following arguments can be
found in “Appendix A”.

Remark 2.3. Taking into account Eq. (2.4) and definition (2.6), we can rewrite the general solution of
the ordinary differential Eq. (2.3) as:

f(z) = c11M

(
−α

2
,
1
2
, z

)
+ c21z

1/2M

(
−α

2
+

1
2
,
3
2
, z

)
, (2.8)

where c11 and c21 are arbitrary constants.

Remark 2.4. Taking into account Lemma 2.1 and Remark 2.3, we can assure that Ψ(x, t) = tα/2f(η)
satisfies the heat equation Ψt(x, t) = dΨxx(x, t) if and only if it is defined as:

Ψ(x, t) = tα/2

[
c11M

(
−α

2
,
1
2
,−η2

)
+ c21ηM

(
−α

2
+

1
2
,
3
2
,−η2

)]
, (2.9)

with η = x
2
√

dt
and where c11 and c21 are arbitrary constants (not necessarily real).

Our main outcome is given by the following theorem, which constitutes a generalization to the two-
phase case of [3]. This theorem ensures the existence and uniqueness of solution of problems (1.1)–(1.7)
under a restriction for the convective coefficient, providing in addition to the explicit solution.

Theorem 2.5. If the coefficient h0 satisfies the inequality:

h0 >
2αΓ

(α

2
+ 1

)
ksTid

(α−1)/2
s

T∞
√

π
(2.10)

then there exists an instantaneous fusion process and the free boundary problems (1.1)–(1.7) has a unique
solution of a similarity type given by:

s(t) = 2ν
√

dlt, (2.11)

Ψl(x, t) = tα/2

[
ElM

(
−α

2
,
1
2
,−η2

l

)
+ FlηlM

(
−α

2
+

1
2
,
3
2
,−η2

l

)]
, (2.12)

Ψs(x, t) = tα/2

[
EsM

(
−α

2
,
1
2
,−η2

s

)
+ FsηsM

(
−α

2
+

1
2
,
3
2
,−η2

s

)]
, (2.13)

where ηl = x
2
√

dlt
, ηs = x

2
√

dst
and the constants El, Fl, Es and Fs are given by:

El =
−νM

(
−α

2
+

1
2
,
3
2
,−ν2

)

M

(
−α

2
,
1
2
,−ν2

) Fl, (2.14)
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Fl =
−h0T∞2

√
dlM

(
−α

2
,
1
2
,−ν2

)

[
klM

(
−α

2
,
1
2
,−ν2

)
+ 2

√
dlh0νM

(
−α

2
+

1
2
,
3
2
,−ν2

)] , (2.15)

Es =
−νωM

(
−α

2
+

1
2
,
3
2
,−ν2ω2

)

M

(
−α

2
,
1
2
,−ν2ω2

) Fs, with ω =
√

dl/ds, (2.16)

Fs =
−Ti2α+1d

α/2
s M

(
α

2
+

1
2
,
1
2
, ν2ω2

)

U

(
α

2
+

1
2
,
1
2
, ν2ω2

) . (2.17)

and the dimensionless coefficient ν is the unique positive solution of the following equation:

− ksTid
(α−1)/2
s

γd
(α+1)/2
l

f1(x) +
h0T∞

γ2αd
(α+1)/2
l

f2(x) = xα+1, x > 0. (2.18)

in which functions f1 and f2 are defined by:

f1(x) =
1

U

(
α

2
+

1
2
,
1
2
, x2ω2

) , x > 0, (2.19)

f2(x) =
1[

M

(
α

2
+

1
2
,
1
2
, x2

)
+ 2

√
dlh0

kl
xM

(
α

2
+ 1,

3
2
, x2

)] , x > 0. (2.20)

Proof. The general solution of Eqs. (1.1)–(1.2) based on Kummer functions is given by Lemma 2.1 and
Remark 2.4:

Ψl(x, t) = tα/2

[
ElM

(
−α

2
,
1
2
,−η2

l

)
+ FlηlM

(
−α

2
+

1
2
,
3
2
,−η2

l

)]
, (2.21)

Ψs(x, t) = tα/2

[
EsM

(
−α

2
,
1
2
,−η2

s

)
+ FsηsM

(
−α

2
+

1
2
,
3
2
,−η2

s

)]
, (2.22)

where ηl =
x

2
√

dlt
, ηs =

x

2
√

dst
, and El, Fl, Es and Fs are coefficients that must be determined.

Furthermore, condition (1.4) together with (2.21) implies that the free boundary should take the
following form:

s(t) = 2ν
√

dlt. (2.23)

where ν is a constant that also has to be computed.
Using the derivation formulas for the Kummer functions (A.4)–(A.5) presented in “Appendix A”, it

is deduced that:

Ψlx(x, t) =
t(α−1)/2

√
dl

[
ElαηlM

(
−α

2
+ 1,

3
2
,−η2

l

)

+
Fl

2
M

(
−α

2
+

1
2
,
1
2
,−η2

l

)]
, (2.24)

Ψsx(x, t) =
t(α−1)/2

√
ds

[
EsαηsM

(
−α

2
+ 1,

3
2
,−η2

s

)
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+
Fs

2
M

(
−α

2
+

1
2
,
1
2
,−η2

s

)]
. (2.25)

From Eq. (1.4), we have:

tα/2

[
ElM

(
−α

2
,
1
2
,−ν2

)
+ FlνM

(
−α

2
+

1
2
,
3
2
,−ν2

)]
= 0. (2.26)

Isolating El, we obtain (2.14).
On the other hand, using (2.21) and (2.24), condition (1.6) becomes

kl
Fl

2
√

dl

= h0 [El − T∞] , (2.27)

and replacing El given by (2.14) into (2.27) we get that Fl is given by (2.15).
Condition (1.4), Ψs(s(t), t) = 0 implies:

EsM

(
−α

2
,
1
2
,−ν2ω2

)
+ FsνωM

(
−α

2
+

1
2
,
3
2
,−ν2ω2

)
= 0 where ω =

√
dl
ds

, (2.28)

leading us to define Es by (2.16).
In view of condition (1.7), it is necessary to compute Ψs(x, 0), given by the expression:

Ψs(x, 0) = lim
t→0

Ψs(x, t) = Es

[
lim
t→0

tα/2M
(−α

2 , 1
2 ,−η2

s

)]

+Fs

[
lim
t→0

tα/2ηsM
(−α

2 + 1
2 , 3

2 ,−η2
s

)]
(2.29)

Taking into account formula (A.9) from “Appendix A”, we obtain:

M

(
−α

2
,
1
2
,−η2

s

)
=

[ √
π

Γ
(

α
2 + 1

2

)e− α
2 πiU

(
−α

2
,
1
2
,−η2

s

)
+

+
√

π

Γ
(−α

2

)e− (α+1)
2 πie−η2

s U

(
α

2
+

1
2
,
1
2
, η2

s

)]
. (2.30)

and

M

(
−α

2
+

1
2
,
3
2
,−η2

s

)
=

[ √
π

2Γ
(

α
2 + 1

)e(− α
2 + 1

2 )πiU

(
−α

2
+

1
2
,
3
2
,−η2

s

)
+

+
√

π

2Γ
(−α

2 + 1
2

)e−( α
2 +1)πie−η2

s U

(
α

2
+ 1,

3
2
, η2

s

)]
. (2.31)

We can observe that if α is a non-negative even integer then Γ
(−α

2

)
is not defined, and so (2.30) is

not valid. In the same way if α is a non-negative odd integer, then Γ
(−α

2 + 1
2

)
is neither defined and

(2.31) cannot be applied. From this fact, we restrict α to be positive and non-integer.
Considering (2.30) and (2.31) and applying (A.7), we obtain the following limits:

lim
t→0

[
tα/2M

(
−α

2
,
1
2
,−η2

s

)]
=

√
π

Γ
(

α
2 + 1

2

) xα

2αd
α/2
s

. (2.32)

and

lim
t→0

tα/2ηsM

(
−α

2
+

1
2
,
3
2
,−η2

s

)
=

√
π

Γ
(

α
2 + 1

) xα

2α+1d
α/2
s

, (2.33)
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Combining (2.29), (2.32) and (2.33), we deduce that:

Ψs(x, 0) = Es

√
π

Γ
(

α

2
+

1
2

) xα

(4ds)α/2
+ Fs

√
π

2Γ
(α

2
+ 1

) xα

(4ds)α/2
(2.34)

Considering the initial temperature given by (1.7), and replacing Es by (2.16) in (2.34), it is obtained:

− νω

M

(
−α

2
+

1
2
,
3
2
,−ν2ω2

)

M

(
−α

2
,
1
2
,−ν2ω2

)
√

π

Γ
(

α

2
+

1
2

)Fs +
√

π

2Γ
(α

2
+ 1

)Fs = −Ti(4ds)α/2 (2.35)

Then we can determine Fs using the definition of the U -Kummer function and identity (A.10) presented
in “Appendix A” arriving to definition (2.17).

Until now we have obtained El, Fl, Es and Fs as functions of ν, arriving to expressions (2.14)–(2.17).
Finally, it remains to take into account the Stefan condition (1.5) from which we will deduce an equa-

tion that must be satisfied by the unknown coefficient ν that characterized the free boundary. Substituting
Eqs. (2.14)–(2.17), (2.24)–(2.25) into (1.5) and applying formula (A.11), it can be obtained that ν must
satisfy the following equation:

klh0T∞[
klM

(
α

2
+

1
2
,
1
2
, x2

)
+ 2

√
dlh0xM

(
α

2
+ 1,

3
2
, x2

)] +

− ksTi2αd
(α−1)/2
s

U

(
α

2
+

1
2
,
1
2
, x2ω2

) = γ2αxα+1d
(α+1)/2
l , x > 0. (2.36)

that can be rewritten, arriving to the result that ν must be a solution of Eq. (2.18).
Our proof is going to be completed by showing that there exists a unique solution ν for Eq. (2.36)

(i.e. (2.18)). With this purpose, we will study the behaviour of the functions f1 and f2.
On the one hand, due to the derivation formula (A.6), and its integral representation (A.8) we can

assure that f1 is an increasing function of x. It follows immediately that the first term of the left-hand

side of Eq. (2.18) decreases from Δ1 = −ksTid
(α−1)/2
s

γd
(α+1)/2
l

Γ (α/2 + 1)√
π

to −∞ when x increases from 0 to

+∞.
On the other hand, taking into account Eqs. (A.4) and (A.5) we arrive to the conclusion that f2 is

a decreasing function of x. Therefore, the second term of the left-hand side of Eq. (2.18) decreases from

Δ2 =
h0T∞

γ2αd
(α+1)/2
l

to 0 when x increases from 0 to +∞.

In consequence we can assure that the left-hand side of (2.18) decreases from Δ1 + Δ2 to −∞ when
x increases from 0 to +∞.

As the right-hand side of (2.18) is an increasing function of x that goes from 0 to +∞, we claim that
Eq. (2.18) has a unique solution if and only if it is satisfied the following condition:

Δ1 + Δ2 > 0 (2.37)

which is equivalent to (2.10). �

Remark 2.6. An inequality of type (2.10) in order to obtain an instantaneous phase-change process was
given firstly in [21]; see also [14].
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Corollary 2.7. If the coefficient h0 satisfies the following inequality:

0 < h0 ≤
2αΓ

(α

2
+ 1

)
ksTid

(α−1)/2
s

T∞
√

π
(2.38)

then the free boundary problems (1.1)–(1.7) reduce to a classical heat transfer problem for the initial solid
phase governed by:

Ψst(x, t) = dsΨsxx(x, t), x > 0, t > 0, (2.39)

ksΨsx(0, t) = h0t
−1/2

[
Ψs(0, t) − T∞tα/2

]
, t > 0, (2.40)

Ψs(x, 0) = −Tix
α, x > 0, (2.41)

whose explicit solution is given by:

Ψs(x, t) = tα/2

[
EsM

(
−α

2
,
1
2
,−η2

s

)
+ FsηsM

(
−α

2
+

1
2
,
3
2
,−η2

s

)]
, (2.42)

where ηs = x/
√

4dst and :

Es =
−Tid

α/2
s ksΓ(α + 1) + Γ

(
α + 1

2

)
h0

√
dsT∞

[
ksΓ

(α

2
+ 1

)
+ h0

√
dsΓ

(
α + 1

2

)] , (2.43)

Fs =
2
√

dsh0(Es − T∞)
ks

. (2.44)

Proof. From Lemma 2.1 and Remark 2.4, we have that the temperature is given by:

Ψs(x, t) = tα/2

[
EsM

(
−α

2
,
1
2
,−η2

s

)
+ FsηsM

(
−α

2
+

1
2
,
3
2
. − η2

s

)]
(2.45)

where ηs =
x√
4dst

and Es and Fs are coefficients that must be determined.

Taking into account conditions (2.40)–(2.41), coefficients Es and Fs are obtained in an analogous way
as in the proof of Theorem 2.5. �

2.2. Case when α is a non-negative integer

This section is intended to present the exact solution of problems (1.1)–(1.7) in the particular case that
α is a non-negative integer. Using formulas (A.12)–(A.13) from “Appendix A”, it can be proved the
following assertion.

Lemma 2.8. Consider problems (1.1)–(1.7), where α = n ∈ N0. If the coefficient h0 satisfies the inequality:

h0 >
2nΓ

(n

2
+ 1

)
ksTid

(n−1)/2
s

T∞
√

π
(2.46)

then the explicit solution of this problem is given by:

s(t) = 2ν
√

dlt, (2.47)

Ψl(x, t) = −
tn/22nh0T∞

√
dlΓ

(
n

2
+

1
2

)
Γ

(n

2
+ 1

)
[Fn(ηl)En(ν) − Fn(ν)En(ηl)]

[
klΓ

(n

2
+ 1

)
En(ν) +

√
dlh0Γ

(
n

2
+

1
2

)
Fn(ν)

] , (2.48)
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Ψs(x, t) = tn/22nTid
n/2
s Γ(n + 1)

[
En(ηs)Fn(νω) − En(νω)Fn(ηs)

En(νω) − Fn(νω)

]
, (2.49)

where ηl =
x

2
√

dlt
, ηs =

x

2
√

dst
, ω =

√
dl

ds
and ν is the unique solution of the following equation:

h0T∞
γ2nd

(n+1)/2
l

1[
ex22nΓ

(n

2
+ 1

)
En(x) +

2n
√

dlh0

kl
ex2Γ

(
n

2
+

1
2

)
Fn(x)

] +

−ksTid
(n−1)/2
s

γd
(n+1)/2
l

1
2nex2ω2√π (En(xω) − Fn(xω))

= xn+1, x > 0. (2.50)

Proof. Inequality (2.46), functions (2.47)–(2.49) and Eq. (2.50) can be deduced following the same reason-
ing used in the demonstration of Theorem 2.5 by using the relationship between the Kummer functions
and the family of the repeated integrals of the complementary error function given by (A.12) and (A.13).

Let us note that in order to follow the arguments of Theorem 2.5 we must show that the limits given
by (2.32) and (2.33) remain true in case that α is a non-negative integer. But this can be easily proved
due to the formula presented by Tao in [17]:

lim
t→0

tn/2En (ηs) = lim
t→0

tn/2Fn (ηs) =
xn

Γ (n + 1) 2nd
n/2
s

. (2.51)

and due to the Legendre duplication formula for the Gamma function [1]:

Γ(x)Γ
(

x +
1
2

)
=

√
π

22x−1
Γ(2x). (2.52)

�

Remark 2.9. Considering n = 0 and taking into account that E0(z) = 1 and F0(z) = erf(z), condition
(2.46) and functions (2.47)–(2.49) reduce to:

h0 >
ksTi

T∞
√

πds

(2.53)

s(t) = 2ν
√

dlt, (2.54)

Ψl(x, t) =
h0T∞

√
πdl

kl

[
erf(ν) − erf

(
x

2
√

dlt

)]

[
1 +

√
πdlh0

kl
erf(ν)

] , (2.55)

Ψs(x, t) = −Ti

⎡
⎢⎢⎣1 −

erfc

(
x

2
√

dst

)

erf(νω)

⎤
⎥⎥⎦ , (2.56)

where ν is the unique solution of the following equation:

− ksTi

γ
√

πdlds

e−x2ω2

erfc(xω)
+

h0T∞
γ
√

dl

e−x2

[
1 +

√
πdlh0erf(x)

kl

] = x, x > 0. (2.57)

This formulas are in agreement with the explicit solution of the problem presented by Tarzia in [18]
which is in contrast to our problem corresponds to a solidification process.
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Remark 2.10. The results of Remark 2.9 in the one-phase case with a convective boundary condition are
also recovered in [3].

3. Limit behaviour when h0 → +∞

In this section, we are going to study the limit behaviour of the solution of the problem governed by
Eqs. (1.1)–(1.7) when the coefficient h0 that characterizes the heat transfer in the convective condition
(1.6) tends to infinity. The main reason for doing this analysis is due to the fact that the convective heat
input:

klΨlx(0, t) = h0t
−1/2[Ψl(0, t) − T∞tα/2], (3.1)

constitutes a generalization of the Dirichlet condition in the sense that if we take the limit when h0 → ∞
in (3.1) we must obtain Ψl(0, t) = T∞tα/2. Therefore, we will prove that the solution to our problem in
which we consider a convective condition at the fixed face x = 0 converges to the solution of a problem
with a temperature condition at the fixed face.

Bearing in mind that the solution to problems (1.1)–(1.7), it means that the free boundary and the
temperatures in the solid and the liquid phases depend on h0, and we will rename them as:

⎧
⎪⎪⎨
⎪⎪⎩

sh0(t) : free boundary given by (2.11),
νh0 : unique solution of Eq. (2.18),
Ψlh0(t) : liquid temperature given by (2.12),
Ψsh0(t) : liquid temperature given by (2.13).

Theorem 3.1. Let us consider the problem given by conditions (1.1)–(1.7), where the solutions sh0 , Ψlh0 ,
Ψsh0 and νh0 are defined by (2.11), (2.12), (2.13) and (2.18), respectively. If we take the limit when
h0 → ∞, we obtain that sh0 , Ψlh0 , Ψsh0 and νh0 converge to s∞, Ψl∞, Ψs∞ and ν∞, respectively, which
corresponds to the solution of the following problem:

Ψl∞t(x, t) = dlΨl∞xx(x, t), 0 < x < s∞(t), t > 0, (3.2)

Ψs∞t(x, t) = dsΨs∞xx(x, t), x > s∞(t), t > 0, (3.3)

s∞(0) = 0, (3.4)

Ψl∞(s∞(t), t) = Ψs∞(s∞(t), t) = 0, t > 0, (3.5)

ksΨs∞x(s∞(t), t) − klΨl∞x(s∞(t), t) = γs∞(t)αṡ∞(t), t > 0, (3.6)

Ψl∞(0, t) = T∞tα/2 t > 0, (3.7)

Ψs∞(x, 0) = −Tix
α, x > 0 . (3.8)

with s∞ = 2ν∞
√

dlt and where a temperature T∞tα/2 is prescribed at the fixed face x = 0.

Proof. On the one hand, if we consider the problem governed by Eqs. (3.2)–(3.8), we can obtain by the
following similar arguments of the proof of Theorem 2.5 that the solution is given by:

s∞(t) = 2ν∞
√

dlt, (3.9)

Ψl∞(x, t) = tα/2
[
El∞M

(−α
2 , 1

2 ,−ν2
∞

)
+ Fl∞ν∞M

(−α
2 + 1

2 , 3
2 ,−ν2

∞
)]

, (3.10)

Ψs∞(x, t) = tα/2
[
Es∞M

(−α
2 , 1

2 ,−ν2
∞

)
+ Fs∞ν∞M

(−α
2 + 1

2 , 3
2 ,−ν2

∞
)]

, (3.11)

where

El∞ = T∞, (3.12)
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Fl∞ = −
T∞M

(
−α

2
,
1
2
,−ν2

∞

)

ν∞M

(
−α

2
+

1
2
,
3
2
,−ν2∞

) , (3.13)

Es∞ = −
ν∞ωM

(
−α

2
+

1
2
,
3
2
,−ν2

∞ω2

)

M

(
−α

2
,
1
2
,−ν2∞ω2

) Fs∞, (3.14)

Fs∞ = −
Ti2α+1d

α/2
s M

(
α

2
+

1
2
,
1
2
, ν2

∞ω2

)

U

(
α

2
+

1
2
,
1
2
, ν2∞ω2

) , (3.15)

with ω =
√

dl

ds
and where ν∞ is the unique solution of equation:

klT∞
2α+1d

(α/2+1)
l γ

f3(x) − ksTid
(α−1)/2
s

γd
(α+1)/2
l

f1(x) = xα+1, x > 0, (3.16)

with

f3(x) =
1

xM

(
α

2
+ 1,

3
2
, x2

) , x > 0 (3.17)

and f1(x) defined in (2.19).
The proof that ν∞ is the unique solution of (3.16) derive from analysing the growth of functions f1

and f3. On the one hand, we have seen in the proof of Theorem (2.5) that f1 is an increasing function that
satisfies f1(0) = Γ(α/2+1)√

π
and f1(+∞) = +∞. On the other hand, taking into account the derivation

formula (A.4) we can easily prove that f3(x) is a decreasing function that verifies f3(0) = +∞ and
f3(+∞) = 0. Thus we obtain that the left-hand side of Eq. (3.16) is a decreasing function that goes from
+∞ to −∞ when x goes from 0 to +∞. As the right-hand side of Eq. (3.16) is an increasing function
that increases from 0 to +∞, we can assure that (3.16) has a unique positive solution. We remark here
that the solution of problems (3.2)–(3.8) was obtained in [23] by using results for a heat flux condition
from an argument not so clear for us, and for this reason we have proved it with details.

Once we have calculated the solution of problems (3.2)–(3.8), let us show that the solution of problems
(1.1)–(1.7) converges to it when h0 → +∞. We know that νh0 , which is the parameter that characterizes
the free front in (1.1)–(1.7), is the unique solution of (2.18). Taking limit in (2.18), we obtain:

lim
h0→+∞

[
−ksTid

(α−1)/2
s

γd
(α+1)/2
l

1

U
(

α
2 +

1
2 ,

1
2 ,x2ω2

)

]
+

+ lim
h0→+∞

⎡
⎣ h0T∞

γ2αd
(α+1)/2
l

1[
M

(
α
2 +

1
2 ,

1
2 ,x2

)
+2

√
dlh0
kl

xM
(

α
2 +1,

3
2 ,x2

)]

⎤
⎦ =

= −ksTid
(α−1)/2
s

γd
(α+1)/2
l

1

U
(

α
2 +

1
2 ,

1
2 ,x2ω2

) + klT∞
γ2α+1d

(α/2+1)
l

1

xM
(

α
2 +1,

3
2 ,x2

) =

= −ksTid
(α−1)/2
s

γd
(α+1)/2
l

f1(x) +
klT∞

γ2α+1d
(α/2+1)
l

f3(x). (3.18)
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That means that lim
h0→+∞

νh0 must be a solution of Eq. (3.16) which has a unique solution ν∞, so we

can conclude that lim
h0→+∞

νh0 = ν∞.

Subsequently by simple algebraic calculations, we obtain:

lim
h0→+∞

sh0(t) = s∞(t), (3.19)

lim
h0→+∞

Ψlh0(x, t) = Ψl∞(x, t), (3.20)

lim
h0→+∞

Ψsh0(x, t) = Ψs∞(x, t). (3.21)

�

4. Conclusions

In this article, a closed analytical solution of a similarity type has been obtained for a one-dimensional
two-phase Stefan problem in a semi-infinite material using Kummer functions. The novel feature in the
problem studied concerns a variable latent heat that depends on the position as well as a convective
boundary condition at the fixed face x = 0 of the material. Assuming a latent heat defined as a power
function of the position allows the generalization of some previous theoretical results. We have also
generalized the classical two-phase Stefan problem with constant latent heat and a convective boundary
condition [18] and the one-phase Stefan problem with latent heat depending on the position and a
convective boundary condition at the fixed face x = 0 [3].

Furthermore, we have shown that when h0 increases, the solution of problems (1.1)–(1.7) converges
to the solution of a different free boundary problems (3.2)–(3.8) where a temperature condition at the
fixed face is considered instead of a convective one [23].

The key contribution of this paper has been to prove the existence and uniqueness of the explicit
solution of problems (1.1)–(1.7) when a restriction on the data is satisfied. We have presented the exact
solution which is worth finding not only to understand better the process involved but also to verify the
accuracy of numerical methods that solve Stefan problems.
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Appendix A.

This appendix presents a review of some of the significant mathematical results of the Kummer functions
which are used in the main body of the paper.

Definition of Kummer functions

Kummer functions are defined by

M(a, b, z) =
∞∑

s=0

(a)s

(b)ss!
zs, with b non-positive integer, (A.1)
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U(a, b, z) =
Γ(1 − b)

Γ(a − b + 1)
M(a, b, z) +

Γ(b − 1)
Γ(a)

z1−bM(a − b + 1, 2 − b, z) (A.2)

where (a)s is the Pochhammer symbol:

(a)s = a(a + 1)(a + 2) . . . (a + s − 1), (a)0 = 1 (A.3)

and Γ(·) is the Gamma function. In order that U is well defined it is necessary that a and a − b + 1 be
non-positive integers.

Differentiation formulas

From [11], we have

d
dz

M(a, b, z) =
a

b
M(a + 1, b + 1, z) (A.4)

d
dz

(
zb−1M(a, b, z)

)
= (b − 1)zb−2M(a, b − 1, z) (A.5)

d
dz

U(a, b, z) = −aU(a + 1, b + 1, z) (A.6)

Connection Formulas

From [11] and [25], we know that
• Relationship with the generalized hypergeometric function

U(a, b, z) ∼ z−a, z → ∞, |z| ≤ 3
2
π − δ where δ is an arbitrary small positive constant. (A.7)

• Integral Representation of U

U(a, b, z) =
1

Γ(a)

∞∫

0

e−ztta−1(1 + t)b−a−1dt with Re(a) > 0 and |ph(z)| <
π

2
(A.8)

• Relationship between U and M

1
Γ(b)

M(a, b, z) =
eaπi

Γ(b − a)
U(a, b, z) +

e−(b−a)πi

Γ(a)
ezU(b − a, b, e−πiz) (A.9)

• Relationship with the exponential function

M(a, b, z) = ezM(b − a, b,−z) (A.10)

e−z2
= −2αz2M

(
−α

2
+

1
2
,
3
2
,−z2

)
M

(
−α

2
+ 1,

3
2
,−z2

)

+ M

(
−α

2
,
1
2
,−z2

)
M

(
−α

2
+

1
2
,
1
2
,−z2

)
(A.11)

where α is real and non-negative.
• Relationship with the family of the repeated integrals of the complementary error function

M

(
−n

2
,
1
2
,−z2

)
= 2nΓ

(n

2
+ 1

)
En(z) (A.12)

zM

(
−n

2
+

1
2
,
3
2
,−z2

)
= 2n−1Γ

(
n

2
+

1
2

)
Fn(z) (A.13)
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where n is an integer, En and Fn are defined by

En(z) = [inerfc(z) + inerfc(−z)] /2 (A.14)

Fn(z) = [inerfc(−z) + inerfc(z)] /2 (A.15)

in which

i0erfc(x) = erfc(x) (A.16)

inerfc(x) =

+∞∫

x

in−1erfc(t)dt (A.17)
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