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A four-waymultivariate calibration approach based on the combination of differential pulse voltammetric (DPV)
data and four-way algorithms is described for thefirst time. To achieve this goal, theDPV response of each sample
was recorded thirty-six times. Six current-potential matrices were recorded at six different pulse durations. Each
matrix consists of six vectors which have been recorded at six different pulse heights. The three-way data array
obtained for the calibration set and for each of the test sampleswere joined into a single four-way data array. The
recorded four-way data array was nonlinear, thus, the non-linearities were tackled by potential shift correction
using correlation-optimized warping (COW) algorithm and subsequently was analyzed with unfolded-partial
least squares/residual trilinearization (U-PLS/RTL) and multi-way-PLS/RTL (N-PLS/RTL) as third-order multivar-
iate calibration algorithms. A comprehensive and systematic strategy for comparing the performance of the two
algorithms was presented in this work, in particular with a view of practical applications. This comparison was
developed to identifywhich algorithmoffers the best predictions for the simultaneousdetermination of levodopa
(LD), carbidopa (CD),methyldopa (MD), acetaminophen (AC), tramadol (TRA), lidocaine (LC), tolperisone (TOP),
ofloxacin (OF), levofloxacin (LOF), and norfloxacin (NOF) in the presence of benserazide (BA), dopamine (DP),
and ciprofloxacin (COF) as uncalibrated interferences using a multi-walled carbon nanotubes modified glassy
carbon electrode (MWCNTs/GCE). This study demonstrated the more superiority of U-PLS/RTL to resolve the
complex systems. The results of applying U-PLS/RTL for the simultaneous determination of the studied analytes
in human serum samples as experimental cases were also encouraging.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Calibration is the mathematical and statistical process of extracting
information, usually analyte concentration, from an instrument signal
[1]. Traditionally, the measurements have consisted of a single number
(zero-order data). The concentrations of unknown samples can be
predicted by regressing their measured signals against the standard
calibration curve. However, a significant disadvantage of zero-order cal-
ibration is that a signal must be fully selective for the analyte of interest,
which has led to the development of first-order multivariate calibration
methods [2–13]. The data of measurements are a vector (first-order
data), rather than just a single measurement as in the univariate case,
thus, the first-order calibration has a number of advantages. These
types of methods include partial least-squares (PLS) [2,3] and principal
component regression (PCR) [8,12], which have become popular in
recent years. It makes sense that when more data are available per
+98 831 4274559.
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sample, more information may be extracted. Therefore, it follows that
if the data of measurements is a matrix (second-order data), even
more advantages could be obtained by using second-order calibration
(three-way calibration) methods. The primary advantage of these
methodshas been known as “second-order advantage” [14,15], it allows
the analytes of interest to be quantitated even in the presence of uncal-
ibrated interferences.

The higher-order calibration methods are not limited to the second-
order calibration or the analysis of three-way data. Third-order calibra-
tionmethods can also be used for the similar purpose and four-waydata
can be processed and interpreted in the similar way. In principle, the
advantage of third-order calibration not only contains a similar second-
order advantage that the components of interest can be determined
even in the presence of uncalibrated interferences in complex samples,
but also holds some additional advantages. The inclusion of an extra
mode in the data increases the selectivity and sensitivity of the analysis
by the inclusion of additional information of the sample. It can provide
more information about the analytes than second-order calibration
for an additional dimension introduced. The intrinsic profiles in each
mode can be determined uniquely for every species in the prediction
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samples [16]. Because four-way data array cannot be obtained con-
veniently, only several works have been reported for third-order
calibration [17–23].

Levodopa (LD) is a precursor of the neurotransmitter dopamine,
widely used in the clinical treatment of Parkinson's disease [24]. It
could be converted to dopamine (DP) by dopamine decarboxylase and
capable of crossing the protective blood-brain barrier, whereas DP itself
cannot. To avoid adverse reactions caused by elevated levels of dopa-
mine in peripheral tissues, LD is often administered in combination
with carbidopa (CD), an inhibitor of the decarboxylase enzyme, which
does not cross the blood-brain barrier. Methyldopa (MD), which is
an old antihypertensive agent, is converted to 1-methyl dopamine and
1-methyl norepinephrine [25]. In addition, the United State Pharmaco-
poeia (USP) specifiesMD as one of themost important impurities in the
analysis of levodopa–carbidopa (LD-CD) combination formulation [26].
Changes in the concentration of these drugs in the body may influence
the bioavailability and biopharmaceutical properties of the pharmaceu-
tical preparation and, subsequently, their magnitude of action. Thus, the
determination of LD and its inhibitors and impurities in biological fluids
has an essential role in the diagnostics of diseases related to them. Acet-
aminophen (AC) is a long-established substance being one of the most
extensively employed drugs in theworld. It is also found that overdoses
of AC will damage liver and kidney. It has been found that human
absorption of AC is very dependent on gastric emptying. Other drugs
that alter gastric emptying can change the pharmacokinetics of AC. It
has been shown that LD can influence gastric emptying [27]. Therefore
it would be useful to study simultaneous determination of AC and LD
[27]. Tramadol (TRA) is a centrally acting opioid analgesic, used in
treatingmoderate to severe pain. In combinationwith opioid analgesics
(viz., TRA), AC can also be used in the management of severe post-
surgical pain and providing palliative care in advanced cancer patients
[28]. However, their overdose is toxic in nature andmay cause dizziness,
nausea, and vomiting [28]. Therefore, the development of a sensitive
and selective method for simultaneous determination of TRA and AC is
highly desirable for analytical applications and diagnostic research.
Therefore, interest in the development of a simple method for the si-
multaneous determination of LD, CD, MD, TRA, and AC continues.

Lidocaine (LC) is widely used as a local anesthetic. It has also
achieved prominence as an antiarrhythmic agent and is now in com-
mon use particularly as emergency treatment for ventricular arrhyth-
mias that are encountered after cardiac surgery or acute myocardial
infection. A notable side effect of LC maybe caused by its metabolites
rather than LC itself [29]. To the best of our knowledge, there is only
one report on the simultaneous determination of TRA and LC [29].
Tolperisone (TOP) is a centrally acting muscle relaxant that is used for
relieving spasticity of neurological origin andmuscle spasms associated
with painful locomotor diseases [30–32]. Only a few reports have been
described in the literatures on the analytical methods for the simulta-
neous determination of TOP and LC [33]. Therefore, the development
of a sensitive and selective method for the simultaneous determination
of LD, CD, MD, TRA, AC, LC, and TOP is highly desirable for analytical
applications and diagnostic research.

Many new fluoroquinolone derivatives have been developed
because of their potent and wide-spectrum antimicrobial activities,
and good clinical efficacy [34]. Among the fluoroquinolones, in par-
ticular, ofloxacin (OF), norfloxacin (NOF), and levofloxacin (LOF)
are frequently used for the treatment of various types of microbial
infections. Therefore, from a clinical point of view, simultaneous deter-
mination of these fluoroquinolones is important. To the best of our
knowledge, there is only one report on the simultaneous determination
of TRA, LC, andOF, and they have claimed fast analysis of TRA, LC, andOF
is of clinic importance for understanding the patient's medical process.
Therefore, the development of a sensitive and selective method for the
simultaneous determination of LD, CD, MD, TRA, AC, LC, TOP, OF, NOF,
and LOF is highly desirable for analytical applications and diagnostic
research.
The oxidation peak potential for benserazide (BA) is very close to LD,
CD, andMD, oxidation peak potential for dopamine (DP) is very close to
AC, and oxidation peak potential for ciprofloxacin (COF) is very close to
OF, NOF, and LOF. Consequently, BA, DP, and COF are regarded as uncal-
ibrated interferences in the simultaneous determination of LD, CD, MD,
TRA, AC, LC, TOP, OF, NOF, and LOF.

In the presentwork, we reported a simplemethod based on changes
in the pulse height and pulse duration of DPV signals to create a four-
way voltammetric data array. Also, we show the capability of U-PLS
and N-PLS to handle voltammetric data, in combination with RTL, to
determine ten analytes in the presence of three unexpected interfer-
ences. Finally, U-PLS/RTL was chosen for the analysis of the electro-
chemical responses of the MWCNTs/GCE sensor for the simultaneous
determination of ten analytes in human serum samples (Scheme 1).
To the best of our knowledge, this work is the first report on exploiting
second-order advantage from third-order DPV data for the simulta-
neous determination of ten analytes in the presence of three unexpect-
ed interferences.

2. Experimental and theoretical details

2.1. Chemicals, solutions, softwares, and instrumentation

LD (Sigma), CD (SERVA), MD (Sigma–Aldrich), AC (Sigma–Aldrich),
TRA (Fluka), LC (Sigma), TOP (SERVA), OF (Sigma), LOF (Fluka), NOF
(Sigma), BA ( USPlabs), DP (Sigma), COF (Fluka), and MWCNTs
(Sigma–Aldrich)were used as received. All other reagents andmaterials
were of analytical grade from legal sources. All the solutions were pre-
pared using double-distilled water (DDW). A phosphate buffer solution
(PBS, 0.1 mol L−1) of pH 3.0 was prepared using Na2HPO4 and NaH2PO4

and served as a supporting electrolyte solution (pH adjustmentwas car-
ried out by NaOH and H3PO4). TheMWCNTs were purified according to
the method reported previously [35]. In brief, 50 mg of carbon nano-
tubes were dispersed in 60 mL of 2.2 M HNO3 and ultrasonicated for
30 min and the suspension was then kept at room temperature for
20 h. TheMWCNTs were then filtered, washed with DDW to neutrality,
and dried at 37 °C in an oven. All the recorded electrochemical data
were smoothed, when necessary, and converted to data matrices by
the use of several home-madem-files inMATLAB environment (Version
7.14, MathWorks, Inc.). All the routines used in this study were run
in the MATLAB environment. Electrochemical experiments were
performed using a μ-Autolab TYPE III, Eco Chemie BV, Netherlands,
equipped with PSTA 20 model and driven by NOVA 1.8 software. A
three-electrode system was used in the experiment including a
modified glassy carbon electrode as working electrode, an Ag/AgCl
electrode (saturated KCl) as reference electrode, and a Pt wire as
counter-electrode. The electrochemical impedance spectroscopic
(EIS) experiments were carried out using the same three-electrode
configuration above on the mentioned Autolab in a supporting elec-
trolyte solution of 1.0 M KCl containing equimolar [Fe(CN)6]4−/3− in
a frequency range from 0.1 to 100.0 kHz. The fit and simulation of
equivalent circuit were analyzed with FRA software. The scanning
electron microscopic (SEM) experiments were performed by a KYKY-
EM 3200 scanning electron microscope. A JENWAY-3345 pH-meter
equipped with a combined glass electrode was used to pH measure-
ments. All measurements were performed at room temperature. All
computations were performed on a DELL XPS laptop (L502X) with
Intel Core i7-2630QM 2.0GHz, 8 GB of RAM and Windows 7-64 as its
operating system.

2.2. Preparation of the MWCNTs/GCE

The bare GCEwas polished carefully using zinc oxide and alumina
mixture with the help of a silky pad. The polished electrode was
washed with DDW and then dried. A suspension of the purified
MWCNTs (0.5 mg/ml) in DMF was prepared by the dispersion of



Scheme 1. Schematic representation of the developed methodology in this work.
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MWCNTs using ultrasonic churning. Small amount (40 μl) of this sus-
pension was put on the surface of bare polished GCE. It was seen that
the suspension covered total surface area of the GCE. The suspension
was allowed to desiccate by keeping the electrode in open at room tem-
perature.Within about half anhour, the solvent evaporated off leaving a
thin layer ofMWCNTs all around the electrode surface. This processwas
repeated a number of times till a smooth layer formed all around the
electrode surface. The electrode so obtained is called MWCNTs/GCE.

2.3. Preparation of real samples

A human serum samplewhichwas provided by amedical diagnostic
laboratory in Kermanshah, Iran, was used as an experimental case to
evaluate the performance of the proposed methodology. According to
themethod of Shu et al. [36], to eliminate protein and other substances,
5.0 mL of human serum sample was placed in a 10.0 mL glass tube and
1.0mL of 15.0% (w/v) zinc sulfate solution-acetonitrile (50/40, v/v) was
added. The glass tube was vortexed for 20.0 min, maintained at 4.0 °C
for 15.0 min followed by centrifugation at 4000.0 rpm for 5.0 min.
Then, the supernatant was collected in the same tube and this solution
was used for subsequent analyses.

2.4. Generating third-order DPV data

In this work, the pulse heights (ΔE) and pulse durations (τ) in DPV
signalswere changed to obtain third-order DPV data. The theory behind
the proposed procedure will be briefly discussed. The current signal
intensity in DPV can be obtained using the following equations [37]:
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nFAD1=2

O C�
O

π1=2 τ‐τ0ð Þ1=2
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2
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where, ΔE and τ are pulse height and pulse duration, respectively, and
other symbols have their conventional meanings. For a typical electro-
chemical reaction, third-order voltammetric data can be obtained by
sweeping potentials at different pulse heights and pulse durations. For
each sample, six pulse durations of 0.0078–0.0468 s with a 0.0078 s in-
terval were assigned, and for each pulse duration, six voltammograms
were recorded at six different pulse heights of 0.0031–0.0191 V with a
0.0031 V interval and on the whole for each sample six matrices (each
matrix contains six vectors) have been recorded. These six matrices
were then mathematically assembled using MATLAB commands to ob-
tain a three-way array for each sample. The three-way data obtained for
the calibration set and for each of the test samples were joined into a
single four-way data array.

Literature survey revealed that change of ΔE can cause non-linearity
in the recorded DPV data while change of τ doesn't cause any non-
linearity [38,39]. Therefore, it is reasonable to have a non-bilinear
(change in ΔE) and trilinear (change in τ) three-way data array for
each sample and finally a non-quadrilinear (change in concentration
for sample to sample) four-way data array.

2.5. Correlation optimized warping (COW)

The COW algorithm is also based on a piece-wise linear correction
function, but unlike icoshift, it is continuous and made up of segments
whose slope is allowed to take a limited number of discrete values de-
termined by the length ℓ of the interval in which the voltammograms
are divided and the maximum number of scan points, s, by which the
length of each interval is allowed to change [40]. When the slope of a
segment of the correction function f(ty) is not one, the corresponding in-
tervals in sample and target contain a different number of points, and
linear interpolation is used so that the interval in the sample is com-
pressed or expanded to the same length as the corresponding interval
in the target. The optimized cost function is the sum of the Pearson's
correlation coefficient for all segments after interpolation and dynamic
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programming is used to attain the global maximum given the con-
straints. Typically, a maximum allowed correction is set to further
reduce the feasible region for f(ty). One known problem of the standard
COW method is that, close to the endpoints, the maximum correction
allowed by the slope constraints is reduced.While it is possible tomod-
ify the algorithm to account for this, a computationally more intensive
but equally effective solution is to attach zeroes at both ends of the sig-
nals so that the necessary flexibility is guaranteed (namely, wmaxℓs−1

zeroes should be attached at each end). It is worth mentioning, that,
while COWalso allows for custom intervals, here its commonest format
is used in which sample and target are divided in segments of equal
length.

2.6. U-PLS/RTL

For four-way calibration, U-PLS/RTL constitutes an extension of
U-PLS/RBL one further mode [19] and will be briefly described in
this section. When using four-way data, in the U-PLS method, the
original matrix data are transformed into one-dimensional arrays
(vectors) by concatenating (unfolding) the original three-dimensional
information, and concentration information is first employed into
the calibration step (without including data for the unknown sam-
ple) [41]. The calibration third-order arrays are vectorized (unfold-
ed) and a usual U-PLS model is calibrated with these data and the
vector of calibration concentrations y (I × 10). This provides a set
of loadings P and weight loadings W (both of size JKL × A, where A
is the number of latent factors), as well as regression coefficients v
(size A × 10). The parameter A can be selected by techniques such as
leave-one-outcross-validation [42]. If no unsuspected interferences
occur in the test sample, v can be employed to estimate the analyte
concentration:

yu ¼ tTuv ð5Þ

where tu (size A × 1) is the test sample score, obtained by a projection of
the (unfolded) data for the test sample Xu½vecðXuÞ; sizeð JKL� 1Þ� onto
the space of the A latent factors:

tu ¼ WTP
� 	−1

WTvec Xuð Þ ð6Þ

When uncalibrated constituents occur inXu, the sample scores given
by Eq. (6) are not suitable for analyte prediction using Eq. (5). In this
case, the residuals of the U-PLS prediction step will be abnormally
large in comparisonwith the typical instrumental noise assessed by rep-
licate measurements:

Sp ¼ vec Ep
� �

 

= JKL−Að Þ1=2

¼ vec Xuð Þ−P WTP
� 	−1

WTvec Xuð Þ










= JKL−Að Þ1=2

¼ vec Xuð Þ−Ptuk k= JKL−Að Þ1=2

ð7Þ

where || ⋅ || indicates the Euclidean norm, and JKL-A corresponds to the
degree of freedom (number of variables minus number of adjustable
parameters).

If interferent components occur in the test sample, the situation can
be handled by RTL, based on a Tucker3 decomposition that models the
interferent effects, as already described [19]. RTL aims at minimizing
the norm of the residual vector eu, computed while fitting the sample
data to the sum of the relevant contributions to the sample signal. For a
single interferent, the relevant expression is

vec Xuð Þ ¼ Ptu þ gint dint ⊗ cint ⊗ bintð Þ þ eu ð8Þ
where bint, cint, anddint are normalized profiles in the threemodes for the
interference and gint is the first core element obtained for Tucker3 analy-
sis of Ep in the following way:

gint;bint; cint;dintð Þ ¼ Tucker3 Ep

� � ð9Þ

During this RTL procedure, P is kept constant at the calibration
values and tu is varied until || eu || is minimized. The minimization can
been carried out using either a Gauss–Newton (GN) procedure or an
alternating least squares algorithm, in both cases starting with tu from
Eq. (6). Once || eu || is minimized in Eq. (8), the analyte concentrations
are provided by Eq. (5), by introducing the final tu vector found by the
RTL procedure.

The number of interferences Ni can be assessed by comparing the
final residuals su with the instrumental noise level:

su ¼ euk k= JKL− Nc þ Nið Þ½ �1=2 ð10Þ

where eu is from Eq. (8) and Nc is the number of calibrated analytes.
Typically, a plot of su computed for trial number of components will
show decreasing values, starting at sp when the number of components
is equal to A (the number of latent variables used to described the cali-
bration data), until it stabilizes at a value compatible with the experi-
mental noise, allowing to locate the correct number of components.

To analyze the presently discussed data, the Tucker3 model in
Eq. (9) is constructed by restricting the loadings to be orthogonal, and
with no special constraints on the core elements. For a single unexpect-
ed component, this analysis is straightforward and provides the corre-
sponding interferent profiles in the three modes. For additional
unexpected constituents, several different Tucker3 models could in
principle be constructed, because the number of loadingsmay be differ-
ent in each mode. We notice that the aim which guides the RTL proce-
dure is the minimization of the residual error term su of Eq. (10) to a
level compatible with the degree of noise present in the measured sig-
nals. Therefore, if two unexpected components are considered, for
example, one should explore the possible Tucker3 models having one
or two loadings in each mode, and select the simplest model giving a
residual value of suwhich is not statistically different than theminimum
one. For more unexpected components, a similar procedure is recom-
mended. The final Tucker3 model selected to model the unexpected
effects is the simplest one which provides a value of su which is not sta-
tistically different than the noise level.

We note that two different residual parameters appear in the above
discussion, which should not be confused: sp [Eq. (7)] corresponds to
the difference between the test sample signal and that model by U-
PLS before the RTL procedure, while su [Eq. (10)] arises from the differ-
ence after the RTLmodeling of the interferent effects. Hence, it is the lat-
ter one which should be comparable to the instrumental noise level if
RTL is successful.

2.7. N-PLS/RTL

In the N-PLS method applied to third-order data, concentration
information is employed in the calibration step, without including
data for the unknown sample. The I calibration data arrays, together
with the vector of calibration concentrations y (I × 1), are employed
to obtain sets of loadings Wj, Wk, and Wl (of sizes J × A, K × A, and
L × A, where A is the number of latent factors), as well as regression co-
efficients b (size A × 1) [43]. The parameter A can be selected by tech-
niques such as leave-one-outcross-validation [42]. If no unexpected
components occurred in the test sample, b could be employed to esti-
mate the analyte concentration according to:

yu ¼ tTub ð11Þ



Fig. 1. (A) SEM image of MWCNTs/GCE, and (B) electrochemical impedance spectra of
bare GCE (curve a) and MWCNTs/GCE (curve b).
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where tu is the test sample score vector, obtained by appropriate
projection of the test data onto the calibration loading matrices
(tu = (PTW)−1PTXu). When unexpected constituents occur in the
unknown sample, the latter scores are unsuitable for analyte prediction
through Eq. (11). In this case, it is useful to consider the residuals of the
N-PLSmodeling of the test sample signal [sp, see Eq. (12) below] before
prediction is made. These residuals will be abnormally large in compar-
ison with the typical instrumental noise level:

sp ¼ ep


 

= JKL−Að Þ1=2 ¼ vec Xuð Þ−vec Xu

∧
� �









= JKL−Að Þ1=2 ð12Þ

whereXu
∧
is the sample three-way data array (Xu) reconstructed by the

N-PLS model and || · || indicates the Euclidean norm.
This situation can be handled by a separate procedure called residual

trilinearization, based on the Tucker3 model of the unexpected effects,
as discussed above for U-PLS/RTL. In the case of N-PLS/RTL, the analogous
expression to Eq. (8) is

Xu ¼ reshape tu W j ⊗j jWk
� 	

⊗j jWl
h in o

þ Tucker3 Xu

∧
−Xu

� �
þ Eu ð13Þ

where ‘reshape’ indicates transforming a JKL × 1 vector into a J × K × L
three-way array, and | ⊗ | indicates the Kathri–Rao operator. During
this RTL procedure, the weight loadingsWj,Wk, andWl are kept con-
stant at the calibration values, and tu is varied until the final RTL
residual error su is minimized using a Gauss–Newton procedure, with
su given by:

su ¼ Euk k= ð JKL− Nc þ Nið Þ½ �1=2 ð14Þ

where Eu is from Eq. (13). Once this is done, the analyte concentrations
are provided by Eq. (11), by introducing the final tu vector found by
the RTL procedure. The considerations discussed above concerning the
Tucker3 model of Eq. (13) do also apply to N-PLS/RTL.

2.8. Model efficiency estimation

In order to evaluate the performance of U-PLS/RTL and N-PLS/RTL,
each model was validated for the prediction of the test sets, evaluating
root mean square errors of prediction (RMSEP), and relative error of
prediction (REP).

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
1

ypred−yact
� 	2

n

vuuut
ð15Þ

REP %ð Þ ¼ 100
ymean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ypred−yact
� 	2

vuut ð16Þ

where yact and ypred are actual and predicted concentrations of each
component, respectively, and ymean refers to themean of the actual con-
centrations and n is the number of samples in test set.

2.9. Analytical figures of merit (AFOM)

A figure of merit is a quantity used to characterize the performance
of a device, system, or method, relative to its alternatives. In analytical
calibration, figures of merit are employed to compare the relative
performances of different analytical methodologies and also to establish
detection capabilities, a feature which is specific for analytical chemistry.
Focus isfirst directed to the sensitivity,which has been shown to be a key
parameter in the estimation of the remaining figures of merit. A single
and general sensitivity equation is as follows:

SENn ¼ gTn ZT
exp I−Z unx Zþ

unx

� �
Zexp

h i−1
gn

� 
−1=2

ð17Þ

One important factor in Eq. (17) is the so-called analyte selector (gn),
a vector of numbers. In PLS/RBL, it is a vector of numbers which
adequately combines the calibration information (latent loadings) to
make it specific for the analyte of interest (the v vector of latent regres-
sion coefficients). The second important information in Eq. (17) is the
matrix Zexp, which is a function of the profiles (calibration loadings)
retrieved by the algorithm for the expected components. Finally,
Eq. (17) includes a matrix containing information on the unexpected
components, Zunx, defined as a function of the profiles recovered for
the potential interferents (in RTL they may be abstract profiles).

Selectivity is the extent towhich amethod can be used to determine
particular analytes in mixtures or matrices without interferences from
other components of similar behavior. In multi-way calibration, it is
possible to assign a numerical parameter to the selectivity, defining
the latter as the portion of the analyte signal employed for quantitation,
i.e., as the ratio between the sensitivity and the slope of the pseudo-
univariate calibration graph:

SEL ¼ SEN=sn ð18Þ
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Onepotential problemwith the interpretation of the sensitivity is that
it depends on the specific type of signal employed for developing a cali-
brationmethod. The value of SENhas units of (signal × concentration−1),
and therefore, sensitivities derived from spectral and electrochemical
measurements cannot be compared on an equal basis. For these reasons,
the analytical sensitivity, sometimes called γ, has been proposed and
defined as the ratio between sensitivity and instrumental noise:

γ ¼ SEN=σx ð19Þ

where σx is an estimation of the degree of noise level in the measured
instrumental signals.

The modern definition of limit of detection (LOD), based on IUPAC's
recommendations, is the minimum concentration that can be reliably
detected by themethod. The LOD can be estimated as 3.3 times the stan-
dard deviation for a sample of low or zero analyte concentration and can
be given by

LOD ¼ 3:3σ0 ð20Þ

3. Results and discussion

3.1. Characterization of MWCNTs/GCE

The SEM image of MWCNTs/GCE (Fig. 1A) shows that MWCNTs
twining around each other and attached to the GCE. It is clear that
MWCNTs almost homogeneously distributed on the electrode surface
by forming a thin layer. Electrochemical impedance spectroscopy (EIS)
has been considered as an effective technique for the impedance inves-
tigation of bare GCE and MWCNTs/GCE. The EIS experiments were car-
ried out in a supporting electrolyte solution of 1.0 M KCl containing
equimolar [Fe(CN)6]4−/3− in a frequency range from 0.1 to 100.0 kHz.
The semicircle is interrelated to the charge-transfer resistance pro-
cess (Rct), and the oblique line that defines a region of semi-infinite
diffusion of analytes in the electrode corresponds to the Warburg
impedance. As can be observed in Fig. 1B, it is concluded that the Rct
of the MWCNTs/GCE (curve b) is smaller than that of the bare GCE
(curve a). Therefore, by modification of GCE with MWCNTs, the bulk
resistance decreases. This result suggests that the electron transfer is
easier at the surface of MWCNTs/GCE.
Fig. 2.Differential pulse voltammogramsof (A) LD (4.0×10−3mol L−1), (B) CD (2.0×10−4mol L−

(F) LC (1.0 × 10−3mol L−1), (G) TOP (1.3 × 10−3mol L−1), (H) OF (8.0 × 10−3mol L−1), (I) LOF
3.2. pH dependence study

To select the best pH for the simultaneous determination of LD, CD,
MD, AC, TRA, LC, TOP, OF, LOF, and NOF, the effect of pH on the peak cur-
rent of their DPVs was investigated. Fig. 2A–J shows the influence of the
pHof the PBS (0.1mol L−1), in the range of 2.0–10.0, on the signal inten-
sities of each analyte. As can be observed, all peak currents of the stud-
ied analytes have a maximum value at pH 3.0. Taking into account that
for analytical purposes, bothmaximal and stable currents are necessary,
a pH value of 3.0 was selected for further experiments. The oxidation
peak potential of all studied analytes shifted to less positive values as
the pH of the buffer solution was increased (Fig. 2A–J).

3.3. Calibrations

3.3.1. Univariate calibrations
Prior to multivariate calibration experiments, univariate calibration

experimentswere performed (Fig. 3A–J) in order to check the linear an-
alytical range for the isolated analytes. Solutions for calibration curves
were prepared by convenient dilution of the standard solutions with
PBS (0.1 mol L−1, pH 3.0). Calibration curves were constructed with
several points as peak current versus analyte concentration and fitted
by standard least-squares regression. The linear ranges of calibration
curves were the limiting assayed concentrations in subsequent analy-
ses. All analytes showed linear dependences between peak current
and concentration at different concentration intervals. As can be seen,
a strong signal overlapping was observed for the simultaneous analysis
of LD, CD, MD, AC, TRA, LC, TOP, OF, LOF, and NOF (see Fig. 3), and quan-
tification of any of themwill be biased if univariate calibration is used as
analytical method. Thus, in complex cases such as the present one, it is
necessary to employ advanced multivariate calibration techniques
such as multi-way multivariate calibration. Third-order multivariate
calibration is known to provide increased sensitivity and selectivity
but, up to now, this technique has not been used for electrochemical
data, and no electrochemical data have been reported for application
to four-way multivariate calibration.

3.3.2. Multivariate calibrations
A calibration set of 23 samples containing LD, CD, MD, AC, TRA, LC,

TOP, OF, LOF, and NOF was prepared in PBS (0.1 mol L−1, pH 3.0) ac-
cording to a central composite design (Table 1) and considering the
1), (C)MD(5.0×10−3mol L−1), (D)AC (5.5×10−3mol L−1), (E) TRA (0.8×10−3mol L−1),
(8.0 × 10−3mol L−1), and (J) NOF (5.0 × 10−3mol L−1) in 0.1mol L−1 PBS at different pHs.



Fig. 3. Representative differential pulse voltammograms of (A) LD, (B) CD, (C) MD, (D) AC, (E) TRA, (F) LC, (G) TOP, (H) OF, (I) LOF, and (J) NOF in PBS (0.1 mol L−1, pH 3.0) at different
concentrations. Insets: dependence of Ip with concentration.

Table 1
Composition of the samples used in the calibration and test sets.

Calibration set

Analytes (10−6 mol L−1)
Sample LD CD MD AC TRA LC TOP OF LOF NOF
1 4000 2700 0.5 4480 4300 20 7300 1 5 5
2 4000 0.05 3700 4480 9.99 4900 20 1 5 3900
3 4000 0.05 0.5 0.5 4300 4900 7300 1 4000 3900
4 5 0.05 3700 4480 4300 20 7300 3900 5 3900
5 5 2700 3700 0.5 4300 20 20 1 4000 3900
6 5 0.05 0.5 0.5 9.99 20 20 1 5 5
7 4000 0.05 3700 0.5 9.99 20 7300 3900 4000 5
8 4000 2700 0.5 4480 9.99 20 20 3900 4000 3900
9 5 2700 0.5 0.5 9.99 4900 7300 3900 5 3900
10 4000 2700 3700 0.5 4300 4900 20 3900 5 5
11 5 0.05 0.5 4480 4300 4900 20 3900 4000 5
12 5 2700 3700 4480 9.99 4900 7300 1 4000 5
13 0 0 0 0 0 0 0 0 0 0
14 5 0 0 0 0 0 0 0 0 0
15 0 0.05 0 0 0 0 0 0 0 0
16 0 0 0.5 0 0 0 0 0 0 0
17 0 0 0 0.5 0 0 0 0 0 0
18 0 0 0 0 9.99 0 0 0 0 0
19 0 0 0 0 0 20 0 0 0 0
20 0 0 0 0 0 0 20 0 0 0
21 0 0 0 0 0 0 0 1 0 0
22 0 0 0 0 0 0 0 0 5 0
23 0 0 0 0 0 0 0 0 0 5

Test set

Analytes (10−6 mol L−1) Interferences (10−6 mol L−1)
Sample LD CD MD AC TRA LC TOP OF LOF NOF BA DP COF
1 6 12 2 8 2 5 3 1 4 2 45 148 211
2 12 21 76 47 33 88 28 36 15 21 115 122 156
3 48 78 54 69 24 41 11 23 43 33 33 88 56
4 33 32 5 12 55 76 21 21 31 65 168 35 133
5 18 45 85 48 12 115 54 12 12 54 54 41 95
6 41 18 32 87 5 21 33 8 8 32 41 78 41
7 38 39 45 10 8 36 5 28 19 29 123 12 23
8 8 78 51 36 38 65 41 33 38 59 88 134 68
9 44 66 66 55 41 98 50 18 21 43 95 90 88
10 54 54 17 60 18 130 55 9 10 50 11 45 12
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linear ranges which previously established from univariate calibrations
for each analyte. A test set of 10 synthetic mixtures containing random
concentrations of LD, CD, MD, AC, TRA, LC, TOP, OF, LOF, and NOF was
prepared in PBS (0.1 mol L−1, pH 3.0) to which BA, DP, and COF were
added with random concentrations as uncalibrated interferences
(Table 1). In both calibration and test sets, for each sample, six pulse
durations of 0.0078–0.0468 s with a 0.0078 s interval were assigned
and for each pulse duration, six DPVs were recorded at different pulse
heights of 0.0031–0.0191 V with a 0.0031 V interval.

3.4. Data pretreatments

In our previous works [44–47], we pointed out that voltammetric
performance can be enhanced by data pretreatments. Besides the prob-
lem arising from the presence of severely overlapping analyte profiles,
Fig. 4. Differential pulse voltammetric data corresponding to the calibration set. (A) Raw
in the present study, two additional complications may occur: (1) the
baselines and (2) sample-to-sample potential shifts in the analyte pro-
files, which are common in voltammetric studies. For tackling the first
problem, it was necessary to eliminate the baselines by themethod pro-
posed by Eilers et al. [48,49]. Concerning the second of the above
commented problems, the potentials shifts were corrected by COW
[40]. For more understanding about the details of the baseline- and
shift-correction techniques, the reader is referred to Refs. [40,48,49].

Regarding the problems mentioned above, the matrices of the raw
datawere placed next to each other (Fig. 4A) to obtain an expandedma-
trix and then this expandedmatrixwas submitted to baseline correction
(Fig. 4B) and potential shift correction (Fig. 4C). The pre-treated data
(baseline- and potential shift-corrected data) was then mathematically
assembled using MATLAB commands to restore their original format
(four-way data array) and used for next computations.
data, and after preprocessing: (B) baseline correction and (C) alignment with COW.



Table 2
Predicted concentrations for the test set by U-PLS/RTL and N-PLS/RTL.

U-PLS/RTL Analytes (10−6 mol L−1)

Sample LD CD MD AC TRA LC TOP OF LOF NOF
1 6.1 11.8 1.95 8.05 2.09 5.04 2.92 1.01 4.05 2.02
2 12.1 21.2 75.3 46.4 36.5 89.1 28.3 35.6 14.88 21.3
3 47.3 77.6 55.1 68.4 23.5 41.2 11.2 23.3 43.3 33.6
4 32.6 31.54 5.03 11.9 54.4 76.6 20.9 21.2 31.1 65.4
5 18.1 45.4 83.89 47.3 11.95 114.5 53.4 12.1 12.1 54.1
6 41.34 18.1 31.45 88.1 4.83 20.9 33.2 8.2 7.81 32.3
7 37.5 39.2 44.3 10.1 7.21 35.8 5.02 27.8 18.4 29.2
8 8.06 78.3 50.4 35.6 34.3 64.5 41.2 33.1 38.2 59.4
9 44.2 65.4 66.5 54.3 49.9 99.1 49.8 18.2 21.3 43.5
10 53.3 53.8 17.1 59.8 17.89 129.8 54.3 8.9 9.91 50.2

RMSEPa 0.39 0.33 0.65 0.55 0.45 0.58 0.33 0.20 0.25 0.34
REPb 1.31 0.76 1.52 1.29 1.93 0.86 1.11 1.10 1.27 0.89

N-PLS/RTL Analytes (10−6 mol L−1)

Sample LD CD MD AC TRA LC TOP OF LOF NOF
1 6.98 12.95 2.2 8.88 2.3 5.45 3.28 1.12 4.78 2.21
2 10.99 23.1 79.1 49.3 36.3 91.3 29.99 38.94 16.73 23.43
3 45.8 80.6 55.9 70.9 25.6 44.5 11.92 21.1 41.2 31.04
4 31.2 31.3 3.99 13.3 12.9 73.3 20.1 23.88 33.6 62.34
5 19.6 47.8 83.1 50.6 6.02 121.4 52.3 13.2 12.95 52.1
6 40.1 19.2 34.2 90.2 8.88 23.33 30.88 9.08 6.98 30.3
7 36.1 37.1 47.3 11.2 40.3 33.2 5.95 29.66 17.4 31.4
8 6.99 76.3 53 33.4 38.7 68.4 39.3 31.2 36.1 60.3
9 42.1 69.1 63.9 53.6 44.1 100.2 48.2 20.1 23.3 45.89
10 56.2 57.2 18.3 63.7 19.8 133.6 57.6 10.1 11.1 47.76

RMSEPa 1.62 2.19 1.95 2.28 17.00 3.37 1.63 1.86 1.67 2.11
REPb 5.39 4.95 4.50 5.28 72.07 5.00 5.44 9.86 8.35 5.41

a RMSEP, root mean square error prediction in 10−6 mol L−1.
b REP, relative error prediction in %.
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3.5. U-PLS/RTL and N-PLS/RTL applied to the third-order data

The first step is the assessment of the correct number of sample con-
stituents or the latent variables. For U-PLS/RTL and N-PLS/RTL, a leave-
one-sample-out cross-validation procedure, according to the criterion
Fig. 5.Elliptical joint regions (at 95% confidence level) for the slopes and intercepts of the regress
in test set. Black point marks the theoretical (0,1) point. In all cases, red and blue ellipses are r
of Haaland and Thomas [42], was performed. In these two algorithms,
the optimal number of factors was estimated by calculating the ratios
F(A) = PRESS(A b A*) / PRESS(A) [where PRESS = Σ(yi,act − yi,pred)2, A
is a trial number of factors ,and A* corresponds to the minimum
PRESS] and selecting the number of factors leading to a probability of
ions for (A) LD, (B) CD, (C)MD, (D)AC, (E) TRA, (F) LC, (G) TOP, (H)OF, (I) LOF, and (J)NOF
elated to N-PLS/RTL and U-PLS/RTL, respectively.



Table 3
Analytical figures of merit for U-PLS/RTL method in the test samples.

Analytes

AFOM LD CD MD AC TRA LC TOP OF LOF NOF
SENa/μA μM−1 0.12 0.08 0.16 0.21 0.18 0.31 0.16 0.22 0.15 0.25
SELb 0.34 0.26 0.23 0.38 0.41 0.25 0.33 0.29 0.36 0.23
(γ−1)c/μM 0.04 0.01 0.06 0.08 0.05 0.09 0.05 0.1 0.09 0.11
LODd/μM 4.5 0.03 0.4 0.1 2.3 12 10 0.32 2.5 2.1

a SEN, sensitivity.
b SEL, selectivity.
c γ−1, inverse of analytical sensitivity (represents the minimum concentration difference which can be measured).
d LOD, limit of detection.
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less than 75% that F N 1. For the two calibration models, the estimated
number of components was 10, which can be justified taking into
account the presence of the ten analytes.

The predicted concentrations corresponding to the application of U-
PLS/RTL and N-PLS/RTL in the analysis of test samples and the statistical
parameters (RMSEPs and REPs) are collected in Table 2. It is noticeable
that the results obtained with N-PLS/RTL are not good. However, the
results obtainedwithU-PLS/RTL are very satisfactory. Thismay be an in-
dication that U-PLS/RTL may be better prepared to cope with the prob-
lems of severe overlapping.

3.6. Comparison of predictive ability of U-PLS/RTL and N-PLS/RTL

In order to compare the predictive ability of the third-order algo-
rithms, the predicted concentrations of the test set (Table 2) were
regressed on the nominal concentrations. In this case, an ordinary
least squares (OLS) analysis of predicted concentrations versus nominal
concentrations was applied [50]. The calculated intercept and slope
were compared with their theoretically expected values (intercept =
0, slope = 1), based on the elliptical joint confidence region (EJCR)
test. If the ellipses contain the values 0 and 1 for intercept and slope
(ideal point), respectively, showing that the predicted and nominal
values do not present significant difference at the level of 95% confi-
dence and the elliptic size denotes precision of the analytical method,
smaller size corresponds to higher precision [51]. Fig. 5 A–J shows the
corresponding ellipses of the EJCR analyses. As can be concluded from
Fig. 5 A–J, the best predictions (smaller ellipses) were obtained by U-
PLS/RTL, which show the accurate determination of analytes by the de-
veloped methodology. If the EJCRs for NOF determination are analyzed
(Fig. 5J), it is notable that the ideal point falls on the blue ellipse,
denoting slightly poorer prediction accuracy for NOF rather than other
analytes.

The results of EJCR test demonstrated the more superiority of U-
PLS/RTL to resolve the complex systems, therefore, further analysis
Table 4
Results of simultaneous determination of LD, CD, MD, AC, TRA, LC, TOP, OF, LOF, and NOF in hu

Sample Added (10−6 mol L−1)

LD CD MD AC TRA LC
1 230 110 170 550 60 55
2 75 240 120 311 120 135
3 440 66 95 200 89 180

Sample Found (10−6 mol L−1)

LD CD MD AC TRA LC
1 228 112.3 172.1 547.1 58.8 55.3
2 73.3 238.7 123.9 314.7 123.5 133.2
3 441.3 68.5 97.4 198.7 87.6 178.3

Sample Recovery (%)

LD CD MD AC TRA LC
1 99.14 102.04 101.22 99.47 98 100.54
2 97.73 99.46 103.15 101.17 102.83 98.67
3 100.29 103.65 102.46 99.35 98.43 99.06
of the results of N-PLS/RTL will not be performed and we will focus
on U-PLS/RTL. Analytical figures of merit (AFOM) for the proposed
U-PLS/RTL method including sensitivity (SEN), inverse of analytical
sensitivity (γ−1), selectivity (SEL), and limit of detection (LOD) are sum-
marized in Table 3. From Table 3, all parameters are seen to be good, in-
dicating that the U-PLS/RTL model offers a very sensitive and selective
method for simultaneous determination of LD, CD, MD, AC, TRA, LC,
TOP, OF, LOF, andNOF even in the presence of uncalibrated interferences.

3.7. Analysis of human serum samples

In view of the above results, U-PLS/RTLwas selected as the algorithm
to be applied to real samples. To evaluate the feasibility of the proposed
method, simultaneous quantification of LD, CD, MD, AC, TRA, LC, TOP,
OF, LOF, and NOF in the presence of BA, DP, and COF was performed in
partially diluted human serum samples. Serum samples were partially
diluted with PBS (0.1 mol L−1, pH 3.0) and spiked with different
amounts of the analytes and interferences. Then, aliquots of the diluted
samples were introduced into the electrochemical cell. For each sample,
six pulse durations of 0.0078–0.0468 s with a 0.0078 s interval were
assigned, and for each pulse duration, six DPVs were recorded in six dif-
ferent pulse heights of 0.0031–0.0191 V with a 0.0031 V interval. The
recovery rates of the spiked samples were achieved between 96.73%
and 103.65%, showing the success of the proposed methodology for
simultaneous determination of LD, CD, MD, AC, TRA, LC, TOP, OF, LOF,
and NOF in blood serum which has a very complex matrix (Table 4).

4. Conclusion

This study describes a very attractive methodology for the simul-
taneous determination of LD, CD, MD, AC, TRA, LC, TOP, OF, LOF, and
NOF in the presence of BA, DP, and COF as uncalibrated interferences
at the surface of MWCNTs/GCE by recording third-order DPV data
and applying two third-order algorithms such as U-PLS/RTL and N-
man serum sample by U-PLS/RTL.

TOP OF LOF NOF BA DP COF
111 66 231 100 120 40 150
55 70 50 85 85 66 41
88 55 90 78 34 51 34

TOP OF LOF NOF
109.2 67.3 233 98.4
56.4 71.7 48.4 87.2
86.4 53.2 88.4 76.5

TOP OF LOF NOF
98.38 101.93 100.86 98.4
102.48 102.37 96.8 102.52
98.18 96.73 98.22 98.08
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PLS/RTL. The main goals of this work were (i) to create third-order
voltammetric data and (ii) to perform the analysis in the presence of
an unexpected interference. To achieve the first goal, third-order DPV
data were recorded using simple changes in pulse height and pulse
duration of DPV signals, and to achieve the second one, a comparison
was made between U-PLS/RTL and N-PLS/RTL as two well-known
third-order algorithms to choose the best one for the analysis of real
samples. The recorded four-way data array was non-bilinear, trilinear,
and non-quadrilinear, therefore, the non-linearities were tackled by
potential shift correction using COW as a well-known chemometric
tool. Among the third-order algorithms analyzed, U-PLS/RTL showed
the best results for determination of the analytes even in the presence
of unexpected interferences. The better performance of U-PLS/RTL
is due to the fact that the U-PLS/RTL model is a much more complex
and flexible model than N-PLS/RTL. The use of four-way data array,
exploiting the information contained in full voltammetric matrices
and third-order algorithms, allowed the successful simultaneous deter-
mination of ten analytes in both synthetic and real samples even in the
presence of unexpected interferences. The proposed methodology in
this study exploited the second-order advantage and also demonstrated
that combination of voltammetric measurements with four-way
multivariate calibration method turned possible the simultaneous
determination of LD, CD, MD, AC, TRA, LC, TOP, OF, LOF, and NOF in
the presence of BA, DP, and COF as uncalibrated interferences in com-
plex matrices such as human serum, despite the serious interference
from the background components. The potential advantages of the pro-
posed method in this study (U-PLS/RTL), such as sensitivity, rapidity,
and low-cost, can be even more highlighted by considering the possibil-
ity of it for biosensing and clinical applications.
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