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1. INTRODUCTION

Automated construction of event-based operational models of intended system be-
haviour has been extensively studied in the software engineering community for some
time. Synthesis of such models from scenario-based specifications (e.g. [Uchitel et al.
2009; Damas et al. 2006; Bontemps et al. 2004]) allows integrating a fragmented,
example-based specification into a model which can be analysed via model checking,
simulation, animation and inspection, the latter aided by automated slicing and ab-
straction techniques. Synthesis from formal declarative specification (e.g. temporal log-
ics) has also been studied with the aim of providing an operational model on which to
further support requirements elicitation and analysis [Letier et al. 2008; Kazhamiakin
et al. 2004].
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Author’s addresses: N. D’Ippolito, Department of Computing, Imperial College, 180 Queen’s Gate, London,
SW7 2RH, UK; email: srdipi@doc.ic.ac.uk; V. Braberman, Departamento de Computación, Facultad de
Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellon 1, Ciudad Universitaria. C1428EHA;
email: vbraber@dc.uba.ar; N. Piterman, Department of Computer Science, University of Leicester, Univer-
sity Road, Leicester, LE1 7RH. He can be reached at nir.piterman@leicester.ac.uk; S. Uchitel, Department
of Computing, Imperial College, 180 Queen’s Gate, London, SW7 2RH, UK; su2@doc.ic.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 D’Ippolito et al.

Behaviour model synthesis is also used to automatically construct plans that are
then straightforwardly enacted by some software component. For instance, synthesis
of glue code and component adaptors has been studied in order to achieve safe compo-
sition at the architecture level [Autili et al. 2004; Inverardi and Tivoli 2007], and in
particular in service oriented architectures [Bertolino et al. 2009].

In the domain of self-adaptive systems [Huang et al. 2004] there has also been an
increasing interest in behaviour model synthesis as such systems must be capable of
designing at run-time adaptation strategies. Hence, they rely heavily on automated
synthesis of behaviour models that will guarantee the satisfaction of requirements
under the constraints enforced by the environment and the capabilities offered by the
self-adaptive system [Kramer and Magee 2007; Gat et al. 1997; Dalpiaz et al. 2009].

A limitation that existing behaviour model synthesis techniques have is that they
are restricted to safety properties and do not support liveness. Hence, synthesis can be
posed as a backward error propagation [Russell and Norvig 1995] variant where a be-
haviour model is pruned by disabling controllable actions that can lead to undesirable
states.

In many domains, and particularly in the realm of reactive systems [Manna
and Pnueli 1992], liveness requirements can be of importance and having synthe-
sis techniques capable of dealing with them is desirable. However, very few ap-
proaches to behaviour model synthesis that support liveness have been proposed, no-
tably [Giunchiglia and Traverso 2000; Bertoli et al. 2001; Sykes et al. 2007; Heaven
et al. 2009] all of which have been applied in self-adaptive systems. The problem with
these approaches is that the distinction between controlled and monitored actions [Par-
nas and Madey 1995], and between descriptive and prescriptive behaviour [Jackson
1995b] is not made explicit. As a consequence, the behaviour models they synthesise
in order to enact self-adaptation, may not be realisable by the self-adaptive system or
unexpected results may be obtained when the self-adaptive system interacts with its
environment due to non-valid implicit assumptions.

Making assumptions explicit is crucial, and even more so with liveness system goals.
Jackson [Jackson 1995b], and others (e.g., [van Lamsweerde and Letier 2000; Lam-
sweerde 2001; Parnas and Madey 1995]) have argued the importance of distinguishing
between descriptive and prescriptive assertions and, more specifically, between soft-
ware requirements (prescriptive statements to be achieved by the machine), system
goals (prescriptive statements to be achieved by the machine and its environment)
and environment assumptions (descriptive statements guaranteed or assumed to be
guaranteed by the environment).

Environment assumptions play a key role in the validation process. Many system
failures are due to invalid assumptions, many times related to an over-idealisation of
the environments behaviour. In other words, statements regarding environment be-
haviour that are not realistic are used to demonstrate the correctness of the require-
ments with respect to the goals. However, given that the assumptions are invalid, the
goals are not achieved. Explicit assumption modelling not only better supports valida-
tion but also makes explicit when system goals are guaranteed to be achieved, helping
to set more realistic expectations.

Assumptions, and their relation with the synthesis problem has been studied re-
cently [Chechik et al. 2007; Chatterjee et al. 2008]. When dealing with liveness, as-
sumptions play an even more prominent role: Typically, reasoning about liveness in
behaviour models is performed under specific assumptions which correspond to live-
ness properties themselves. For instance, it is common to reason under some general
notion of fairness or some domain specific property regarding the responsiveness of the
environment to certain stimuli. Given the central role that liveness assumptions have
for reasoning about liveness requirements, the use of approaches to synthesis [Bertoli
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et al. 2001; Sykes et al. 2007; Heaven et al. 2009] that leave such assumptions implicit
and do not allow for user tailored liveness assumptions entail some important risks
and limitations for users.

On the other hand, techniques that support explicit liveness assumptions such
as [Piterman et al. 2006] do not provide the required methodological support to verify
that the environment assumptions are indeed guaranteed by the environment.

The main contribution of this paper is a technique and methodological guidelines
for synthesising event-based behaviour models. Our approach works for an expressive
subset of liveness properties, distinguishes between controlled and monitored actions,
and differentiates system goals from environment assumptions. Indeed, it is the as-
sumptions that must be modelled carefully in order to avoid synthesising anomalous
behaviour models. We propose the notion of assumption compatibility as a guideline
and show that it guarantees non-anomalous models.

The synthesis technique proposed this paper adapts and extends recent ad-
vances [Piterman et al. 2006] in synthesis of controllers for discrete event systems [Ra-
madge and Wonham 1989]. We adapt GR(1) [Piterman et al. 2006] to work in the
context of event-based specifications using LTS semantics, parallel composition and
to support safety properties as part of the specification. From a descriptive specifica-
tion of the environment in the form of an LTS and a set of controllable actions, the
synthesis procedure constructs a behaviour model that when composed with the envi-
ronment satisfies a given FLTL [Giannakopoulou and Magee 2003] formula of the form0 I ∧ (

∧n
i=1 0 1 Ai →

∧m
j=1 0 1 Gj) where 0 I is a safety system goal, 0 1 Ai rep-

resents a liveness assumption on the behaviour of the environment, 0 1 Gj models
a liveness goal for the system and Ai and Gj are non-temporal fluent expressions [Gi-
annakopoulou and Magee 2003], while I is a system safety goal expressed as a Fluent
Linear Temporal Logic formula [Giannakopoulou and Magee 2003].

We extend work on synthesis of controllers for discrete event systems [Ramadge and
Wonham 1989] with two formal definitions of non-anomalous controllers (best effort
and assumption preserving) that rule out behaviour models which attempt to satisfy
their goals by preventing the environment in achieving its assumptions. We also pro-
pose assumption compatibility, a sufficient condition for avoiding anomalous behaviour
models. Interestingly, and perhaps not surprisingly, the condition corresponds to fol-
lowing the methodological and theoretical guidelines dictated by the goal-oriented re-
quirements engineering notion of realisability [Letier and van Lamsweerde 2002].

More specifically, technical contributions of this paper include (i) the presentation of
the event-based control problem which gives a high level description of a certain kind
of controller synthesis problems which aims to work under a theoretical framework
adequate for event-based models; (ii) the grounding of the event-based control prob-
lem for Labelled Transitions Systems and parallel composition in the definition of the
LTS control problem; (iii) the definition of a restricted LTS control problem, named
SGR(1) LTS that supports safety and GR(1)-like properties, and provide a polynomial
time solution which builds, from a theoretical perspective on GR(1) games and from an
implementation perspective on (iv) a rank-based [Jurdziński 2000] algorithm which is
suitable for explicit state space representation; (v) characterisation of non-anomalous
controllers (best effort and assumption preserving) ;(vi) a sufficient condition, i.e. as-
sumption compatibility, for an event-based setting to guarantee correctness of the syn-
thesis procedure and to avoid anomalous controllers; (vii) evaluation through several
case studies adapted and extended from the literature.

This paper is organised as follows. In Section 2 we present our running example and
provide an overview of the approach from a black box perspective. We provide the nec-
essary background in Section 3 to then present the LTS control problems in Section 4
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where we also discuss anomalous controllers and links to the notion of realisability
in requirements engineering. We show how SGR(1) LTS control can be solved in Sec-
tion 5. Then, in Section 6, we present some case studies we ran to validate both, the
applicability of our approach and the implementation we provide as an extension of
the MTSA tool set [D’Ippolito et al. 2008]. We finish with discussion, related work and
conclusions.

2. OVERVIEW

In this section we provide a black-box overview of our approach. Technical details are
provided in the next sections.

Consider the following variation of the Production Cell case study [Lewerentz and
Lindner 1995]: A factory manufactures several kinds of products each of which re-
quires a production process which involves different tools applied in a specified order.
The factory production system is expected to adapt its production process depending
on a number of factors such as the available tools (which is subject to change for in-
stance when a tool breaks or a new instance of an existing tool type is introduced),
the specification of how to process each product type (which can change because the
production requirements for a product type changes), and other constraints (for exam-
ple, an energy consumption requirement that constrains the concurrent use of certain
tools).

Given its potential for concurrent processing, the production should be scheduled in
such a way that no product type is indefinitely postponed.

In addition to the tools, the factory has an in tray, an out tray and a robot arm. The
robot arm is used to move products to and from tools and trays. Raw products arrive
on the in tray, the robot arm must process them according to their specification and
place the finished products on the out tray. The trays can hold products of any kind
simultaneously.

To simplify the presentation, assume that the factory must produce two types of
products, namely A and B, with three different tools: an oven, a drill and a press.
Products of type A require using the oven, then the drill and finally the press, while
products of type B are processed in the following order: drill, press, oven. In addition,
there is a constraint on concurrent use of tools: the drill and the press cannot be used
simultaneously. Finally, a liveness condition on the production of products of type A
and B is also required, that is, the production of one kind of product cannot postpone
indefinitely the production of products of the other kind.

We now describe how these requirements can be specified in our approach and com-
ment on the production strategy automatically generated by our controller synthesis
algorithm.

The environment model is the result of the parallel composition of LTSs modelling
the robot arm, the tools, and the products being processed.

In Figure 1 we show a behaviour model, describing the drill tool: Any product (i.e.
id from 0 to Max), can be put into the drill tool by the robot arm (put.drill[id : 0..Max])
and, subsequently, that product is processed (drill.process[id]) by the drill and can then
be taken from the drill by the robot arm (get.drill[id]).

In Figure 2 we show a model that describes how raw products can be processed. A
product is idle until it appears in the in tray ([id].inT ray), then it is picked up by the
robot arm ([id].getInT ray), subsequently, it can be freely placed and picked up from
any tool (resp. put.[t : Tools][id] and get.[t : Tools][id]) until the product processing
is finished and the product is placed in the out tray ([id].putOutT ray). For simplicity,
we model that an instance of a product can be reprocessed, hence, once put on the out
tray, the product model is at the initial state again. Note that id represents a particular
product and Tools the available tool set.
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put.drill[id : 0..Max] drill.process[id]

get.drill[id]

Fig. 1. LTS Model for the Drill.
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[id].inT ray [id].getInT ray

idle[id]
[id].putOutT ray

put.[t : Tools][id]

get.[t][id]

Fig. 2. Products.

1 2 3

[p].getInT ray

[p].putOutT ray

put.[t : Tools][p]

get.[t][p]

Fig. 3. Robot arm.

We do not include in the models of the products the requirements related to the
order in which tools must be applied. This is because, as proposed in [Jackson 1995b],
we avoid mixing the description of how the environment behaves with the prescription
stating how the environment should behave once the controller is in place.

The model describing the robot arm (Figure 3) shows how the arm can pickup any
product from any position (in tray, out tray, and tools) and then place that same product
in another position. It can only hold one product at a time. To simplify we assume that
the in and out trays are repositories of unbounded size and that the in tray does not
enforce an ordering of products.

The environment model can be built as the parallel composition of a model for
each tool, a model for the robot arm and a model for each product: (PRODUCTA[1]
‖...‖ PRODUCTA[MAX ] ‖PRODUCTB[1] ‖...‖ PRODUCTB[MAX ]‖DRILL‖OV EN‖
PRESS‖ ARM). The LTS for this composition is too big to be shown, it can be con-
structed using the modified MTSA tool and data available at [D’Ippolito et al. 2008].

What remains now is to define the set of actions that the controller-to-be can control
and the specification that it must satisfy when composed with the environment.

The controlled actions must be a subset of the actions of the environment model and
we define them to be the actions of the robot arm. In other words, we aim to build a
controller that restricts the behaviour of the arm so that the way the arm moves the
products satisfies the production requirements.

The goals for the controller consist of a safety and a liveness part. The safety part
is twofold. On one hand, the order in which tools will process raw products is encoded
with a model describing the expected processing order for each type of product. In Fig-
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ure 4 we show how to model the processing requirements for products of type A, a tem-
poral logic representation of such requirement is also possible (and can be constructed
automatically from Figure 4) but more cumbersome. We omit it here but assume that
the FLTL formula % is obtained by transforming the LTS in Figure 4 to FLTL. Hence,
% is an FLTL formula that captures the requirements for products of type A and B.

On the other hand, the drill and press cannot be used simultaneously. This can be
easily encoded with the following temporal logic property: ψ = 0 (¬∃x, y ∈ Products ·
Processing(drill, x) ∧ Processing(press, y)) where 0 means “always in the future” and
Processing(t, p) is a predicate which is true when tool t is processing product p. Thus,
the safety goal for the system is I = 0 (% ∧ ψ).

The liveness prescription for the controller must capture the requirement of not
indefinitely postponing the production of any product type. Such requirement can be
formalised in temporal logic as follows:

G =
∧

t∈{A,B} 0 1 (
∨M

id=0AddedToOutT ray(t, id)) where M is the maximum amount

of products to process and AddedToOutT ray(t, i) is true if the product has just been
added to the out tray.

If we attempt to build a controller for the arm such that it guarantees I ∧ G when
composed with the model of the environment, our approach will indicate that such
controller is not possible. This is true, as there is no guarantee of producing an infinite
number of products of type A and of type B if the environment does not guarantee that
it will provide the raw products to be processed.

Consequently, we must assume that the environment will produce an infinite num-
ber of raw products of type A and B:
As =

∧
t∈{A,B},0≤id≤M(0 1 AddedToInTray(t, id)) where given a product with id

equal to i and of type t, AddedToInTray(t, i) is true if the product has just been added
to the in tray.

If we attempt to build a controller that guarantees I ∧ (As → G) our approach suc-
cessfully builds one. In other words, we will obtain a controller that guarantees when
composed with its environment that the products are processed by applying tools in
the correct order (%), that the drill and press are not used simultaneously (ψ) and that
if the environment provides infinitely many raw products of both types (As) both types
of products will be produced (G).

It is interesting to note that a controller for the robot arm that satisfies the specifica-
tion above when composed with the model of the environment cannot be produced by
simply pruning the environment model (as behaviour model synthesis techniques for
safety properties do). This is because, in order to fulfill the liveness part of the spec-
ification, a controller must “remember” if it has been postponing one type of product
for too long. Say products of type A have been postponed for too long, the controller
must stop processing the other component type, B, giving way to the production of A
products. How much the controller waits before switching type could vary from one

6 5 4

1 2 3
[a].inT ray [a].getInT ray

put.oven[a]

put.drill[a]put.press[a]

put.OutT ray[a]

Fig. 4. Production process for products of type A.
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controller to another, but all controllers must have some sort of memory in order to
achieve the liveness condition. This memory is not encoded in the state space of the
environment and hence a controller cannot be achieved through its pruning.

In Section 5 we describe the procedure for synthesising behaviour models that sat-
isfy the specification described above, and hence capable of, among other things, iden-
tifying the model’s need for memorising specific aspects of the system behaviour in
order to satisfy liveness properties.

3. BACKGROUND

In this section we discuss the World-Machine model in addition to defining and fixing
notation for Labelled Transition Systems, Fluent Linear Temporal Logic and Two-
player Games.

3.1. The World and the Machine

We begin by providing an overview of the relevant requirements engineering no-
tions. In particular, we present the requirements engineering view of Zave and Jack-
son [Jackson 1995a; 1995b; Zave and Jackson 1997] and of Letier and Van Lam-
sweerde [van Lamsweerde and Letier 2000; Lamsweerde 2001]. Both views agree that
distinguishing between the problem world and the machine solution is central to un-
derstanding whether the machine correctly solves the problem in question. Indeed, the
effect of the machine on the world and the assumptions we make about this world are
central to the requirements engineering process. The problem world defines a part of
the real world that we want to improve by constructing a machine solution. Typically,
it embodies some components that interact following known rules and processes. For
instance, a drill tool, a robot arm and rules for processing products that enter a pro-
duction cell (see Figure 5). On the other hand, the machine solution is expected to solve
the problem. The example in Figure 5 shows that the production cell should process
products when they are available on the InT ray. Consequently, the robot arm has to
pick up products from the in tray if they are ready to be processed. In other words,
the machine abstracts what is needed to be done in order to solve the problem. Finally,
the shared phenomena is a portion of the problem world and the machine solution
that is shared among them. Hence, it defines the interface through which the machine
interacts with the world, represented as the intersection of the two sets in Figure 5.
The machine is referred to in the context of synthesis as the controller, we shall either
term depending on the context. Following [Parnas and Madey 1995], we may refer to
the problem world as the environment.

Statements describing phenomena of both the problem world and the machine so-
lution may differ in scope and mood [Jackson 1995a; Parnas and Madey 1995]. State-
ments may have indicative or optative mood. In [van Lamsweerde 2009], statements
describing the system are characterised as descriptive and prescriptive. Descriptive
statements represent properties about the system that hold independently of how
the system behaves. Descriptive statements are in indicative mood. Prescriptive state-
ments state desirable properties which may hold or not. Indeed, prescriptive state-
ments must be enforced by system components. Naturally, prescriptive statements may
be changed, strengthened/weakened or even removed while descriptive cannot.

As mentioned above, statements may vary in scope. Both prescriptive and descrip-
tive statements may refer to phenomena of the machine that is not shared with the
world. Other statements may refer to phenomena shared by the machine and the
world. More precisely, a Domain property is a descriptive statement about the prob-
lem world. It must hold regardless on how the system behaves. In this work we call
Environment Model, the set of domain properties for a particular problem. An En-
vironmental Assumption is a statement that may not hold and must be satisfied by
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Fig. 5. World and Machine Phenomena.

the environment. A Software Requirement, or Requirement for short, is a prescriptive
statement to be enforced by the machine regardless of how the problem world behaves
and must be formulated in terms of the phenomena shared between the machine and
the problem world. A System Goal, or Goal for short, is a prescriptive statement to be
enforced by the machine. Some collaboration with the environment might be needed.

In this paper we specify descriptive and prescriptive statements of the world and
machine using Fluent Linear Temporal Logic and Labelled Transitions Systems which
we recall below.

3.2. Transition Systems

We describe and fix notation for labelled transition systems (LTSs) [Keller 1976], which
are widely used for modelling and analysing the behaviour of concurrent and dis-
tributed systems. An LTS is a state transition system where transitions are labelled
with actions. The set of actions of an LTS is called its communicating alphabet and
constitutes the interactions that the modelled system can have with its environment.
Model for the drill in the previous section, i.e. Figure 1, is an example of an LTS. Recall
that states with an incoming transition with no source state represent initial states.

Definition 3.1. (Labelled Transition Systems [Keller 1976]) Let States be a uni-
versal set of states, Act be the universal set of observable action labels and Actτ =
Act ∪ {τ}. A Labelled Transition System (LTS) is a tuple P = (S, L, ∆, s0), where
S ⊆ States is a finite set of states, L ⊆ Actτ , ∆ ⊆ (S × L × S) is a transition relation,
and s0 ∈ S is the initial state. We use αP = L \ {τ} to denote the communicating
alphabet of P . We denote ∆(s) = {s′ | (s, a, s′) ∈ ∆} and traces(P ) the set of traces
t = s, `, s′, `′, . . . of P . We say an LTS is deterministic if (s, `, s′) and (s, `, s′′) are in ∆
implies s′ = s′′.

Definition 3.2. (Parallel Composition) Let M = (SM , LM , ∆M , s0M ) and N = (SN ,
LN , ∆N , s0N ) be LTSs. Parallel composition ‖ is a symmetric operator such that M‖N
is the LTS P = (SM × SN , LM ∪ LN , ∆, (s0M , s0N)), where ∆ is the smallest relation
that satisfy the rules below, where ` ∈ LM ∪ LN :

M
`

−→M ′

M‖N
`

−→M ′‖N
` 6∈LN

M
`

−→M ′, N
`

−→N ′

M‖N
`

−→M ′‖N ′

`∈LM∪LN
N

`
−→N ′

M‖N
`

−→M‖N ′

` 6∈LM

The following definition is based on that of Interface Automata and Legal Environ-
ment presented in [de Alfaro and Henzinger 2001].
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Definition 3.3. (LTS Legal Environment) Given M = (SM , LM ,∆M , sM0
) and P =

(SP , LP ,∆P , sP0
) LTSs, where LM = LMc

t LMu
and LP = LPc

t LPu
. We say that M is

an LTS legal environment for P with controlled actions LMc
, if the interface automaton

M ′ = 〈SM , {sM0
}, LMu

, LMc
, ∅,∆M 〉 is a legal environment for the interface automaton

P ′ = 〈SP , {sP0
}, LPu

, LPc
, ∅,∆P 〉.

3.3. Fluent Linear Temporal Logic

Linear temporal logics (LTL) are widely used to describe behaviour requirements [Gi-
annakopoulou and Magee 2003; van Lamsweerde and Letier 2000; Letier and van
Lamsweerde 2002; Kazhamiakin et al. 2004]. The motivation for choosing an LTL
of fluents is that it provides a uniform framework for specifying state-based tempo-
ral properties in event-based models [Giannakopoulou and Magee 2003]. FLTL [Gian-
nakopoulou and Magee 2003] is a linear-time temporal logic for reasoning about flu-
ents. A fluent Fl is defined by a pair of sets and a boolean value: Fl = 〈IFl, TFl, InitFl〉.
IFl is the set of initiating actions and TFl is the set of terminating actions. A fluent
may be initially true or false as indicated by the InitFl. Every action ` ∈ Act induces a

fluent, namely ˙̀ = 〈`, Act \ {`},⊥〉. Finally, the alphabet of a fluent is the union of its
terminating and initiating actions.

Let F be the set of all possible fluents over Act. A FLTL formula is defined in-
ductively using the standard boolean connectives and temporal operators X (next),
U (strong until) as follows:

ϕ ::= Fl | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ,

where Fl ∈ F . As usual we introduce ∧, 1 (eventually), and 0 (always) as syntactic
sugar.

Let Π be the set of infinite traces over Act. For π ∈ Π, we write πi for the suffix of π
starting at `i ∈ Act. πi satisfies a fluent Fl, denoted πi |= Fl, if and only if one of the
following conditions holds:

- InitFl ∧ (∀j ∈ N · 0 ≤ j ≤ i→ `j /∈ TFl)

- ∃j ∈ N · (j ≤ i ∧ `j ∈ If ) ∧ (∀k ∈ N · j < k ≤ i → `k /∈ TFl)

3.4. Controller Synthesis

We consider now the problem of FLTL control over LTS. For that we distinguish be-
tween controllable and uncontrollable actions in an LTS (introduced formally later).
Intuitively, of the actions possible in a state, the controller can choose to disable con-
trollable actions. However, it cannot disable all possible actions as this would lead to
a deadlock. This leads naturally to the concept of a game, where one player (the con-
troller) chooses which actions to enable and the other player (environment) chooses
which actions to follow. Formally, we have the following.

Definition 3.4. (Two-player Game) A Two-player Game (Game) is G = (Sg, Γ
−,

Γ+, sg0 , ϕ), where S is a finite set of states, Γ−,Γ+ ⊆ S × S are transition relations
of uncontrollable and controllable transitions, respectively, sg0 ∈ S is the initial state,
and ϕ ⊆ Sω is a winning condition. We denote Γ−(s) = {s′ | (s, s′) ∈ Γ−} and similarly
for Γ+. A state s is uncontrollable if Γ−(s) 6= ∅ and controllable otherwise. A play on G
is a sequence p = sg0 , sg1 , . . .. A play p ending in sgn is extended by the controller choos-
ing a subset γ ⊆ Γ+(sgn). Then, the environment chooses a state sgn+1

∈ γ ∪ Γ−(sgn)
and adds sgn+1

to p.

Notice that if in a controllable state γ is empty the choice of controller may lead to a
deadlock. This is prohibited later by defining this as a losing choice for the controller.
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From an uncontrollable state the controller may decide to disable all controllable ac-
tions. The choices of the controller are formalised in the form of a strategy. This is the
policy that the controller applies. In general, the strategy may depend on the history.
This is reflected in the strategy depending on a memory value in the domain Ω and
updating this value according to the evolvement of the play.

Recall that this game is different from the one defined in [Piterman et al. 2006].
Piterman et al. define a game in which the environment chooses its next valuation and
only then, the controller gets to choose what to do next.

Definition 3.5. (Strategy with memory) A strategy with memory Ω for the controller
is a pair of functions (σ, u), where Ω is some memory domain with designated start
value ω0, σ : Ω× S → 2S such that σ(ω, s) ⊆ Γ+(s) and u : Ω× S → Ω.

Intuitively, σ tells controller which states to enable as possible successors and u tells
controller how to update its memory. If Ω is finite, we say that the strategy uses finite
memory.

Definition 3.6. (Consistency and Winning Strategy) A finite or infinite play p =
s0, s1, . . . is consistent with (σ, u) if for every n we have sn+1 ∈ σ(ωn, sn), where ωi+1 =
u(ωi, si+1) for all i ≥ 0. A strategy (σ, u) for controller is winning if every maximal play
consistent with (σ, u) is infinite and in ϕ. We say that controller wins the game G if it
has a winning strategy.

As the controller is defined as losing on all finite plays it follows that it cannot dis-
able all controllable actions from a controllable state. We refer to checking whether
controller wins a game G as solving the game G. The controller synthesis problem is to
produce a winning strategy for controller. If such winning strategy for controller exists
we say that the control problem is realisable [Ramadge and Wonham 1989; Maler et al.
1995]. It is well known that if controller wins a game G and ϕ is ω-regular it can win
using a finite memory strategy [Pnueli and Rosner 1989]. We now define the class of
winning conditions ϕ that is of our interest.

Definition 3.7. (Generalised Reactivity(1) [Piterman et al. 2006]) Given an infinite
sequence of states p, let inf(p) denote the states that occur infinitely often in p. Let
φ1, . . . , φn and γ1, . . . , γm be subsets of S. Let gr((φ1, . . . , φn), (γ1, . . . , γm)) denote the
set of infinite sequences p such that either for some i we have inf(p) ∩ φi = ∅ or for all
j we have inf(p) ∩ γj 6= ∅. A GR(1) game is a game where the winning condition ϕ is
gr((φ1, . . . , φn), (γ1, . . . , γm)).

We refer to games (as defined in Definition 3.4) with Piterman’s GR(1) winning con-
ditions (Recalled in Definition 3.7) as GR(1) games.

THEOREM 3.8. Given a gameG = (S,Γ−,Γ+, sg0 , ϕ) the complexity of deciding whe-
ther G is winning and computing a winning strategy for controller is as follows.

— The complexity is 2EXPTIME-complete for general ϕ [Pnueli and Rosner 1989].
— The complexity is O(nm|S|(|Γ−∪Γ+|)) for ϕ a generalised reactivity(1) formula [Kesten

et al. 2005; Juvekar and Piterman 2006].

4. EVENT BASED CONTROL SYNTHESIS

4.1. Control Problems

We now present a high level description of an event-based control problem following
the world-machine model [Jackson 1995b]. We distinguish between software require-
ments, system goals and environment assumptions. We then define the LTS control
problem which grounds the event-based control problem by fixing a specific formal
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specification framework: Labelled Transition Systems and the Linear Temporal Logic
of Fluents. Finally, given the computational complexity of the general LTS control prob-
lem, we define SGR(1) LTS Control, a restricted LTS control problem for expressive
subset of temporal properties that includes liveness and allows for a polynomial solu-
tion. In the next section, we show how such polynomial solution can be achieved.

The problem of control synthesis is to automatically produce a machine that restricts
the occurrence of events it controls based on its observation of the events that have
occurred. When deployed in a suitable environment such a machine will ensure the
satisfaction of a given set of system goals. Satisfaction of these goals depends on the
satisfaction of the assumptions by the environment. In other words, we are given a
specification of an environment, assumptions, system goals, and a set of controllable
actions.

A solution for the Event-Based control problem is to find a machine whose concurrent
behaviour with an environment that satisfies the assumptions satisfies the goals.

We adopt labelled transition systems (LTS) and parallel composition in the style of
CSP [Hoare 1978] as the formal basis for modelling the environment and for represent-
ing the synthesised controller, and FLTL, with its corresponding satisfiability notion,
as a declarative specification language to describe both environment assumptions and
system goals.

We ground the problem of control synthesis in event-based models as follows: Given
an LTS that describes the behaviour of the environment, a set of controllable actions,
a set of FLTL formulas as the environment assumptions and a set of FLTL formulas
as the system goals, the LTS control problem is to find an LTS that only restricts
the occurrence of controllable actions and guarantees that the parallel composition
between the environment and the LTS is deadlock free and that if the environment
assumptions are satisfied then the system goals will be satisfied too.

Definition 4.1. (LTS Control) Given a specification for an environment in the form
of an LTS E, a set of controllable actions Ac, and a set H of pairs (Asi, Gi) where Asi
and Gi are FLTL formulas specifying assumptions and goals respectively, the solution
for the LTS control problem E = 〈E,H,Ac〉 is to find an LTS M such that M with con-
trolled actions Ac and uncontrolled Ac is a legal environment for E, E||M is deadlock
free, and for every pair (Asi, Gi) ∈ H and for every trace π in M ||E the following holds:
if π |= Asi then π |= Gi.

The problem with using FLTL as the specification language for assumptions and
goals is that, just like in traditional (i.e. state-based) controller synthesis, the synthesis
problem is 2EXPTIME complete [Pnueli and Rosner 1989]. Nevertheless, restrictions
on the form of the goal and assumptions specification have been studied and found to
be solvable in polynomial time. For example, goal specifications consisting uniquely of
safety requirements can be solved in polynomial time, and so can particular styles of
liveness properties such as [Asarin et al. 1998] and GR(1) under the assumption of full
observability. The latter can be seen as an extension of [Asarin et al. 1998] to a more
expressive liveness fragment of LTL.

We now define the SGR(1) control problem which is computable in polynomial time.
It builds on the GR(1) and safety control problems but is set in the context of event-
based modelling. We require the model of the environmentE to be a deterministic LTS
to ensure that the controller will have full observability of the environment’s state.
We require H to be {(∅, I), (As,G)}, where I is a safety invariant of the form 0 ρ, the
assumptions As are a conjunction of FLTL sub-formulas of the form 0 1 φ, the goal
G a conjunction of FLTL sub-formulas of the form 0 1 γ, and φ, ρ and γ are Boolean
combinations of fluents.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 D’Ippolito et al.

2 1 4

7 3 6 5

c3 c1

a {g1, g2}

`

c3a
c4c2

a w

(a) Environment Model E.

1 2
c3

`

(b) Controller C1.

1 2

3

4

5

c1

a g1

ag2

(c) Controller C2.

2 1 3

4

5

6

c3
`

c1

a g1

ag2

(d) Controller C3.

Fig. 6.

Definition 4.2. (SGR(1) LTS Control) An LTS control problem E = 〈E,H,Ac〉 is
SGR(1) if E is deterministic, and H = {(∅, I), (As,G)}, where I = 0 ρ, As =∧n

i=1 0 1 φi, G =
∧m

j=1 0 1 γj , and φi, ρ and γj are Boolean combinations of fluents.

Consider the SGR(1) LTS control problem R = 〈E,H,Ac〉, where E is the LTS in
Figure 6(a), Ac = {c1, c2, c3, c4, g1, g2}, H = {(∅, I), (As,G)}, I = 0 ¬ẇ, As = 0 1 ȧ

and G = 0 1 ġ1 ∧ 0 1 ġ2. Recall that for all ` in the alphabet of E, the fluent ˙̀ is
defined as the fluent that becomes true when ` occurs and becomes false when any
other action occurs.

The LTS C1, C2 and C3 of Figures 6(b) to 6(d) are some of the possible solutions to R:
C1‖E has no traces satisfying the assumptions As, hence it is not obligated to satisfy
G; all traces in C2‖E satisfy As and also G; and traces in C3‖E either do not satisfy As
or satisfy both As andG. We will discuss in the next subsection the differences between
these solutions. For now, it is interesting to note that neither C2 nor C3 can be obtained
only by pruning E. Both models introduce new states which allow the controller to
“remember” which is the next goal that must be achieved (g1 or g2). The automated
construction of these “memory” states will be described in detail in section 5.3.

The SGR(1) control problem restricts the form of the environment assumptions and
system goals. Thus, a valid concern is the impact of this restriction on expressive-
ness in practice. A closer look at the family of liveness formulas reveals it is not ar-
bitrary: they are designed to capture a Büchi acceptance condition. More concretely,
any liveness property specifiable by a deterministic Büchi automaton can be handled
by the proposed approach. The trick is, basically, to compose the Büchi automaton
structure with the original plant LTS and then use assumptions and goals to express
that their acceptance conditions will/should (respectively) be visited infinitely often.
Typical responsiveness assumptions and goals (e.g. 0 (φ → 1 ψ)) could be treated in
this way [Piterman et al. 2006]. In the context of LTS and FLTL this kind of assump-
tions can be handled without explicitly generating the deterministic Büchi automaton.
In many cases, this can be done by encoding the responsiveness with fluents and as-
sumptions in GR(1) form. An example of a responsiveness goal that does not fit the
syntactic requirements of SGR(1) but could be dealt with by means of this encoding
is that if a product is waiting to be processed by the cell (i.e. it has been placed on
the in tray and not yet picked up by the arm), then it will eventually be put onto

the out tray
∧MAX

id=0

∧
t∈{A,B} 0 (WaitingForProcessing(t, id) → 1 ˙[t].[id].put.OutT ray)

where WaitingForProcessing(t, id) is a fluent initiated by event [t].[id].inT ray and ter-
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minated by event [t].[id].getInT ray. In this case the trick to encode the assumption as
a GR(1)-like formula is to encode the responsiveness as follows, define a fluent with
the initiating action of the antecedent as the initiating action and the initiating ac-
tion of the consequent as the terminating action. Consequently, we first define the
fluent fl = 〈{[t].[id].inT ray}, {[t].[id].put.OutT ray},⊥〉 and then we include the formula0 1 ¬fl as an environmental assumption in the GR(1) specification.

4.2. Assumptions and Anomalous Controllers

A valid concern is if there are semantic restrictions for what is called an assumption
in a control problem. In other words, can any assertion be provided as an assumption?
or the fact that it is deemed assumption implies that it should have specific semantic
properties? This question can also be posed for the specific case of SGR(1) LTS control:
are further semantic restrictions needed to ensure that the formula As =

∧n

i=1 0 1 φi
can be interpreted as an assumption on the environment? We now answer this ques-
tion.

Consider the LTS controller C1 discussed in the previous section. C1 solves the
SGR(1) control problem R by simply ensuring that for all trace π ∈ traces(E‖C1)
π 6|= As. Such a solution, from an engineering perspective is unsatisfactory: C1 should
“play fair” by trying to achieve G when As holds rather than trying to avoid As. In this
sense, C2 and C3 are more satisfactory. The best effort controller definition provided
below formalises this preference by requiring the following: if the controller forces As
not to hold after a sequence σ, no other controller that achieves G could have allowed
As after σ.

Definition 4.3. (Best Effort Controller) Given an SGR(1) LTS control problem E with
assumptions As and an LTS M such that M is a solution for E , we say that M is a best
effort controller for E if for all finite traces σ ∈ traces(E‖M) if there is no σ′ where
σ.σ′ ∈ traces(E‖M) and σ.σ′ |= As then there is no other solution M ′ to E such that
σ ∈ traces(E‖M ′) and there exists σ′ such that σ.σ′ ∈ traces(E‖M ′) and σ.σ′ |= As

Controller C1 is not a best effort controller as ε, the empty trace in E‖C1 cannot be
extended in E‖C1 to satisfy As, yet it can be extended by σ′ = c1, 2, a, 3, g1, 4, a, 5, g2, · · ·
in E‖C2 such that ε.σ′ satisfies 0 1 As. On the other hand, given that there are no
traces in E‖C2 violating As, C2 is a Best Effort controller for R. C3 is also a Best Effort
controller as the only finite trace violating As in C3 is σ = c3, · · · and there are no
extension of σ satisfying As and G.

Note that controller C3 also could be argued to be anomalous from an engineering
perspective: Although C3 does play fair when choosing action c1 to state 3, it can also
choose action c3 to state 2 taking E‖C3 to a state in which assumptions are no longer
possible. This can motivate a stronger criterion than Best Effort: the controller should
never prevent the environment from achieving its assumptions.

Definition 4.4. (Assumption Preserving Controller) Given an SGR(1) LTS control
problem E with assumptions As and an LTS M such that M is a solution for E , we
say that M is an assumption preserving controller for E if for all finite traces σ ∈
traces(E‖M) if there is no σ′ where σ.σ′ ∈ traces(E‖M) and σ.σ′ |= As then there does
not exist σ′ such that σ.σ′ ∈ traces(E) and σ.σ′ |= (I ∧As)

THEOREM 4.5. Given an SGR(1) LTS control problem R and M an LTS controller
for R, if M is a Assumption Preserving controller then M is a Best Effort controller.

PROOF. IfM is not best effort there must be a trace σ ∈ traces(E‖M) such that there
is no σ′ where σ.σ′ ∈ traces(E‖M), σ.σ′ |= As and then there exists another solution
M ′ to E such that σ ∈ traces(E‖M ′) and there exists σ′ such that σ.σ′ ∈ traces(E‖M ′)
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and σ.σ′ |= As. By definition of LTS parallel composition σ.σ′ ∈ traces(E), therefore M
cannot be assumption preserving, which contradicts our hypothesis.

Theorem 4.5 and the fact that C1 is not best effort it follows that C2 is not an assump-
tion preserving controller. Although C3 is best effort, it is not an assumption preserving
controller because the trace σ = c3, c3, a, c3, . . . in E is a valid extension to σ = c3, . . . in
C3‖E which satisfies As while violating G. On the other hand, given that every infinite
trace in C2 satisfies both As and G, C2 is an assumption preserving controller.

Note that the Best Effort criterion compares two controllers while Assumption Pre-
serving compares the behaviour of the controlled environment against the environ-
ment. Consequently, it is easy to see that Assumption Preserving and Best Effort con-
trollers are related through logical implication. In other words, if a controller is As-
sumption Preserving then it is also Best Effort. It could be argued that Assumption
Preserving is sufficient and Best Effort is somehow non desired. However, they are both
relevant in different ways. There are situations in which if the goals are to be fulfilled
by a controlled environment, the controller must take decisions that, at some point,
might forbid the environment to satisfy its assumptions. In such cases, Assumption
Preserving controllers cannot be achieved while Best Effort can.

Now, given an SGR(1) problem it is useful to know whether all solutions of an SGR(1)
LTS control problem are assumption preserving or best effort. Interestingly, a suffi-
cient condition for this can be achieved by restricting the relation between the as-
sumptions As and the environment E. The essence of this relation is based on the
notion of realisability and the fact that the environment is the agent responsible for
achieving the assumptions as introduced in [Letier and van Lamsweerde 2002].

The notion of realisability requires that an agent responsible for an assertion be
capable of achieving it based on its controlled actions regardless of what happens with
the actions is does not control. In our setting, this notion can be used to formalise a
sufficient condition for guaranteeing assumption preserving and best effort controllers.

The condition requires the environment be capable of achieving As regardless of the
behaviour of any controller that it might be composed with. This is ensured by checking
that for every state in E there is no strategy for the controller to falsify As. This adds
no computational complexity to the control problem.

Definition 4.6. (Assumption compatibility) Given an SGR(1) LTS control problem
E = 〈E,H,Ac〉 and H = {(∅, I), (As,G)}, we say that the As is compatible with E if
for every state s in E there is no solution for the SGR(1) LTS control problem Es =
〈Es, H

′, Ac〉, where H ′ = {(∅, I), (As, false)} and Es is the result of changing the initial
state of E to s.

Hence, when the assumptions of an SGR(1) LTS control problem are compatible with
the environment, it is guaranteed that anomalous controllers (such as those that are
not best effort and assumption preserving) will not be produced.

THEOREM 4.7. Given an SGR(1) LTS control problem E with assumptions As and
environment E, if As is compatible with E then all solutions to E are best effort and
assumption preserving.

PROOF. Since As is compatible with E then for all M and for every trace σ ∈
traces(E‖M) there exists σ′ such that σ.σ′ ∈ traces(E‖M) and σ.σ′ |= As. By vacu-
ity of the antecedent, it follows that M is best effort and assumption preserving con-
troller.

Note that the running example R violates Definition 4.6 and hence, has anomalous
controllers such as C1, which is not Best Effort nor Assumption Preserving, or C3 which
is Best Effort but not Assumption Preserving.
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Also note that the assumptions for the example in Section 2 are not compatible with
the environment described in the same section. This is because we modelled the envi-
ronment so to “reuse” products once they have been processed. In other words, rather
than modelling an infinite number of products to be processed (which would lead to
an infinite state environment) we modelled that a product, once it has been fully pro-
cessed becomes available once again to be put as raw on the in tray. As the assump-
tions require AddedToInTray(t, i) infinitely often, the environment needs the robot to
cooperate by processing the products infinitely often. Hence, the environment cannot
guarantee the assumptions independently and a solution to the running example could
be a robot that does absolutely nothing. A more appropriate assumption, which would
guarantee non-anomalous controllers, is one that states that the environment reacts
to products being placed in the out tray by eventually placing them back on the in
tray: 0 (AddedToOutT ray(t, i) → 1 AddedToInTray(t, i)). Note that in this case it is
also possible to apply the trick presented above.

Our notion of anomalous controllers is tightly coupled to the problem of properties
which are trivially satisfied in system model [Beatty and Bryant 1994]. A typical pat-
tern of vacuity [Beer et al. 1997] is one in which the left hand side of an implication
is never fulfilled by the system model. A controller that that achieves its goals by fal-
sifying assumptions can be thought of as the cast of the vacuity problem in controller
synthesis.

Summarising the latter part of this section, best effort and assumption preserving
controllers explain technically the sort of anomalies that might arise if requirement
engineering practices such as ensuring realisability of assumptions by the environ-
ment are violated.

In the next section we present how to solve SGR(1) LTS problems. The synthesis
algorithm we implemented does not require environment-assumption compatibility.
However, as explained above, such a condition is desirable.

5. SOLVING SGR(1) CONTROL

In this section we explain how a solution for the SGR(1) control problem can be
achieved by building on existing (state-based) controller synthesis techniques, namely
GR(1).

The construction of the machine for an SGR(1) LTS control problem has two steps.
Firstly, a GR(1) game G is created from the environment model E, the assumptions
As, the goals G and the set of controllable actions Ac (Section 5.1). Secondly, a solution
(σ, u) to the GR(1) game is used to build a solution M (i.e. an LTS controller) for E
(Section 5.2). We also show that our approach is sound and complete. That is, a solution
to the SGR(1) LTS control problem E exists if and only if a solution to the GR(1) game
G exists. Furthermore, the LTS controller M built from (σ, u) is a solution to E .

The reader not interested details of the mapping of SGR(1) into GR(1) can skip di-
rectly to Section 5.3 where we comment on the implementation of the synthesis tech-
nique and show a controller for a reduced version of the Production Cell case study.

5.1. SGR(1) LTS control to GR(1) games

We convert the SGR(1) LTS control problem into a GR(1) game. Given a SGR(1) LTS
control problem E = 〈E,H,Ac〉 we construct a GR(1) gameG = (Sg,Γ

−,Γ+, sg0 , ϕg) such
that every state in Sg encodes a state in E and a valuation of all fluents appearing in
As and G.

More precisely, consider an SGR(1) LTS control problem E = 〈E,H,Ac〉, where, H =
{(∅, I), (As,G)},E = (Se, L,∆e, se0), As =

∧n
i=1 0 1 φi, I = 0 ρ andG =

∧m
j=1 0 1 γj .
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Let fl = {1̇, . . . , k̇} be the set of fluents used in As and G and i̇ = 〈Ii̇, Ti̇, Initi〉. The game
G = (Sg,Γ

−,Γ+, sg0 , ϕg) is constructed as follows.
We build Sg from E such that states encode a state in E and truth values for all

fluents in ϕ: Let Sg = Se×
∏k

i=1{true, false}. Consider a state sg = (se, α1, . . . , αk). Given
fluent fli, we say that sg satisfies fli if αi is true and sg does not satisfy fli otherwise.
We generalise satisfaction to Boolean combination of fluents in the natural way.

We build transition relations Γ− and Γ+ using the following rules. Consider a state
sg = (se, α1, . . . , αk). If sg does not satisfy ρ (i.e., sg is unsafe) we do not add successors
to sg. Otherwise, for every transition (se, `, s

′
e) ∈ ∆e we include (sg, (s

′
e, α

′
1, . . . , α

′
k)) in

Γβ , where β is + if ` ∈ Ac, β is − if a /∈ Ac and (1) α′
i is αi if ` /∈ Ifl

i

∪Tfl
i

, (2) α′
i is true if

` ∈ Ifl
i

and (3) α′
i is false if ` ∈ Tfl

i

. The initial state sg0 is (se0 , initially1, . . . , initiallyk).

We build the winning condition ϕg, defined to be a set of infinite traces, from AS
and G as follows: We abuse notation and denote by φi the set of states sg such that
sg satisfies the assumptions φi and by γi the set of states sg such that sg satisfies the
goal γi. Let ϕg ⊆ Sω

g be the set of sequences that satisfy gr((φ1, . . . , φn), (γ1, . . . , γm)). It

follows that G = (Sg,Γ
−,Γ+, sg0 , ϕg) is a GR(1) game.

It can be shown that if there is a solution to a SGR(1) LTS control problem then
there is a winning strategy for a controller in the constructed GR(1) game (refer to
Theorem 5.1).

Note that the safety part of the specification is not encoded as part of the wining
condition ϕg of the GR(1) game, rather it is encoded as a deadlock avoidance problem
when constructing Γ−and Γ+. Consequently, the winning condition we realise is 0 ρ∧
(
∧n

i=1 0 1 φi ⇒
∧m

j=1 0 1 γj)

Figure 7(a) shows the transition relations Γ− and Γ+ for GR, the game obtained by
applying to R the procedure described above. Transitions in Γ− and Γ+ are marked as
γ− and γ+ respectively. States are labelled with a state in the original LTS model (i.e.
model E in Figure 6(a)) and the set of fluents holding in the state of the LTS model.

5.2. Translating strategies to LTS Controllers

We now show how to extract an LTS controller from a winning strategy for the GR(1)
game that was obtained from the SGR(1) LTS control problem as shown in Section 5.1.

Intuitively, the transformation is as follows: given an SGR(1) LTS control problem
E = 〈E,H,Ac〉, the game G = (Sg,Γ

−,Γ+, sg0 , ϕg) obtained from E and a winning strat-
egy for G, we build M = (SM , L,∆M , sM0

) a solution to E by encoding in states of SM a
state of Sg and a state of the memory given by the winning strategy.

More precisely, let E = (Se, L,∆e, se0), fl = {fl1, . . . ,flk} the set of fluents appearing
in ϕ, G = (Sg,Γ

−,Γ+, sg0 , ϕg) be the GR(1) game constructed from E as explained
above, and let σ : Ω × Sg → 2Sg and u : Ω × Sg → Ω be a winning strategy in G. We
construct the machine M = (SM , L,∆M , sM0

) as follows.
To build SM ⊆ Ω × Sg, consider two states sg = (se, α1, . . . , αk) and s′g =

(s′e, α
′
1, . . . , α

′
k). We say that action ` is possible from sg to s′g if (sg, s

′
g) ∈ Γ−∪ Γ+, there

is some action ` such that (se, `, s
′
e) ∈ ∆e and for every fluent fli either (1) ` /∈ Ifl

i

∪ Tfl
i

and α′
i = αi, (2) ` ∈ Ifl

i

and α′
i = true, or (3) ` ∈ Tfl

i

and α′
i = false.

To build ∆M ⊂ SM × L × SM , consider a transition (sg, s
′
g) ∈ Γ−. By definition of

Γ− there is an action ` /∈ Ac such that ` is possible from sg to s′g. If s′g ∈ σ(ω, sg) then
for every action ` such that ` is possible from sg to s′g we add ((ω, sg), `, (u(ω, sg), s

′
g)) to

∆M . Similarly, consider a transition (sg, s
′
g) ∈ Γ+. By definition of Γ+ there is an action
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(a) Transition relations for the game GR.
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4, ġ1
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(b) σR: Wining strategy for GR.

Fig. 7.

` ∈ Ac such that ` is possible from sg to s′g. If s′g ∈ σ(ω, sg) then for every action ` such
that ` is possible from sg to s′g we add ((ω, sg), `, (u(ω, sg), s

′
g)) to ∆M .

The initial state of M is defined as sM0
= (ω0, sg0) where ω0 is the initial value for

the memory domain Ω. This completes the definition of M .
Consider the game GR and a strategy (σ, u) that tries to fulfill the goals at the same

time the environment fulfills its assumptions. That is, a strategy that satisfies 0 1 ȧ,0 1 ġ1 and 0 1 ġ2. The only possible solution to such requirements is to have in
(σ, u), a cycle visiting (5, ȧ), (4, ġ1) and (4, ġ2) in some order. A strategy satisfying this
is shown in Figure 7(b). Note that some memory is needed to distinguish whether state
(4, ġ1) or (4, ġ2) has to be visited after visiting (5, ȧ). Finally, in Figure 6(c) we show the
LTS controller obtained by applying the conversion shown above to the strategy in
Figure 7(b).

In Theorem 5.2 we show that if (σ, u) is winning strategy for a GR(1) game G con-
structed from a to a SGR(1) LTS control problem E , then the LTS M constructed as
explained above is a solution to E . Note that to prove this proposition environment (E)
determinism is needed.

THEOREM 5.1. (Completeness) Let E be an SGR(1) LTS control problem, and G be
a GR(1) game constructed by applying the conversion shown in Section 5.1 to E . If C is
a solution for the SGR(1) problem E then there exists a strategy (σ, u) such that: (σ, u)
is winning for G and the LTS controller obtained by applying the translation shown in
Section 5.2 to (σ, u) is equivalent to C.

PROOF. The proof is organised as follows. First, we construct a winning strat-
egy (σ, u). Second, we prove (σ, u) to be winning for G. The strategy is constructed
by applying a similar reasoning as if we were applying the inverse of the transfor-
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mation shown in Section 5.2 to M . That is, the states of M are used as the mem-
ory function for the strategy and given a pair of states sg = (se, α1, . . . , αk) and
s′g = (s′e, α

′
1, . . . , α

′
k) in G. The transition (sm, s

′
m) ∈ σm iff there is, a controllable

action ` ∈ L, a transition ((se, sm), `, (s′e, s
′
m)) ∈ ∆E||M and the truth values for the

fluents are the expected by the definition of Γ− and Γ+. Furthermore, given that E||M
has no deadlocks and E||M |= 0 ρ, it follows that σ cannot reach a state such that
Γ− ∪ Γ+ = ∅, in other words, σ cannot reach a deadlock state. Also, by construction
of Γ− and Γ+ the truth value of the fluents in the states is updated as expected. Fi-
nally, from the definition of the update of the values α1, . . . , αk in the states of G it
is simple to see that a play is winning for controller iff it satisfies the FLTL formula0 ρ ∧ (

∧n
i=1 0 1 φi ⇒

∧m
j=1 0 1 γj).

THEOREM 5.2. (Soundness) Let E be a SGR(1) LTS control problem and G be a
GR(1) game constructed by applying the conversion shown in Section 5.1 to E , σ be a
transition relation and u be an update function. If (σ, u) is winning strategy for G, and
C is the LTS obtained by applying the conversion shown in Section 5.2, then it holds
that C is a solution for E .

PROOF. Consider a joint computation p = (se0 , sM0
), `0, (sp1

, sc1), `1, . . . of E||M . Re-
call that states in E||M are of the form (se0 , sM0

) where sm = (m, sp, α1, . . . , αk). Now,
by construction and the fact that E is deterministic, we know that for every fluent fli

and for every j ≥ 0 we have scj = (mj , spj
, αj

1, . . . , α
j
k) and αi is the truth value of fl

j
i at

time j. Then, for some j ≥ 0 and sm ∈ SM we show that scj ∈ φi iff φi is true at time j
and similarly for γj . In addition, from the fact that the computation sM0

, `0, sm1
, `1, . . .

is a computation of M , the sequence sM0
, sm1

, . . . is the product of a play in G that is
consistent with (σ, u) and that (σ, u) is a winning strategy, it follows that this play in
G correspond to a trace in M such that if the assumptions holds then the system goals
will do so. Finally, given that (σ, u) is winning, it only produces infinite plays showing
that E||M states not satisfying ρ are not reachable and there are no deadlocks.

5.3. Implementation

In this section we present the algorithm implemented extending the MTSA tool
set [D’Ippolito et al. 2008]. The algorithm is based on ideas of [Juvekar and Piterman
2006]. For more details the reader is referred to Section 7.

Intuitively, the algorithm aims to avoid, through restricting controllable actions, cy-
cles of states satisfying all the assumptions but not all of the goals. The existence of
such cycles would allow for traces in which the controller looses the GR(1) game. In
order to avoid such cycles the algorithm searches, for every state, a strategy that guar-
antees satisfaction of all goals. To do so, it chooses an order in which it will attempt
to satisfy the goals. The algorithm applies a fixed point iteration for computing the
best way each state has to satisfy the next goal. In order to measure the “quality” of
different successor states with respect to satisfying the next goal, a ranking system is
used. The rank for a particular successor will measure the “distance” to the next goal
in terms of the number of times that all assumptions will be satisfied before reach-
ing the goal. If this number tends to infinity then this means that from the current
state a trace is possible in which the environment assumptions hold infinitely often
but the system goals do not. Hence, such state should be avoided by the strategy for
the controller.

Consider a game G = (Sg,Γ
−,Γ+, sg0 , ϕ), where ϕ = gr((φ1, . . . , φn), (γ1, . . . , γm)). A

ranking function for a goal γj is a functionRj : Sg → (N×{1, . . . , n})∪{∞}). Intuitively,
Rj(sg) = (k, l) means that in order to reach from sg a state in which γj holds, all paths
will make assumption φl hold at most k times, φ1 through φl−1 will hold at least k + 1
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times and assumptions φl+1 through φn will hold at least k times. R(s) = ∞ means
that s is a loosing state, i.e. from s there is no strategy for the controller that can avoid
a trace which satisfies infinitely often all assumptions but does not satisfy infinitely
often all goals. A ranking system for G and ϕ is a sequence R1, . . ., Rm of ranking
functions, each associated with a specific goal γj.

As mentioned above, the computation of the ranking system is a fixed point iteration,
where the rank of a state for a goal γj is computed based on the rank of its successors.
For instance, if sg is controllable and γj is satisfied in s then the best choice for the
controller would be to move to a state in which satisfaction of γj⊕1 is likely. Hence, its
best choice is the successor state with the lowest ranking for goal γj⊕1 where j ⊕ 1 is
(j mod m) + 1. On the other hand, if sg is controllable but does not satisfy γj , then the
best choice is the successor with the best ranking for the same goal, i.e. γj . If sg is a non-
controllable state, the difference is that the ranking must consider the worst possible
scenario: It is the environment, rather than the controller, that picks the successor
state and it picks the state that is least likely to achieve the next goal. Hence the rank
of sg will depend on the highest rank of its successors.

The above intuition is encoded in the following function sr : Sg → (N × {1, . . . , n})
∪{∞}). The function also encodes the fact that deadlocking states (states with no suc-
cessors) are ranked ∞. In addition, note that we order ranks using the lexicographical
order. Given a state sg and a goal γj , sr(sg, j) is defined as follows:

— If Γ+(sg) ∪ Γ−(sg) = ∅, then sr(sg, j) = ∞, otherwise
— If sg is controllable and sg ∈ γj then sr(sg , j) = mins′g∈Γ+(sg) Rj⊕1(s

′
g).

— If sg is controllable and sg /∈ γj then sr(sg , j) = mins′g∈Γ+(sg)Rj(s
′
g).

— If sg is uncontrollable and sg ∈ γj then sr(sg, j) = maxs′g∈Γ−(sg)Rj⊕1(s
′
g).

— If sg is uncontrollable and sg /∈ γj then sr(sg, j) = maxs′g∈Γ−(sg)Rj(s
′
g).

Function sr(sg , j) computes the rank of the successor state that should be used to
compute Rj(sg). It does so assuming that ranks of all successor states have been pre-
viously computed. In order to compute the true ranks of all states, we must do a fixed
point iteration. The fixed point is when the rank of every state is stable with respect to
every goal.

We say that sg is stable in Rj if all the following hold.

— If sg ∈ γj and sr(sg , j ⊕ 1) = ∞ then Rj(sg) = ∞.
— If sg ∈ γj and sr(sg , j ⊕ 1) 6= ∞ then Rj(sg) = (0, 1).
— If sg /∈ γj , Rj(sg) = (k, l) and sg ∈ φl then Rj(sg) > sr(sg , j).
— If sg /∈ γj , Rj(sg) = (k, l) and sg /∈ φl then Rj(sg) ≥ sr(sg , j)

The intuition for this definition is as follows: If goal γj is satisfied in state sg but its
successors cannot achieve the goal (sr(sg, j ⊕ 1) = ∞) then s is losing and its rank for
γj should be ∞. However, if the successors of sg are winning then, as γj holds in sg, no
assumptions need to be visited before satisfying γj . Hence, best possible rank is (0, 1).

If goal γj is not satisfied in state sg but φl is, then the number of times φl will
be satisfied before achieving γj must be greater than the number of times that its
successors will satisfy φl before satisfying γj (Rj(sg) > sr(sg , j)) On the other hand, if
neither γj nor φl are satisfied in state sg, then the number of times φl will be satisfied
before achieving γj must not be lower than the number of times that its successors will
satisfy φl before satisfying γj .

The algorithm for solving the GR(1) game consists of three steps. First, it initialises
the ranking system so that Rj(sg) = (0, 1) for all states and goals. Second it iterates
until the ranking system is stable. If it is not stable, then the rank for some state and
goal needs to be incremented, and stability is checked again. It is known that every

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 D’Ippolito et al.

1 (4, c1) (5, a) (4, g1) (4, g2)
ġ1 (1, 1) (1.1) (1, 1) (0, 1) (1, 1)
ġ2 (1, 1) (1.1) (1, 1) (1, 1) (0, 1)

Table I.
Ranks
for
states
in
Strat-
egy
σR.

rank greater than (maxj maxi |φi− γj |, n) is effectively equivalent to ∞, where |φi− γj|
is the number of states in G that satisfy φi and do not satisfy γj , which guarantees
termination of the algorithm. Finally, if a stable ranking in which the initial state has a
non-infinite ranking for the first goal (R1(sg0)) then a winning strategy is constructed.
This last step is supported by the following theorem, which has been proven correct
but the proof is out the scope of this paper.

THEOREM 5.3. (Algorithm Soundness) If R1, . . ., Rm is a stable ranking system,
then for every state sg such that R1(sg) 6= ∞ there exists a winning strategy from sg.

PROOF. Let M = {1, . . . ,m} be the memory range of the strategy. The memory is
updated by u(v, t) = v if t /∈ Gv and u(v, t) = v⊕1 otherwise. The function σ(v, t) = {t′ ∈
L+ | t′ ≺j t}. By definition of stability, σ(v, t) includes all uncontrollable successors
of t. It is simple to see that following this strategy the reachable states are always
contained in T and the reachable states have a finite rank.

Consider a computation induced by this strategy p = t0, s1, . . .. Let j0, j1, . . . be the
sequence of memory values used by u and let r0, r1, . . . be the sequence of ranks, where
ri = Rji(ti). The only way in which ji+1 6= ji is if Gji is visited by ti. If for infinitely
many locations ji+1 6= ji then the computation visits all Gj infinitely often. Other-
wise, from some location i0 we have for all i > i0 Gi = Gi0 . Consider the sequence
of ranks ri0 , ri0+1, . . .. By assumption, for all o we have rio+1

≤ rio and furthermore if
rio = (k, l) and tio ∈ Al then rio+1

< rio . By well-foundedness of N × {1, . . . , n} we con-
clude that from some point onwards ri is constant and for some l we have Al is visited
finitely often. It follows that all computations are in ϕ and the strategy is winning as
required.

In Figure I we show the ranks values for states in σR, the strategy shown in Fig-
ure 7(b). The columns represent states in the strategy and the rows, which goal is
being considered. The ranks are mostly (1, 1) since from most of states for both goals, ȧ
holds before ġi hold for i ∈ {1, 2}. As expected, the rank for (4, g1) and (4, g2), according
to ġ1 and ġ2 respectively is (0, 1).

The construction of a winning strategy (σ, u) from a stable ranking where R1(sg0)
6= ∞ is straightforward: The strategy will attempt to reach goals in turns, that is it
will first reach γj before it attempts to reach γj⊕1. To reach a goal γj from a state sg it
will pick a successor of sg such that it has a smaller ranking for γj (σ(j, sg) = s′g such
that Rj(sg) > Rj(s

′
g)). When it reaches γj , it will simply pick a successor state with

non-infinite rank for the next goal (σ(j, sg) = s′g such that Rj⊕1(s
′
g) 6= ∞). The memory

update function u simply changes the goal to be satisfied if the current goal is satisfied
at the current state: u(j, sg) = j if γj is not satisfied in sg and u(j, sg) = j⊕ 1 otherwise.
Note that each ranking function depicts a plan for reaching its own goal. Thus, using
these plans, goals can be pursued in any order.

What remains is to show that the algorithm is complete:
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THEOREM 5.4. (Algorithm Completeness) If there is a winning strategy wins from
sg ∈ G, there exists a stable ranking system R1, . . ., Rm such that for every sg ∈ S and
j ∈ {1, . . . ,m} we have Rj(sg) is either ∞ or (k, l) with k ≤ maxl|φl − (γj)|.

PROOF. An analogous proof is provided in [Kesten et al. 2005].

We show the complete algorithm in Figure 8 computes a stable ranking such that
for every state sg ∈ T if sg is winning for controller (i.e. R1(t) < ∞). At high level, the
algorithm has two major parts, the initialisation and the stabilisation. The initialisa-
tion sets the initial rank for every state in the game and initialises the queue of states
pending to be processed. A state is added to pending if does not satisfy any guarantee
and do satisfy assume φ1. All the states in every ranking function are initialised with
(0, 1) (i.e. the minimum possible rank) except for states such that Γ− ∪ Γ+ = ∅ which
are initialised with ∞. Notice that states with ∞ rank are those which either does not
satisfy ρ or are deadlock states in E. The stabilisation part is a fixed point that iterates
on pending until is empty. We now describe the stabilisation procedure. The function
is stable(state,g) returns true if the g-th ranking function is stable for state. The
function unstablePred(state,g) returns a set of pairs of predecessors of state and
a rankings g for which the ranking is unstable. The function best(state,g) returns
the value of best(state, g), as defined above. Finally, inc(k, l),state, g) returns (0, 1)
if state is in γg, it returns (k, l) if state is not in assumptionl, and it returns the
minimal value greater than (k, l) otherwise. Notice that inc(∞,state,g) is ∞ and if
n = maxl(|φl − (γg)|) and state is in φm − γg then inc((n,m), state, g) is ∞. This algo-
rithm computes the minimal existing stable ranking. Based on the ideas in [Etessami
et al. 2005] and [Juvekar and Piterman 2006], this algorithm can be implemented to
work in time O(m · n · |S|2).

The following theorem follows from the algorithm described above and Theorems 5.4
and 5.3.

THEOREM 5.5.
Given a SGR(1) control problem E = 〈E,H,Ac〉, where H = {(∅, I), (As,G)}, I = 0 ρ,

As =
∧n

i=1 0 1 φi and G =
∧m

j=1 0 1 γj . E is solvable in O(m · n · |S|2) time.

6. CASE STUDIES

In this section we show the results of applying our technique to different case stud-
ies. The case studies were performed using an implementation of the control syn-
thesis algorithm described above integrated into the Modal Transition System Anal-
yser [D’Ippolito et al. 2008]. The modified tool and case studies can be downloaded
from http://sourceforge.net/projects/mtsa/

Autonomous Vehicles.
We present a variation of the case study originally presented in [Heaven et al. 2009]
in the context of self-adaptive systems. In [D’Ippolito et al. 2011], a similar version,
including failures as part of the environment model, was considered and applied in
the context of controller synthesis for fallible domains.

Consider a situation in which a two-bedroom house has collapsed leaving only one
small passage between the two rooms (referred to as north and south rooms). The
entrance door of the house is in the south room and there is a group of people trapped
in the north room. The task of bringing aid packages to the occupants trapped inside
is too dangerous for humans, hence, a robotic system is required. A robot that has a
wide range of movements and has an arm capable of loading and unloading packages.
The robot has a number of sensors which can be used, among other things to check if
a loading operation, which is of a significant amount of complexity and uncertainty, is
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SolveGame(game=(states,transitions),safe,
guarantees,assumptions,fault)

{
//Initialisation
for (state : states) {
for (g : guarantees) {
rank_g(state)=(0,1);

} // for (g)
} // for (s)
Queue pending;
for (state : states) {
if (∃ g : guarantees . state /∈ g &&

state ∈ assume_1) {
pending.push(pair(state,g));

} // if
if (Γˆ−(state) = ∅ && Γˆ+(state) = ∅) {
for (g : guarantees) {

rank_g(state)=∞;
} // for (g)
pending.push(unstablePred(state,g));

} // if
} // for (s)

//Stabilisation
while (!pending.empty()) {
(state,g) = pending.pop();
if (rank_g(state)==∞)
cont;

if (is_stable(rank_g(state)))
cont;

rank_g(state)=inc(best(state,g),state,g);
pending.push(unstablePred(state,g));

} // while ()
} // SolveGame

Fig. 8. Pseudo-code of algorithm for solving SGR[1] games.

successful or not. The situation is complicated by the presence of a door between the
two rooms. The door cannot be opened by the robot. However, although the structure
is unstable, it is known that once the door is open, it can be held open by the trapped
occupants.

A descriptive model of the environment was constructed by composing a model of the
robot (with actions such as moveNorth), its robot arm (with actions such as getPackage
or putPackage) and sensors (e.g. getPackageOk, getPackageFailed), a model of the door
(e.g. openDoor), and a topological model of the house which restricts movements ac-
cording to the position of the robot and the status of the door. For instance, it describes
that the robot only can cross the door if it is near it and in which positions it ends up
after crossing it. Whenever the robots moves it senses the destination position from
the environment (i.e. southNear, southFar, northNear northFar).

The aim is to automatically synthesise a behaviour model that will control the robot
and will achieve the task of retrieving aid packages from the outside to the room where
the occupants are trapped. Hence, the set of controllable actions is the set of actions
that correspond to the actions that can be performed by the robot and its arm (e.g.
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moveNorth, getPackage, putPackage) excluding actions not controlled by the robot (e.g.
openDoor, getPackageOk, northFar).

The formalisation of the prescriptive goals for the controller is divided into two parts:
safety and liveness.

The safety part prescribes the expected places for loading and unloading the robot.
That is, (i) the robot can only be loaded while is stopped and near the entrance of the
house. Consequently, the robot cannot move until it is successfully loaded with an aid
package. (ii) Packages must not unloaded in rooms other than the north room.

The liveness part of the goal states that the robot must be at the far end of north
room and have just unloaded infinitely often: G = 0 1 ( ˙northFar ∧ ˙putPackage). The
control problem, as defined up to this point is not realisable, as the robot has no guar-
antees that the door will be open for it to move freely to and from the north and south
rooms. Some assumption on the behaviour of the door must be included. We introduce
the assumption that the door is infinitely often open (As = 0 1 ˙doorOpen). This is still
insufficient, since the robot has no control over the success or failure of attempting to
load an aid package using the arm. Thus, packages may never be loaded successfully.
This shows that there is a missing assumption stating that if the robot attempts to
load a package it will eventually succeed: 0 ( ˙getPackage → 1 ˙getPackageOk). When
assumptions regarding the door being open and package loading being successful are
included in the SGR(1) LTS control problem, it becomes realisable. Hence, a solution
exists and is constructed automatically by the tool.

It is interesting to note that without the safety restriction disallowing the robot to
move unless successfully loaded, the assumptions would not be compatible. Specifi-
cally, in the case in which the robot is near the door, not moving and unloaded, the
robot cannot leave its position if it is not successfully loaded. Thus, after a failed load
operation the robot is forced to retry. Consequently, no controller would be able to
prevent the environment to fulfil its promise. Nevertheless, if after a loading fail the
robot could not only to retry but also to move then the environment would not be
able to fulfil its assumptions on its own and would depend on the controller’s decision
to retry or not. This illustrates how compatibility would be actually violated and al-
though in this particular case our algorithm yields a best effort controller it can not be
guaranteed in general. Moreover, this shows the usefulness of best effort controllers.
Specifically, without the restriction an assumption preserving controller would not be
possible, while best effort controllers exist.

Intuitively, the assumptions should represent the requirements of a reasonable envi-
ronment. These assumptions will enable the robot to make progress. Compare, for ex-
ample, the assumptions 0 1 ˙getPackageOk and 0 1 ( ˙getPackageOk ∨ ¬ ˙getPackage).
The first, superficially matches our intuition that the environment should make it
possible for the machine to pick up a package. It is, however, too strong as the
machine may not try to pick packages at all. The second, depicts a reasonable en-
vironment: a machine that keeps trying to pick up a package should be allowed
to do so. Hence, it is not surprising that the second assumptions satisfies the as-
sumption compatibility condition 4.6. Furthermore, As = 0 1 ( ˙getPackageOk ∨
¬ ˙getPackage) ∧ 0 1 ˙doorOpen allows synthesising a solution to the LTS control prob-
lem E = 〈E, {(∅, I), (As,G)}, {αARM ∪ αROBOT }〉 that tries as much as possible to
load packages. In other words, for this case study we successfully synthesised a be-
haviour model that controls the robot arm which ensures that if the assumptions are
satisfied by the environment the machine satisfies its goals.

The synthesised behaviour model is too big to be shown here. Nevertheless, the tool
and FSP source code for the case study is available at [D’Ippolito et al. 2008].
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Comparing our approach to the original case study, note that in [Sykes et al. 2007] (i)
no assumptions are explicitly given, and as a result (ii) no guarantees can be given as
to whether the synthesised controller will satisfy the goal of delivering aid packages,
and (iii) although under certain conditions the plan synthesised by [Sykes et al. 2007]
will work, it is not clear what those circumstances are. We overcome these issues by
modelling the robot, its arm and sensors, and the house restrictions separately from
the controller goals. This allowed us to discover implicit environmental assumptions.
Specifically, in order to guarantee that the robot will successfully deliver aid packages
infinitely often, the door must be open infinitely many times. Furthermore, the arm has
to successfully pick up aid packages infinitely many times. In other words, by applying
Jackson’s [Jackson 1995a] approach, we discovered the environmental assumptions
required to guarantee satisfaction of the goals, shown how the assumptions can be
explicitly encoded in our SGR(1) control problem and checked the assumptions to be
compatible with the environment.

Purchase & Delivery.
In [Pistore et al. 2004] a case study involving the synthesis of a plan for composing and
monitoring of distributed web services is presented.

More specifically, purchase requests must be processed by a web-service by buying
on a furniture-sales service and booking a shipping service. Consequently, this web
service must handle the interaction between user requests and both services by con-
trolling messages and forwarding between the parts.

Additionally, both the furniture-sales and shipping services may fail processing a re-
quest. Naturally, failures may prevent the composed web-service to succeed purchasing
and delivering furniture. Consequently, the goal proposed states that if there is a fail-
ure while trying to pay and ship furniture, then the planning goal changes to one in
which all, the user, the furniture-sales and the shipping service reach a failure state.
This aims to avoid inconsistent states in which some services succeed and some fail.
For instance, if the user refuses the offer, the composed service is expected to reach a
state in which both the purchase and delivery requests have been cancelled.

We restrict the analysis and synthesis to a failure-free version of the problem. Hence,
both furniture-sales and shipping services always respond positively on a request by
the model to be synthesised. Even though the failure-free assumption may seem to
restrictive it allows us to handle some of the, so-considered, failures in [Pistore et al.
2004]. For instance, the user refusing a furniture-delivery pair is considered a failure,
which violates the intuition that failures are not controlled by users, instead they are
supposed to happen unexpectedly, e.g. a server crashes.

Even though in [Pistore et al. 2004] a behaviour model for this domain in which
failures are possible is synthesised, there are no guarantees that the goal of satisfying
purchase requests is achieved. In fact, achieving the goals stated in [Pistore et al. 2004]
requires assuming some progress on the environment and fairness conditions on the
success of operations on the furniture-sales and shipping services, as we show below.

Now we describe how this case study is handled by our approach. By providing de-
scriptions about the services and user behaviour, and prescribing the desired goals
for the controlled environment, considering first the safety prescriptions and then the
liveness ones.

The interface of the furniture-sales service, described by the LTS in Figure 9(a),
allows requesting for information on a particular product (prodInfoReq) then once the
information has been received (infoRcvd) it is possible place a request for the product
(prodReq). The protocol to interact with the shipping service is analogous.

A model describing how the user interacts with the composed web-service is shown
in Figure 9(b). The user can place a request for some product (usrReq) then he may get
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Fig. 9.

either an offer for product and shipping combination (offerRcvd) or a denial of service
(reqDenial) resetting the protocol. If an offer is received, the user can either confirm
the order (usrAck) or decline it (usrNack). If the order is confirmed, the user waits for
its product to be shipped as arranged (respOk).

There are several safety prescriptions for the controller-to-be. (i) The service should
only check for some product or shipping information if the user placed a request first.
This restricts the composed web service from spontaneously generating queries with-
out a triggering user request. (ii) It is only possible to offer the user with a combination
of product and shipping service if both services have confirmed availability. (iii) Both
product and shipping requirements should be placed only if the user acknowledged
the purchase. (iv) The service will only cancel product or shipping requests if the user
does not acknowledge the offer he received. (v) The service only flags that the request
has been cancelled when both product ordering and shipping services have cancelled
the request. (vi) The service finishes successfully only after the product ordering and
shipping services have successfully handled their requests. These requirements can be
easily expressed in FLTL. For the full specifications the reader is referred to [D’Ippolito
et al. 2008].

The liveness prescription for the behaviour model to be synthesised is simply to buy
infinitely many product-shipping pairs, which can be encoded as 0 1 ˙respOk.

Without any collaboration of the environment it is not possible for a controller to
satisfy its liveness goals. For instance, if the user never acknowledges for purchase
and delivery of furniture, then it will not be possible to fulfil controller goals. Conse-
quently, we will be able to generate a controller only if it is possible to assume that
the environment will acknowledge requests infinitely many times, in FLTL this is
ϕ = 0 1 ˙usrAck. However, the environment cannot acknowledge product and ship-
ping combinations if the controller does not provide such combinations. In other words,
the environment cannot fulfil this assumption on its own, which shows that ϕ is not
capturing our intuition correctly. Furthermore, ϕ does not satisfy the compatibility
condition 4.6, which as shown before lead to undesired controllers.

Our assumptions must state that the environment has to acknowledge combinations
only if he received an offer 0 ( ˙offerRcvd → 1 ˙usrAck). As shown in Section 4.1 this

assumptions can be expressed with the FLTL formula ϕ′ = 0 1 ¬ ˙OfferAckd, where
˙OfferAckd = 〈offerRcvd, usrAck,⊥〉. This means that if the environment receives

infinitely many offers it has to acknowledge them infinitely often, which is compatible
with the environment and captures our intuition more closely.

We modelled the case study as an SGR(1) problem and applied the MTSA tool set to
generate a controller, which is shown in Figure 10. As one may expect the controller
only synchronises the message passing between the user, furniture and delivery ser-
vices. The environment model is a compatible with respect to the assumptions that
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Fig. 10. Controller for serving furniture requests.

customers confirm infinitely many products and delivery options. Thus, the resulting
controller is guaranteed to be non-anomalous and the environment assumptions under
which it achieves its goals are explicit.

It is important to note that in the original case study there are no explicit environ-
ment assumptions. Consequently, it may be uncertain if and when the controller be-
haves properly. In other words, there are no guarantees that goals are to be achieved.
This is due to the fact that the problem is not properly modelled. Following the World-
Machine model i.e., properly modelling the relevant descriptive and prescriptive state-
ments, helped us discover the required environmental assumptions on the user be-
haviour which allow for guaranteeing the satisfaction of the prescriptive goals. For in-
stance, modelling the user ack/nack responses as part of the description of the domain
and providing the safety prescription, lead to the assumption on user’s acknowledge-
ments, central to the generating of the controller.

Bookstore.
The web-service composition scenario in [Inverardi and Tivoli 2007], is in a sense sim-
ilar to that of Pay & Ship, in that two services must be coordinated to provide a more
complex service. The main difference is that Inverardi et al. provide no explicit liveness
goals for the controller nor liveness assumptions on the environment behaviour.

Following the world-machine approach, we describe the environment models as the
parallel composition of models for the composed web-service (CWS) and the books
search and order services.

More specifically, the composed web-service (CWS), for which the interaction protocol
is presented in Figure 11(a), must coordinate a service for search and order books,
and a payment service. The interaction protocol for the search and order service is
shown in Figure 11(b). Once the user has logged in he can either choose to search and
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Fig. 11. Bookstore case study models.

order books or to logout terminating the interaction. Similarly, the payment service
(Figure 11(c)) requires a log in to enable for payments to occur. Moreover, while the
user is logged in, he can place as many payments as required.

As in [Pistore et al. 2004], the main goal of the safety prescriptions is to prescribe
the ordering between the actions of the services involved. For instance, the compos-
ite web-service can only be considered logged in, if both the (sub-)services have been
successfully, logged in.

In the following we show the safety properties prescribing how the composed web-
service must orchestrate the (sub-)services.
(i) The user logs on (off) triggering cws.login (cws.logout) action, then the service

should log into both payment and library services triggering pay.login (pay.logout) and
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lib.login (lib.logout) respectively, then (ii) only after both search and payment services
have logged in the CWS must inform the user that the login (logout) operation was suc-
cessful by triggering the cws.loginOk (cws.logoutOk) action. Naturally, (iii) the CWS
should not attempt a login action on neither of the (sub-)services if there no cws.login
action first. The procedure of searching, ordering and finally paying for books must
also be coordinated by the CWS. (iii) CWS can only search for books lib.search if a
request has been placed cws.getBook, and either of them can only happen if the user
has been successfully logged in (cws.loginOk). (iv) Only after a book has been ordered
(lib.order), CWS triggers the payment (pay.pay). Finally, (v) CWS must only confirm
that a book has been successfully bought cws.gotBook it is successfully paid for it.
There is only one liveness goal for the controller. It must sell (i.e. successfully order
and pay) books infinitely often, i.e. 0 1 ˙cws.gotBook. However, this cannot be guaran-
teed if the user (i.e. environment) does not try to get books infinitely many times, i.e.0 1 ˙cws.getBook. Note that the environment can only try to get books if some other
actions have occurred before, i.e. logins. Hence, it may seem that such assumptions
would be non-compatible, it turns out that they are. Intuitively, the actions required for
the environment to get books are dependant on the environment solely, i.e. cws.login.

Therefore, we defined the SGR(1) problem with system goals 0 1 ˙cws.gotBook and

environmental assumptions 0 1 ˙cws.getBook. The controller we obtained, shown in
Figure 11(d), guarantees that for every trace in which the environment assumptions
are satisfied the controller goals will also be satisfied. Note that since the environment
assumptions are compatible the controller guarantees that is going to do it best to fulfil
the system goals.

It is important to note that, since the technique used in [Inverardi and Tivoli 2007]
does not allow for liveness goals or environmental assumptions, the achievement of the
main goal of the service, i.e., to sell books, cannot be guaranteed. On the contrary, as
we specify the case study as a SGR(1) control problem, we can explicitly provide with
the liveness conditions required to successfully sell books. Such conditions are required
but not sufficient, since without any collaboration of the environment the goals cannot
be achieved. As said above, the environment has to try to get books for the controller
to successfully sell them.

Production Cell.

This case study has been explained as a running example in Section 2. We presented
the descriptive and prescriptive statements for the problem and presented some obser-
vations on the generated controller.

The controller was obtained using the MTSA tool set [D’Ippolito et al. 2008]. Since
the size of the models is too big to be depicted in this paper, we show the controller for
a smaller version, which has only one tool (an oven) and can only process one instance
of each product type at a time. The synthesised controller is shown in Figure 12. As
noted in Section 2 the controller must “remember” if it has been postponing one type
of product for too long. Consequently, the algorithm add memory to the original states
encoding the last product type processed in order to guarantee the system goals. The
controller waits for products of type A to be processed first (see states 4 and 6) regard-
less of whether there are products of type B ready to be processed (see states 5 and 6).
It then does the same for products of type B (see states 10, 2 and 1).

7. RELATED WORK

In this paper we extend the work previously presented [D’Ippolito et al. 2010] provid-
ing the full theoretical background, proofs, a description of a rank-based implementa-
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Fig. 12. Controller for reduced Production Cell.

tion and further evaluation. In [D’Ippolito et al. 2011] we have reported on a different
controller synthesis technique for fallible domains. Its focus is on how to build con-
trollers that can achieve their goals even when the expected outcome of the operations
they control can sometimes fail. In contrast, this paper highlights the methodological
challenges of applying controller synthesis event-based systems, hence focusing on the
distinction between prescription and description, the notion of anomalous controllers,
and the relation with assumption realisability.

Our work builds on that of the controller synthesis community and particularly
on the generalised reactivity synthesis algorithm GR(1) proposed in [Piterman et al.
2006]. This line of work originates in updating Büchi, Landweber, and Rabin’s
work [Buchi and Landweber 1969; Rabin 1970] to modern terms [Pnueli and Rosner
1989]. While [Piterman et al. 2006] handles only a subset of the possible specifications,
other recent work tries to bypass the hurdles involved in solving the general prob-
lem (e.g., [Kupferman and Vardi 2005] and its extension in [Schewe and Finkbeiner
2007]). The community has largely focused on controllers for embedded systems and
digital circuits (cf. [Bloem et al. 2007; Sohail et al. 2008]), hence adopting a shared
memory model: The controller is aware of changes in the environment by querying
the state space shared with the environment. For instance, GR(1) uses kripke struc-
tures, state machines with propositional valuations on states, where the environment
and the controller update and read respectively controlled and monitored propositions.
However, in many settings such as requirements engineering, architectural design and
self-adaptive systems, a message passing communication model in the context of a dis-
tributed system is typically considered. Hence, controller synthesis techniques require
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adaptation to the notion of event-based communicating machines [Hoare 1978]. This
adaptation, specifically to Labelled Transition Systems (LTS) [Keller 1976] semantics
and CSP-like parallel composition [Hoare 1978], is a contribution of this paper. The
change from state-based to event-based semantics introduces the need for determin-
ism of the environment to guarantee that the controller has sufficient information
about the state of the environment to guarantee it satisfies its goals (see Definition 4.2
and Theorem 5.2). The change also introduces the need for a sound methodological
approach to the definition of assumptions in order to avoid anomalous controllers.

Even though several behaviour model synthesis techniques have been studied
(e.g. [Damas et al. 2006; Young and Devanbu 2006; Bontemps et al. 2004]) these are re-
stricted to user-defined safety requirements applying variations of the backward error
propagation technique [Russell and Norvig 1995]. The exceptions that we are aware of
relate to the self-adaptive systems and the planning communities.

In the self-adaptive systems community many architectural approaches for adap-
tation have been proposed. At the heart of many adaptation techniques, there is a
component capable of designing at run-time a strategy for adapting to the changes
in the environment, system and requirements (e.g. [Dalpiaz et al. 2009; Huang et al.
2004; Gat et al. 1997; Kramer and Magee 2007]). These architectures do not prescribe
the mechanism for constructing adaptation strategies. The technique we propose here
could be used in the context of all of these architectures. In fact, we believe, that the
methodological guidance that our approach offers could help integrating the controller
synthesis techniques into these architectures in a sound way. Furthermore, by pro-
viding support for explicitly modelling the environmental assumptions, our approach
allows to clearly understand what system goals are guaranteed to be satisfied.

A few approaches to automated construction of adaptation strategies exist. Sykes
et al. in [Sykes et al. 2007; Heaven et al. 2009] build on the “Planning as Model
Checking” framework [Giunchiglia and Traverso 2000] to construct plans that aim
to guarantee reaching a particular goal state. Thus, this technique can handle certain
liveness requirements. However, the execution of the plan is restarted every time the
environment behaves unexpectedly. Hence, there is an implicit assumption that the
environment behaves “well enough” for the system to eventually reach the goal state.
Validating that the environment will behave “well enough” is not possible as the no-
tion is not defined and it is not clear what guarantees are provided by the plans. In
the proposed approach, assumptions are explicit and hence guarantees are clear. In
addition, being explicit, it is possible to validate if the assumptions needed in order to
achieve the goals hold in the environment in which the controller is to be deployed.
For instance, in the Autonomous Vehicles case study from previous section, without
any assumption on how the door behaves, there would not be a plan for the robot that
guarantees bringing aid packages form south to north room infinitely often. The same
occurs in the Purchase & Delivery case study, where without the assumption that if
the user receives combination of furniture and delivery options often enough, he will
acknowledge such combinations often enough.

More generally, the planning as model checking framework (e.g., [Giunchiglia and
Traverso 2000]), supports CTL goals, requires a model in the form of a Kripke struc-
ture and does not consider the problem of composing the environment with a machine
that is responsible for guaranteeing the system’s goals. Consequently, it does not dis-
tinguish between controlled and monitored actions and the plans that are generated
would not be realisable by the software system. Moreover, since planning as model
checking synthesises from CTL formulas it is not possible to distinguish which are the
assumptions on the environment behaviour required to guarantee the satisfaction of
the controller goals.
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Assumptions on environment behaviour are a key part of the synthesis problem. In
general, without proper assumptions, controllers cannot be produced. In [Chatterjee
et al. 2008] a technique for correcting unrealisable specifications is proposed. Given
an unrealisable specification ϕ, they compute an environment assumption ψ such that
ψ ⇒ ϕ is realisable and ψ is environment realisable. The notion of environment real-
isability is somehow related to our assumption compatibility condition. However, envi-
ronment realisability asserts that there exists an environment that satisfies ψ, which
in our case is not applicable since the environment is input to our technique. Similar
to our motivation, Chatterjee et al. notice that unrealisable specifications for envi-
ronments lead to abnormalities in the behaviour of their algorithm but do not relate
this to the kind of controllers produced. In other words, they do not provide a notion
similar to our anomalous controllers. Consequently, if the specification is actually real-
isable there is no warning that the assumptions are not realisable by the environment
and therefore produced controllers could be anomalous. Additionally, we can check for
assumption compatibility in polynomial time without requiring probabilistic games.

The notion of assumption compatibility was discovered independently in various
contexts and used differently. In [Chechik et al. 2007], it is used in the context of
vacuity detection (cf. [Beer et al. 2001] and a large body of other work [Kupferman and
Vardi 2003; Armoni et al. 2003; Gurfinkel and Chechik 2004; Chechik et al. 2007]) and
for debugging environment models. They say that an environment model E guarantees
a property ϕ iff for every possible controller C, E||C |= ϕ. In other words, a property ϕ
is called an environment guarantee iff the environment satisfies ϕ regardless of what
the controller might do.

In the context of [Chechik et al. 2007] this is considered bad. Here, we consider it as a
good thing. The fact that Chechik et al. consider CTL and not LTL is a minor difference.
However, they implement only a pre-condition for checking environment guarantees.
Furthermore, it has since been discovered that implementing the complete check for
the test suggested by Chechik et al. is in fact equivalent to realisability [Godefroid
and Piterman 2009] and, as mentioned previously, unless restricted to a manageable
fragment of the logic does not work well in practice. Our approach is thorough (i.e. com-
plete) but for applicability reasons we restrict the specifications to GR(1) formulas.

In [Cobleigh et al. 2003] a technique for automatic generation of assumptions in the
context of assume-guarantee reasoning is proposed. Given a property and a parallel
composition of two models, the technique produces the assumptions one of the model
has in order to satisfy the property. If the second model satisfies these assumptions
then it is possible to conclude that the composition does too. It could be argued that
this technique is related to ours as the generated assumptions could be considered
the controller. However, there are two main differences. First, the techniques used by
Cobleigh et al. are inappropriate for usage in a context that distinguishes between
monitored and controlled actions (essentially using model checking instead of game
solving). Second, the pruning of unsafe states, can ensure safety but cannot handle
liveness requirements. More recently, in [Emmi et al. 2008] Emmi et al. have presented
a technique for assume-guarantee verification for interface automata. The technique
distinguishes between controllable and monitored actions. However, liveness require-
ments are not supported.

We use Labelled Transition Systems as our modelling framework. We distinguish
between controlled and uncontrolled actions in the definition of the control problem. It
could be argued that LTSs do not provide proper support for expressing the required
domain models. There are a number of formalisms to describe behaviour distinguish-
ing controlled from monitored actions, such as Input/Output Automata [Lynch and
Tuttle 1989] or Interface Automata [de Alfaro and Henzinger 2001] (IA). Since I/O au-
tomata require the input actions to be enabled from every state, they do not fit our
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domain model. There is no technical limitation that prevents us from using Interface
Automata. Adapting our approach to IA is relatively simple. We treat IA output actions
as controllable actions and input actions as monitored actions. The conversion of the
control problem to a game remains as it is now with the slight difference of considering
output actions as controller actions. Computing the strategy and translating it to an
interface automaton can be done straightforwardly. Finally, the generated controller
will be a valid controller since it satisfies the goals and the requirement of being a
legal environment for the environment model.

Regarding the implementation, in [Piterman et al. 2006] an efficient algorithm for
solving games with GR(1) winning conditions. However, the notion of game differs from
the one used in this paper. Although, both games are turn-based, the order is slightly
different, e.g. in [Piterman et al. 2006], the environment chooses its next valuation and
only then, the controller gets to choose what to do next. In our case (see Definition 3.4),
the controller first restricts transitions over the set of controllable actions and then
the environment gets to choose the next state of the game. To use the implementation
in [Piterman et al. 2006] a preprocessing to convert one game to the other would be
necessary. In addition, the algorithm proposed in [Piterman et al. 2006] manipulates
sets of states using a symbolic representation in the form of BDDs [Bryant 1986]. In
other words, it uses a data structure that manipulates sets of states. The algorithm
requires efficient implementations of set union, intersection, and the application of a
transition on a set, i.e. given a set of states, to compute the set of its predecessors,
and negation. It is most suitable for cases where the states of the “game graph” are
obtained by setting values to variables. There is no natural way to represent sets ex-
cept by lists of states resulting in a linear overhead for every set operation. Thus, the
symbolic algorithm that computes O(m · n · |S|2) symbolic operations would result in
an algorithm that in practice uses O(m · n · |S|3) operations, where |S| is the num-
ber of states, m is the number of environmental assumptions and n is the number of
controller goals. Hence, the symbolic algorithm is not the best suited in our context.

In [Juvekar and Piterman 2006], an enumerative solution to games with GR(1) win-
ning condition, based on the same ideas, is presented. However, states of their games
are partitioned into two (one controlled by each player). Hence, states are expected
to be either uncontrollable or controllable. Furthermore, in [Juvekar and Piterman
2006], strategies are defined as a partial function, which takes sequences of states
and yields a state. In other words, given a play conforming with the game their con-
troller has to choose a particular successor while in our case, the controller may choose
a set of possible successors. This notion of strategy favours the construction of best
effort controllers. It is easy to prove that for some cases were assumptions and envi-
ronment model are not compatible, our approach produces best effort controllers while
the algorithm proposed in [Juvekar and Piterman 2006] does not guarantee so. Hence,
we implement a variation of [Juvekar and Piterman 2006] which produces controllers
complying with our notion of strategy and handles every state independently and its
run time is O(m · n · |S| · |E|), where |E| is the number of transitions.

Finally, our work is heavily influenced by the work on requirements engineering by
Jackson [Jackson 1995b], van Lamsweerde [van Lamsweerde and Letier 2000; Lam-
sweerde 2001] and Parnas [Parnas and Madey 1995] who argued the importance of
distinguishing between descriptive and prescriptive assertions, between software re-
quirements, system goals and environment assumptions, and the key role that the
latter play in the validation process.

8. CONCLUSIONS AND FUTURE WORK

Synthesis of controllers (i.e. behaviour models) that guarantee liveness goals in event-
based systems poses not only algorithmic but also methodological challenges. In this
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paper, we proposed a technique that works for an expressive subset of liveness proper-
ties, that distinguishes between controlled and monitored actions [Parnas and Madey
1995], differentiates between prescriptive and descriptive [Jackson 1995a] aspects of
the specification of system goals, environment behaviour, and environment assump-
tions.

We presented the event-based control problem and defined the LTS and SGR(1) con-
trol problems, which are control problems set in a theoretical framework adequate
for event-based models. The first acts as a general definition, the second grounds the
specification language to LTSs and FLTL, and the third supports safety and GR(1)-like
properties. For the latter, we provide a solution that works in polynomial time and is
based on a rank computation [Jurdziński 2000]. We also provide proofs for correctness
and completeness for the presented algorithm.

Another important contribution is that we identify a characterisation of anomalous
controllers that even correct and complete algorithms like ours might yield if no fur-
ther conditions are required for the assertions acting as liveness assumptions on the
environment. Furthermore, we identify an effective condition for assumptions that
rules out those anomalies and in line with methodological guidelines in requirements
engineering regarding realisability [Letier and van Lamsweerde 2002].

We have reported on the application of our approach to a number of case studies from
different domains, such as, robotics, web-services composition and industrial product
line control.

The rank-based algorithm and the whole SGR(1) control synthesis technique has
been implemented as part of the MTSA tool set [D’Ippolito et al. 2008].

There are a number of avenues for future work. We aim at relaxing the requirement
on determinism for the environment model that is currently in place for assuring the
soundness of our approach. In fact, this is closely related to non-observability of events
controlled by the environment, an area that we also intend to further investigate.

Finally, we are investigating ways of providing feedback for the case in which a
controller that satisfies the specified goals does not exist. For instance, by providing a
counter-strategy for the environment or perhaps, applying debugging techniques such
as [Konighofer et al. 2009].
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EMMI, M., GIANNAKOPOULOU, D., AND PĂSĂREANU, C. S. 2008. Assume-guarantee verification for in-
terface automata. In Proceedings of the 15th international symposium on Formal Methods. FM ’08.
Springer-Verlag, Berlin, Heidelberg, 116–131.

ETESSAMI, K., WILKE, T., AND SCHULLER, R. A. 2005. Fair simulation relations, parity games, and state
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